SlideShare une entreprise Scribd logo
1  sur  49
Télécharger pour lire hors ligne
Bifunctional Air Electrode Studies
B. G. Demczyk-
Westinghouse Science & Technology Center
Collaborator:
C. T Liu
- Significance:
- In-principle, infinite lifetime
- Of interest for electric vehicle
propulsion
Air Electrode Electrochemistry
 O2 Reduction (Discharge):
O2 + 2 H2O +4e‾  4OH‾ (+ 0.3033V*)
or
O2 + H2O +2e‾  HO2- +OH‾ (-0.1737V*)
w/Ag catalyst (perhydroxyl ion
decomposition)
HO2-  1/2O2 +OH‾ or
or
HO2- + H2O +2e‾  3OH‾
O2 Evolution (Charge): ↑
OH‾  O2 + 2H2O +4e‾ (-0.98V*)
*- vs Hg/HgO
Two-Ply Air Electrode
Active Material:
Shawnigan Black/Ag (3.3%) 7g
Ketjenblack/Ag (3.3%) 3g
WC-12% Co 3g
NiS 2g
FeWO4 2g
Triton X-100 0.18g
Water 60 cc
Hydrophobic Layer:
Shawnigan Black 30g
Teflon 30B 9g
Water 150-175cc
Air Electrode Processing
Carbon Powder Preparation:
a) carbon silverizing
b) wet slurry mixing
c) material drying
d) oven baking
e) final blending
Electrode Fabrication:
a) wet pasting
b) preform molding
c) dry powder technique
Electrode Processing
a) cold rolling
b) hot pressing
c) hot rolling
- optional
Goals & Actions
- Goals:
- Duplicate optimal performance
- (-100mV @25ma/cm2, -200 @100 mA/cm2)
- Attain extended stable cycle life
- (300 cycles @ + 10 mV)
- Issues:
- Delamination of carbon layers
- Electrolyte leakage through hydrophobic layer
- Directions:
- Processing variations
- Accelerated life testing
Baseline Air Electrode Performance
Ag Catalyst Effect ↓
O2 evolution: -530 + 20 mV
22-54 mW
O2 reduction: -175 + 21 mV
22-80 mW
Discharge @ 25mA/cm2
Charge @ 12.5 mA/cm2
25wt% KOH @25C
Hg/HgO reference
Average Behavior with Cycling
O2
Evolution
O2
Reduction
Performance:
2-Ply, Non Size-Graded
O2
← Evolution →
O2
← Reduction →
- Mechanistic studies
Goal: obtain a clearer understanding of both oxygen reduction
and oxygen evolution processes in bifunctional mode
- Processing variations
Goal: correlate various phases of electrode fabrication with
baseline performance to establish manufacturing
process leading to reproducible, satisfactory performance
-Operational Studies
Goal: examine performance uniformity under altered cycling
conditions to determine optimal operating conditions
Air Electrode Interest Areas
Electrical Resistivity
Experimental Setup
10 wt% Teflon
50 wt% Teflon30 wt% Teflon
30 wt% Teflon
 = RA/t x units conversion factor
 = resistivity (ohm-cm)
R = resistance (ohms)
A = plaque area (10cm2)
t = plaque thickness (mm)
Reduced particle contact
→ p ↑
Electrical Resistivity
Thin sample Thick sample
Plaque Under Pressure
↑
e increases &
more change in shape
upon release
less change in shape
← upon release
↑
adhesion
← as unbaked
Restoring force
on major faces
→ t↑ upon release
Restoring force
on all faces
→ less t ↑ upon release
Results –C/Teflon Plaque Resistivity
I. Resistivity ↓ with plaque thickness (up to 6.35 mm)
Resistivity ↔ with plaque thickness (up tp 10.16 mm)
II. Effects of Teflon Dispersion:
1) Teflon particle size effects above 30% loading
2) Dielectric effects are a function of loading
3) Teflon particle adhesion effects above 30% loading
4) Dispersion agent effects in 15-30% loading range
III. Resistivity small, in general
- Can use higher wt% Teflon in fabrication
Gas-fed Ring Disk Electrode
Ag2O Reduction →
No diffusion limitations of reactive species
- Obtain purely kinetic data
- Monitor products of reaction
- Eliminate dependence on
O2 solubility in electrolyte
AgO Reduction →
←O2 Evolution
Ag Oxidation →
O2 Reduction →
←no current
(peroxide
decomposed)
Potential Distribution
Measurement Setup Measurement Points
Potential Distribution –
O2 Reduction
Potential Distribution –
O2 Evolution
Electrolyte Penetration with Cycle
Potential Distribution depends on:
- IR (ohmic drop) from c.c.
- reaction site distribution
- local OH ion concentration in pores
- O2 diffusion limitations
Therefore:
-|Vd | → extent of penetration
- s → contour of “front”
Cycle Comments
22 Initial- Vd small. Active layer, Vc minimum (bulk
wetting), s minimum. (planar front), Vd low (3 phase
interface).
46 s maximum. (nonplanar front), penetration midway
into activelayer, Vd high (local jd high)
64 Penetration through active layer,
Vc maximum (planar front, little 3 phase
interface)
82 Flooded active layer, s maximum
96 Operation in hydrophobic layer,Vd
poor, sd large, Vc in normal range (many
reaction sites)
Summary –Potential Distribution
I. Electrode potential depends on electrolyte penetration
O2 Reduction Mode
1) potentials (magnitude) vary inversely with the
area of the electrolyte penetration “front”
2) Nonplanar penetration results in large potential
variation over electrode surface
O2 Evolution Mode
1) potentials (magnitude) vary inversely with the
“wetted” volume of the electrode
2) Nonplanar penetration has little effect on
potential variation over electrode surface
3) IR losses a major contributor toward the total
polarization of the electrode
II. Onset of electrode delamination signals increased
ohmic polarization in both modes
Teflon Loading Experiment
Air Electrode Operating Conditions:
25C, 25w/% KOH electrolyte
Unscrubbed ambient air
Cycling (vs flat Ni electrode)
4hr@ 25 mA/cm2 discharge
12.5 mA/cm2 charge
Potentials relative to Hg/HgO reference electrode.
Teflon is:
- a binder
- a hydrophobizing material.
- Contains dispersion (“wetting”) agent
(to form emulsion), which must be
thermally decomposed (“baked out”) .
- Can mask electrocatalytic effects
Teflon Experiment –
Loading & Agglomerate Size
← O2
Reduction
O2 →
EvolutionSmaller size
→ slightly better vd
↓
← Excessive wetting
(restricted O2 access)
- Enhanced wetting
(more active area for rxn.)
↓.
Little correlation
with Teflon loading
Little correlation
with Teflon loading
Little correlation
with Teflon loading
- ↑
- Enhanced wetting
(more active area for rxn.)
Teflon Loading Effects
O2 reduction: 1) unbaked samples – at extreme ends
(<10:1 & >10:8) , potentials poor due to:
a) lack of sufficient binder
b) excess of dispersion agent
2) baked samples – potentials nearly independent
of loading
O2 Evolution: 1) unbaked samples – little dependence on loading
2) baked samples – complicated behavior, possibly
related to wetting pattern
Open Circuit: 1) unbaked – higher potentials for high (>10:8) and
lower for low (<10:1) loadings
Summary-Teflon Experiment
O2 Reduction:
- Unbaked samples: initially improving Vd (enhanced electrolyte
penetration), then Vd degrades (uncontrolled wetting and flooding)
-Baked samples: more stable Vd overall, degradation as electrode delaminates
(flooding)
O2 Evolution:
- Unbaked samples: little correlation with Teflon loading
-Baked samples: poor at low loading(little electrolyte penetration),then little
correlation
