SlideShare une entreprise Scribd logo
1  sur  75
Doctorate in Agricultural Sciences
Facultad de Agronomía - Universidad de la República
Collaborating Institutions: Cornell University – CIAT - FLAR
GWAS of Resistance to Stem and Sheath
Diseases of Uruguayan Advanced Rice
Breeding Germplasm
Juan Rosas
Advisors: Jean-Luc Jannink – Lucía Gutierrez
Special Comittee: Marcos Malosetti (Wageningen University)
Álvaro Roel (INIA)
Funding: MBBISP, INIA (Rice Program, Rice GWAS
Overview
1. Timeline
2. Background & Review Why?
3. Objectives What?
4. Materials & Methods How?
5. Preliminary Results Ouch! Wow!
6. Future work
7. Schedule When?
Doctorate Program Timeline
2012 2013 2014 2015 2016
Cornell U.
1st. Anual
Committee
Meeting
CIAT CU/UW
Field pheno
typing
Greenhouse phenotyping (ROS & SCL)
GH ph.
(R.Solani)
MBBISP Scholarship
1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
Official start
Oct 2012
Expected
completion
Thesis Project
Defense
Sep 2013
2nd Anual
Committee
Meeting
Paper I Paper II
Paper III
Paper IV
Year 1 Year 2 Year 3 Year 4 Year 5
Training in Statistics
Rice facts
Why rice matters to
Uruguay?
– Rice is the 3rd top
Uruguayan export.
– It accounts for 7% of
country’s total income
Source: www.uruguayxxi.gub.uy
0
200
400
600
800
1000
1200
1400
1600
2009 2010 2011 2012
USDx106
Soybeans
Meat
Rice
Wheat
Uruguay facts
Why Uruguay matters to rice?
Uruguay is the 7th major world rice exporter
Source: FAOSTAT
0
1000
2000
3000
4000
5000
6000
7000
8000
9000
10000
tx106
Top Ten World Rice Exporters
Uruguay facts
Why Uruguay matters to rice?
Uruguayan rice
yields are among
the highest of the
world
Source: http://ricestat.irri.org
(Alphabetic order)
CountryAverageYieldin2010(t/ha)
Rice’s biggest adversaries
What are the major constraints to rice production worldwide?
Abiotic:
 Water scarcity, poor soil conditions
 Extreme temperatures
Biotic (fungal diseases):
1. Blast (Pyricularia oryzae)
2. Sheath and stem diseases
Worldwide: Uruguay & other temperate areas:
Rhizoctonia solani Sclerotium oryzae
Rhizoctonia oryzae-sativae
Stem Rot
Causal agent
Sclerotium oryzae (A. Cattaneo, Italy 1876)
Geographical distribution:
Irrigated rice growing areas worldwide
Stem Rot
• The fungus forms sclerotia
• Sclerotia can survive 1-2
years in soil surface or water,
but prefers rice stubble.
Stem Rot
• Flooding help floating sclerotia reach the stems
Early flooding = early infection = more severity
• Stem surface promotes sclerotia germination
• During the first day of contact, mycelium start
developing
• Appresoria penetrates host tissue and hyphae
invades it
Stem Rot
• First symptoms at tillering
• Blackish lesions.
Stem Rot
g)
• Stresses (strong wind, herbicides,
shadowing) promotes diseases
progression
• The fungus invades outer sheaths
and progressively penetrates the
stem.
• High plant stand promotes disease
Stem Rot
Stem Rot
• Stem rotting prevents
nutrient translocation
• Bad starch formation
• Chalky and brittle grains
• Bad milling quality
Stem Rot
• Advanced rotting weaken
stems and promotes lodging
• Not easy to harvest!
• The fungus forms new
sclerotia
• Sclerotia can survive 1-2
years in soil surface or water,
but prefers rice stubble.
Aggregated Sheath Spot
Causal agent
• Rhizoctonia oryzae-sativae (Mordue
1974).
• Geographical distribution:
Irrigated rice growing areas worldwide,
most relevant in sub-tropical and
temperate areas.
Aggregated Sheath Spot
• Very similar cycle to that of Stem rot
• First days of infection may be
asymptomatic
Aggregated Sheath Spot
• Oval lesions with green or gray
centers surrounded by a brown
margin
Aggregated Sheath Spot
• Disease progress upward
the leaf sheath
• Lesions aggregate
Aggregated Sheath Spot
• Reaching panicle at booting
stage can cause severe sterility
Aggregated Sheath Spot
• Rhizoctonia oryzae-sativae also
produces sclerotia
• Sclerotia can survive in soil surface or
water, but prefers rice stubble.
Rice’s adversaries strike again
Major constraints to rice production
Abiotic:
 Water scarcity
 Poor soil conditions
 Extreme temperatures
Biotic (fungal diseases):
1. Blast (Pyricularia oryzae)
2. Sheath and stem diseases
Worldwide: Uruguay & other temperate areas:
Rhizoctonia solani Sclerotium oryzae
Rhizoctonia oryzae-sativae
The Uruguayan Rice Defensive Line
How do we face to these constraints to get those high yields?
Abiotic:
 Water scarcity
 Poor soil conditions
 Extreme temperatures
Biotic (fungal diseases):
1. Blast (Pyricularia oryzae)
2. Sheath and stem diseases
Worldwide: Uruguay & other temperate areas:
Rhizoctonia solani Sclerotium oryzae
Rhizoctonia oryzae-sativae
New high-yield cold
tolerant varieties
New molecular markers
for cold tolerance
Resistance genes in high-
yielding advanced lines
Extended use of
optimum
management
practices
100% Irrigated
A Hole in the Defensive Line
Top Uruguayan varieties are susceptible to St & Sh diseases
Source: Avila 2000 & 2001.
Sterility, dead sheaths and
lodging caused by Aggregated
Sheath Spot in INIA Tacuarí
(grown in 15% of the area)
Severe lodging caused by
Stem Rot in El Paso 144
(grown in 50% of the area)
Patching the Hole with Fungicide
– Varietal susceptibility = Dependence on fungicide
– Dependence on fungicide = higher input costs
= trace levels in grain and environment
– Trace levels = less top markets, lower price, environmental impact
Dependence on fungicide = less economic and environmental sustainability
Genetic resistance to
St&Sh diseases is
environmentally and economically
the best option.
Genetics of the resistance to StR
• Quantitatively inherited (Ferreira & Webster 1975)
• RILs with O. rufipogon introgressions (Ni et al 2001):
– QTL in ch. 2, AFLP marker TAA/GTA167 45% phen. var.
– QTL in ch. 3, RM232 - RM251 40% phen. var.
Genetics of the resistance to AShS
•Unknown but most likely quantitatively inherited as for to other
Rhizoctonias.
•QTL reported for resistance to R. solani (Srinivasachary et al.
2011):
–16 consistent QTL (at least in 2 independent reports)
• 7 QTL for escape mechanism (morphology or cycle, often
undesirable traits)
• 9 QTL hypothetically physiologic resistance mechanisms
Importance of phenotyping to detect relevant QTL.
Quantitative Trait Loci Discovery
GWAS
•Uses pre-existent populations
•Simultaneously consider all allele diversity
•Exploits multiple recombination events
•“ready-to-use” SNP into the breeding
germplasm
Traditional bi-parental QTL studies
•Population generation is time and
resource consuming
•Limited # and significance of
detectable QTL (low allelic diversity)
•Low mapping precision (few
recombinations)
GWAS
SNP 1
Alelles: 0 or 1
Genotype Phenotype
0 6 9 1 7 5
Disease scores
Do not reject identity
between phenotypic means,
p-value >>0.001
-log10(p-value) << 3
Phenotype
Genotype0 1
No association (negative)
-log10(p-value)
SNP1
Loci or position
GWAS
SNP 2
Alelles: 0 or 1
Genotype Phenotype
0 6 9 1 7 5
Disease scores
Phenotype
Genotype0 1
Reject identity between
phenotypic means,
p-value <0.001
-log10(p-value) > 3
-log10(p-value)
SNP1
SNP2
Association (positive)
Loci or position
GWAS
The same for every SNP
Alelles: 0 or 1
Genotype Phenotype
0 6 9 1 7 5
Disease scores
-log10(p-value)
Manhattan plot
Loci or position
GWAS
What are the key issues for GWAS?
As GWAS relies on correlation between phenotype & allelic
states of marker’s loci
– Non-linkage correlations between loci leads to false positives
– i.e., False positives due to relationship among lines:
• CROASE: Population estructure (sub-species, origin)
• FINE: Kinship or co-ancestry (shared close ancestors)
Correcting for Population Structure
• Pritchard et al. 2000:
•Correlations between unlinked markers to estimate p
sub-populations
•Probabilistic assignation of each n individual to one or
more (admixtures) p.
•STRUCTURE software facilitates to build a Q matrix n x p
(estimates of each n belonging to a p)
Correcting for Population Structure
•Patterson et al.2006
Principal component analysis (PCA)
• Statistically determines the minimum number of
sub-groups (axes) which significantly explain genetic
variation (from genotypic data).
Correcting for Kinship
• Loiselle et al. 1995 and Hardy & Vekemans, 2002
SPAGeDi software
• Estimates the probability of identity-by-state (not by
common ancestry) of alleles of random molecular
markers = kinship coeficient.
GWAS: Unified Mixed Model
y: phenotypic data
S: incidence matrix that relates y with the SNP effects
α : vector of SNP effects
Q: relates y with the p fitting values
v: vector of estimates of fitting to a sub-population (estimated with
STRUCTURE)
K: relates y with the estimated kinship coefficients
u : vector of kinship coefficients
e: vector of residual effects
e  KuQvSy
• Yu et al. 2006
Keys for a succesful GWAS
– Increase power optimizing phenotyping:
• Minimize Phenotypic variance
• Maximize Heritability
–Minimize false positive discovery by correcting causes of
marker correlation other than linkage:
• Population structure and kinship (subspecies, common
ancestry)
–In rice: consider ancient divergence between subspecies
(explore separate analyses)
Recap…
• Uruguay is a top rice exporter; Rice is a top Uruguayan
commodity
• Top Uruguayan varieties are susceptible to Sclerotium oryzae
(SCL) and Rhizoctonia oryzae-sativae (ROS), suffering losses
up to 20%.
• Genetic resistance is the best strategy
• Resistance to St & Sh diseases is quantitative
• GWAS is a good option for QTL discovery in breeding
population
• Good phenotyping is key for GWAS
Objectives
General Objective: Identify QTL for SCL and ROS that enable breeding new high-
yielding cultivars with improved resistance to these diseases.
Specific Objectives / Papers:
I. Greenhouse phenotyping methodology (Paper 1).
a. Choosing best inoculation method
b. Applying it in high-throughput phenotyping greenhouse experiments
II. QTL for resistance to SCL and ROS in greenhouse and field (Papers 2 and 3).
III. Explore correlations between resistance to the three diseases (SCL, ROS and R.
solani) Paper 4.
Materials & Methods 1: Inoculation Methods
• Inoculation Methods
Method Description
I 5-mm agar disc with growing micellium attached to stems
II Flooded trays spread with sclerotia
III Suspension of sclerotia in CMC
IV Suspension of sclerotia in CMC covered with foil
V Detached stems in test tube with water + sclerotia
Materials & Methods 1: Inoculation Methods
• Plant Materials
Cultivar Subsp. Origin ROS SCL R. Solani
El Paso 144 Indica Uy Int Int ?
INIA Olimar Indica Uy Int Int ?
Tetep Indica Vietnam ? Res Res
INIA Tacuari Trop. Jap. Uy Int Int ?
Parao Trop. Jap. Uy Int Int ?
Lemont Trop. Jap. US ? Sus Sus
Materials & Methods 1: Inoculation Methods
• Greenhouse conditions
• Temperature: 28/18 °C day/night
• RH: 80/90% relative humidity
• Light time: 12 h
• Fungal Isolates
• ROS: soil after INIA Tacuarí in UEPL 200
• SCL: plant Samba cv. In UEPL 2011
• Experimental Design: CRD, 6 rep. EU: pot with 4 plants
• Analysis:
Model with design factors
Method compared by
r
H
G
G
22
2
2
e



