SlideShare une entreprise Scribd logo
1  sur  67
Télécharger pour lire hors ligne
MATERIALS DESIGN LABORATORY
Alloy Design UHS Intercritically Annealed
6%-12%Mn TWIP+TRIP Steel
B. C. De Cooman
Materials Design Laboratory, Graduate Institute of Ferrous Technology
Pohang University of Science and Technology
Pohang, South Korea
CAMS 2014
MATERIALS AUSTRALIA
November 26th-28th, 2014
Sydney, NSW, AUSTRALIA
MATERIALS DESIGN LABORATORY
Pohang University of Science and Technology
Graduate Institute of Ferrous Technology
Pohang
MATERIALS DESIGN LABORATORY
The world’s only fully
accredited Institute
in Steel Science and
Technology
• Research Areas:
Alternative Technology
Control & Automation
Computational Metallurgy
Clean Steel
Environmental Metallurgy
Microstructure Control
Materials Design
Material Mechanics
Surface Engineering
MATERIALS DESIGN LABORATORY
The world’s only fully
accredited Institute
in Steel Science and
Technology
• Research Areas:
Alternative Technology
Control & Automation
Computational Metallurgy
Clean Steel
Environmental Metallurgy
Microstructure Control
Materials Design
Material Mechanics
Surface Engineering
MATERIALS DESIGN LABORATORY
The world’s only fully
accredited Institute
in Steel Science and
Technology
• Research Areas:
Alternative Technology
Control & Automation
Computational Metallurgy
Clean Steel
Environmental Metallurgy
Microstructure Control
Materials Design
Material Mechanics
Surface Engineering
MATERIALS DESIGN LABORATORY
Global Trends Automotive Steel Grades
The increasing use of AHSS/UHSS use is driven by…
• The need for high volume vehicles at competitive prices.
• Stringent regulations and corporate goals for:
Passenger safety
Fuel economy
Lower greenhouse gas emissions
• Sustained efforts by the steel industry to innovate and create advanced steels, and original,
steel-based solutions and methods, which underline the large potential of steel.
Car makers test, utilize multi-materials designs, but steel remains dominant…
• Steel, the material of choice for BIW: 99% passenger cars have a steel BIW.
• 60-70% of the car weight consisting of steel or steel-based parts.
• Globalization requires world-wide availability and global procurement of standard materials.
• The automotive industry makes excursions in light materials applications but there is only a
slight actual increase in the use of Al, Mg and plastics…. but this may change!
MATERIALS DESIGN LABORATORY
Lightweighting: Mass “Containment”, Mass “Reduction”
• Low gas mileage: 0.3l-0.6l/100km fuel use reduction for a 100kg weight reduction
• Less greenhouse gas emissions: 2020 target ~100gr/km
• NHTSA CAFE Standards for 2017
New mpg target: DOUBLE the average mpg for new cars, trucks
54.5 mpg will cut of gas emissions by HALF
Current situation
Best US highway mileage 2012: 42 mpg (Chevrolet CRUZE)
Other example: 32 mpg (VW Passat )
General situation: 25mpg in US, 45 mpg in EU, better in Japan
Passenger Safety:
• Low peak deceleration, long crush length, long time duration of crash pulse
• High energy dissipation with minimum intrusion
• Higher impact strength for A and B Pillars
• Anti-Intrusion applications: front and rear crash, side intrusion
• Tougher collision and rollover safety test for the 5-star rating
Closure Applications:
• Dent resistance
Coated Products:
• Perforation and cosmetic corrosion resistance
• Surface quality, visual
Other Issues:
• Noise and Vibrations
• Vehicle Handling, Stiffness and Torsional Rigidity
Global Trends Automotive Steel Grades
MATERIALS DESIGN LABORATORY
Weight spiral:
Safety
Space
Performance
Reliability
Quality
Comfort
1500
1400
1300
1200
1100
1000
900
800
700
600
500
1970 1974 1978 1982 1986 1990 1994 1998 2002 2006 2010
Curbweight,kg
88% increase
in weight
EU mid size vehicles
Year
CAFE
Fuel Economy
40 45 50 55 60
Wheelbase . track
Gasmileage,mpg
40
45
50
35
30
Year
2012
2014
2016
2018
2020
2022
Prius
Doubling
mileage
Regulations Influence on Materials Selection
MATERIALS DESIGN LABORATORY
Weight spiral:
Safety
Space
Performance
Reliability
Quality
Comfort
1500
1400
1300
1200
1100
1000
900
800
700
600
500
1970 1974 1978 1982 1986 1990 1994 1998 2002 2006 2010
Curbweight,kg
88% increase
in weight
EU mid size vehicles
Year
Regulations Influence on Materials Selection
Passive
Passenger safety
MATERIALS DESIGN LABORATORY
Mechanical
Properties
Yield Strength
Tensile Strength
Uniform elongation
Total Elongation
Automotive Sheet Steel Products
MATERIALS DESIGN LABORATORY
RoughingReheating Finishing Cooling Coiling
Conventional HSM, CSM and CA/HDG Processing
Cold rolling Continuous
Annealing
Hot Dip Galvanizing
MATERIALS DESIGN LABORATORY
Mechanical
Properties
Yield Strength
Tensile Strength
Uniform elongation
Total Elongation
Bake-hardening
Springback
Normal Anisotropy
Planar Anisotropy
Deep Drawability
Stretch Formability
Crashworthiness
Geometrical
Properties
Dimensional
Width
Thickness
Shape
Edge Drop
Crown
Flatness
Technical
Properties
Weldability
Phosphatabilty
Roughness
Waviness
Friction
Corrosion resistance
Phosphatability
Paint adhesion
Visual appearance
Automotive Sheet Steel Products
MATERIALS DESIGN LABORATORY
Press-forming
Spring-back
Hole expansion
Bending
RSW
MATERIALS DESIGN LABORATORY
300 400 500 600 700 800 900 1000
ElongationA80,%
Tensile Strength, MPa
0
20
40
60
80
100
120
140
1100
IF CMn HSLA
Conventional Automotive Steels
60.000MPa.%
50.000MPa.%
40.000MPa.%
30.000MPa.%
20.000MPa.%
10.000MPa.%
IF
LC
CMn
HSLA
MATERIALS DESIGN LABORATORY
MA
300 400 500 600 700 800 900 1000
ElongationA80,%
Tensile Strength, MPa
0
20
40
60
80
100
120
140
1100
60.000MPa.%
50.000MPa.%
40.000MPa.%
30.000MPa.%
20.000MPa.%
IF
LC
CMn
HSLA
First Generation Advanced High Strength Steels
DP TRIP MACP
MATERIALS DESIGN LABORATORY
Automotive Body Materials Selection
6% HPF + 5% MA
23%
HSS
30%
DP / Multi Phase
GM AVEO
34%
IF
+LC
+BH
Cadillac CTS
PHS VW: 6% (GOLF 6) → 28% (GOLF 7)
MATERIALS DESIGN LABORATORY
Al
alloys
Polymers
Mg
alloys
Automotive
Steel grades
CFR-Composites
Ti
alloys
Automotive Body Materials Selection
MATERIALS DESIGN LABORATORY
Al
alloys
Polymers CFR-Composites
Automotive Body Materials Selection
Monocoque:
5754 (Structural)
6111 (External parts)
Space frame:
Multiple Al products integration
High strength die casting
Al-extrusion
Hydroform extrusion
Issues:
Strain hardening: low
Strain rate sensitivity: negative
Cost: 4-6$/kg (1.3$/kg Steel)
MATERIALS DESIGN LABORATORY
MA
300 400 500 600 700 800 900 1000
ElongationA80,%
Tensile Strength, MPa
0
20
40
60
80
100
120
140
1100
60.000MPa.%
50.000MPa.%
40.000MPa.%
30.000MPa.%
20.000MPa.%
IF
LC
CMn
HSLA
Second Generation Advanced High Strength Steels
TWIP
Fe22Mn0.6C
Fe18Mn1.5Al0.6C
MATERIALS DESIGN LABORATORY
MA
300 400 500 600 900 1000
ElongationA80,%
Tensile Strength, MPa
0
20
40
60
80
100
120
140
1100
60.000MPa.%
50.000MPa.%
40.000MPa.%
30.000MPa.%
20.000MPa.%
IF
LC
CMn
HSLA
Third Generation Advanced High Strength Steels
3rd
Generation
0.2µm
UFG
TRIP
Low Mn
TWIP
SBIP
MBIP
+
700 800
MATERIALS DESIGN LABORATORY
Strain Hardening Engineering
True strain
0
0
Truestress,strainhardeningrate,MPa
)(
u


d
d
MATERIALS DESIGN LABORATORY
Strain Hardening Engineering
True strain
0
0
Truestress,strainhardeningrate,MPa
)(
u


d
d
MATERIALS DESIGN LABORATORY
Strain Hardening Engineering
0
0
True strain
Truestress,strainhardeningrate,MPa
Gain in strength
and ductility !
u
)(


d
d
MATERIALS DESIGN LABORATORY
0
0
True strain
Truestress,strainhardeningrate,MPa
Gain in strength
and ductility !
Strain Hardening Engineering
u
)(


d
d
Dislocation
Accumulation
or Storage
(Stage II)
Dislocation
Annihilation
or Dynamic recovery
(Stage III)
ρkρk
dε
dρ
dε
dρ
dε
dρ