Agglomerate size ↓ leads to slightly better [Vd] (more reaction area)
-less effect on O2 evolution mode
Therefore, lower Teflon loading and smaller agglomerate size gives better
oxygen reduction
-wetting agent leads to variability
Summary – Electrode Testing
Potential Distribution Study;
A. Charge Mode - Resistance higher in vertical direction, becoming
less significant with extended cycling
B. Discharge Mode – no definite trend
- both consistent with O2 evolution on Ni fibers and O2 reduction in
active layer
Teflon Binder Experiment:
A. Electrode flooding detrimental (beneficial) to O2 reduction (evolution)
B. Open circuit potential related to subsequent wetting patterns
Rotating Disk Test:
A. O2 reduction occurs via a 2e-, perhydroxyl ion production process
B. Ag catalyst improves peroxide elimination at least one order of
magnitude and perhydroxyl elimination
C. Anodic cycling ((+0.5 to +0.6 V vs Hg/HgO) causes carbon surface
modifications, which inhibit O2 reduction capability slightly
D. No evidence of Ag dissolution
Processing Variations-Pressing
T (C) P (tons) t (min) Vd(-mV) Rd (mW) Vc(mV) Rc(mW)
275 36 10 176 36 529 33
20 153 21 518 26
30 170 28 530 26
300 36 10 178 52 552 165
20 166 32 513 35
30 153 25 517 ----
325 36 10 180* ---- 529* 33
20 ---- ---- ----
30 ---- ---- ---- ----
350 36 10 165 24 521 30
375 36 10 ---- ---- ---- ----
300 18 10 191 71 542 68
20 170 43 528 33
30 ---- ---- ---- ----
300 5 10 161 36 522 18
10 10 160 34 532 22
30 170 28 530 26
Notes:
Vd,Vc –discharge and
charge potential
vs Hg/HgO
(avg.through 60
cycles),
(* @ 28 cycles))
Rd, Rc-polarization
resistance, discharge
25-125 mA/cm2,
charge 12.5-62.5
mA/cm2
No data indicates
structural
failure.
Hot Pressing Effects
SiGe/Ge(111)
Vc Vd Rc Rd
Pressing Pressure,P:
300C, 10 min (5-10 Ton): ~P ~P ~1/P
(10-18 Ton): ~P ~P
(18-36 Ton): ~1/P ~1/P
300C, 20 min ~1/P ~1/P ~P ~1/P
Pressing Temperature, T:
36 Ton, 10 min (275-300 C): ~T ~T ~T
(275-325 C): ~T
(300-325 C): ~1/T
(300-350 C): ~1/T ~1/T
(325-350 C): T 1/T
36 Ton, 20 min ~1/T ~T ~T ~T
36 Ton, 30 min ~1/T ~1/T ~T ~1/T
Pressing Time, t:
275C, 36 Ton (10-20 min): :~1/t ~1/t ~1/t ~1/t
(20-30 min): ~t ~t ~t ~t
300C, 36 Ton (10-20 min): ~1/t ~1/t ~1/t ~1/t
(20-30 min): ~ t
300C, 18 Ton ~1/t ~1/t ~1/t ~1/t
Key: V=voltage; R=internal resistance; C=charge; D=discharge; strongly; slightly
Surfactant Variation
surfactant (0.1g/cc) Type Vc** (mV) Vd** (mV) Life Cycle
#39 FC-171 N 636 -204 252
#40 FC-430 N 640 -195 256
#41 X-100 N 649 -189 316
#42 LTA C N 662 -225 252
#47 FC-170 N 681 -293 256
#38 FC-95*** A 690 -229 252
#46 FC-129 A 680 -272 246
#48 FC-98 A 650 -231 159
#43 None 666 -250 332
Key: V=voltage; C=charge; D=discharge; **through life; *** 0.001g/cc;A=anionic;N=nonionic;
#41 Rohm & Haas Co., #42 ArmourServices, all others, 3M Commercial Solutions
Relative to the no surfactant case, nonionic surfactants generally give lower O2 reduction
potentials and slightly lower O2 evolution overpotentials, while slightly sacrificing cyclic life.
Active Layer Resistivity
SiGe/Ge(111)
s (m2/g) rel Vc* (mV) Vd* (mV)
#30 96 M 625 -227
#31 94 L 624 -230
#32 290 H 586 -284
#33 220 L 640 -254
#34 138 H 613 -339
#35 112 L 625 -284
Key: V=voltage; s =surface area; =resistivity; C=charge;
D=discharge; ,* through 120 cycles; M=medium; L=low, H=high
- Higher resistivity supports give rise to
more stable cyclic voltage performance.
- O2 reduction overpotentials 20-50 mV
lower on low resistivity supports.
- O2 evolution potentials 10-50 mV
higher on low resistivity supports,
as it depends on electrolyte penetration.
Other Processing Effects
SiGe/Ge(111)
Vd sd Vc sc Life
Active Material Drying:
Oven Dry (100C, 3h) 154 10.9 521 5.8 123
Vacuum Oven Dry (100C, 16400 N/m2,3h) 155 11.2 522 9.8 123
Air Dry (25C, 16h (std.) 163 7.9 517 8 121
-No particular advantage in deviation from standard air drying
Active Material Size Grading:
700-900 micron active layer 187 12.6 509 10.5 101
-Detrimental to discharge performance and lifetime, as agglomerates lose hydrophobic
character, permitting excessive electrolyte penetration
Hot Rolling:
375F, 25psia, 4dir 151 10.6 524 14.5 108
70F, 25psia, 4dir 193 37 528 7 127
375F, 25psia, 8dir 162 6 511 13.5 64
375F, 50psia, 4dir 136 11 514 6 64
300F, 25psia, 4dir 147 25 513 6 64
-Hot rolling can approximate hot pressing performance, albeit with more variable
performance and sometimes shortened lifetime
-Cold rolling exhibits “bulk” wetting patters, detrimental to discharge performance
Processing Effects - Rolling
Initial “Break-in”
↓
Stable Regime
↓
Electrode “Flooding”
↓
Room temperature rolling (CR-1) exhibits “bulk wetting” pattern
Other Processing Effects
SiGe/Ge(111)
Dispersion Agent:
1) higher levels lead to high open circuit and poor O2 reduction
potentials
2) moderate loading (10:2 to 10:4), dispersion agent initially leads
to better potentials, followed by rapid deterioration
Agglomerate Size:
Both O2 reduction and O2 evolution potentials improve slightly
with smaller agglomerates
Working Time:
1) ~ one hour optimal for open circuit and O2 reduction potentials
2) less working time leads to minimal O2 reduction overpotentials
Open circuit potential is related to subsequent wetting characteristics for
unbaked samples
Operating Variations - Cycling
Cycling Conditions Vd sd Vc sc Life*
4 hr. charge, 4 hr. discharge (CC1) -184 36 515 15 828
4 hr open ckt., 4 hr. discharge (CC2) -165 10 ---- ---- 2468
Continuous charge (CC3) ---- ---- 568 25 1920
4 hr. charge, 4 hr. open ckt. (CC4) ---- ---- 553 17 3000
Continuous discharge (CC5) -163 11 ---- ---- 2064
Notes:
Vd,Vc –discharge and charge potential (mV vs. Hg/HgO (avg. through test)
sd, sc – standard deviation, diacharge and charge mode (mV)
*- in hours (failure due to excessive leakage)
Summary - Cycling Variations
Effects of Operation mode (relative to std. 4h. Charge, 4h. Discharge)
Mode O2 Reduction O2 Evolution Life
Discharge Beneficial ---- Beneficial
Charge ---- Detrimental Beneficial
Open Circuit Beneficial No Effect Beneficial
- indicates minor effect
Summary – Tab Position
Motivation: electrolyte is drawn towards electrically operation areas of grid
Tab Position Vd sd Vc sc
Electrolyte side (inner) -190 13 535 12
Hydrophobic-hydrophilic interface (outer) -149 10 565 13
- Three-phase interface lies , on average, closer to hydrophilic-hydrophobic
boundary→ superior discharge performance detected here.
- Highest electrochemically active region for oxygen evolution occurs where
electrolyte exposure is maximized-i.e. the inner side, but potentials erratic
Operating Temperature Effects
Open Circuit Mode
O2 Reduction Mode
O2 Evolution Mode
Summary of Operating Temperature
Effects
O2 Reduction Mode:
1) Vd ~ Operating T(1.1 mV/C)