ijig e ijY
Results 1: Inoculation Methods
• Best IM: I (agarose disk with micellium), for both pathogens
Pathogen Method 2
G 2
R H2
ROS I (agar disk) 0.03 0.06 0.75
ROS II (flooded trays) 0.07 0.20 0.67
ROS III (CMC) 0.00 0.31 0.05
ROS IV (CMC+foil) 0.16 0.69 0.58
ROS V (tiller in tube) 1.25 5.24 0.59
SCL I (agar disk) 1.35 0.56 0.94
SCL II (flooded trays) 0.94 0.61 0.90
SCL III (CMC) 0.73 1.05 0.81
SCL IV (CMC+foil) 1.31 1.00 0.89
SCL V (tiller in tube) 0.92 2.04 0.73
2
G 2
e 2
H2
G 2
e 2
H
Results 1: Inoculation Methods
• High correlation, low interaction among IM
SCL ROS
M & M 2: Greenhouse Phenotyping
• 3 exp. for ROS, 2 exp. for SCL
• Population: 641 advanced INIA’s inbred lines
• 316 indica
• 325 tropical japonica
• Inoculation I (Agar discs)
• Same greenhouse conditions and fungal isolates than IM
• Experimental Design:
• Federer’s unrep, augmented RCBD, 12 blocks
• Replicated checks: El Paso 144, INIA Olimar, Tetep, Parao, INIA Tacuarí and Lemont
• EU: pot with 4 plants
• Stem width measured as covariate.
M & M 2: Greenhouse Phenotyping
• Statistical Models:
BAS Compared based
SPA on
(Cullis et al. 2006)
Yij, Yijmn disease score
 intercept
g Random block effect with and j={1,...,12}
Gj = gk + cl genotypic effect,
gk random effect of kth genoline with gk ~N(0,2
G), k={1,...,641}
cl fixed effect of lth check, l={1,…,6}
Rm random row effect, Rm ~N(0,2
r), m={1,...,35}
Cn random column effect , Cn ~N(0,2
c), n={1,...,26}
eij, eijmn residual, gk ~N(0,2
G)
ijjiij GY eg 
ijmninimjiijmn CRGY eg  )()(
),0(~ 2
Bi N g
2
2
2
1
G
BLUP
g
v
H