21
MATERIALS DESIGN LABORATORY

d/d
0
0 0.1 0.2 0.3 0.4
1000
2000
3000
4000
5000
True strain
Truestress,strainhardeningrate,MPa
TRIP
TWIP
HS IF
TRIP
Strain Hardening Engineering
MATERIALS DESIGN LABORATORY
What is Strain Hardening Engineering?
1. Strengthening mechanisms:
• Solid solution strengthening (Alloying)
• Grain size refining (Alloying and Processing)
• Precipitation strengthening (Alloying)
• Bake-hardening (Processing)
2. Plasticity-enhancing mechanisms:
• Multi-phase steels: austenite required
• TRIP effect: Strain-induced Transformation
• TWIP effect: Deformation Twinning
g
strain
g →a’
TRIP-effect
a’
g
g →gT
TWIP-effect
g
MATERIALS DESIGN LABORATORY
High Mn TWIP Steel
TWIP: TWinning-Induced Plasticity
0 10 20 30 40 50 60 70
0
200
400
600
800
1000
1200
Eng.Stress(MPa)
Eng. Strain (%)
20 22 24 26 28 30
700
750
800
850
900
10-4s-1
Fe18Mn0.6C1.5Al
g →gT
TWIP-effect
g
10-3s-1
MATERIALS DESIGN LABORATORY
Rolling directionTWIP 1000
High Mn TWIP Steel
MATERIALS DESIGN LABORATORY
HER
Diffuse
necking
No diffuse
necking
IF steelTWIP
LMIE
HDF
Fe22Mn0.6C Fe15Mn2Al0.7C
Zn Zn
MATERIALS DESIGN LABORATORY
0 10 20 30 40 50 60 70
0
200
400
600
800
1000
1200
1400
1600
Engineeringstress,MPa
Fe15Mn0.6C
Fe15Mn0.6C1.5Al
Fe15Mn0.6C2Al
Engineering strain, %
YS
MPa
UTS
MPa
Elongation
(total) %
SFE*
mJ/m2
SFE**
mJ/m2
Fe15Mn0.6C 509 1124 51 12 13
Fe15Mn0.6C1.5Al 480 976 58 26 21
Fe15Mn0.6C2.0Al 488 939 58 30 24
* Saeed-Akbari et al., Metall. Mater. Trans. A 2009
** Dumay et al., Mater. Sci. Eng. A 2008
YS
MPa
UTS
MPa
Elongation
(total) %
SFE*
mJ/m2
Fe15Mn0.6C2.0Al
10%
20%
30%
40%
50%
60%
712
989
1071
1122
1261
2394
991
1167
1319
1407
1590
1737
43
23
15
10
9
7
30
0 10 20 30 40 50 60 70
0
200
400
600
800
1000
1200
1400
1600
Engineeringstress,MPa
Engineering strain, %
10%
20%
30%
40%
50%
60%
MATERIALS DESIGN LABORATORY
YS (MPa) UTS (MPa) Total Elongation (%) SFE* mJ/m2 SFE** mJ/m2
Fe12Mn0.6C
Fe12Mn0.6C1.5Al
Fe12Mn0.6C2.0Al
486
492
478
838
900
915
16
30
41
12
26
30
10
18
21
Fe12Mn0.9C1Si-0.0V
Fe12Mn0.9C1Si-0.2V
Fe12Mn0.9C1Si-0.5V
Fe12Mn0.9C1Si-0.7V
434
614
722
741
1166
1324
1276
1260
45
38
25
22
26 -
0 10 20 30 40 50 60 70
0
200
400
600
800
1000
1200
1400
1600
Fe12Mn0.6C
Fe12Mn0.6C1.5Al
Fe12Mn0.6C2Al
Engineeringstress,MPa
Engineering strain, %
0 10 20 30 40 50 60 70
0
200
400
600
800
1000
1200
1400
1600
0.2%V0.7%V 0.5%V
Engineeringstress,MPa
Engineering strain, %
V-free
V-additions: increased YS and increased strain hardening
MATERIALS DESIGN LABORATORY
YS
MPa
UTS
MPa
Elongation
(total) %
SFE*
mJ/m2
Fe15Mn0.6C2.0Al
10%
20%
30%
40%
50%
60%
712
989
1071
1122
1261
2394
991
1167
1319
1407
1590
1737
43
23
15
10
9
7
30
0 10 20 30 40 50 60 70
0
200
400
600
800
1000
1200
1400
1600
Engineeringstress,MPa
Engineering strain, %
10%
20%
30%
40%
50%
60%
0 10 20 30 40 50 60 70
0
200
400
600
800
1000
1200
1400
1600
0.2%V0.7%V 0.5%V
Engineeringstress,MPa
Engineering strain, %
V-free
YS
MPa
UTS
MPa
Elongation
(total) %
SFE*
mJ/m2
Fe12Mn0.9C1Si-0.0V
Fe12Mn0.9C1Si-0.2V
Fe12Mn0.9C1Si-0.5V
Fe12Mn0.9C1Si-0.7V
434
614
722
741
1166
1324
1276
1260
45
38
25
22
26
MATERIALS DESIGN LABORATORY
Classification of the Mn UHSS Steels
High Mn Medium Mn
%Mn >25 22 - 15 12 - 6 7 - 4
Processing Conventional annealing Intercritical annealing Q & P
Cold rolled Shear bands Deformed g Deformed a’
After annealing
g UFG
g  a
Plasticity SBIP TWIP TWIP+TRIP TRIP
g-ISFE (mJ/m2)
>75 >20 >20 <10
g-stability g-composition g-composition and size
Role of Mn
g-stability / SFE g-stability / SFE / Hardenability
MATERIALS DESIGN LABORATORY
0.0 0.1 0.2 0.3 0.4 0.5
0
500
1000
1500
2000
2500
3000
3500
4000
DP980
Truestress,MPa
Workhardeningrate,MPa
True strain
TiIF
Ti-IF: standard highly formable steel
DP 980: standard 1st generation AHSS
Mechanical properties at reduced Mn alloying
MATERIALS DESIGN LABORATORY
0.0 0.1 0.2 0.3 0.4 0.5
0
500
1000
1500
2000
2500
3000
3500
4000
TWIP1000
DP980
TiIF
Truestress,MPa
Workhardeningrate,MPa
True strain
Ti-IF: standard highly formable steel
DP 980: standard 1st generation AHSS
Mechanical properties at reduced Mn alloying
DSA
)(


d
d
MATERIALS DESIGN LABORATORY
TWIP 1000: 18%Mn0.6%C1.5%Al
Medium Mn 1: 12%Mn0.3%C3.0%Al
0.0 0.1 0.2 0.3 0.4 0.5
0
500
1000
1500
2000
2500
3000
3500
4000
12Mn TWIP1000
Truestress,MPa
Workhardeningrate,MPa
True strain
Mechanical properties at reduced Mn alloying
MATERIALS DESIGN LABORATORY
0.0 0.1 0.2 0.3 0.4 0.5
0
500
1000
1500
2000
2500
3000
3500
4000
10Mn
Truestress,MPa
Workhardeningrate,MPa
True strain
TWIP1000
TWIP 1000: 18%Mn0.6%C1.5%Al
Medium Mn 1: 12%Mn0.3%C3.0%Al
Medium Mn 2: 10%Mn0.3%C3.0%Al2.0%Si
Mechanical properties at reduced Mn
MATERIALS DESIGN LABORATORY
0.0 0.1 0.2 0.3 0.4 0.5
0
500
1000
1500
2000
2500
3000
3500
4000
6Mn
TWIP1000
Truestress,MPa
Workhardeningrate,MPa
True strain
TWIP 1000: 18%Mn0.6%C1.5%Al
Medium Mn 1: 12%Mn0.3%C3.0%Al
Medium Mn 2: 10%Mn0.3%C3.0%Al2.0%Si
Medium Mn 3: 8%Mn0.4%C3.0%Al2.0%Si
Medium Mn 4: 6%Mn0.3%C3.0%Al1.5%Si
Mechanical properties at reduced Mn
DSA
MATERIALS DESIGN LABORATORY
Original concept: TWIP Steel
Deformation
g
g
Fully Austenitic
Low SFE
Dislocation plasticity
Twinning-induced plasticity
Low YS / High Strain Hardening
g
g
High Mn TWIP Steel Design Concept
Austenite:
e.g. 18% Mn 0.6% C +Al
MATERIALS DESIGN LABORATORY
YS (MPa) UTS (MPa) Total Elongation (%) SFE* mJ/m2 SFE** mJ/m2
Fe18Mn0.6C
Fe18Mn0.6C1.5Al
Fe18Mn0.6C3.0Al
484
498
499
1106
960
849
60
59
50
14
28
40
17
25
32
Fe15Mn0.6C
Fe15Mn0.6C1.5Al
Fe15Mn0.6C3.0Al
509
480
488
1124
977
939
51
58
58
12
26
30
13
21
24
Fe12Mn0.6C
Fe12Mn0.6C1.5Al
Fe12Mn0.6C2.0Al
486
492
478
838
900
915
16
30
41
12
26
30
10
18
21
0 10 20 30 40 50 60 70
0
200
400
600
800
1000
1200
Fe18Mn0.6C
Fe18Mn0.6C1.5Al
Fe18Mn0.6C3Al
Engineeringstress,MPa
0 10 20 30 40 50 60 70
0
200
400
600
800
1000
1200
Fe15Mn0.6C
Fe15Mn0.6C1.5Al
Fe15Mn0.6C2Al
Engineering strain, %
0 10 20 30 40 50 60 70
0
200
400
600
800
1000
1200
Fe12Mn0.6C
Fe12Mn0.6C1.5Al
Fe12Mn0.6C2Al
MATERIALS DESIGN LABORATORY
)(Gb)( o gag 
Kocks-Mecking Model
[1] P. S. Follansbee, Metall. Mater. Trans. A, 41A (2010), pp. 3080-3090.
[2] T. Gladman, Mater. Sci. Tech-Lond, 15 (1999), pp. 30-36.
[3] J. G. Speer, B. C. De Cooman, Fundamentals of Steel Product Physical Metallurgy, AIST, 2011.
[4] S. Takaki, K. Takeda, N Nakada, T Tsuchiyama,, IAS 2008, Pohang, Korea, p. 107
[5] Y. Estrin, H. Mecking, Acta Metall., 32 (1984), pp. 57-70.
[6] O. Bouaziz, Y. Estrin, Y. Brechet, J.D. Embury, Scripta Mater., 63 (2010), pp. 477-479.
o )T,(p g  [1]
)d,f( preprepre [2]
)X( is [3]
D
ky
[4]
)(k)(
b
k
b
P
d
d
2
1
gg
g