-lower T better and more stable
2) higher T accelerates failure, due to suboptimal electrolyte penetration patterns
3) Rd ↑, then →, then ↓, with cycle, as reaction shifts from O2 reduction to H2
evolution (more rapidly with increasing operating T)
O2 Evolution Mode:
1) Vc – slight ↓ with time on test and slight ↑ increasing with operating T
-lower operating T gives better and more stable performance
2) Rc stable throughout
Open Circuit Mode:
1) Voc – ↑, then ↔, then ↓
with cycle, due to surface
oxide formation, electrolyte
penetration and loss of
catalytic activity
2) Little relation to operating T
Size-Graded Air Electrode
- Layer A – Hydrophillic (< 0.6mm):
- Shawnigan Black/Ag 30g
Teflon 30B 9g
Water 150-175cc
- Layer B(D) – Hydrophillic (0.6-1.18mm):
- Shawnigan Black*/Ag 30g
- (Ketjenblack** EC-330JMA)
Teflon 30B 12g
WC-12% Co 4.5g
NiS 4.5g
FeWO4 4.5g
Triton X-100 0.18g
Water 150-175cc
- Layer C – Hydrophobic (1.18-1.7mm) :
- Shawnigan Black 30g
Teflon 30B 9g
Water 150-175cc
*Chevron Phillips
**AzkoNobel
Size-Graded Air Electrode
Cycles 0-99 Cycles 100-199
Vd sd Vc sc Vd sd Vc sc
B60 192 53 561 17 165 11 581 33
B60* 169 19 567 12 178 6 559 9
/1g A3,1g B(D)3/
/2g A2,1.5g (B,D)3/
/2g A2, 1.5g B2/
/2.5g A1,1g B2/
/3g C
A = hydrophobic agglomerate
B = hydrophilic agglomerate (60 m2/g) – B60
D = hydrophilic agglomerate (1000 m2/g) – B60*
C = hydrophobic material
1 = 1270-1820 mm
2 = 660- 1270 mm
3 = < 660 mm
High surface area carbon introduced to reduce “break-in” period.
Size-Graded Air Electrode
B60
← distinct “break-in” B60*
← reduced “break-in”
- High surface area carbon reduces discharge “break-in”,
with no sacrifice in charge performance.
Alternative Processing Effects
B102 Oven bake (300C, natural convection); press 5 Ton, 10 min., 25 C
B103 N2 flowing gas furnace (300C, 10 min. ) for more uniform heat distribution;
cold roll 25 lb., 4 dir., 25 C to promote more uniform thickness.
B117 Active material baked 2hr. in flowing N2 oven (300 C); hot press 300C, 5 Ton., 10 min.
to increase wetting agent decomposition.
B119 Active material baked as per B117; otherwise as per B103
B123 Hot press 300C, 5 Ton., 10 min., cool to room T in press to reduce expansion upon
relaxation.
B60* Active material baked 2hr. in natural convection oven (300 C); hot press 300C, 5 Ton.,
10 min. (Standard Processing)
Vd sd Vc sc Life Comments
B102 185 36.5 573 34 536 (similar to std., but wetting
B103 171.5 24.5 529.5 14.5 189 less controlled).
B117 193 10.5 542.5 16.5 235 (less well-defined
B119 227 25 547 12.5 235 break-in required
B123 189 11 563 7 215 than std.).
B60* (std) 179 15.5 537 18.5
-Less P gives shorter “leak-free” life, can extend if oven bake
- Hot pressing not required for moderately leak-free life (~250 cycles)
- Cooling in press enhances reproducibility (relative to std.)
Alternative Processing Effects
SiGe/Ge(111)
↓ “Break-in”
↓ Stable with cycling
↓ Slight decrease with cycling
↓ No “Break-in”
Other Processing Effects
SiGe/Ge(111)
Vd sd Vc sc Life
Catalyst Substitution:
R.V.C (#104) 219 27.5 611 17.6 169
R.V.C, WC-12% Co (#105) 173 20.7 602 12.0 148
R.V.C, NiS, WC-12% Co (#109) 197 18.0 621 34.9 115
Ni Hydrate (#113) 233 60.6 672 40.1 352
Fe Powder (#114) 175 26.4 583 15.0 352
Fe Powder, Ni Hydrate (#115) 178 25.5 557 22.2 352
WC-12% Co, NiS, FeWO4 (std.) 230 15.3 560 11.9 397
-Fe compounds reduce oxygen evolution overpotentials.
- Fe-Ni synergistic effect in both modes.
- Standard combination gives most stable performance.
Active Material Size Grading:
700-900 micron active layer 187 12.6 509 10.5 101
-Detrimental to discharge performance and lifetime, as agglomerates lose hydrophobic
character, permitting excessive electrolyte penetration
Catalyst Substitution
SiGe/Ge(111)
↓ No “Break-in” ↓ “Break-in”
Variable, but no increase with cycling
Less variable,
but increases with cycling ↓
Tabbing Optimization
10 cm2 L (cm) D (cm) Rd (mW) Rc(mW)
TO-1 1 10 960 460
TO-2 10 1 1010 600
TO-3 3.16 3.16 910 430
TO-4 5 2 800 330
100 cm2
T0-12 10 10 44 (33) 35.5
TO-13 17 6 74 (33) 62
TO-14 6 17 40 (27) 51
Rd (mW) – mean polarization resistance,
oxygen reduction mode (1 – 10 mA/cm2)
() ohmic component at 5 A level)
Rc (mW) – mean polarization resistance,
oxygen evolution mode (1 – 10 mA/cm2)
Tabbing Optimization
Position Rd (mW) Rc(mW)
“A” 22.9 13.9
“B” 21.7 13
“C” 19.9 10.4
“D” 21.0 11.6
“A” – tab position 1 “B” – tabs 1 and 2
“C” – tabs 2 and 4; “D” – all four tabs
Rd (mW) – mean polarization resistance,
oxygen reduction mode (25 - 125 mA/cm2)
Rc (mW) – mean polarization resistance,
oxygen evolution mode (12.5 - 62.5mA/cm2)
Tabbing Optimization Summary
Polarization Resistance (PR):
10 cm2:
5:2 lowest (50-200 mW in O2 evolution mode)
10:1: highest (100-250 mW in O2 reduction mode)
→ most loss along nickel tab length
100 cm2:
longest (17cm) highest (both modes)
↓with cycling (O2 evolution mode (less so in O2 reduction)
→ bulk electrolyte controlling
Ohmic Polarization:
No excessive losses in 10 to 100 cm2 scale-up
Fraction of total PR ↑ from <15% to 80% with cycling
Tab orientation mattered little.
Air vs Oxygen Operation
Nernst potential for half cell
reaction (O2 reduction):
for T1 = 45 C = 318 K; X1 =1
T2= 25 C = 298 K; X2 =0.21,
we obtain:, E1/E2 ~ 1.665
(observed: 1.25/0.75 = 1.66, initially).
O2 evolution overpotentials initially 30 mV higher
in pure O2 and elevated T.
Elevated T induced enhanced wetting
and eventual “flooding”, and deterioration of potentials.
References
Figures:
1). B. G. Demczyk and C. T. Liu, J. Electrochem. Soc. 129(6) 1159 1982.
2). B. G. Demczyk and C. T. Liu, J. Power Sources. 6 185 1981.
3). B. G. Demczyk and C. T. Liu , B. G. Demczyk and I. R. Rittko, United State Patent # 4,444,852.
General:
E. S. Buzzelli, B. G. Demczyk. A. Gibney. C. T. Liu, P. L. Ulerich and R. E. Grimble, Iron-Air
Battery Development Program, Final Report 1980 (U.S. Department of Energy Contract No.
7335709), Westinghouse R & D Document No. 83-9E62-MOBET-R2, July 1981.
E. S. Buzzelli, L. B. Berk, B. G. Demczyk. A. Gibney. C. T. Liu, and D. Zuckerbrod, Iron-Air Battery
Development Program, Interim Report 1981 (U.S. Department of Energy Contract No. 7335709),
Westinghouse R & D Document No. 82-9D12-MOBET-R2, June 1982
E. S. Buzzelli, B. G. Demczyk, , L. B. Berk, D. Zuckerbrod, A.Gibney. C. T. Liu, P. L. Ulerich and
R. E. Grimble, Iron-Air Battery Development Program, Final Report. March, 2. 1983 (U.S.
Department of Energy Contract No. 7335709), Westinghouse R & D Document No. 83-9012-
MOBET-R1, March 2, 1983.
Acknowledgements
Air Electrode Fabrication:
P. Gongaware, R. Egidio, I. Rittko
Air Electrode Testing:
G. Leap
This work was supported by
a U.S. Department of Energy contract EY-76-C-02-2949,*000