Results 2: Greenhouse Phenotyping
• Medium to high H2. GxE interaction. Adapted sources of partial resistance
M & M 3: Field Phenotyping
• Same population than Greenhouse exp.
• 2010, 2011, 2012: “Historical” data
RCBD, 3 rep, natural infection. Checks:
El Paso 144, INIA Olimar, Parao, INIA Tacuarí
• 2013:
Augmented alpha-lattice design, 6 rep, artificial inoculation
• Same fungal isolates than greenhouse experiments.
• Replicated checks: El Paso 144, INIA Olimar, Tetep, Parao, INIA Tacuarí and Lemont
• EU: hill plots with ~10 adult plants
• Length of life cycle measured as covariate.
Materials & Methods 3: Field Phenotyping
• Statistical Models:
BAS Compared based
COV on
SPA (Cullis et al. 2006)
CSP
Yij, Yijmn disease score
 overall mean
g block effect, j={1,...,6}
Gj = gk + cl genotypic effect,
gk random effect of kth genoline, gk ~N(0,2
G), k={1,...,641}
cl fixed effect of lth check, l={1,…,6}
eij, eijmn residual, gk ~N(0,2
G)
Rm row effect, Rm ~N(0,2
r), m={1,...,90}
Cn column effect, Cn ~N(0,2
c), n={1,...,45}
xij length of life cycle of ith genotype in jth block
b regression slope of covariate
ijjiij GY eg 
ijijjiij xGY ebg 
ijmnnmjiijmn CRGY eg 
ijmnnmijjiijmn CRxGY ebg 
2
2
2
1
G
BLUP
g
v
H