-
Ferrite Austenite
[5]
0D  gg
111
a D
'
'
0
F
F1
c2
a
a

-

p : Pierels stress
pre : Pierels stress
s : Solid solution strengtheing
ky : Hall-petch constant
D : Grain size
 : Dislocation density
P : Grain size dependent constant [6]
K1
: Constant
K2
: Constant
G : Shear modulus
b : Burgers vector
MATERIALS DESIGN LABORATORY
 Modeling result at room temperature
Exp.
Model
0.00 0.05 0.10 0.15 0.20 0.25
0
200
400
600
800
1000
1200
1400
Truestress,MPa
True strain
Exp.
Model
0.00 0.05 0.10 0.15 0.20 0.25
0
1000
2000
3000
4000
5000
d/d,MPa
True strain
Model
Exp._Magnetic saturation
Exp._XRD
0.00 0.05 0.10 0.15 0.20 0.25
0.00
0.05
0.10
0.15
0.20
Martensitevolumefraction
True strain
 Coarse grained d
k1 : 0.01
k2 : 1.307
 UFG a
 UFG g
 Martensite
k1 : 0.01
k2 : 1.012
k1 : 0.015
k2 : 1.005
k1 : 0.306
k2 : 39.1
Constitutive modeling of medium Mn steel
0.00 0.05 0.10 0.15 0.20 0.25
24
26
28
30
32
34
36
38Temperature,oC
True strain
Exp.
Model
Max
Min
MATERIALS DESIGN LABORATORY
Medium Mn TWIP Steel Design Concept
Single phase Two Phase
Fe-18%Mn-0.6%C-1.5%Al → Fe-8%Mn-0.4%C-3.0%Al+Si
0
10000
20000
30000
40000
50000
60000
70000
80000
0 25 50 75 100
TensilestrengthxTotalelongation
MPa%
Volume percentage austenite, %
0
10
20
30
40
50
60
70
80
90
100
0 2 4 6 8 10 12 14 16 18 20 22 24
Volumepercentageaustenite,%
Mn content, mass-%
-
+
MATERIALS DESIGN LABORATORY
Deformation
g
gFully
austenitic
g: Deformation-induced twinning
a: Dislocation glide
Ferrite/Austenite formation
C, Mn partitioning
Al, Si partitioning
Grain size refinement
SFE increase
Lowering Ms temperature
g
a
Cooling
Retained
g
a’Mainly
martensitic
g
a
C, Mn
Al, Si
Intercritical
annealing
Austenite
fg: 100%
8% Mn 0.3% C
Austenite
fg: 50%
16% Mn 0.6% C
Medium Mn TWIP Steel Design Concept
MATERIALS DESIGN LABORATORY
Deformation
g
gFully
austenitic
g: Deformation-induced twinning
g: Transformation-induced plasticity
a: Dislocation glide
g
a
Cooling
g
a’Mainly
martensitic
g
aIntercritical
annealing
a’
C, Mn
Al, Si
Medium Mn TWIP+TRIP Steel
MATERIALS DESIGN LABORATORY
Strain Hardening Engineering of UFG Steel
Ultra Fine
Grain Size
a
Multi-phase
microstructure
g
Precipitates
VC
Bimodal
Grain size
Distribution
Larger grains
Martensite reversion +
intercritical annealing
MATERIALS DESIGN LABORATORY
10mm
d
ag
d
ag
d
ag
200nm
200nm
50nm
50nm
Ferrite
Austenite
VC
SF
Strain Hardening Engineering UFG Steel
MATERIALS DESIGN LABORATORY
Mn
 Lowers Ms
 Increases SFE
 Increases hardenability
C
 Lowers Ms
 Increases SFE
 Increases hardenability
Al
 Increases Ms
 Increases SFE
 Required for d ferrite formation
 Expands the two phase ag range
(higher austenite C content)
Si
 Lowers Ms
 Austenite solid solution strengthening
 Ferrite solid solution strengthening
 Decreases SFE
 Suppression cementite formation
g stabilizers a stabilizers
Composition Design TWIP+TRIP Quaternary Alloy
MATERIALS DESIGN LABORATORY
5% Mn
4% Mn
2% Mn
3% Mn
1% Mn
0% Mn
Temperature,°C
Time, s
0.1 1.0 10 100 10000.01
700
800
600
900
500
400
300
200
Ms
Fe-0.1%C-x%Mn
2μm
0.10C4Mn1Si
0.10C5Mn1Si
0.10C6Mn1Si
Role of Mn in Medium Mn Steel
MATERIALS DESIGN LABORATORY
0 200 400 600 800 10001200
Dilatation
Temperature
1200°C
650°C
700°C
750°C
800°C
850°C
900°C
0 200 400 600 800 10001200
Temperature
600°C
650°C
700°C
750°C
800°C
Dilatation
IAT IAT
1200°C
Ms
γ
γα
γ
Role of Mn in Medium Mn Steel
MATERIALS DESIGN LABORATORY
5
10
15
Mnmass-%
10Mn0.3C3Al2Si (750°C)
5
10
15
Mnmass-%
8Mn0.3C3Al1Si (750°C)
500 nm 200 nm
a
a a
g g
g g
a a
Partitioning of Mn in Medium Mn Steel
MATERIALS DESIGN LABORATORY
1500
1250
1000
750
500
250
0
0.00 0.25 0.50 0.75 1.00
8Mn-XC-3Al-0.5Si
C content, mass-%
Temperature,°C
Al/Mn=0.375
1500
1250
1000
750
500
250
0
0.00 0.25 0.50 0.75 1.00
10Mn-XC-3Al-0.5Si
agM5C2
C content, mass-%
Temperature,°C
Al/Mn=0.3
d
g
ag
aM5C2
agq
agM5C2
g
ag
aM5C2
agq
d
Role of Al in Medium Mn Steel
MATERIALS DESIGN LABORATORY
γ
γ+α+θ
γ+α
γ+α+(Fe,Mn)5C2
1000
900
800
700
600
500
400
0 0.1 0.2 0.3 0.4 0.5
Mass percent C
Temperature(°C)
1000
900
800
700
600
500
400
0 10 20 30
Mass percent
1000
900
800
700
600
500
400
0 10 20 30
SFE* (mJ/m2)
γ, Cx10
γ, Mn γ, SFE
Microstructure Medium Mn Steel
(10%Mn)
MATERIALS DESIGN LABORATORY
γ
γ+α+θ
γ+α
γ+α+(Fe,Mn)5C2
1000
900
800
700
600
500
400
0 0.1 0.2 0.3 0.4 0.5
Mass percent C
Temperature(°C)
1 μm
1 μm
10 μm
γ+α΄
γ+α
α+ α΄+(Fe,Mn)5C2
Microstructure at room temperature
gaM23C6
Fe-C-10Mn-3Al-2Si
1500
1000
500
0
0.0 0.5 1.0
Temperature,°C
Carbon content,mass-%
aM23C6
aM23C6
M5C2
aM5C2
g
3 mm
g
a
a
a
g
Fe-0.3C-10Mn-3Al-2Si
T:750°C
gaM5C2
ga
900
750
gaq
(a) (b)
Strain Hardening 10-12% Mn Steel
EBSD: Phase map
Microstructure Medium Mn Steel
(10%Mn)
MATERIALS DESIGN LABORATORY
Microstructure Medium Mn Steel
Example: 12% Mn, nucleation UFGs on twin boundaries
After hot rolling After cold rolling
 Hot rolled 12%Mn: Austenitic with 2% ferrite.
 Cold rolled 12%Mn: Austenitic with martensite + twinning.
Ferrite
Austenite
Martensite
Twins
After intercritical annealing
UFG α+γ (1 < μm)
MATERIALS DESIGN LABORATORY
Microstructure Medium Mn Steel
Example: 10% Mn, nucleation UFGs on cementite particles
2 μm
1 μm
Austenite
Cementite
C , Mn diffusionC , Mn diffusion
Sub-grain boundary
MATERIALS DESIGN LABORATORY
Fe-10Mn-0.3C-3Al-2Si
S C M
-1 3
γn
/
M =545 426X 30.4 60.5(V )X  
400 500 600 700 800 900
0
5
10
15
20
25
30
400 500 600 700 800 900
0
5
10
15
20
25
30
400 500 600 700 800 900
-200
-100
0
100
200
Mn
C x 10
Mass-%
Temperature (C)
Stackingfaultenergy(mJ/m
2
)
Temperature (C)
Without grain size effect
With grain size effect
Ms
temperature(C)
Temperature (C)
TWIP
SFE↑ Stability ↑
UHS 8%-10% Mn Steel: Composition and Processing
MATERIALS DESIGN LABORATORY
S C M
-1 3
γn
/
M =545 426X 30.4 60.5(V )X  
TWIP
400 500 600 700 800 900
0
5
10
15
20
25
30
400 500 600 700 800 900
0
5
10
15
20
25
30
400 500 600 700 800 900
-200
-100
0
100
200
Mass-%
Temperature (C)
Mn
C x 10
Stackingfaultenergy(mJ/m
2
)
Temperature (C)
Ms
temperature(C)
Without grain size effect
With graiun size effect
Exp.
Temperature (C)
Fe- 8Mn-0.3C-3Al-1Si
SFE↑ Stability ↑
UHS 8%-10% Mn Steel: Composition and Processing
MATERIALS DESIGN LABORATORY
650 700 750 800 850 900
400
500
600
700
800
900
1000
1100
1200
1300
1400
Fe-10Mn-0.3C-3Al-2Si
YS
UTS
UTS
Strength(MPa)
Annealing temperature (C)
YS
Fe-8Mn-0.3C-3Al-1Si
650 700 750 800 850 900
10
20
30
40
50
60
70
Totalelongation(%)
Annealing temperature (C)
Fe10Mn0.3C3Al2Si
Fe8Mn0.3C3Al1Si
8%-10% Mn Steel: Mechanical Properties
MATERIALS DESIGN LABORATORY
As-annealed
57% Austenite-43% Ferrite
As-deformed (~60%)
Twin
1 μm 1 μm
γ
α
γα γα
Microstructure 8%Mn TWIP+TRIP Steel
Fe-8%Mn-0.4%C-3%Al-1%Si steel intercritically annealed @ 750 °C
MATERIALS DESIGN LABORATORY
Microstructure 8%Mn TWIP+TRIP Steel
0.2 μm
21/nm21/nm
g
a
0.2 μm
g
a
Fe-8%Mn-0.4%C-3%Al-1%Si steel intercritically annealed @ 750 °C
MATERIALS DESIGN LABORATORY
Microstructure 8%Mn TWIP+TRIP Steel
Fe-8%Mn-0.4%C-3%Al-1%Si steel intercritically annealed @ 750 °C
As-annealed
57% Austenite-43% Ferrite
As-deformed (~60%)
1 μm 1 μm
γ
α
γα
α
MATERIALS DESIGN LABORATORY
Medium 8% Mn TWIP+TRIP Steel Concept
IAT: 700°C IAT: 750°C
0 5 10 15 20 25 30 35 40 45 50
0
200
400
600
800
1000
1200
1400
0 5 10 15 20 25 30 35 40 45 50
0
200
400
600
800
1000
1200
1400
Engineeringstress,MPa
Engineering strain, %
8Mn-0.4C-3Al-2Si-0V
8Mn-0.4C-3Al-2Si-0.1V
8Mn-0.4C-3Al-2Si-0.2V
Engineeringstress,MPa
Engineering strain, %
8Mn-0.4C-3Al-2Si-0V
8Mn-0.4C-3Al-2Si-0.1V
8Mn-0.4C-3Al-2Si-0.2V
Fe18Mn0.6C1.5Al
MATERIALS DESIGN LABORATORY
Single phase
TWIP steel
Multi-phase
TWIP-TRIP transition
Multi-phase
TRIP steel
Model for the mechanical properties
g →gT
TWIP-effect
g
g →a’
TRIP-effect
a’
g
g →gT
TWIP-effect
g
g →a’
TRIP-effect
a’
g+
0 10 20 30 40 50 60
0
200
400
600
800
1000
1200
1400
0 10 20 30 40 50 60
0
200
400
600
800
1000
1200
1400
0 10 20 30 40 50 60
0
200
400
600
800
1000
1200
1400
8Mn
12Mn
18Mn
Eng.stress(MPa)
Eng. strain (%)
DP980 DP980
10Mn
Eng.stress(MPa)
Eng. strain (%)
Eng.stress(MPa)
Eng. strain (%)
DP980
6Mn
MATERIALS DESIGN LABORATORY
0.0 0.1 0.2 0.3 0.4 0.5
0
500
1000
1500
2000
2500
3000
3500
4000
6Mn
TWIP1000
Truestress,MPa
Workhardeningrate,MPa
True strain
TWIP 1000: 18%Mn0.6%C1.5%Al
Medium Mn 1: 12%Mn0.3%C3.0%Al
Medium Mn 2: 10%Mn0.3%C3.0%Al2.0%Si
Medium Mn 3: 8%Mn0.4%C3.0%Al2.0%Si
Medium Mn 4: 6%Mn0.3%C3.0%Al1.5%Si
Mechanical properties at reduced Mn alloying
TWIP
TRIP
MATERIALS DESIGN LABORATORY
Conclusions
New 1GPa UHSS grades for automotive applications:
High Mn, Austenitic MBIP-SBIP Steel
High Mn, Austenitic TWIP Steel
Medium Mn, multi-phase TWIP+TRIP Steel
Medium Mn, Multi-phase TRIP Steel
Press Hardening Steel
Quench and Partitioning Processed Steel
Some concepts are “out-of-the-box” in terms of cost, processing, application
performance, … and the alloy fundamentals are challenging.
Current research focus on selecting and optimizing best concepts:
Multi-phase TWIP+TRIP steel with 6-10% Mn
Multi-phase UFG TRIP steel with 5-7% Mn
Application properties receiving attention:
Delayed fracture
Hole expansion and stretch forming performance
Coatings
MATERIALS DESIGN LABORATORY
Thank you for your attention.