Contenu connexe

Tendances

AIAA-Aeroacoustics2016_XFlow_websitePDF
AIAA-Aeroacoustics2016_XFlow_websitePDFAIAA-Aeroacoustics2016_XFlow_websitePDF
AIAA-Aeroacoustics2016_XFlow_websitePDFRuddy Brionnaud
 
Influence of Carbon in Iron on Characteristics of Surface Modification by EDM...
Influence of Carbon in Iron on Characteristics of Surface Modification by EDM...Influence of Carbon in Iron on Characteristics of Surface Modification by EDM...
Influence of Carbon in Iron on Characteristics of Surface Modification by EDM...drboon
 
Imaps 2010 Mohammad Chowdhury
Imaps 2010 Mohammad ChowdhuryImaps 2010 Mohammad Chowdhury
Imaps 2010 Mohammad Chowdhurykamruzzaman1
 
Effect of sintering time on the particle size and dielectric properties of La...
Effect of sintering time on the particle size and dielectric properties of La...Effect of sintering time on the particle size and dielectric properties of La...
Effect of sintering time on the particle size and dielectric properties of La...ijceronline
 
Thermoelectric and magnetic properties of Ca3Co4-xCuxO9+ δ with x = 0.00, 0.0...
Thermoelectric and magnetic properties of Ca3Co4-xCuxO9+ δ with x = 0.00, 0.0...Thermoelectric and magnetic properties of Ca3Co4-xCuxO9+ δ with x = 0.00, 0.0...
Thermoelectric and magnetic properties of Ca3Co4-xCuxO9+ δ with x = 0.00, 0.0...Chih-Ju Lin
 
Bespoke compositions and microstructures from suspension and solution precurs...
Bespoke compositions and microstructures from suspension and solution precurs...Bespoke compositions and microstructures from suspension and solution precurs...
Bespoke compositions and microstructures from suspension and solution precurs...Tanvir Hussain
 
IB Chemistry Kinetics Design IA and uncertainty calculation for Order and Rate
IB Chemistry Kinetics Design IA and uncertainty calculation for Order and RateIB Chemistry Kinetics Design IA and uncertainty calculation for Order and Rate
IB Chemistry Kinetics Design IA and uncertainty calculation for Order and RateLawrence kok
 
Larry phillips plasma etching for cleaning and surface preparation of niobi...
Larry phillips   plasma etching for cleaning and surface preparation of niobi...Larry phillips   plasma etching for cleaning and surface preparation of niobi...
Larry phillips plasma etching for cleaning and surface preparation of niobi...thinfilmsworkshop
 
IB Chemistry on Kinetics Design IA and uncertainty calculation for rate and o...
IB Chemistry on Kinetics Design IA and uncertainty calculation for rate and o...IB Chemistry on Kinetics Design IA and uncertainty calculation for rate and o...
IB Chemistry on Kinetics Design IA and uncertainty calculation for rate and o...Lawrence kok
 
Chemical vapor deposition (cvd)
Chemical vapor deposition (cvd)Chemical vapor deposition (cvd)
Chemical vapor deposition (cvd)Khalid Raza
 
Chemical Vaour Deposition & Physical Vapour Deposition techniques.
Chemical Vaour Deposition & Physical Vapour Deposition techniques.Chemical Vaour Deposition & Physical Vapour Deposition techniques.
Chemical Vaour Deposition & Physical Vapour Deposition techniques.Tapan Patel
 
Low Pressure Chemical Vapour Deposition
Low Pressure Chemical Vapour DepositionLow Pressure Chemical Vapour Deposition
Low Pressure Chemical Vapour DepositionSudhanshu Janwadkar
 

Tendances (16)

AIAA-Aeroacoustics2016_XFlow_websitePDF
AIAA-Aeroacoustics2016_XFlow_websitePDFAIAA-Aeroacoustics2016_XFlow_websitePDF
AIAA-Aeroacoustics2016_XFlow_websitePDF
 
Influence of Carbon in Iron on Characteristics of Surface Modification by EDM...
Influence of Carbon in Iron on Characteristics of Surface Modification by EDM...Influence of Carbon in Iron on Characteristics of Surface Modification by EDM...
Influence of Carbon in Iron on Characteristics of Surface Modification by EDM...
 
Imaps 2010 Mohammad Chowdhury
Imaps 2010 Mohammad ChowdhuryImaps 2010 Mohammad Chowdhury
Imaps 2010 Mohammad Chowdhury
 
Effect of sintering time on the particle size and dielectric properties of La...
Effect of sintering time on the particle size and dielectric properties of La...Effect of sintering time on the particle size and dielectric properties of La...
Effect of sintering time on the particle size and dielectric properties of La...
 
Thermoelectric and magnetic properties of Ca3Co4-xCuxO9+ δ with x = 0.00, 0.0...
Thermoelectric and magnetic properties of Ca3Co4-xCuxO9+ δ with x = 0.00, 0.0...Thermoelectric and magnetic properties of Ca3Co4-xCuxO9+ δ with x = 0.00, 0.0...
Thermoelectric and magnetic properties of Ca3Co4-xCuxO9+ δ with x = 0.00, 0.0...
 
Bespoke compositions and microstructures from suspension and solution precurs...
Bespoke compositions and microstructures from suspension and solution precurs...Bespoke compositions and microstructures from suspension and solution precurs...
Bespoke compositions and microstructures from suspension and solution precurs...
 
IB Chemistry Kinetics Design IA and uncertainty calculation for Order and Rate
IB Chemistry Kinetics Design IA and uncertainty calculation for Order and RateIB Chemistry Kinetics Design IA and uncertainty calculation for Order and Rate
IB Chemistry Kinetics Design IA and uncertainty calculation for Order and Rate
 
Larry phillips plasma etching for cleaning and surface preparation of niobi...
Larry phillips   plasma etching for cleaning and surface preparation of niobi...Larry phillips   plasma etching for cleaning and surface preparation of niobi...
Larry phillips plasma etching for cleaning and surface preparation of niobi...
 
Colloqium 1
Colloqium 1Colloqium 1
Colloqium 1
 
10.1007_s12633-015-9356-x
10.1007_s12633-015-9356-x10.1007_s12633-015-9356-x
10.1007_s12633-015-9356-x
 
MotM Poster
MotM PosterMotM Poster
MotM Poster
 
IB Chemistry on Kinetics Design IA and uncertainty calculation for rate and o...
IB Chemistry on Kinetics Design IA and uncertainty calculation for rate and o...IB Chemistry on Kinetics Design IA and uncertainty calculation for rate and o...
IB Chemistry on Kinetics Design IA and uncertainty calculation for rate and o...
 
Mubashir, vacuum
Mubashir, vacuumMubashir, vacuum
Mubashir, vacuum
 
Chemical vapor deposition (cvd)
Chemical vapor deposition (cvd)Chemical vapor deposition (cvd)
Chemical vapor deposition (cvd)
 
Chemical Vaour Deposition & Physical Vapour Deposition techniques.
Chemical Vaour Deposition & Physical Vapour Deposition techniques.Chemical Vaour Deposition & Physical Vapour Deposition techniques.
Chemical Vaour Deposition & Physical Vapour Deposition techniques.
 
Low Pressure Chemical Vapour Deposition
Low Pressure Chemical Vapour DepositionLow Pressure Chemical Vapour Deposition
Low Pressure Chemical Vapour Deposition
 

En vedette

Bahasan 4 media pendidikan dan proses komunikasi pembelajaran
Bahasan 4 media pendidikan dan proses komunikasi pembelajaranBahasan 4 media pendidikan dan proses komunikasi pembelajaran
Bahasan 4 media pendidikan dan proses komunikasi pembelajaranindri putri
 
Audience Profile
Audience Profile Audience Profile
Audience Profile TobyEdwards
 
Trabajo final tecnología
Trabajo final tecnologíaTrabajo final tecnología
Trabajo final tecnologíasebasthuglife
 
Myths or facts about healthcare plans
Myths or facts about healthcare plansMyths or facts about healthcare plans
Myths or facts about healthcare plansMike Peter
 
Tecnologia en el ambito de la musica
Tecnologia en el ambito de la musicaTecnologia en el ambito de la musica
Tecnologia en el ambito de la musicasebasthuglife
 
What makes a music video effective
What makes a music video effectiveWhat makes a music video effective
What makes a music video effectiveRachel4837
 
How is disability represented within media products
How is disability represented within media productsHow is disability represented within media products
How is disability represented within media productsRachel4837
 
Seguridad de cuchillos - Spanish Knfe Safety
Seguridad de cuchillos - Spanish Knfe SafetySeguridad de cuchillos - Spanish Knfe Safety
Seguridad de cuchillos - Spanish Knfe SafetyJohn Alvarez
 

En vedette (15)

Storyboard
StoryboardStoryboard
Storyboard
 
Elastisitas
Elastisitas Elastisitas
Elastisitas
 
Bahasan 4 media pendidikan dan proses komunikasi pembelajaran
Bahasan 4 media pendidikan dan proses komunikasi pembelajaranBahasan 4 media pendidikan dan proses komunikasi pembelajaran
Bahasan 4 media pendidikan dan proses komunikasi pembelajaran
 