Results 3: Field Phenotyping (ROS)
• Low to medium H2. GxE interaction. Adapted sources of partial resistance
H2=0.42
H2=0.15
H2=0.06
H2=0.43
Results 3: Field Phenotyping (SCL)
• Medium to high H2. Lesser GxE interaction. Adapted sources of partial R
H2=0.50
H2=0.24
H2=0.45
H2=0.72
M & M 4: Genotypic data
GBS raw
data
HapMaps
130K SNP
Bioinformatic processing
• Tag count (collapse identical reads)
• Alignment with reference genome (Nipponbare)
• Tassel Pipeline
• Hapmap filtering
• Lines with ≥5% SNP
• SNP called in ≥5% lines
• Allele frequency (intra line) ≥5%
Indica 316 lines
94K SNP
641 lines
57K SNP
FILLIN
Imputation Japonica 325 lin.
44K SNP
Indica 316 lines
18K SNP
Japonica 325 lin.
12K SNP
Conjoint
SNP
filtering
Separate
SNP
filtering
•SNP w/Allele frequency
(inter lines) ≥5%
•Lines w/ ≥5% SNP data
< 50% missing
Results 4: Genotypic data, whole, non imputed
641 lines
57K SNP
• Genotype data:
Most of the SNP are
between-subesp.
polymorphisms
Results 4: Genotypic data, partial results
Indica 316 lines
94K SNP
641 lines
57K SNP
FILLIN
Imputation Japonica 325 lin.
44K SNP
Indica 316 lines
18K SNP
Japonica 325 lin.
12K SNP
Conjoint
SNP
filtering
Separate
SNP
filtering
•SNP w/Allele frequency
(inter lines) ≥5%
•Lines w/ ≥5% SNP data
< 50% missing
Results 4: Genotypic data, whole population
641 lines
57K SNP
• Genetic Map:
dense SNP
evenly distributed
in all 12 chr.
Results 4: Genotypic data, whole population
641 lines
57K SNP
• PCA:
PC1: inter subspecies
variation
PC2: inter indica variation
indica
japonica
Results 4: Genotypic data, whole population
641 lines
57K SNP
• PCA:
PC1 ~50% gv
PC2 ~5% gv
Results 4: Genotypic data, Indica ssp
• Genotype data:
Some big blocks with
low LD decay.
Indica 316 lines
18K SNP
Results 4: Genotypic data, Indica ssp
• Genetic Map:
Many fixed
regions, including
all Chr. 11
Indica 316 lines
18K SNP
Results 4: Genotypic data, Indica ssp
• PCA:
Over-represented
“Olimar-like” lines from
FLAR and INIA
Indica 316 lines
18K SNP
El Paso 144
INIA Olimar FLAR
INIA
Results 4: Genotypic data, Indica ssp
• PCA:
PC1 to 8 explain
~50%gv
Indica 316 lines
18K SNP
Results 4: Genotypic data, Japonica, non imputed
• Genotype data:
Haplotype blocks
.
Japonica 325 lin.
12K SNP
Results 4: Genotypic data, Japonica ssp
• Genetic Map:
Many fixed
regions
Japonica 325 lin.
12K SNP
Results 4: Genotypic data, Japonica ssp
• PCA: weak intra-
subspecies structure.
Japonica 325 lin.
12K SNP
L5287
EEA 404
INIA Tacuari
Results 4: Genotypic data, Japonica ssp
• PCA: More than 10
PC to explain 50% gv
Japonica 325 lin.
12K SNP
Materials & Methods 5: GWAS
y: phenotypic data
b : vector of SNP fixed effects
X: incidence matrix that relates y with the SNP effects
v: vector of fixed estimates of fitting to a sub-
population (estimated with STRUCTURE)
Q: incidence matrix for population effects
u : vector of kinship coefficients, Var(u)=K2 , K
kinship matrix
Z: relates y with the estimated kinship coefficients
e: vector of residual effects, Var(e)=I2
e
eb  ZuQvXy
• Mixed model (Yu et al. 2006, Malosetti et al. 2007)
“Q+K”, as implemented in GWAS
function from rrBLUP package:
eb  QvXy
“Eigenstrat”, as implemented in
GWAS.analysis function from
mmQTL package:
y: phenotypic data
b : vector of SNP fixed effects
X: incidence matrix that relates y with the SNP effects
v: vector of random PC scores (eigenvalues).
Q: relates y with the PC scores
e: vector of residual effects, Var(e)=I2
e
Results 5: GWAS
Indica 316 lines
94K SNP
641 lines
57K SNP
FILLIN
Imputation Japonica 325 lin.
44K SNP
Indica 316 lines
18K SNP
Japonica 325 lin.
12K SNP
Conjoint
SNP
filtering
Separate
SNP
filtering
•SNP w/Allele frequency
(inter lines) ≥5%
•Lines w/ ≥5% SNP data
< 50% missing
Field GH
Eigenstrat ROS SCL ROS SCL
Q+K ROS SCL ROS SCL
Eigenstrat ROS SCL ROS SCL
Q+K ROS SCL ROS SCL
Eigenstrat ROS SCL ROS SCL
Q+K ROS SCL ROS SCL
Eigenstrat ROS SCL ROS SCL
K ROS SCL ROS SCL
Eigenstrat ROS SCL ROS SCL
K ROS SCL ROS SCL
Results 5: GWAS – ROS in Japonica
• QTLxE interaction.
• Consistent QTL: chr. 3 ~1 Kb
Field 2010 Field 2011 Field 2012 Field 2013
GH ROS1 GH ROS2 GH ROS3
Results 5: GWAS – ROS in Indica
• QTLxE interaction
• Consistent QTL: chr. 3 ~1 Kb
•. QTL chr. 3Field 2010 Field 2011 Field 2012 Field 2013
GH ROS1 GH ROS2 GH ROS3
Results 5: GWAS – SCL in Japonica
• QTLxE interaction.
• Consistent QTL: chr. 3 ~1 Mb chr. 9 ~14 Mb
Field 2010 Field 2011 Field 2012 Field 2013
GH SCL1 GH SCL2
Results 4: GWAS – SCL in Indica
Field 2010 Field 2011 Field 2012 Field 2013
GH SCL1 GH SCL2
• QTLxE interaction.
• Consistent QTL: chr. 3 ~1 Mb chr. 9 ~14 Mb
Results 4: GWAS
Summary:
• QTL at ~1 Kb Chr. 1 for both pathogens, both
subspecies and all environments
• QTL at ~14 Kb Chr. 9 for SCL, both subspecies,
almost all environments
Future Work
• Greenhouse phenotyping for resistance to R. solani at CIAT
• Analysis of phenotypic means
• Association analysis:
• LD blocks and haplotypes
• GWAS for R. solani
Coordinación
Victoria Bonnecarrere
Mejoramiento
Pedro Blanco
Fernando Pérez de Vida
Fitopatología
Sebastián Martínez
Bioinformática
Silvia Garaycochea
Schubert Fernández
Marcadores moleculares
Victoria Bonnecarrere
Wanda Iriarte
Bioestadística
Lucía Gutierrez
Gastón Quero
Natalia Berberián
Juan Rosas
Cornell University
Eliana Monteverde
Susan McCouch
Jean-Luc Jannink
Proyecto Mapeo Asociativo en
Arroz Uruguayo
GWAS of Resistance to Stem and Sheath Diseases of Uruguayan Advanced Rice Breeding Germplasm

Contenu connexe

Tendances

Stability analysis and G*E interactions in plants
Stability analysis and G*E interactions in plantsStability analysis and G*E interactions in plants
Stability analysis and G*E interactions in plantsRachana Bagudam
 
Ear to row method
Ear to row methodEar to row method
Ear to row methodDev Hingra
 
Maintenance breeding
Maintenance breedingMaintenance breeding
Maintenance breedingPawan Nagar
 
Breeding methods in chick pea
Breeding methods in chick peaBreeding methods in chick pea
Breeding methods in chick peaRameesha Saleem
 
Genepyramiding for biotic resistance
Genepyramiding for biotic resistanceGenepyramiding for biotic resistance
Genepyramiding for biotic resistanceSenthil Natesan
 
Genetics and plant breeding seminar
Genetics and plant breeding seminarGenetics and plant breeding seminar
Genetics and plant breeding seminarJaydev Upadhyay
 
Breeding for quality in onion
Breeding for quality in onionBreeding for quality in onion
Breeding for quality in onionSaurabh Singh
 
Genomic Selection & Precision Phenotyping
Genomic Selection & Precision PhenotypingGenomic Selection & Precision Phenotyping
Genomic Selection & Precision PhenotypingCIMMYT
 
role of horizontal and vertical resistance in plant pathology
role of horizontal and vertical resistance in plant pathologyrole of horizontal and vertical resistance in plant pathology
role of horizontal and vertical resistance in plant pathologyHansraj Dhakar
 
Marker Assisted Gene Pyramiding for Disease Resistance in Rice
Marker Assisted Gene Pyramiding for Disease Resistance in RiceMarker Assisted Gene Pyramiding for Disease Resistance in Rice
Marker Assisted Gene Pyramiding for Disease Resistance in RiceIndrapratap1
 
Participatory Plant Breeding, Biodiversity, Genetic Resources, Gender and Cli...
Participatory Plant Breeding, Biodiversity, Genetic Resources, Gender and Cli...Participatory Plant Breeding, Biodiversity, Genetic Resources, Gender and Cli...
Participatory Plant Breeding, Biodiversity, Genetic Resources, Gender and Cli...CIAT
 