Contenu connexe

Tendances

NAMRC 2015_Scanning speed effect on mechanical properties of ti-6al-4v alloy ...
NAMRC 2015_Scanning speed effect on mechanical properties of ti-6al-4v alloy ...NAMRC 2015_Scanning speed effect on mechanical properties of ti-6al-4v alloy ...
NAMRC 2015_Scanning speed effect on mechanical properties of ti-6al-4v alloy ...Xiaoqing Wang
 
Friction stir welding and processing
Friction stir welding and processing Friction stir welding and processing
Friction stir welding and processing Saurabh Suman
 
Fatigue and fracture behavior of additively manufactured metals after heat tr...
Fatigue and fracture behavior of additively manufactured metals after heat tr...Fatigue and fracture behavior of additively manufactured metals after heat tr...
Fatigue and fracture behavior of additively manufactured metals after heat tr...TAV VACUUM FURNACES
 
Cutting tool tech
Cutting tool techCutting tool tech
Cutting tool techAb Halim
 
PART 3 AS PUBLISHED IN THEE
PART 3 AS PUBLISHED IN THEEPART 3 AS PUBLISHED IN THEE
PART 3 AS PUBLISHED IN THEEPratap Ghorpade
 
Finite element modelling of adhesive
Finite element modelling of adhesiveFinite element modelling of adhesive
Finite element modelling of adhesiveAHMET BENLİ
 
EXPERIMENTAL WEAR ANALYSIS OF BORON CARBIDE COATED HIGH SPEED STEEL SUBSTRATE
EXPERIMENTAL WEAR ANALYSIS OF BORON CARBIDE COATED HIGH SPEED STEEL SUBSTRATEEXPERIMENTAL WEAR ANALYSIS OF BORON CARBIDE COATED HIGH SPEED STEEL SUBSTRATE
EXPERIMENTAL WEAR ANALYSIS OF BORON CARBIDE COATED HIGH SPEED STEEL SUBSTRATEJournal For Research
 
Comparative Analysis of Composite Materials based on Stress and Vibration by ...
Comparative Analysis of Composite Materials based on Stress and Vibration by ...Comparative Analysis of Composite Materials based on Stress and Vibration by ...
Comparative Analysis of Composite Materials based on Stress and Vibration by ...IRJET Journal
 
--1396598858-4. Applied - IJANS - Improving Properties of - Eng. amjed alkhte...
--1396598858-4. Applied - IJANS - Improving Properties of - Eng. amjed alkhte...--1396598858-4. Applied - IJANS - Improving Properties of - Eng. amjed alkhte...
--1396598858-4. Applied - IJANS - Improving Properties of - Eng. amjed alkhte...mexat
 
Composites in aerospace structures by k s narayana rao
Composites in aerospace structures by k s narayana raoComposites in aerospace structures by k s narayana rao
Composites in aerospace structures by k s narayana raoKaushik Byna
 
Experimental study on flexural behavior of the self compacting concrete with ...
Experimental study on flexural behavior of the self compacting concrete with ...Experimental study on flexural behavior of the self compacting concrete with ...
Experimental study on flexural behavior of the self compacting concrete with ...IAEME Publication
 
Erosion wear behaviour of plasma sprayed ni crsib
Erosion wear behaviour of plasma sprayed ni crsibErosion wear behaviour of plasma sprayed ni crsib
Erosion wear behaviour of plasma sprayed ni crsibEbe Nezer G
 

Tendances (20)

Tribological Examination of Calcium alginate – UHMWPE blends
Tribological Examination of Calcium alginate – UHMWPE blendsTribological Examination of Calcium alginate – UHMWPE blends
Tribological Examination of Calcium alginate – UHMWPE blends
 
NAMRC 2015_Scanning speed effect on mechanical properties of ti-6al-4v alloy ...
NAMRC 2015_Scanning speed effect on mechanical properties of ti-6al-4v alloy ...NAMRC 2015_Scanning speed effect on mechanical properties of ti-6al-4v alloy ...
NAMRC 2015_Scanning speed effect on mechanical properties of ti-6al-4v alloy ...
 
MM4MPR Presentation
MM4MPR PresentationMM4MPR Presentation
MM4MPR Presentation
 
Friction stir welding and processing
Friction stir welding and processing Friction stir welding and processing
Friction stir welding and processing
 
Fatigue and fracture behavior of additively manufactured metals after heat tr...
Fatigue and fracture behavior of additively manufactured metals after heat tr...Fatigue and fracture behavior of additively manufactured metals after heat tr...
Fatigue and fracture behavior of additively manufactured metals after heat tr...
 
Ballistic
BallisticBallistic
Ballistic
 
Cutting tool tech
Cutting tool techCutting tool tech
Cutting tool tech
 
PART 3 AS PUBLISHED IN THEE
PART 3 AS PUBLISHED IN THEEPART 3 AS PUBLISHED IN THEE
PART 3 AS PUBLISHED IN THEE
 
Finite element modelling of adhesive
Finite element modelling of adhesiveFinite element modelling of adhesive
Finite element modelling of adhesive
 
Ch08
Ch08Ch08
Ch08
 
EXPERIMENTAL WEAR ANALYSIS OF BORON CARBIDE COATED HIGH SPEED STEEL SUBSTRATE
EXPERIMENTAL WEAR ANALYSIS OF BORON CARBIDE COATED HIGH SPEED STEEL SUBSTRATEEXPERIMENTAL WEAR ANALYSIS OF BORON CARBIDE COATED HIGH SPEED STEEL SUBSTRATE
EXPERIMENTAL WEAR ANALYSIS OF BORON CARBIDE COATED HIGH SPEED STEEL SUBSTRATE
 
Ch05
Ch05Ch05
Ch05
 
Comparative Analysis of Composite Materials based on Stress and Vibration by ...
Comparative Analysis of Composite Materials based on Stress and Vibration by ...Comparative Analysis of Composite Materials based on Stress and Vibration by ...
Comparative Analysis of Composite Materials based on Stress and Vibration by ...
 
--1396598858-4. Applied - IJANS - Improving Properties of - Eng. amjed alkhte...
--1396598858-4. Applied - IJANS - Improving Properties of - Eng. amjed alkhte...--1396598858-4. Applied - IJANS - Improving Properties of - Eng. amjed alkhte...
--1396598858-4. Applied - IJANS - Improving Properties of - Eng. amjed alkhte...
 
Composites in aerospace structures by k s narayana rao
Composites in aerospace structures by k s narayana raoComposites in aerospace structures by k s narayana rao
Composites in aerospace structures by k s narayana rao
 
Experimental study on flexural behavior of the self compacting concrete with ...
Experimental study on flexural behavior of the self compacting concrete with ...Experimental study on flexural behavior of the self compacting concrete with ...
Experimental study on flexural behavior of the self compacting concrete with ...
 
Erosion wear behaviour of plasma sprayed ni crsib
Erosion wear behaviour of plasma sprayed ni crsibErosion wear behaviour of plasma sprayed ni crsib
Erosion wear behaviour of plasma sprayed ni crsib
 
Application of ANN in FSP
Application of ANN in FSPApplication of ANN in FSP
Application of ANN in FSP
 
As24295300
As24295300As24295300
As24295300
 
30120140501014
3012014050101430120140501014
30120140501014
 

En vedette

Introduction to Steel Coating Technologies_BCDeCooman_2016
Introduction to Steel Coating Technologies_BCDeCooman_2016Introduction to Steel Coating Technologies_BCDeCooman_2016
Introduction to Steel Coating Technologies_BCDeCooman_2016Bruno Charles De Cooman
 
Galvalume roofing sheets manufacturers in India
Galvalume roofing sheets manufacturers in IndiaGalvalume roofing sheets manufacturers in India
Galvalume roofing sheets manufacturers in Indiamaharajaroofing
 
03 specification hot dip galvanising
03 specification hot dip galvanising03 specification hot dip galvanising
03 specification hot dip galvanisingLalit Kumar Jain
 
Galvanizing for Corrosion Protection (AGA)
Galvanizing for Corrosion Protection (AGA)Galvanizing for Corrosion Protection (AGA)
Galvanizing for Corrosion Protection (AGA)Abrianto Akuan
 
Galvanized Steel Manufacturing Process
Galvanized Steel Manufacturing ProcessGalvanized Steel Manufacturing Process
Galvanized Steel Manufacturing ProcessBharat Kumar Suthar
 
2012 Bolted joints - Bolted joints in real conditions
2012 Bolted joints - Bolted joints in real conditions2012 Bolted joints - Bolted joints in real conditions
2012 Bolted joints - Bolted joints in real conditionsErik Galdames
 
New Hot Dip Galvanizing Process
New Hot Dip Galvanizing ProcessNew Hot Dip Galvanizing Process
New Hot Dip Galvanizing ProcessDeian Tachev
 

En vedette (11)