Declaração_Experiencia_CMSC
Declaração_Experiencia_CMSCDeclaração_Experiencia_CMSC
Declaração_Experiencia_CMSC
 
WATC Brochure - electronic edit
WATC Brochure - electronic editWATC Brochure - electronic edit
WATC Brochure - electronic edit
 
Audience Profile
Audience Profile Audience Profile
Audience Profile
 
Trabajo final tecnología
Trabajo final tecnologíaTrabajo final tecnología
Trabajo final tecnología
 
Myths or facts about healthcare plans
Myths or facts about healthcare plansMyths or facts about healthcare plans
Myths or facts about healthcare plans
 
Actividades película océano
Actividades película océanoActividades película océano
Actividades película océano
 
Tecnologia en el ambito de la musica
Tecnologia en el ambito de la musicaTecnologia en el ambito de la musica
Tecnologia en el ambito de la musica
 
Branding
BrandingBranding
Branding
 
What makes a music video effective
What makes a music video effectiveWhat makes a music video effective
What makes a music video effective
 
How is disability represented within media products
How is disability represented within media productsHow is disability represented within media products
How is disability represented within media products
 
Seguridad de cuchillos - Spanish Knfe Safety
Seguridad de cuchillos - Spanish Knfe SafetySeguridad de cuchillos - Spanish Knfe Safety
Seguridad de cuchillos - Spanish Knfe Safety
 
KR Resume
KR ResumeKR Resume
KR Resume
 

Similaire à AEq

Atomic Layer Deposition: a process technology for transparent conducting oxides
Atomic Layer Deposition: a process technology for transparent conducting oxidesAtomic Layer Deposition: a process technology for transparent conducting oxides
Atomic Layer Deposition: a process technology for transparent conducting oxidescdtpv
 
Thesis Defense Presentation ONE-STEP PROCESS FOR SOLID OXIDE FUEL CELL FABRIC...
Thesis Defense Presentation ONE-STEP PROCESS FOR SOLID OXIDE FUEL CELL FABRIC...Thesis Defense Presentation ONE-STEP PROCESS FOR SOLID OXIDE FUEL CELL FABRIC...
Thesis Defense Presentation ONE-STEP PROCESS FOR SOLID OXIDE FUEL CELL FABRIC...chrisrobschu
 
Thermoelectricity
ThermoelectricityThermoelectricity
Thermoelectricityvani_lj
 
CVD AND PVD THIN FILM TECHNIQUES
CVD AND PVD THIN FILM TECHNIQUESCVD AND PVD THIN FILM TECHNIQUES
CVD AND PVD THIN FILM TECHNIQUESHHV SOLAR Pvt Ltd
 
CapItalIs Fuel Cell Challenge V Presentation
CapItalIs Fuel Cell Challenge V PresentationCapItalIs Fuel Cell Challenge V Presentation
CapItalIs Fuel Cell Challenge V PresentationEngenuitySC
 
Electrochemical Characterization of Electrocatalysts .pptx
Electrochemical Characterization of Electrocatalysts .pptxElectrochemical Characterization of Electrocatalysts .pptx
Electrochemical Characterization of Electrocatalysts .pptxMabrook Saleh Amer
 
SLIDE VIVA APRIL 2016
SLIDE VIVA APRIL 2016SLIDE VIVA APRIL 2016
SLIDE VIVA APRIL 2016myrahalimi
 
Influence of Carbon in Iron on Characteristics of Surface Modification by EDM...
Influence of Carbon in Iron on Characteristics of Surface Modification by EDM...Influence of Carbon in Iron on Characteristics of Surface Modification by EDM...
Influence of Carbon in Iron on Characteristics of Surface Modification by EDM...drboon
 
Application of Dielectric Spectroscopy to Monitor Insulating Materials
Application of   Dielectric Spectroscopy to Monitor Insulating Materials   Application of   Dielectric Spectroscopy to Monitor Insulating Materials
Application of Dielectric Spectroscopy to Monitor Insulating Materials ahmdfurkan
 
Presentation__ferroelectric_materials.ppt
Presentation__ferroelectric_materials.pptPresentation__ferroelectric_materials.ppt
Presentation__ferroelectric_materials.pptRezaMohammadi90
 
Option C Secondary Cell, Hydrogen Microbial Fuel Cell and Thermodynamic Effic...
Option C Secondary Cell, Hydrogen Microbial Fuel Cell and Thermodynamic Effic...Option C Secondary Cell, Hydrogen Microbial Fuel Cell and Thermodynamic Effic...
Option C Secondary Cell, Hydrogen Microbial Fuel Cell and Thermodynamic Effic...Lawrence kok
 
Energy and nanotechnology
Energy and nanotechnologyEnergy and nanotechnology
Energy and nanotechnologyStar Gold
 
Protec zld based on ltd system 2
Protec zld based on ltd system 2Protec zld based on ltd system 2
Protec zld based on ltd system 2mohager4a
 
TC_climate_April2016
TC_climate_April2016TC_climate_April2016
TC_climate_April2016Flora Viale
 
Experimental Studies on Pool Boiling Heat Transfer Using Alumina and Graphene...
Experimental Studies on Pool Boiling Heat Transfer Using Alumina and Graphene...Experimental Studies on Pool Boiling Heat Transfer Using Alumina and Graphene...
Experimental Studies on Pool Boiling Heat Transfer Using Alumina and Graphene...IRJET Journal
 

Similaire à AEq (20)

Atomic Layer Deposition: a process technology for transparent conducting oxides
Atomic Layer Deposition: a process technology for transparent conducting oxidesAtomic Layer Deposition: a process technology for transparent conducting oxides
Atomic Layer Deposition: a process technology for transparent conducting oxides
 
Thesis Defense Presentation ONE-STEP PROCESS FOR SOLID OXIDE FUEL CELL FABRIC...
Thesis Defense Presentation ONE-STEP PROCESS FOR SOLID OXIDE FUEL CELL FABRIC...Thesis Defense Presentation ONE-STEP PROCESS FOR SOLID OXIDE FUEL CELL FABRIC...
Thesis Defense Presentation ONE-STEP PROCESS FOR SOLID OXIDE FUEL CELL FABRIC...
 
G080468 00
G080468 00G080468 00
G080468 00
 
G080468-00
G080468-00G080468-00
G080468-00
 
Thermoelectricity
ThermoelectricityThermoelectricity
Thermoelectricity
 
CVD AND PVD THIN FILM TECHNIQUES
CVD AND PVD THIN FILM TECHNIQUESCVD AND PVD THIN FILM TECHNIQUES
CVD AND PVD THIN FILM TECHNIQUES
 
CapItalIs Fuel Cell Challenge V Presentation
CapItalIs Fuel Cell Challenge V PresentationCapItalIs Fuel Cell Challenge V Presentation
CapItalIs Fuel Cell Challenge V Presentation
 
Electrochemical Characterization of Electrocatalysts .pptx
Electrochemical Characterization of Electrocatalysts .pptxElectrochemical Characterization of Electrocatalysts .pptx
Electrochemical Characterization of Electrocatalysts .pptx
 
SLIDE VIVA APRIL 2016
SLIDE VIVA APRIL 2016SLIDE VIVA APRIL 2016
SLIDE VIVA APRIL 2016
 
Understanding Dynamic chemistry at the Catalytic Interface
Understanding Dynamic chemistry at the Catalytic InterfaceUnderstanding Dynamic chemistry at the Catalytic Interface
Understanding Dynamic chemistry at the Catalytic Interface
 
Presentation B Engproject
Presentation B EngprojectPresentation B Engproject
Presentation B Engproject
 
Influence of Carbon in Iron on Characteristics of Surface Modification by EDM...
Influence of Carbon in Iron on Characteristics of Surface Modification by EDM...Influence of Carbon in Iron on Characteristics of Surface Modification by EDM...
Influence of Carbon in Iron on Characteristics of Surface Modification by EDM...
 
Application of Dielectric Spectroscopy to Monitor Insulating Materials
Application of   Dielectric Spectroscopy to Monitor Insulating Materials   Application of   Dielectric Spectroscopy to Monitor Insulating Materials
Application of Dielectric Spectroscopy to Monitor Insulating Materials
 
Presentation__ferroelectric_materials.ppt
Presentation__ferroelectric_materials.pptPresentation__ferroelectric_materials.ppt
Presentation__ferroelectric_materials.ppt
 
Option C Secondary Cell, Hydrogen Microbial Fuel Cell and Thermodynamic Effic...
Option C Secondary Cell, Hydrogen Microbial Fuel Cell and Thermodynamic Effic...Option C Secondary Cell, Hydrogen Microbial Fuel Cell and Thermodynamic Effic...
Option C Secondary Cell, Hydrogen Microbial Fuel Cell and Thermodynamic Effic...
 