Back cross in recessive gene
Back cross in recessive geneBack cross in recessive gene
Back cross in recessive geneDev Hingra
 
Gene introgression from wild relatives to cultivated plants
Gene introgression from wild relatives to cultivated plantsGene introgression from wild relatives to cultivated plants
Gene introgression from wild relatives to cultivated plantsManjappa Ganiger
 

Tendances (20)

Hybrid Maize seed Production
Hybrid Maize seed ProductionHybrid Maize seed Production
Hybrid Maize seed Production
 
Stability analysis and G*E interactions in plants
Stability analysis and G*E interactions in plantsStability analysis and G*E interactions in plants
Stability analysis and G*E interactions in plants
 
Ear to row method
Ear to row methodEar to row method
Ear to row method
 
ADVANCES IN BREEDING FOR YVMV RESISTANCE IN OKRA
ADVANCES IN BREEDING FOR YVMV RESISTANCE IN OKRAADVANCES IN BREEDING FOR YVMV RESISTANCE IN OKRA
ADVANCES IN BREEDING FOR YVMV RESISTANCE IN OKRA
 
Maintenance breeding
Maintenance breedingMaintenance breeding
Maintenance breeding
 
Mating designs..
Mating designs..Mating designs..
Mating designs..
 
Breeding methods in chick pea
Breeding methods in chick peaBreeding methods in chick pea
Breeding methods in chick pea
 
Genepyramiding for biotic resistance
Genepyramiding for biotic resistanceGenepyramiding for biotic resistance
Genepyramiding for biotic resistance
 
Genetics and plant breeding seminar
Genetics and plant breeding seminarGenetics and plant breeding seminar
Genetics and plant breeding seminar
 
LINE X TESTER ANALYSIS
LINE X TESTER ANALYSIS LINE X TESTER ANALYSIS
LINE X TESTER ANALYSIS
 
Breeding for quality in onion
Breeding for quality in onionBreeding for quality in onion
Breeding for quality in onion
 
Genomic Selection & Precision Phenotyping
Genomic Selection & Precision PhenotypingGenomic Selection & Precision Phenotyping
Genomic Selection & Precision Phenotyping
 
role of horizontal and vertical resistance in plant pathology
role of horizontal and vertical resistance in plant pathologyrole of horizontal and vertical resistance in plant pathology
role of horizontal and vertical resistance in plant pathology
 
Marker Assisted Gene Pyramiding for Disease Resistance in Rice
Marker Assisted Gene Pyramiding for Disease Resistance in RiceMarker Assisted Gene Pyramiding for Disease Resistance in Rice
Marker Assisted Gene Pyramiding for Disease Resistance in Rice
 
Q.P.M MAIZE
Q.P.M MAIZEQ.P.M MAIZE
Q.P.M MAIZE
 
Participatory Plant Breeding, Biodiversity, Genetic Resources, Gender and Cli...
Participatory Plant Breeding, Biodiversity, Genetic Resources, Gender and Cli...Participatory Plant Breeding, Biodiversity, Genetic Resources, Gender and Cli...
Participatory Plant Breeding, Biodiversity, Genetic Resources, Gender and Cli...
 
Back cross in recessive gene
Back cross in recessive geneBack cross in recessive gene
Back cross in recessive gene
 
Gene introgression from wild relatives to cultivated plants
Gene introgression from wild relatives to cultivated plantsGene introgression from wild relatives to cultivated plants
Gene introgression from wild relatives to cultivated plants
 
Biotic and abiotic stress
Biotic and abiotic stressBiotic and abiotic stress
Biotic and abiotic stress
 
Breeding for Insect Resistance
Breeding for Insect ResistanceBreeding for Insect Resistance
Breeding for Insect Resistance
 

En vedette

Diseases in rice
Diseases in riceDiseases in rice
Diseases in riceLove Sharma
 
Single Nucleotide Polymorphism Analysis (SNPs)
Single Nucleotide Polymorphism Analysis (SNPs)Single Nucleotide Polymorphism Analysis (SNPs)
Single Nucleotide Polymorphism Analysis (SNPs)Data Science Thailand
 
Common rice diseases (am sinohin)
Common rice diseases (am sinohin)Common rice diseases (am sinohin)
Common rice diseases (am sinohin)macky75
 
Single nucleotide polymorphism
Single nucleotide polymorphismSingle nucleotide polymorphism
Single nucleotide polymorphismBipul Das
 

En vedette (7)

Rice diseasei dphotolink
Rice diseasei dphotolinkRice diseasei dphotolink
Rice diseasei dphotolink
 
Diseases in rice
Diseases in riceDiseases in rice
Diseases in rice
 
Single Nucleotide Polymorphism Analysis (SNPs)
Single Nucleotide Polymorphism Analysis (SNPs)Single Nucleotide Polymorphism Analysis (SNPs)
Single Nucleotide Polymorphism Analysis (SNPs)
 
Genetic polymorphism
Genetic polymorphismGenetic polymorphism
Genetic polymorphism
 
Common rice diseases (am sinohin)
Common rice diseases (am sinohin)Common rice diseases (am sinohin)
Common rice diseases (am sinohin)
 
Snp
SnpSnp
Snp
 
Single nucleotide polymorphism
Single nucleotide polymorphismSingle nucleotide polymorphism
Single nucleotide polymorphism
 

Similaire à GWAS of Resistance to Stem and Sheath Diseases of Uruguayan Advanced Rice Breeding Germplasm

Presentation 17 : Preliminary results on genetic resistance to AHPND andWSSV ...
Presentation 17 : Preliminary results on genetic resistance to AHPND andWSSV ...Presentation 17 : Preliminary results on genetic resistance to AHPND andWSSV ...
Presentation 17 : Preliminary results on genetic resistance to AHPND andWSSV ...ExternalEvents
 
Dr. Andres Perez - PRRS Epidemiology: Best Principles of Control at a Regiona...
Dr. Andres Perez - PRRS Epidemiology: Best Principles of Control at a Regiona...Dr. Andres Perez - PRRS Epidemiology: Best Principles of Control at a Regiona...
Dr. Andres Perez - PRRS Epidemiology: Best Principles of Control at a Regiona...John Blue
 
The challenge of climate-related infectious livestock diseases in undermining...
The challenge of climate-related infectious livestock diseases in undermining...The challenge of climate-related infectious livestock diseases in undermining...
The challenge of climate-related infectious livestock diseases in undermining...ILRI
 