Introduction to Steel Coating Technologies_BCDeCooman_2016
Introduction to Steel Coating Technologies_BCDeCooman_2016Introduction to Steel Coating Technologies_BCDeCooman_2016
Introduction to Steel Coating Technologies_BCDeCooman_2016
 
Galvanizing Methods
Galvanizing MethodsGalvanizing Methods
Galvanizing Methods
 
Galvalume roofing sheets manufacturers in India
Galvalume roofing sheets manufacturers in IndiaGalvalume roofing sheets manufacturers in India
Galvalume roofing sheets manufacturers in India
 
ZINCHERIA S.A. 2011-2013
ZINCHERIA S.A. 2011-2013ZINCHERIA S.A. 2011-2013
ZINCHERIA S.A. 2011-2013
 
03 specification hot dip galvanising
03 specification hot dip galvanising03 specification hot dip galvanising
03 specification hot dip galvanising
 
Galvanizing for Corrosion Protection (AGA)
Galvanizing for Corrosion Protection (AGA)Galvanizing for Corrosion Protection (AGA)
Galvanizing for Corrosion Protection (AGA)
 
Galvanized Steel Manufacturing Process
Galvanized Steel Manufacturing ProcessGalvanized Steel Manufacturing Process
Galvanized Steel Manufacturing Process
 
2012 Bolted joints - Bolted joints in real conditions
2012 Bolted joints - Bolted joints in real conditions2012 Bolted joints - Bolted joints in real conditions
2012 Bolted joints - Bolted joints in real conditions
 
New Hot Dip Galvanizing Process
New Hot Dip Galvanizing ProcessNew Hot Dip Galvanizing Process
New Hot Dip Galvanizing Process
 
Trip steel
Trip steelTrip steel
Trip steel
 
All you need to know about Hot Dip Galvanizing
All you need to know about Hot Dip GalvanizingAll you need to know about Hot Dip Galvanizing
All you need to know about Hot Dip Galvanizing
 

Similaire à 3rd CAMS 2014_TWIP-TRIP Steels_FINAL_2014

MY2017 TAISHAN OPEN MODEL CATALOGUE
MY2017 TAISHAN OPEN MODEL CATALOGUEMY2017 TAISHAN OPEN MODEL CATALOGUE
MY2017 TAISHAN OPEN MODEL CATALOGUEChris Yu
 
MY2017 TAISHAN OPEN MODEL CATALOGUE
MY2017 TAISHAN OPEN MODEL CATALOGUEMY2017 TAISHAN OPEN MODEL CATALOGUE
MY2017 TAISHAN OPEN MODEL CATALOGUEChris Yu
 
Aluminium 2016 conference -m jarrett--113016
Aluminium 2016 conference -m jarrett--113016 Aluminium 2016 conference -m jarrett--113016
Aluminium 2016 conference -m jarrett--113016 Constellium
 
Hicasting brochure
Hicasting brochureHicasting brochure
Hicasting brochureAtul. Mehta.
 
Element Materials Technology Hitchin - O&G Services
Element Materials Technology Hitchin - O&G ServicesElement Materials Technology Hitchin - O&G Services
Element Materials Technology Hitchin - O&G ServicesWilliam Barnes
 
World Auto Steel General Presentation 20090630
World Auto Steel General Presentation 20090630World Auto Steel General Presentation 20090630
World Auto Steel General Presentation 20090630katehickey
 
Structural Damage and Maintenance Day 1
Structural Damage and Maintenance Day 1Structural Damage and Maintenance Day 1
Structural Damage and Maintenance Day 1tti-sharmila
 
Accelerating the Development of Aluminium Lightweighting Solutions
Accelerating the Development of Aluminium Lightweighting SolutionsAccelerating the Development of Aluminium Lightweighting Solutions
Accelerating the Development of Aluminium Lightweighting SolutionsConstellium
 
Future Manufacturing - Metal Casting Industry
Future Manufacturing - Metal Casting IndustryFuture Manufacturing - Metal Casting Industry
Future Manufacturing - Metal Casting IndustryAdriaan van der Walt
 
ADVANCED TECHNOLOGIES TO ENHANCE STEEL’S CONTRIBUTION IN LIGHTWEIGHTING
ADVANCED TECHNOLOGIES TO ENHANCE STEEL’S CONTRIBUTION IN LIGHTWEIGHTINGADVANCED TECHNOLOGIES TO ENHANCE STEEL’S CONTRIBUTION IN LIGHTWEIGHTING
ADVANCED TECHNOLOGIES TO ENHANCE STEEL’S CONTRIBUTION IN LIGHTWEIGHTINGiQHub
 
Vehicle Light Weighting - A Greener, Composite Solution (for Class A Body Pan...
Vehicle Light Weighting - A Greener, Composite Solution (for Class A Body Pan...Vehicle Light Weighting - A Greener, Composite Solution (for Class A Body Pan...
Vehicle Light Weighting - A Greener, Composite Solution (for Class A Body Pan...OC_Composites
 
Automotive Testing Case Studies
Automotive Testing Case StudiesAutomotive Testing Case Studies
Automotive Testing Case StudiesSGS
 
IRJET- Design and Analysis of Different Characteristics of Hollow and Sol...
IRJET-  	  Design and Analysis of Different Characteristics of Hollow and Sol...IRJET-  	  Design and Analysis of Different Characteristics of Hollow and Sol...
IRJET- Design and Analysis of Different Characteristics of Hollow and Sol...IRJET Journal
 
Advantex glass for industrial corrosion - An industry issue creates an opport...
Advantex glass for industrial corrosion - An industry issue creates an opport...Advantex glass for industrial corrosion - An industry issue creates an opport...
Advantex glass for industrial corrosion - An industry issue creates an opport...Owens Corning Composites Solution Business
 

Similaire à 3rd CAMS 2014_TWIP-TRIP Steels_FINAL_2014 (20)

Thesis Presentation
Thesis PresentationThesis Presentation
Thesis Presentation
 
MY2017 TAISHAN OPEN MODEL CATALOGUE
MY2017 TAISHAN OPEN MODEL CATALOGUEMY2017 TAISHAN OPEN MODEL CATALOGUE
MY2017 TAISHAN OPEN MODEL CATALOGUE
 
MY2017 TAISHAN OPEN MODEL CATALOGUE
MY2017 TAISHAN OPEN MODEL CATALOGUEMY2017 TAISHAN OPEN MODEL CATALOGUE
MY2017 TAISHAN OPEN MODEL CATALOGUE
 
Aluminium 2016 conference -m jarrett--113016
Aluminium 2016 conference -m jarrett--113016 Aluminium 2016 conference -m jarrett--113016
Aluminium 2016 conference -m jarrett--113016
 
AMIF2014 – [Automotive] Ettore Camarda, Materiali innovativi nella progettazi...
AMIF2014 – [Automotive] Ettore Camarda, Materiali innovativi nella progettazi...AMIF2014 – [Automotive] Ettore Camarda, Materiali innovativi nella progettazi...
AMIF2014 – [Automotive] Ettore Camarda, Materiali innovativi nella progettazi...
 
Hicasting brochure
Hicasting brochureHicasting brochure
Hicasting brochure
 
Resume_Metallurgist
Resume_MetallurgistResume_Metallurgist
Resume_Metallurgist
 
Element Materials Technology Hitchin - O&G Services
Element Materials Technology Hitchin - O&G ServicesElement Materials Technology Hitchin - O&G Services
Element Materials Technology Hitchin - O&G Services
 
World Auto Steel General Presentation 20090630
World Auto Steel General Presentation 20090630World Auto Steel General Presentation 20090630
World Auto Steel General Presentation 20090630
 
aksahy final ppt.pptx
aksahy final ppt.pptxaksahy final ppt.pptx
aksahy final ppt.pptx
 
Structural Damage and Maintenance Day 1
Structural Damage and Maintenance Day 1Structural Damage and Maintenance Day 1
Structural Damage and Maintenance Day 1
 
Accelerating the Development of Aluminium Lightweighting Solutions
Accelerating the Development of Aluminium Lightweighting SolutionsAccelerating the Development of Aluminium Lightweighting Solutions
Accelerating the Development of Aluminium Lightweighting Solutions
 
Future Manufacturing - Metal Casting Industry
Future Manufacturing - Metal Casting IndustryFuture Manufacturing - Metal Casting Industry
Future Manufacturing - Metal Casting Industry
 
ADVANCED TECHNOLOGIES TO ENHANCE STEEL’S CONTRIBUTION IN LIGHTWEIGHTING
ADVANCED TECHNOLOGIES TO ENHANCE STEEL’S CONTRIBUTION IN LIGHTWEIGHTINGADVANCED TECHNOLOGIES TO ENHANCE STEEL’S CONTRIBUTION IN LIGHTWEIGHTING
ADVANCED TECHNOLOGIES TO ENHANCE STEEL’S CONTRIBUTION IN LIGHTWEIGHTING
 
Vehicle Light Weighting - A Greener, Composite Solution (for Class A Body Pan...
Vehicle Light Weighting - A Greener, Composite Solution (for Class A Body Pan...Vehicle Light Weighting - A Greener, Composite Solution (for Class A Body Pan...
Vehicle Light Weighting - A Greener, Composite Solution (for Class A Body Pan...
 
Automotive Testing Case Studies
Automotive Testing Case StudiesAutomotive Testing Case Studies
Automotive Testing Case Studies
 
Advances in Fiberglass Properties for Wind Turbine Blades
Advances in Fiberglass Properties for Wind Turbine BladesAdvances in Fiberglass Properties for Wind Turbine Blades
Advances in Fiberglass Properties for Wind Turbine Blades
 
IRJET- Design and Analysis of Different Characteristics of Hollow and Sol...
IRJET-  	  Design and Analysis of Different Characteristics of Hollow and Sol...IRJET-  	  Design and Analysis of Different Characteristics of Hollow and Sol...
IRJET- Design and Analysis of Different Characteristics of Hollow and Sol...
 
Advances in Reinforcement Materials (Glass Fiber Materials)
Advances in Reinforcement Materials (Glass Fiber Materials)Advances in Reinforcement Materials (Glass Fiber Materials)
Advances in Reinforcement Materials (Glass Fiber Materials)
 
Advantex glass for industrial corrosion - An industry issue creates an opport...
Advantex glass for industrial corrosion - An industry issue creates an opport...Advantex glass for industrial corrosion - An industry issue creates an opport...
Advantex glass for industrial corrosion - An industry issue creates an opport...
 