Energy and nanotechnology
Energy and nanotechnologyEnergy and nanotechnology
Energy and nanotechnology
 
CVD and PVD.ppt
CVD and PVD.pptCVD and PVD.ppt
CVD and PVD.ppt
 
Protec zld based on ltd system 2
Protec zld based on ltd system 2Protec zld based on ltd system 2
Protec zld based on ltd system 2
 
TC_climate_April2016
TC_climate_April2016TC_climate_April2016
TC_climate_April2016
 
Experimental Studies on Pool Boiling Heat Transfer Using Alumina and Graphene...
Experimental Studies on Pool Boiling Heat Transfer Using Alumina and Graphene...Experimental Studies on Pool Boiling Heat Transfer Using Alumina and Graphene...
Experimental Studies on Pool Boiling Heat Transfer Using Alumina and Graphene...
 

AEq

  • 1. Bifunctional Air Electrode Studies B. G. Demczyk- Westinghouse Science & Technology Center Collaborator: C. T Liu
  • 2. - Significance: - In-principle, infinite lifetime - Of interest for electric vehicle propulsion
  • 3. Air Electrode Electrochemistry  O2 Reduction (Discharge): O2 + 2 H2O +4e‾  4OH‾ (+ 0.3033V*) or O2 + H2O +2e‾  HO2- +OH‾ (-0.1737V*) w/Ag catalyst (perhydroxyl ion decomposition) HO2-  1/2O2 +OH‾ or or HO2- + H2O +2e‾  3OH‾ O2 Evolution (Charge): ↑ OH‾  O2 + 2H2O +4e‾ (-0.98V*) *- vs Hg/HgO
  • 4. Two-Ply Air Electrode Active Material: Shawnigan Black/Ag (3.3%) 7g Ketjenblack/Ag (3.3%) 3g WC-12% Co 3g NiS 2g FeWO4 2g Triton X-100 0.18g Water 60 cc Hydrophobic Layer: Shawnigan Black 30g Teflon 30B 9g Water 150-175cc
  • 5. Air Electrode Processing Carbon Powder Preparation: a) carbon silverizing b) wet slurry mixing c) material drying d) oven baking e) final blending Electrode Fabrication: a) wet pasting b) preform molding c) dry powder technique Electrode Processing a) cold rolling b) hot pressing c) hot rolling - optional
  • 6. Goals & Actions - Goals: - Duplicate optimal performance - (-100mV @25ma/cm2, -200 @100 mA/cm2) - Attain extended stable cycle life - (300 cycles @ + 10 mV) - Issues: - Delamination of carbon layers - Electrolyte leakage through hydrophobic layer - Directions: - Processing variations - Accelerated life testing
  • 7. Baseline Air Electrode Performance Ag Catalyst Effect ↓ O2 evolution: -530 + 20 mV 22-54 mW O2 reduction: -175 + 21 mV 22-80 mW Discharge @ 25mA/cm2 Charge @ 12.5 mA/cm2 25wt% KOH @25C Hg/HgO reference
  • 8. Average Behavior with Cycling O2 Evolution O2 Reduction
  • 9. Performance: 2-Ply, Non Size-Graded O2 ← Evolution → O2 ← Reduction →
  • 10. - Mechanistic studies Goal: obtain a clearer understanding of both oxygen reduction and oxygen evolution processes in bifunctional mode - Processing variations Goal: correlate various phases of electrode fabrication with baseline performance to establish manufacturing process leading to reproducible, satisfactory performance -Operational Studies Goal: examine performance uniformity under altered cycling conditions to determine optimal operating conditions Air Electrode Interest Areas
  • 11. Electrical Resistivity Experimental Setup 10 wt% Teflon 50 wt% Teflon30 wt% Teflon 30 wt% Teflon  = RA/t x units conversion factor  = resistivity (ohm-cm) R = resistance (ohms) A = plaque area (10cm2) t = plaque thickness (mm) Reduced particle contact → p ↑
  • 12. Electrical Resistivity Thin sample Thick sample Plaque Under Pressure ↑ e increases & more change in shape upon release less change in shape ← upon release ↑ adhesion ← as unbaked Restoring force on major faces → t↑ upon release Restoring force on all faces → less t ↑ upon release
  • 13. Results –C/Teflon Plaque Resistivity I. Resistivity ↓ with plaque thickness (up to 6.35 mm) Resistivity ↔ with plaque thickness (up tp 10.16 mm) II. Effects of Teflon Dispersion: 1) Teflon particle size effects above 30% loading 2) Dielectric effects are a function of loading 3) Teflon particle adhesion effects above 30% loading 4) Dispersion agent effects in 15-30% loading range III. Resistivity small, in general - Can use higher wt% Teflon in fabrication
  • 14. Gas-fed Ring Disk Electrode Ag2O Reduction → No diffusion limitations of reactive species - Obtain purely kinetic data - Monitor products of reaction - Eliminate dependence on O2 solubility in electrolyte AgO Reduction → ←O2 Evolution Ag Oxidation → O2 Reduction → ←no current (peroxide decomposed)
  • 18. Electrolyte Penetration with Cycle Potential Distribution depends on: - IR (ohmic drop) from c.c. - reaction site distribution - local OH ion concentration in pores - O2 diffusion limitations Therefore: -|Vd | → extent of penetration - s → contour of “front” Cycle Comments 22 Initial- Vd small. Active layer, Vc minimum (bulk wetting), s minimum. (planar front), Vd low (3 phase interface). 46 s maximum. (nonplanar front), penetration midway into activelayer, Vd high (local jd high) 64 Penetration through active layer, Vc maximum (planar front, little 3 phase interface) 82 Flooded active layer, s maximum 96 Operation in hydrophobic layer,Vd poor, sd large, Vc in normal range (many reaction sites)
  • 19. Summary –Potential Distribution I. Electrode potential depends on electrolyte penetration O2 Reduction Mode 1) potentials (magnitude) vary inversely with the area of the electrolyte penetration “front” 2) Nonplanar penetration results in large potential variation over electrode surface O2 Evolution Mode 1) potentials (magnitude) vary inversely with the “wetted” volume of the electrode 2) Nonplanar penetration has little effect on potential variation over electrode surface 3) IR losses a major contributor toward the total polarization of the electrode II. Onset of electrode delamination signals increased ohmic polarization in both modes
  • 20. Teflon Loading Experiment Air Electrode Operating Conditions: 25C, 25w/% KOH electrolyte Unscrubbed ambient air Cycling (vs flat Ni electrode) 4hr@ 25 mA/cm2 discharge 12.5 mA/cm2 charge Potentials relative to Hg/HgO reference electrode. Teflon is: - a binder - a hydrophobizing material. - Contains dispersion (“wetting”) agent (to form emulsion), which must be thermally decomposed (“baked out”) . - Can mask electrocatalytic effects
  • 21. Teflon Experiment – Loading & Agglomerate Size ← O2 Reduction O2 → EvolutionSmaller size → slightly better vd ↓ ← Excessive wetting (restricted O2 access) - Enhanced wetting (more active area for rxn.) ↓. Little correlation with Teflon loading Little correlation with Teflon loading Little correlation with Teflon loading - ↑ - Enhanced wetting (more active area for rxn.)
  • 22. Teflon Loading Effects O2 reduction: 1) unbaked samples – at extreme ends (<10:1 & >10:8) , potentials poor due to: a) lack of sufficient binder b) excess of dispersion agent 2) baked samples – potentials nearly independent of loading O2 Evolution: 1) unbaked samples – little dependence on loading 2) baked samples – complicated behavior, possibly related to wetting pattern Open Circuit: 1) unbaked – higher potentials for high (>10:8) and lower for low (<10:1) loadings