Using pulse diversity to manage pests and diseases
Using pulse diversity to manage pests and diseases Using pulse diversity to manage pests and diseases
Using pulse diversity to manage pests and diseases Bioversity International
 
Using pulse diversity to manage pests and diseases
Using pulse diversity to manage pests and diseasesUsing pulse diversity to manage pests and diseases
Using pulse diversity to manage pests and diseasesExternalEvents
 
Identification of Ralstonia Solanacearum in Kyrgyzstan’s Potato Fields and th...
Identification of Ralstonia Solanacearum in Kyrgyzstan’s Potato Fields and th...Identification of Ralstonia Solanacearum in Kyrgyzstan’s Potato Fields and th...
Identification of Ralstonia Solanacearum in Kyrgyzstan’s Potato Fields and th...Agriculture Journal IJOEAR
 
Control options rice_bacterial_panicle_blight
Control options rice_bacterial_panicle_blightControl options rice_bacterial_panicle_blight
Control options rice_bacterial_panicle_blightCIAT
 
Breeding for stress in potato
Breeding for stress in potatoBreeding for stress in potato
Breeding for stress in potatoDelince Samuel
 
Advances in the research to achieve resistance to wheat rusts
Advances in the research to achieve resistance to wheat rustsAdvances in the research to achieve resistance to wheat rusts
Advances in the research to achieve resistance to wheat rustsCIMMYT
 
Arabadopsis Thaliana Quorum Sensing Proposal
Arabadopsis Thaliana Quorum Sensing ProposalArabadopsis Thaliana Quorum Sensing Proposal
Arabadopsis Thaliana Quorum Sensing ProposalBeau Smith
 
Use of Agrobiodiversity for Pest and Disease Management
Use of Agrobiodiversity for Pest and Disease ManagementUse of Agrobiodiversity for Pest and Disease Management
Use of Agrobiodiversity for Pest and Disease ManagementWorld Agroforestry (ICRAF)
 
Use of Agrobiodiversity for Pest and Disease Management Carlo Fadda, Bioversi...
Use of Agrobiodiversity for Pest and Disease Management Carlo Fadda, Bioversi...Use of Agrobiodiversity for Pest and Disease Management Carlo Fadda, Bioversi...
Use of Agrobiodiversity for Pest and Disease Management Carlo Fadda, Bioversi...World Agroforestry (ICRAF)
 
Izmir 2014 lesley boyd
Izmir 2014 lesley boydIzmir 2014 lesley boyd
Izmir 2014 lesley boydICARDA
 
Class 12 Cbse Biology Syllabus 2014-15
Class 12 Cbse Biology Syllabus 2014-15Class 12 Cbse Biology Syllabus 2014-15
Class 12 Cbse Biology Syllabus 2014-15Sunaina Rawat
 

Similaire à GWAS of Resistance to Stem and Sheath Diseases of Uruguayan Advanced Rice Breeding Germplasm (20)

Presentation 17 : Preliminary results on genetic resistance to AHPND andWSSV ...
Presentation 17 : Preliminary results on genetic resistance to AHPND andWSSV ...Presentation 17 : Preliminary results on genetic resistance to AHPND andWSSV ...
Presentation 17 : Preliminary results on genetic resistance to AHPND andWSSV ...
 
Dr. Andres Perez - PRRS Epidemiology: Best Principles of Control at a Regiona...
Dr. Andres Perez - PRRS Epidemiology: Best Principles of Control at a Regiona...Dr. Andres Perez - PRRS Epidemiology: Best Principles of Control at a Regiona...
Dr. Andres Perez - PRRS Epidemiology: Best Principles of Control at a Regiona...
 
The challenge of climate-related infectious livestock diseases in undermining...
The challenge of climate-related infectious livestock diseases in undermining...The challenge of climate-related infectious livestock diseases in undermining...
The challenge of climate-related infectious livestock diseases in undermining...
 
Genetics: Genes in Populations
Genetics: Genes in PopulationsGenetics: Genes in Populations
Genetics: Genes in Populations
 
Using pulse diversity to manage pests and diseases
Using pulse diversity to manage pests and diseases Using pulse diversity to manage pests and diseases
Using pulse diversity to manage pests and diseases
 
Using pulse diversity to manage pests and diseases
Using pulse diversity to manage pests and diseasesUsing pulse diversity to manage pests and diseases
Using pulse diversity to manage pests and diseases
 
Identification of Ralstonia Solanacearum in Kyrgyzstan’s Potato Fields and th...
Identification of Ralstonia Solanacearum in Kyrgyzstan’s Potato Fields and th...Identification of Ralstonia Solanacearum in Kyrgyzstan’s Potato Fields and th...
Identification of Ralstonia Solanacearum in Kyrgyzstan’s Potato Fields and th...
 
002 control options for rice bacterial panicle blight, don groth
002   control options for rice bacterial panicle blight, don groth002   control options for rice bacterial panicle blight, don groth
002 control options for rice bacterial panicle blight, don groth
 
002 control options for rice bacterial panicle blight, don groth
002   control options for rice bacterial panicle blight, don groth002   control options for rice bacterial panicle blight, don groth
002 control options for rice bacterial panicle blight, don groth
 
Control options rice_bacterial_panicle_blight
Control options rice_bacterial_panicle_blightControl options rice_bacterial_panicle_blight
Control options rice_bacterial_panicle_blight
 
Breeding for stress in potato
Breeding for stress in potatoBreeding for stress in potato
Breeding for stress in potato
 
Advances in the research to achieve resistance to wheat rusts
Advances in the research to achieve resistance to wheat rustsAdvances in the research to achieve resistance to wheat rusts
Advances in the research to achieve resistance to wheat rusts
 
Arabadopsis Thaliana Quorum Sensing Proposal
Arabadopsis Thaliana Quorum Sensing ProposalArabadopsis Thaliana Quorum Sensing Proposal
Arabadopsis Thaliana Quorum Sensing Proposal
 
Unlocking the value and use potential of genetic resources
Unlocking the value and use potential of genetic resourcesUnlocking the value and use potential of genetic resources
Unlocking the value and use potential of genetic resources
 
Use of Agrobiodiversity for Pest and Disease Management
Use of Agrobiodiversity for Pest and Disease ManagementUse of Agrobiodiversity for Pest and Disease Management
Use of Agrobiodiversity for Pest and Disease Management
 
Use of Agrobiodiversity for Pest and Disease Management Carlo Fadda, Bioversi...
Use of Agrobiodiversity for Pest and Disease Management Carlo Fadda, Bioversi...Use of Agrobiodiversity for Pest and Disease Management Carlo Fadda, Bioversi...
Use of Agrobiodiversity for Pest and Disease Management Carlo Fadda, Bioversi...
 