3rd CAMS 2014_TWIP-TRIP Steels_FINAL_2014

  • 1. MATERIALS DESIGN LABORATORY Alloy Design UHS Intercritically Annealed 6%-12%Mn TWIP+TRIP Steel B. C. De Cooman Materials Design Laboratory, Graduate Institute of Ferrous Technology Pohang University of Science and Technology Pohang, South Korea CAMS 2014 MATERIALS AUSTRALIA November 26th-28th, 2014 Sydney, NSW, AUSTRALIA
  • 2. MATERIALS DESIGN LABORATORY Pohang University of Science and Technology Graduate Institute of Ferrous Technology Pohang
  • 3. MATERIALS DESIGN LABORATORY The world’s only fully accredited Institute in Steel Science and Technology • Research Areas: Alternative Technology Control & Automation Computational Metallurgy Clean Steel Environmental Metallurgy Microstructure Control Materials Design Material Mechanics Surface Engineering
  • 4. MATERIALS DESIGN LABORATORY The world’s only fully accredited Institute in Steel Science and Technology • Research Areas: Alternative Technology Control & Automation Computational Metallurgy Clean Steel Environmental Metallurgy Microstructure Control Materials Design Material Mechanics Surface Engineering
  • 5. MATERIALS DESIGN LABORATORY The world’s only fully accredited Institute in Steel Science and Technology • Research Areas: Alternative Technology Control & Automation Computational Metallurgy Clean Steel Environmental Metallurgy Microstructure Control Materials Design Material Mechanics Surface Engineering
  • 6. MATERIALS DESIGN LABORATORY Global Trends Automotive Steel Grades The increasing use of AHSS/UHSS use is driven by… • The need for high volume vehicles at competitive prices. • Stringent regulations and corporate goals for: Passenger safety Fuel economy Lower greenhouse gas emissions • Sustained efforts by the steel industry to innovate and create advanced steels, and original, steel-based solutions and methods, which underline the large potential of steel. Car makers test, utilize multi-materials designs, but steel remains dominant… • Steel, the material of choice for BIW: 99% passenger cars have a steel BIW. • 60-70% of the car weight consisting of steel or steel-based parts. • Globalization requires world-wide availability and global procurement of standard materials. • The automotive industry makes excursions in light materials applications but there is only a slight actual increase in the use of Al, Mg and plastics…. but this may change!
  • 7. MATERIALS DESIGN LABORATORY Lightweighting: Mass “Containment”, Mass “Reduction” • Low gas mileage: 0.3l-0.6l/100km fuel use reduction for a 100kg weight reduction • Less greenhouse gas emissions: 2020 target ~100gr/km • NHTSA CAFE Standards for 2017 New mpg target: DOUBLE the average mpg for new cars, trucks 54.5 mpg will cut of gas emissions by HALF Current situation Best US highway mileage 2012: 42 mpg (Chevrolet CRUZE) Other example: 32 mpg (VW Passat ) General situation: 25mpg in US, 45 mpg in EU, better in Japan Passenger Safety: • Low peak deceleration, long crush length, long time duration of crash pulse • High energy dissipation with minimum intrusion • Higher impact strength for A and B Pillars • Anti-Intrusion applications: front and rear crash, side intrusion • Tougher collision and rollover safety test for the 5-star rating Closure Applications: • Dent resistance Coated Products: • Perforation and cosmetic corrosion resistance • Surface quality, visual Other Issues: • Noise and Vibrations • Vehicle Handling, Stiffness and Torsional Rigidity Global Trends Automotive Steel Grades
  • 8. MATERIALS DESIGN LABORATORY Weight spiral: Safety Space Performance Reliability Quality Comfort 1500 1400 1300 1200 1100 1000 900 800 700 600 500 1970 1974 1978 1982 1986 1990 1994 1998 2002 2006 2010 Curbweight,kg 88% increase in weight EU mid size vehicles Year CAFE Fuel Economy 40 45 50 55 60 Wheelbase . track Gasmileage,mpg 40 45 50 35 30 Year 2012 2014 2016 2018 2020 2022 Prius Doubling mileage Regulations Influence on Materials Selection
  • 9. MATERIALS DESIGN LABORATORY Weight spiral: Safety Space Performance Reliability Quality Comfort 1500 1400 1300 1200 1100 1000 900 800 700 600 500 1970 1974 1978 1982 1986 1990 1994 1998 2002 2006 2010 Curbweight,kg 88% increase in weight EU mid size vehicles Year Regulations Influence on Materials Selection Passive Passenger safety
  • 10. MATERIALS DESIGN LABORATORY Mechanical Properties Yield Strength Tensile Strength Uniform elongation Total Elongation Automotive Sheet Steel Products
  • 11. MATERIALS DESIGN LABORATORY RoughingReheating Finishing Cooling Coiling Conventional HSM, CSM and CA/HDG Processing Cold rolling Continuous Annealing Hot Dip Galvanizing
  • 12. MATERIALS DESIGN LABORATORY Mechanical Properties Yield Strength Tensile Strength Uniform elongation Total Elongation Bake-hardening Springback Normal Anisotropy Planar Anisotropy Deep Drawability Stretch Formability Crashworthiness Geometrical Properties Dimensional Width Thickness Shape Edge Drop Crown Flatness Technical Properties Weldability Phosphatabilty Roughness Waviness Friction Corrosion resistance Phosphatability Paint adhesion Visual appearance Automotive Sheet Steel Products
  • 14. MATERIALS DESIGN LABORATORY 300 400 500 600 700 800 900 1000 ElongationA80,% Tensile Strength, MPa 0 20 40 60 80 100 120 140 1100 IF CMn HSLA Conventional Automotive Steels 60.000MPa.% 50.000MPa.% 40.000MPa.% 30.000MPa.% 20.000MPa.% 10.000MPa.% IF LC CMn HSLA
  • 15. MATERIALS DESIGN LABORATORY MA 300 400 500 600 700 800 900 1000 ElongationA80,% Tensile Strength, MPa 0 20 40 60 80 100 120 140 1100 60.000MPa.% 50.000MPa.% 40.000MPa.% 30.000MPa.% 20.000MPa.% IF LC CMn HSLA First Generation Advanced High Strength Steels DP TRIP MACP
  • 16. MATERIALS DESIGN LABORATORY Automotive Body Materials Selection 6% HPF + 5% MA 23% HSS 30% DP / Multi Phase GM AVEO 34% IF +LC +BH Cadillac CTS PHS VW: 6% (GOLF 6) → 28% (GOLF 7)
  • 17. MATERIALS DESIGN LABORATORY Al alloys Polymers Mg alloys Automotive Steel grades CFR-Composites Ti alloys Automotive Body Materials Selection
  • 18. MATERIALS DESIGN LABORATORY Al alloys Polymers CFR-Composites Automotive Body Materials Selection Monocoque: 5754 (Structural) 6111 (External parts) Space frame: Multiple Al products integration High strength die casting Al-extrusion Hydroform extrusion Issues: Strain hardening: low Strain rate sensitivity: negative Cost: 4-6$/kg (1.3$/kg Steel)
  • 19. MATERIALS DESIGN LABORATORY MA 300 400 500 600 700 800 900 1000 ElongationA80,% Tensile Strength, MPa 0 20 40 60 80 100 120 140 1100 60.000MPa.% 50.000MPa.% 40.000MPa.% 30.000MPa.% 20.000MPa.% IF LC CMn HSLA Second Generation Advanced High Strength Steels TWIP Fe22Mn0.6C Fe18Mn1.5Al0.6C
  • 20. MATERIALS DESIGN LABORATORY MA 300 400 500 600 900 1000 ElongationA80,% Tensile Strength, MPa 0 20 40 60 80 100 120 140 1100 60.000MPa.% 50.000MPa.% 40.000MPa.% 30.000MPa.% 20.000MPa.% IF LC CMn HSLA Third Generation Advanced High Strength Steels 3rd Generation 0.2µm UFG TRIP Low Mn TWIP SBIP MBIP + 700 800
  • 21. MATERIALS DESIGN LABORATORY Strain Hardening Engineering True strain 0 0 Truestress,strainhardeningrate,MPa )( u   d d
  • 22. MATERIALS DESIGN LABORATORY Strain Hardening Engineering True strain 0 0 Truestress,strainhardeningrate,MPa )( u   d d
  • 23. MATERIALS DESIGN LABORATORY Strain Hardening Engineering 0 0 True strain Truestress,strainhardeningrate,MPa Gain in strength and ductility ! u )(   d d
  • 24. MATERIALS DESIGN LABORATORY 0 0 True strain Truestress,strainhardeningrate,MPa Gain in strength and ductility ! Strain Hardening Engineering u )(   d d Dislocation Accumulation or Storage (Stage II) Dislocation Annihilation or Dynamic recovery (Stage III) ρkρk dε dρ dε dρ dε dρ   21
  • 25. MATERIALS DESIGN LABORATORY  d/d 0 0 0.1 0.2 0.3 0.4 1000 2000 3000 4000 5000 True strain Truestress,strainhardeningrate,MPa TRIP TWIP HS IF TRIP Strain Hardening Engineering