  • 23. Summary-Teflon Experiment O2 Reduction: - Unbaked samples: initially improving Vd (enhanced electrolyte penetration), then Vd degrades (uncontrolled wetting and flooding) -Baked samples: more stable Vd overall, degradation as electrode delaminates (flooding) O2 Evolution: - Unbaked samples: little correlation with Teflon loading -Baked samples: poor at low loading(little electrolyte penetration),then little correlation Agglomerate size ↓ leads to slightly better [Vd] (more reaction area) -less effect on O2 evolution mode Therefore, lower Teflon loading and smaller agglomerate size gives better oxygen reduction -wetting agent leads to variability
  • 24. Summary – Electrode Testing Potential Distribution Study; A. Charge Mode - Resistance higher in vertical direction, becoming less significant with extended cycling B. Discharge Mode – no definite trend - both consistent with O2 evolution on Ni fibers and O2 reduction in active layer Teflon Binder Experiment: A. Electrode flooding detrimental (beneficial) to O2 reduction (evolution) B. Open circuit potential related to subsequent wetting patterns Rotating Disk Test: A. O2 reduction occurs via a 2e-, perhydroxyl ion production process B. Ag catalyst improves peroxide elimination at least one order of magnitude and perhydroxyl elimination C. Anodic cycling ((+0.5 to +0.6 V vs Hg/HgO) causes carbon surface modifications, which inhibit O2 reduction capability slightly D. No evidence of Ag dissolution
  • 25. Processing Variations-Pressing T (C) P (tons) t (min) Vd(-mV) Rd (mW) Vc(mV) Rc(mW) 275 36 10 176 36 529 33 20 153 21 518 26 30 170 28 530 26 300 36 10 178 52 552 165 20 166 32 513 35 30 153 25 517 ---- 325 36 10 180* ---- 529* 33 20 ---- ---- ---- 30 ---- ---- ---- ---- 350 36 10 165 24 521 30 375 36 10 ---- ---- ---- ---- 300 18 10 191 71 542 68 20 170 43 528 33 30 ---- ---- ---- ---- 300 5 10 161 36 522 18 10 10 160 34 532 22 30 170 28 530 26 Notes: Vd,Vc –discharge and charge potential vs Hg/HgO (avg.through 60 cycles), (* @ 28 cycles)) Rd, Rc-polarization resistance, discharge 25-125 mA/cm2, charge 12.5-62.5 mA/cm2 No data indicates structural failure.
  • 26. Hot Pressing Effects SiGe/Ge(111) Vc Vd Rc Rd Pressing Pressure,P: 300C, 10 min (5-10 Ton): ~P ~P ~1/P (10-18 Ton): ~P ~P (18-36 Ton): ~1/P ~1/P 300C, 20 min ~1/P ~1/P ~P ~1/P Pressing Temperature, T: 36 Ton, 10 min (275-300 C): ~T ~T ~T (275-325 C): ~T (300-325 C): ~1/T (300-350 C): ~1/T ~1/T (325-350 C): T 1/T 36 Ton, 20 min ~1/T ~T ~T ~T 36 Ton, 30 min ~1/T ~1/T ~T ~1/T Pressing Time, t: 275C, 36 Ton (10-20 min): :~1/t ~1/t ~1/t ~1/t (20-30 min): ~t ~t ~t ~t 300C, 36 Ton (10-20 min): ~1/t ~1/t ~1/t ~1/t (20-30 min): ~ t 300C, 18 Ton ~1/t ~1/t ~1/t ~1/t Key: V=voltage; R=internal resistance; C=charge; D=discharge; strongly; slightly
  • 27. Surfactant Variation surfactant (0.1g/cc) Type Vc** (mV) Vd** (mV) Life Cycle #39 FC-171 N 636 -204 252 #40 FC-430 N 640 -195 256 #41 X-100 N 649 -189 316 #42 LTA C N 662 -225 252 #47 FC-170 N 681 -293 256 #38 FC-95*** A 690 -229 252 #46 FC-129 A 680 -272 246 #48 FC-98 A 650 -231 159 #43 None 666 -250 332 Key: V=voltage; C=charge; D=discharge; **through life; *** 0.001g/cc;A=anionic;N=nonionic; #41 Rohm & Haas Co., #42 ArmourServices, all others, 3M Commercial Solutions Relative to the no surfactant case, nonionic surfactants generally give lower O2 reduction potentials and slightly lower O2 evolution overpotentials, while slightly sacrificing cyclic life.
  • 28. Active Layer Resistivity SiGe/Ge(111) s (m2/g) rel Vc* (mV) Vd* (mV) #30 96 M 625 -227 #31 94 L 624 -230 #32 290 H 586 -284 #33 220 L 640 -254 #34 138 H 613 -339 #35 112 L 625 -284 Key: V=voltage; s =surface area; =resistivity; C=charge; D=discharge; ,* through 120 cycles; M=medium; L=low, H=high - Higher resistivity supports give rise to more stable cyclic voltage performance. - O2 reduction overpotentials 20-50 mV lower on low resistivity supports. - O2 evolution potentials 10-50 mV higher on low resistivity supports, as it depends on electrolyte penetration.
  • 29. Other Processing Effects SiGe/Ge(111) Vd sd Vc sc Life Active Material Drying: Oven Dry (100C, 3h) 154 10.9 521 5.8 123 Vacuum Oven Dry (100C, 16400 N/m2,3h) 155 11.2 522 9.8 123 Air Dry (25C, 16h (std.) 163 7.9 517 8 121 -No particular advantage in deviation from standard air drying Active Material Size Grading: 700-900 micron active layer 187 12.6 509 10.5 101 -Detrimental to discharge performance and lifetime, as agglomerates lose hydrophobic character, permitting excessive electrolyte penetration Hot Rolling: 375F, 25psia, 4dir 151 10.6 524 14.5 108 70F, 25psia, 4dir 193 37 528 7 127 375F, 25psia, 8dir 162 6 511 13.5 64 375F, 50psia, 4dir 136 11 514 6 64 300F, 25psia, 4dir 147 25 513 6 64 -Hot rolling can approximate hot pressing performance, albeit with more variable performance and sometimes shortened lifetime -Cold rolling exhibits “bulk” wetting patters, detrimental to discharge performance
  • 30. Processing Effects - Rolling Initial “Break-in” ↓ Stable Regime ↓ Electrode “Flooding” ↓ Room temperature rolling (CR-1) exhibits “bulk wetting” pattern
  • 31. Other Processing Effects SiGe/Ge(111) Dispersion Agent: 1) higher levels lead to high open circuit and poor O2 reduction potentials 2) moderate loading (10:2 to 10:4), dispersion agent initially leads to better potentials, followed by rapid deterioration Agglomerate Size: Both O2 reduction and O2 evolution potentials improve slightly with smaller agglomerates Working Time: 1) ~ one hour optimal for open circuit and O2 reduction potentials 2) less working time leads to minimal O2 reduction overpotentials Open circuit potential is related to subsequent wetting characteristics for unbaked samples
  • 32. Operating Variations - Cycling Cycling Conditions Vd sd Vc sc Life* 4 hr. charge, 4 hr. discharge (CC1) -184 36 515 15 828 4 hr open ckt., 4 hr. discharge (CC2) -165 10 ---- ---- 2468 Continuous charge (CC3) ---- ---- 568 25 1920 4 hr. charge, 4 hr. open ckt. (CC4) ---- ---- 553 17 3000 Continuous discharge (CC5) -163 11 ---- ---- 2064 Notes: Vd,Vc –discharge and charge potential (mV vs. Hg/HgO (avg. through test) sd, sc – standard deviation, diacharge and charge mode (mV) *- in hours (failure due to excessive leakage)
  • 33. Summary - Cycling Variations Effects of Operation mode (relative to std. 4h. Charge, 4h. Discharge) Mode O2 Reduction O2 Evolution Life Discharge Beneficial ---- Beneficial Charge ---- Detrimental Beneficial Open Circuit Beneficial No Effect Beneficial - indicates minor effect
  • 34. Summary – Tab Position Motivation: electrolyte is drawn towards electrically operation areas of grid Tab Position Vd sd Vc sc Electrolyte side (inner) -190 13 535 12 Hydrophobic-hydrophilic interface (outer) -149 10 565 13 - Three-phase interface lies , on average, closer to hydrophilic-hydrophobic boundary→ superior discharge performance detected here. - Highest electrochemically active region for oxygen evolution occurs where electrolyte exposure is maximized-i.e. the inner side, but potentials erratic