Pd bioversity 19 5 2011
Pd bioversity 19 5 2011Pd bioversity 19 5 2011
Pd bioversity 19 5 2011
 
Izmir 2014 lesley boyd
Izmir 2014 lesley boydIzmir 2014 lesley boyd
Izmir 2014 lesley boyd
 
Participatory mapping for the systematic monitoring of biodiversity
Participatory mapping for the systematic monitoring of biodiversityParticipatory mapping for the systematic monitoring of biodiversity
Participatory mapping for the systematic monitoring of biodiversity
 
Class 12 Cbse Biology Syllabus 2014-15
Class 12 Cbse Biology Syllabus 2014-15Class 12 Cbse Biology Syllabus 2014-15
Class 12 Cbse Biology Syllabus 2014-15
 

Plus de CIAT

Agricultura Sostenible y Cambio Climático
Agricultura Sostenible y Cambio ClimáticoAgricultura Sostenible y Cambio Climático
Agricultura Sostenible y Cambio ClimáticoCIAT
 
Resumen mesas trabajo
Resumen mesas trabajoResumen mesas trabajo
Resumen mesas trabajoCIAT
 
Impacto de las intervenciones agricolas y de salud para reducir la deficienci...
Impacto de las intervenciones agricolas y de salud para reducir la deficienci...Impacto de las intervenciones agricolas y de salud para reducir la deficienci...
Impacto de las intervenciones agricolas y de salud para reducir la deficienci...CIAT
 
Agricultura sensible a la nutrición en el Altiplano. Explorando las perspecti...
Agricultura sensible a la nutrición en el Altiplano. Explorando las perspecti...Agricultura sensible a la nutrición en el Altiplano. Explorando las perspecti...
Agricultura sensible a la nutrición en el Altiplano. Explorando las perspecti...CIAT
 
El rol de los padres en la nutrición del hogar
El rol de los padres en la nutrición del hogarEl rol de los padres en la nutrición del hogar
El rol de los padres en la nutrición del hogarCIAT
 
Scaling up soil carbon enhancement contributing to mitigate climate change
Scaling up soil carbon enhancement contributing to mitigate climate changeScaling up soil carbon enhancement contributing to mitigate climate change
Scaling up soil carbon enhancement contributing to mitigate climate changeCIAT
 
Impacto del Cambio Climático en la Agricultura de República Dominicana
Impacto del Cambio Climático en la Agricultura de República DominicanaImpacto del Cambio Climático en la Agricultura de República Dominicana
Impacto del Cambio Climático en la Agricultura de República DominicanaCIAT
 
BioTerra: Nuevo sistema de monitoreo de la biodiversidad en desarrollo por el...
BioTerra: Nuevo sistema de monitoreo de la biodiversidad en desarrollo por el...BioTerra: Nuevo sistema de monitoreo de la biodiversidad en desarrollo por el...
BioTerra: Nuevo sistema de monitoreo de la biodiversidad en desarrollo por el...CIAT
 
Investigaciones sobre Cadmio en el Cacao Colombiano
Investigaciones sobre Cadmio en el Cacao ColombianoInvestigaciones sobre Cadmio en el Cacao Colombiano
Investigaciones sobre Cadmio en el Cacao ColombianoCIAT
 
Cacao for Peace Activities for Tackling the Cadmium in Cacao Issue in Colo...
Cacao for Peace Activities for Tackling the Cadmium in Cacao Issue    in Colo...Cacao for Peace Activities for Tackling the Cadmium in Cacao Issue    in Colo...
Cacao for Peace Activities for Tackling the Cadmium in Cacao Issue in Colo...CIAT
 
Tackling cadmium in cacao and derived products – from farm to fork
Tackling cadmium in cacao and derived products – from farm to forkTackling cadmium in cacao and derived products – from farm to fork
Tackling cadmium in cacao and derived products – from farm to forkCIAT
 
Cadmium bioaccumulation and gastric bioaccessibility in cacao: A field study ...
Cadmium bioaccumulation and gastric bioaccessibility in cacao: A field study ...Cadmium bioaccumulation and gastric bioaccessibility in cacao: A field study ...
Cadmium bioaccumulation and gastric bioaccessibility in cacao: A field study ...CIAT
 
Geographical Information System Mapping for Optimized Cacao Production in Col...
Geographical Information System Mapping for Optimized Cacao Production in Col...Geographical Information System Mapping for Optimized Cacao Production in Col...
Geographical Information System Mapping for Optimized Cacao Production in Col...CIAT
 
Contenido de cadmio en granos de cacao
Contenido de cadmio en granos de cacaoContenido de cadmio en granos de cacao
Contenido de cadmio en granos de cacaoCIAT
 
Técnicas para disminuir la disponibilidad de cadmio en suelos de cacaoteras
Técnicas para disminuir la disponibilidad de cadmio en suelos de cacaoterasTécnicas para disminuir la disponibilidad de cadmio en suelos de cacaoteras
Técnicas para disminuir la disponibilidad de cadmio en suelos de cacaoterasCIAT
 
Cacao and Cadmium Research at Penn State
Cacao and Cadmium Research at Penn StateCacao and Cadmium Research at Penn State
Cacao and Cadmium Research at Penn StateCIAT
 
Aportes para el manejo de Cd en cacao
Aportes para el manejo de Cd en cacaoAportes para el manejo de Cd en cacao
Aportes para el manejo de Cd en cacaoCIAT
 
CENTRO DE INNOVACIÓN DEL CACAO PERÚ
CENTRO DE INNOVACIÓN DEL CACAO PERÚCENTRO DE INNOVACIÓN DEL CACAO PERÚ
CENTRO DE INNOVACIÓN DEL CACAO PERÚCIAT
 
Investigaciones sore Cadmio en el Cacao Colombiano
Investigaciones sore Cadmio en el Cacao ColombianoInvestigaciones sore Cadmio en el Cacao Colombiano
Investigaciones sore Cadmio en el Cacao ColombianoCIAT
 
Avances de investigación en cd en cacao
Avances de investigación en cd en cacaoAvances de investigación en cd en cacao
Avances de investigación en cd en cacaoCIAT
 

Plus de CIAT (20)

Agricultura Sostenible y Cambio Climático
Agricultura Sostenible y Cambio ClimáticoAgricultura Sostenible y Cambio Climático
Agricultura Sostenible y Cambio Climático
 
Resumen mesas trabajo
Resumen mesas trabajoResumen mesas trabajo
Resumen mesas trabajo
 
Impacto de las intervenciones agricolas y de salud para reducir la deficienci...
Impacto de las intervenciones agricolas y de salud para reducir la deficienci...Impacto de las intervenciones agricolas y de salud para reducir la deficienci...
Impacto de las intervenciones agricolas y de salud para reducir la deficienci...
 