  • 26. MATERIALS DESIGN LABORATORY What is Strain Hardening Engineering? 1. Strengthening mechanisms: • Solid solution strengthening (Alloying) • Grain size refining (Alloying and Processing) • Precipitation strengthening (Alloying) • Bake-hardening (Processing) 2. Plasticity-enhancing mechanisms: • Multi-phase steels: austenite required • TRIP effect: Strain-induced Transformation • TWIP effect: Deformation Twinning g strain g →a’ TRIP-effect a’ g g →gT TWIP-effect g
  • 27. MATERIALS DESIGN LABORATORY High Mn TWIP Steel TWIP: TWinning-Induced Plasticity 0 10 20 30 40 50 60 70 0 200 400 600 800 1000 1200 Eng.Stress(MPa) Eng. Strain (%) 20 22 24 26 28 30 700 750 800 850 900 10-4s-1 Fe18Mn0.6C1.5Al g →gT TWIP-effect g 10-3s-1
  • 28. MATERIALS DESIGN LABORATORY Rolling directionTWIP 1000 High Mn TWIP Steel
  • 29. MATERIALS DESIGN LABORATORY HER Diffuse necking No diffuse necking IF steelTWIP LMIE HDF Fe22Mn0.6C Fe15Mn2Al0.7C Zn Zn
  • 30. MATERIALS DESIGN LABORATORY 0 10 20 30 40 50 60 70 0 200 400 600 800 1000 1200 1400 1600 Engineeringstress,MPa Fe15Mn0.6C Fe15Mn0.6C1.5Al Fe15Mn0.6C2Al Engineering strain, % YS MPa UTS MPa Elongation (total) % SFE* mJ/m2 SFE** mJ/m2 Fe15Mn0.6C 509 1124 51 12 13 Fe15Mn0.6C1.5Al 480 976 58 26 21 Fe15Mn0.6C2.0Al 488 939 58 30 24 * Saeed-Akbari et al., Metall. Mater. Trans. A 2009 ** Dumay et al., Mater. Sci. Eng. A 2008 YS MPa UTS MPa Elongation (total) % SFE* mJ/m2 Fe15Mn0.6C2.0Al 10% 20% 30% 40% 50% 60% 712 989 1071 1122 1261 2394 991 1167 1319 1407 1590 1737 43 23 15 10 9 7 30 0 10 20 30 40 50 60 70 0 200 400 600 800 1000 1200 1400 1600 Engineeringstress,MPa Engineering strain, % 10% 20% 30% 40% 50% 60%
  • 31. MATERIALS DESIGN LABORATORY YS (MPa) UTS (MPa) Total Elongation (%) SFE* mJ/m2 SFE** mJ/m2 Fe12Mn0.6C Fe12Mn0.6C1.5Al Fe12Mn0.6C2.0Al 486 492 478 838 900 915 16 30 41 12 26 30 10 18 21 Fe12Mn0.9C1Si-0.0V Fe12Mn0.9C1Si-0.2V Fe12Mn0.9C1Si-0.5V Fe12Mn0.9C1Si-0.7V 434 614 722 741 1166 1324 1276 1260 45 38 25 22 26 - 0 10 20 30 40 50 60 70 0 200 400 600 800 1000 1200 1400 1600 Fe12Mn0.6C Fe12Mn0.6C1.5Al Fe12Mn0.6C2Al Engineeringstress,MPa Engineering strain, % 0 10 20 30 40 50 60 70 0 200 400 600 800 1000 1200 1400 1600 0.2%V0.7%V 0.5%V Engineeringstress,MPa Engineering strain, % V-free V-additions: increased YS and increased strain hardening
  • 32. MATERIALS DESIGN LABORATORY YS MPa UTS MPa Elongation (total) % SFE* mJ/m2 Fe15Mn0.6C2.0Al 10% 20% 30% 40% 50% 60% 712 989 1071 1122 1261 2394 991 1167 1319 1407 1590 1737 43 23 15 10 9 7 30 0 10 20 30 40 50 60 70 0 200 400 600 800 1000 1200 1400 1600 Engineeringstress,MPa Engineering strain, % 10% 20% 30% 40% 50% 60% 0 10 20 30 40 50 60 70 0 200 400 600 800 1000 1200 1400 1600 0.2%V0.7%V 0.5%V Engineeringstress,MPa Engineering strain, % V-free YS MPa UTS MPa Elongation (total) % SFE* mJ/m2 Fe12Mn0.9C1Si-0.0V Fe12Mn0.9C1Si-0.2V Fe12Mn0.9C1Si-0.5V Fe12Mn0.9C1Si-0.7V 434 614 722 741 1166 1324 1276 1260 45 38 25 22 26
  • 33. MATERIALS DESIGN LABORATORY Classification of the Mn UHSS Steels High Mn Medium Mn %Mn >25 22 - 15 12 - 6 7 - 4 Processing Conventional annealing Intercritical annealing Q & P Cold rolled Shear bands Deformed g Deformed a’ After annealing g UFG g  a Plasticity SBIP TWIP TWIP+TRIP TRIP g-ISFE (mJ/m2) >75 >20 >20 <10 g-stability g-composition g-composition and size Role of Mn g-stability / SFE g-stability / SFE / Hardenability
  • 34. MATERIALS DESIGN LABORATORY 0.0 0.1 0.2 0.3 0.4 0.5 0 500 1000 1500 2000 2500 3000 3500 4000 DP980 Truestress,MPa Workhardeningrate,MPa True strain TiIF Ti-IF: standard highly formable steel DP 980: standard 1st generation AHSS Mechanical properties at reduced Mn alloying
  • 35. MATERIALS DESIGN LABORATORY 0.0 0.1 0.2 0.3 0.4 0.5 0 500 1000 1500 2000 2500 3000 3500 4000 TWIP1000 DP980 TiIF Truestress,MPa Workhardeningrate,MPa True strain Ti-IF: standard highly formable steel DP 980: standard 1st generation AHSS Mechanical properties at reduced Mn alloying DSA )(   d d
  • 36. MATERIALS DESIGN LABORATORY TWIP 1000: 18%Mn0.6%C1.5%Al Medium Mn 1: 12%Mn0.3%C3.0%Al 0.0 0.1 0.2 0.3 0.4 0.5 0 500 1000 1500 2000 2500 3000 3500 4000 12Mn TWIP1000 Truestress,MPa Workhardeningrate,MPa True strain Mechanical properties at reduced Mn alloying
  • 37. MATERIALS DESIGN LABORATORY 0.0 0.1 0.2 0.3 0.4 0.5 0 500 1000 1500 2000 2500 3000 3500 4000 10Mn Truestress,MPa Workhardeningrate,MPa True strain TWIP1000 TWIP 1000: 18%Mn0.6%C1.5%Al Medium Mn 1: 12%Mn0.3%C3.0%Al Medium Mn 2: 10%Mn0.3%C3.0%Al2.0%Si Mechanical properties at reduced Mn
  • 38. MATERIALS DESIGN LABORATORY 0.0 0.1 0.2 0.3 0.4 0.5 0 500 1000 1500 2000 2500 3000 3500 4000 6Mn TWIP1000 Truestress,MPa Workhardeningrate,MPa True strain TWIP 1000: 18%Mn0.6%C1.5%Al Medium Mn 1: 12%Mn0.3%C3.0%Al Medium Mn 2: 10%Mn0.3%C3.0%Al2.0%Si Medium Mn 3: 8%Mn0.4%C3.0%Al2.0%Si Medium Mn 4: 6%Mn0.3%C3.0%Al1.5%Si Mechanical properties at reduced Mn DSA
  • 39. MATERIALS DESIGN LABORATORY Original concept: TWIP Steel Deformation g g Fully Austenitic Low SFE Dislocation plasticity Twinning-induced plasticity Low YS / High Strain Hardening g g High Mn TWIP Steel Design Concept Austenite: e.g. 18% Mn 0.6% C +Al
  • 40. MATERIALS DESIGN LABORATORY YS (MPa) UTS (MPa) Total Elongation (%) SFE* mJ/m2 SFE** mJ/m2 Fe18Mn0.6C Fe18Mn0.6C1.5Al Fe18Mn0.6C3.0Al 484 498 499 1106 960 849 60 59 50 14 28 40 17 25 32 Fe15Mn0.6C Fe15Mn0.6C1.5Al Fe15Mn0.6C3.0Al 509 480 488 1124 977 939 51 58 58 12 26 30 13 21 24 Fe12Mn0.6C Fe12Mn0.6C1.5Al Fe12Mn0.6C2.0Al 486 492 478 838 900 915 16 30 41 12 26 30 10 18 21 0 10 20 30 40 50 60 70 0 200 400 600 800 1000 1200 Fe18Mn0.6C Fe18Mn0.6C1.5Al Fe18Mn0.6C3Al Engineeringstress,MPa 0 10 20 30 40 50 60 70 0 200 400 600 800 1000 1200 Fe15Mn0.6C Fe15Mn0.6C1.5Al Fe15Mn0.6C2Al Engineering strain, % 0 10 20 30 40 50 60 70 0 200 400 600 800 1000 1200 Fe12Mn0.6C Fe12Mn0.6C1.5Al Fe12Mn0.6C2Al
  • 41. MATERIALS DESIGN LABORATORY )(Gb)( o gag  Kocks-Mecking Model [1] P. S. Follansbee, Metall. Mater. Trans. A, 41A (2010), pp. 3080-3090. [2] T. Gladman, Mater. Sci. Tech-Lond, 15 (1999), pp. 30-36. [3] J. G. Speer, B. C. De Cooman, Fundamentals of Steel Product Physical Metallurgy, AIST, 2011. [4] S. Takaki, K. Takeda, N Nakada, T Tsuchiyama,, IAS 2008, Pohang, Korea, p. 107 [5] Y. Estrin, H. Mecking, Acta Metall., 32 (1984), pp. 57-70. [6] O. Bouaziz, Y. Estrin, Y. Brechet, J.D. Embury, Scripta Mater., 63 (2010), pp. 477-479. o )T,(p g  [1] )d,f( preprepre [2] )X( is [3] D ky [4] )(k)( b k b P d d 2 1 gg g  - Ferrite Austenite [5] 0D  gg 111 a D ' ' 0 F F1 c2 a a  -  p : Pierels stress pre : Pierels stress s : Solid solution strengtheing ky : Hall-petch constant D : Grain size  : Dislocation density P : Grain size dependent constant [6] K1 : Constant K2 : Constant G : Shear modulus b : Burgers vector
  • 42. MATERIALS DESIGN LABORATORY  Modeling result at room temperature Exp. Model 0.00 0.05 0.10 0.15 0.20 0.25 0 200 400 600 800 1000 1200 1400 Truestress,MPa True strain Exp. Model 0.00 0.05 0.10 0.15 0.20 0.25 0 1000 2000 3000 4000 5000 d/d,MPa True strain Model Exp._Magnetic saturation Exp._XRD 0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 Martensitevolumefraction True strain  Coarse grained d k1 : 0.01 k2 : 1.307  UFG a  UFG g  Martensite k1 : 0.01 k2 : 1.012 k1 : 0.015 k2 : 1.005 k1 : 0.306 k2 : 39.1 Constitutive modeling of medium Mn steel 0.00 0.05 0.10 0.15 0.20 0.25 24 26 28 30 32 34 36 38Temperature,oC True strain Exp. Model Max Min
  • 43. MATERIALS DESIGN LABORATORY Medium Mn TWIP Steel Design Concept Single phase Two Phase Fe-18%Mn-0.6%C-1.5%Al → Fe-8%Mn-0.4%C-3.0%Al+Si 0 10000 20000 30000 40000 50000 60000 70000 80000 0 25 50 75 100 TensilestrengthxTotalelongation MPa% Volume percentage austenite, % 0 10 20 30 40 50 60 70 80 90 100 0 2 4 6 8 10 12 14 16 18 20 22 24 Volumepercentageaustenite,% Mn content, mass-% - +