  • 35. Operating Temperature Effects Open Circuit Mode O2 Reduction Mode O2 Evolution Mode
  • 36. Summary of Operating Temperature Effects O2 Reduction Mode: 1) Vd ~ Operating T(1.1 mV/C) -lower T better and more stable 2) higher T accelerates failure, due to suboptimal electrolyte penetration patterns 3) Rd ↑, then →, then ↓, with cycle, as reaction shifts from O2 reduction to H2 evolution (more rapidly with increasing operating T) O2 Evolution Mode: 1) Vc – slight ↓ with time on test and slight ↑ increasing with operating T -lower operating T gives better and more stable performance 2) Rc stable throughout Open Circuit Mode: 1) Voc – ↑, then ↔, then ↓ with cycle, due to surface oxide formation, electrolyte penetration and loss of catalytic activity 2) Little relation to operating T
  • 37. Size-Graded Air Electrode - Layer A – Hydrophillic (< 0.6mm): - Shawnigan Black/Ag 30g Teflon 30B 9g Water 150-175cc - Layer B(D) – Hydrophillic (0.6-1.18mm): - Shawnigan Black*/Ag 30g - (Ketjenblack** EC-330JMA) Teflon 30B 12g WC-12% Co 4.5g NiS 4.5g FeWO4 4.5g Triton X-100 0.18g Water 150-175cc - Layer C – Hydrophobic (1.18-1.7mm) : - Shawnigan Black 30g Teflon 30B 9g Water 150-175cc *Chevron Phillips **AzkoNobel
  • 38. Size-Graded Air Electrode Cycles 0-99 Cycles 100-199 Vd sd Vc sc Vd sd Vc sc B60 192 53 561 17 165 11 581 33 B60* 169 19 567 12 178 6 559 9 /1g A3,1g B(D)3/ /2g A2,1.5g (B,D)3/ /2g A2, 1.5g B2/ /2.5g A1,1g B2/ /3g C A = hydrophobic agglomerate B = hydrophilic agglomerate (60 m2/g) – B60 D = hydrophilic agglomerate (1000 m2/g) – B60* C = hydrophobic material 1 = 1270-1820 mm 2 = 660- 1270 mm 3 = < 660 mm High surface area carbon introduced to reduce “break-in” period.
  • 39. Size-Graded Air Electrode B60 ← distinct “break-in” B60* ← reduced “break-in” - High surface area carbon reduces discharge “break-in”, with no sacrifice in charge performance.
  • 40. Alternative Processing Effects B102 Oven bake (300C, natural convection); press 5 Ton, 10 min., 25 C B103 N2 flowing gas furnace (300C, 10 min. ) for more uniform heat distribution; cold roll 25 lb., 4 dir., 25 C to promote more uniform thickness. B117 Active material baked 2hr. in flowing N2 oven (300 C); hot press 300C, 5 Ton., 10 min. to increase wetting agent decomposition. B119 Active material baked as per B117; otherwise as per B103 B123 Hot press 300C, 5 Ton., 10 min., cool to room T in press to reduce expansion upon relaxation. B60* Active material baked 2hr. in natural convection oven (300 C); hot press 300C, 5 Ton., 10 min. (Standard Processing) Vd sd Vc sc Life Comments B102 185 36.5 573 34 536 (similar to std., but wetting B103 171.5 24.5 529.5 14.5 189 less controlled). B117 193 10.5 542.5 16.5 235 (less well-defined B119 227 25 547 12.5 235 break-in required B123 189 11 563 7 215 than std.). B60* (std) 179 15.5 537 18.5 -Less P gives shorter “leak-free” life, can extend if oven bake - Hot pressing not required for moderately leak-free life (~250 cycles) - Cooling in press enhances reproducibility (relative to std.)
  • 41. Alternative Processing Effects SiGe/Ge(111) ↓ “Break-in” ↓ Stable with cycling ↓ Slight decrease with cycling ↓ No “Break-in”
  • 42. Other Processing Effects SiGe/Ge(111) Vd sd Vc sc Life Catalyst Substitution: R.V.C (#104) 219 27.5 611 17.6 169 R.V.C, WC-12% Co (#105) 173 20.7 602 12.0 148 R.V.C, NiS, WC-12% Co (#109) 197 18.0 621 34.9 115 Ni Hydrate (#113) 233 60.6 672 40.1 352 Fe Powder (#114) 175 26.4 583 15.0 352 Fe Powder, Ni Hydrate (#115) 178 25.5 557 22.2 352 WC-12% Co, NiS, FeWO4 (std.) 230 15.3 560 11.9 397 -Fe compounds reduce oxygen evolution overpotentials. - Fe-Ni synergistic effect in both modes. - Standard combination gives most stable performance. Active Material Size Grading: 700-900 micron active layer 187 12.6 509 10.5 101 -Detrimental to discharge performance and lifetime, as agglomerates lose hydrophobic character, permitting excessive electrolyte penetration
  • 43. Catalyst Substitution SiGe/Ge(111) ↓ No “Break-in” ↓ “Break-in” Variable, but no increase with cycling Less variable, but increases with cycling ↓
  • 44. Tabbing Optimization 10 cm2 L (cm) D (cm) Rd (mW) Rc(mW) TO-1 1 10 960 460 TO-2 10 1 1010 600 TO-3 3.16 3.16 910 430 TO-4 5 2 800 330 100 cm2 T0-12 10 10 44 (33) 35.5 TO-13 17 6 74 (33) 62 TO-14 6 17 40 (27) 51 Rd (mW) – mean polarization resistance, oxygen reduction mode (1 – 10 mA/cm2) () ohmic component at 5 A level) Rc (mW) – mean polarization resistance, oxygen evolution mode (1 – 10 mA/cm2)
  • 45. Tabbing Optimization Position Rd (mW) Rc(mW) “A” 22.9 13.9 “B” 21.7 13 “C” 19.9 10.4 “D” 21.0 11.6 “A” – tab position 1 “B” – tabs 1 and 2 “C” – tabs 2 and 4; “D” – all four tabs Rd (mW) – mean polarization resistance, oxygen reduction mode (25 - 125 mA/cm2) Rc (mW) – mean polarization resistance, oxygen evolution mode (12.5 - 62.5mA/cm2)
  • 46. Tabbing Optimization Summary Polarization Resistance (PR): 10 cm2: 5:2 lowest (50-200 mW in O2 evolution mode) 10:1: highest (100-250 mW in O2 reduction mode) → most loss along nickel tab length 100 cm2: longest (17cm) highest (both modes) ↓with cycling (O2 evolution mode (less so in O2 reduction) → bulk electrolyte controlling Ohmic Polarization: No excessive losses in 10 to 100 cm2 scale-up Fraction of total PR ↑ from <15% to 80% with cycling Tab orientation mattered little.
  • 47. Air vs Oxygen Operation Nernst potential for half cell reaction (O2 reduction): for T1 = 45 C = 318 K; X1 =1 T2= 25 C = 298 K; X2 =0.21, we obtain:, E1/E2 ~ 1.665 (observed: 1.25/0.75 = 1.66, initially). O2 evolution overpotentials initially 30 mV higher in pure O2 and elevated T. Elevated T induced enhanced wetting and eventual “flooding”, and deterioration of potentials.
  • 48. References Figures: 1). B. G. Demczyk and C. T. Liu, J. Electrochem. Soc. 129(6) 1159 1982. 2). B. G. Demczyk and C. T. Liu, J. Power Sources. 6 185 1981. 3). B. G. Demczyk and C. T. Liu , B. G. Demczyk and I. R. Rittko, United State Patent # 4,444,852. General: E. S. Buzzelli, B. G. Demczyk. A. Gibney. C. T. Liu, P. L. Ulerich and R. E. Grimble, Iron-Air Battery Development Program, Final Report 1980 (U.S. Department of Energy Contract No. 7335709), Westinghouse R & D Document No. 83-9E62-MOBET-R2, July 1981. E. S. Buzzelli, L. B. Berk, B. G. Demczyk. A. Gibney. C. T. Liu, and D. Zuckerbrod, Iron-Air Battery Development Program, Interim Report 1981 (U.S. Department of Energy Contract No. 7335709), Westinghouse R & D Document No. 82-9D12-MOBET-R2, June 1982 E. S. Buzzelli, B. G. Demczyk, , L. B. Berk, D. Zuckerbrod, A.Gibney. C. T. Liu, P. L. Ulerich and R. E. Grimble, Iron-Air Battery Development Program, Final Report. March, 2. 1983 (U.S. Department of Energy Contract No. 7335709), Westinghouse R & D Document No. 83-9012- MOBET-R1, March 2, 1983.
  • 49. Acknowledgements Air Electrode Fabrication: P. Gongaware, R. Egidio, I. Rittko Air Electrode Testing: G. Leap This work was supported by a U.S. Department of Energy contract EY-76-C-02-2949,*000