  • 44. MATERIALS DESIGN LABORATORY Deformation g gFully austenitic g: Deformation-induced twinning a: Dislocation glide Ferrite/Austenite formation C, Mn partitioning Al, Si partitioning Grain size refinement SFE increase Lowering Ms temperature g a Cooling Retained g a’Mainly martensitic g a C, Mn Al, Si Intercritical annealing Austenite fg: 100% 8% Mn 0.3% C Austenite fg: 50% 16% Mn 0.6% C Medium Mn TWIP Steel Design Concept
  • 45. MATERIALS DESIGN LABORATORY Deformation g gFully austenitic g: Deformation-induced twinning g: Transformation-induced plasticity a: Dislocation glide g a Cooling g a’Mainly martensitic g aIntercritical annealing a’ C, Mn Al, Si Medium Mn TWIP+TRIP Steel
  • 46. MATERIALS DESIGN LABORATORY Strain Hardening Engineering of UFG Steel Ultra Fine Grain Size a Multi-phase microstructure g Precipitates VC Bimodal Grain size Distribution Larger grains Martensite reversion + intercritical annealing
  • 48. MATERIALS DESIGN LABORATORY Mn  Lowers Ms  Increases SFE  Increases hardenability C  Lowers Ms  Increases SFE  Increases hardenability Al  Increases Ms  Increases SFE  Required for d ferrite formation  Expands the two phase ag range (higher austenite C content) Si  Lowers Ms  Austenite solid solution strengthening  Ferrite solid solution strengthening  Decreases SFE  Suppression cementite formation g stabilizers a stabilizers Composition Design TWIP+TRIP Quaternary Alloy
  • 49. MATERIALS DESIGN LABORATORY 5% Mn 4% Mn 2% Mn 3% Mn 1% Mn 0% Mn Temperature,°C Time, s 0.1 1.0 10 100 10000.01 700 800 600 900 500 400 300 200 Ms Fe-0.1%C-x%Mn 2μm 0.10C4Mn1Si 0.10C5Mn1Si 0.10C6Mn1Si Role of Mn in Medium Mn Steel
  • 50. MATERIALS DESIGN LABORATORY 0 200 400 600 800 10001200 Dilatation Temperature 1200°C 650°C 700°C 750°C 800°C 850°C 900°C 0 200 400 600 800 10001200 Temperature 600°C 650°C 700°C 750°C 800°C Dilatation IAT IAT 1200°C Ms γ γα γ Role of Mn in Medium Mn Steel
  • 51. MATERIALS DESIGN LABORATORY 5 10 15 Mnmass-% 10Mn0.3C3Al2Si (750°C) 5 10 15 Mnmass-% 8Mn0.3C3Al1Si (750°C) 500 nm 200 nm a a a g g g g a a Partitioning of Mn in Medium Mn Steel
  • 52. MATERIALS DESIGN LABORATORY 1500 1250 1000 750 500 250 0 0.00 0.25 0.50 0.75 1.00 8Mn-XC-3Al-0.5Si C content, mass-% Temperature,°C Al/Mn=0.375 1500 1250 1000 750 500 250 0 0.00 0.25 0.50 0.75 1.00 10Mn-XC-3Al-0.5Si agM5C2 C content, mass-% Temperature,°C Al/Mn=0.3 d g ag aM5C2 agq agM5C2 g ag aM5C2 agq d Role of Al in Medium Mn Steel
  • 53. MATERIALS DESIGN LABORATORY γ γ+α+θ γ+α γ+α+(Fe,Mn)5C2 1000 900 800 700 600 500 400 0 0.1 0.2 0.3 0.4 0.5 Mass percent C Temperature(°C) 1000 900 800 700 600 500 400 0 10 20 30 Mass percent 1000 900 800 700 600 500 400 0 10 20 30 SFE* (mJ/m2) γ, Cx10 γ, Mn γ, SFE Microstructure Medium Mn Steel (10%Mn)
  • 54. MATERIALS DESIGN LABORATORY γ γ+α+θ γ+α γ+α+(Fe,Mn)5C2 1000 900 800 700 600 500 400 0 0.1 0.2 0.3 0.4 0.5 Mass percent C Temperature(°C) 1 μm 1 μm 10 μm γ+α΄ γ+α α+ α΄+(Fe,Mn)5C2 Microstructure at room temperature gaM23C6 Fe-C-10Mn-3Al-2Si 1500 1000 500 0 0.0 0.5 1.0 Temperature,°C Carbon content,mass-% aM23C6 aM23C6 M5C2 aM5C2 g 3 mm g a a a g Fe-0.3C-10Mn-3Al-2Si T:750°C gaM5C2 ga 900 750 gaq (a) (b) Strain Hardening 10-12% Mn Steel EBSD: Phase map Microstructure Medium Mn Steel (10%Mn)
  • 55. MATERIALS DESIGN LABORATORY Microstructure Medium Mn Steel Example: 12% Mn, nucleation UFGs on twin boundaries After hot rolling After cold rolling  Hot rolled 12%Mn: Austenitic with 2% ferrite.  Cold rolled 12%Mn: Austenitic with martensite + twinning. Ferrite Austenite Martensite Twins After intercritical annealing UFG α+γ (1 < μm)
  • 56. MATERIALS DESIGN LABORATORY Microstructure Medium Mn Steel Example: 10% Mn, nucleation UFGs on cementite particles 2 μm 1 μm Austenite Cementite C , Mn diffusionC , Mn diffusion Sub-grain boundary
  • 57. MATERIALS DESIGN LABORATORY Fe-10Mn-0.3C-3Al-2Si S C M -1 3 γn / M =545 426X 30.4 60.5(V )X   400 500 600 700 800 900 0 5 10 15 20 25 30 400 500 600 700 800 900 0 5 10 15 20 25 30 400 500 600 700 800 900 -200 -100 0 100 200 Mn C x 10 Mass-% Temperature (C) Stackingfaultenergy(mJ/m 2 ) Temperature (C) Without grain size effect With grain size effect Ms temperature(C) Temperature (C) TWIP SFE↑ Stability ↑ UHS 8%-10% Mn Steel: Composition and Processing
  • 58. MATERIALS DESIGN LABORATORY S C M -1 3 γn / M =545 426X 30.4 60.5(V )X   TWIP 400 500 600 700 800 900 0 5 10 15 20 25 30 400 500 600 700 800 900 0 5 10 15 20 25 30 400 500 600 700 800 900 -200 -100 0 100 200 Mass-% Temperature (C) Mn C x 10 Stackingfaultenergy(mJ/m 2 ) Temperature (C) Ms temperature(C) Without grain size effect With graiun size effect Exp. Temperature (C) Fe- 8Mn-0.3C-3Al-1Si SFE↑ Stability ↑ UHS 8%-10% Mn Steel: Composition and Processing
  • 59. MATERIALS DESIGN LABORATORY 650 700 750 800 850 900 400 500 600 700 800 900 1000 1100 1200 1300 1400 Fe-10Mn-0.3C-3Al-2Si YS UTS UTS Strength(MPa) Annealing temperature (C) YS Fe-8Mn-0.3C-3Al-1Si 650 700 750 800 850 900 10 20 30 40 50 60 70 Totalelongation(%) Annealing temperature (C) Fe10Mn0.3C3Al2Si Fe8Mn0.3C3Al1Si 8%-10% Mn Steel: Mechanical Properties
  • 60. MATERIALS DESIGN LABORATORY As-annealed 57% Austenite-43% Ferrite As-deformed (~60%) Twin 1 μm 1 μm γ α γα γα Microstructure 8%Mn TWIP+TRIP Steel Fe-8%Mn-0.4%C-3%Al-1%Si steel intercritically annealed @ 750 °C
  • 61. MATERIALS DESIGN LABORATORY Microstructure 8%Mn TWIP+TRIP Steel 0.2 μm 21/nm21/nm g a 0.2 μm g a Fe-8%Mn-0.4%C-3%Al-1%Si steel intercritically annealed @ 750 °C
  • 62. MATERIALS DESIGN LABORATORY Microstructure 8%Mn TWIP+TRIP Steel Fe-8%Mn-0.4%C-3%Al-1%Si steel intercritically annealed @ 750 °C As-annealed 57% Austenite-43% Ferrite As-deformed (~60%) 1 μm 1 μm γ α γα α
  • 63. MATERIALS DESIGN LABORATORY Medium 8% Mn TWIP+TRIP Steel Concept IAT: 700°C IAT: 750°C 0 5 10 15 20 25 30 35 40 45 50 0 200 400 600 800 1000 1200 1400 0 5 10 15 20 25 30 35 40 45 50 0 200 400 600 800 1000 1200 1400 Engineeringstress,MPa Engineering strain, % 8Mn-0.4C-3Al-2Si-0V 8Mn-0.4C-3Al-2Si-0.1V 8Mn-0.4C-3Al-2Si-0.2V Engineeringstress,MPa Engineering strain, % 8Mn-0.4C-3Al-2Si-0V 8Mn-0.4C-3Al-2Si-0.1V 8Mn-0.4C-3Al-2Si-0.2V Fe18Mn0.6C1.5Al
  • 64. MATERIALS DESIGN LABORATORY Single phase TWIP steel Multi-phase TWIP-TRIP transition Multi-phase TRIP steel Model for the mechanical properties g →gT TWIP-effect g g →a’ TRIP-effect a’ g g →gT TWIP-effect g g →a’ TRIP-effect a’ g+ 0 10 20 30 40 50 60 0 200 400 600 800 1000 1200 1400 0 10 20 30 40 50 60 0 200 400 600 800 1000 1200 1400 0 10 20 30 40 50 60 0 200 400 600 800 1000 1200 1400 8Mn 12Mn 18Mn Eng.stress(MPa) Eng. strain (%) DP980 DP980 10Mn Eng.stress(MPa) Eng. strain (%) Eng.stress(MPa) Eng. strain (%) DP980 6Mn
  • 65. MATERIALS DESIGN LABORATORY 0.0 0.1 0.2 0.3 0.4 0.5 0 500 1000 1500 2000 2500 3000 3500 4000 6Mn TWIP1000 Truestress,MPa Workhardeningrate,MPa True strain TWIP 1000: 18%Mn0.6%C1.5%Al Medium Mn 1: 12%Mn0.3%C3.0%Al Medium Mn 2: 10%Mn0.3%C3.0%Al2.0%Si Medium Mn 3: 8%Mn0.4%C3.0%Al2.0%Si Medium Mn 4: 6%Mn0.3%C3.0%Al1.5%Si Mechanical properties at reduced Mn alloying TWIP TRIP
  • 66. MATERIALS DESIGN LABORATORY Conclusions New 1GPa UHSS grades for automotive applications: High Mn, Austenitic MBIP-SBIP Steel High Mn, Austenitic TWIP Steel Medium Mn, multi-phase TWIP+TRIP Steel Medium Mn, Multi-phase TRIP Steel Press Hardening Steel Quench and Partitioning Processed Steel Some concepts are “out-of-the-box” in terms of cost, processing, application performance, … and the alloy fundamentals are challenging. Current research focus on selecting and optimizing best concepts: Multi-phase TWIP+TRIP steel with 6-10% Mn Multi-phase UFG TRIP steel with 5-7% Mn Application properties receiving attention: Delayed fracture Hole expansion and stretch forming performance Coatings
  • 67. MATERIALS DESIGN LABORATORY Thank you for your attention.