Agricultura sensible a la nutrición en el Altiplano. Explorando las perspecti...
Agricultura sensible a la nutrición en el Altiplano. Explorando las perspecti...Agricultura sensible a la nutrición en el Altiplano. Explorando las perspecti...
Agricultura sensible a la nutrición en el Altiplano. Explorando las perspecti...
 
El rol de los padres en la nutrición del hogar
El rol de los padres en la nutrición del hogarEl rol de los padres en la nutrición del hogar
El rol de los padres en la nutrición del hogar
 
Scaling up soil carbon enhancement contributing to mitigate climate change
Scaling up soil carbon enhancement contributing to mitigate climate changeScaling up soil carbon enhancement contributing to mitigate climate change
Scaling up soil carbon enhancement contributing to mitigate climate change
 
Impacto del Cambio Climático en la Agricultura de República Dominicana
Impacto del Cambio Climático en la Agricultura de República DominicanaImpacto del Cambio Climático en la Agricultura de República Dominicana
Impacto del Cambio Climático en la Agricultura de República Dominicana
 
BioTerra: Nuevo sistema de monitoreo de la biodiversidad en desarrollo por el...
BioTerra: Nuevo sistema de monitoreo de la biodiversidad en desarrollo por el...BioTerra: Nuevo sistema de monitoreo de la biodiversidad en desarrollo por el...
BioTerra: Nuevo sistema de monitoreo de la biodiversidad en desarrollo por el...
 
Investigaciones sobre Cadmio en el Cacao Colombiano
Investigaciones sobre Cadmio en el Cacao ColombianoInvestigaciones sobre Cadmio en el Cacao Colombiano
Investigaciones sobre Cadmio en el Cacao Colombiano
 
Cacao for Peace Activities for Tackling the Cadmium in Cacao Issue in Colo...
Cacao for Peace Activities for Tackling the Cadmium in Cacao Issue    in Colo...Cacao for Peace Activities for Tackling the Cadmium in Cacao Issue    in Colo...
Cacao for Peace Activities for Tackling the Cadmium in Cacao Issue in Colo...
 
Tackling cadmium in cacao and derived products – from farm to fork
Tackling cadmium in cacao and derived products – from farm to forkTackling cadmium in cacao and derived products – from farm to fork
Tackling cadmium in cacao and derived products – from farm to fork
 
Cadmium bioaccumulation and gastric bioaccessibility in cacao: A field study ...
Cadmium bioaccumulation and gastric bioaccessibility in cacao: A field study ...Cadmium bioaccumulation and gastric bioaccessibility in cacao: A field study ...
Cadmium bioaccumulation and gastric bioaccessibility in cacao: A field study ...
 
Geographical Information System Mapping for Optimized Cacao Production in Col...
Geographical Information System Mapping for Optimized Cacao Production in Col...Geographical Information System Mapping for Optimized Cacao Production in Col...
Geographical Information System Mapping for Optimized Cacao Production in Col...
 
Contenido de cadmio en granos de cacao
Contenido de cadmio en granos de cacaoContenido de cadmio en granos de cacao
Contenido de cadmio en granos de cacao
 
Técnicas para disminuir la disponibilidad de cadmio en suelos de cacaoteras
Técnicas para disminuir la disponibilidad de cadmio en suelos de cacaoterasTécnicas para disminuir la disponibilidad de cadmio en suelos de cacaoteras
Técnicas para disminuir la disponibilidad de cadmio en suelos de cacaoteras
 
Cacao and Cadmium Research at Penn State
Cacao and Cadmium Research at Penn StateCacao and Cadmium Research at Penn State
Cacao and Cadmium Research at Penn State
 
Aportes para el manejo de Cd en cacao
Aportes para el manejo de Cd en cacaoAportes para el manejo de Cd en cacao
Aportes para el manejo de Cd en cacao
 
CENTRO DE INNOVACIÓN DEL CACAO PERÚ
CENTRO DE INNOVACIÓN DEL CACAO PERÚCENTRO DE INNOVACIÓN DEL CACAO PERÚ
CENTRO DE INNOVACIÓN DEL CACAO PERÚ
 
Investigaciones sore Cadmio en el Cacao Colombiano
Investigaciones sore Cadmio en el Cacao ColombianoInvestigaciones sore Cadmio en el Cacao Colombiano
Investigaciones sore Cadmio en el Cacao Colombiano
 
Avances de investigación en cd en cacao
Avances de investigación en cd en cacaoAvances de investigación en cd en cacao
Avances de investigación en cd en cacao
 

Dernier

Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisDiwakar Mishra
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxpradhanghanshyam7136
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPirithiRaju
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bSérgio Sacani
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxkessiyaTpeter
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...RohitNehra6
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRDelhi Call girls
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfSumit Kumar yadav
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxgindu3009
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfSumit Kumar yadav
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptxanandsmhk
 
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...ssifa0344
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡anilsa9823
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfmuntazimhurra
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhousejana861314
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxUmerFayaz5
 
Broad bean, Lima Bean, Jack bean, Ullucus.pptx
Broad bean, Lima Bean, Jack bean, Ullucus.pptxBroad bean, Lima Bean, Jack bean, Ullucus.pptx
Broad bean, Lima Bean, Jack bean, Ullucus.pptxjana861314
 

Dernier (20)

Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptx
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdf
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdf
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
 
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdf
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhouse
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptx
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
Broad bean, Lima Bean, Jack bean, Ullucus.pptx
Broad bean, Lima Bean, Jack bean, Ullucus.pptxBroad bean, Lima Bean, Jack bean, Ullucus.pptx
Broad bean, Lima Bean, Jack bean, Ullucus.pptx
 

GWAS of Resistance to Stem and Sheath Diseases of Uruguayan Advanced Rice Breeding Germplasm

  • 1. Doctorate in Agricultural Sciences Facultad de Agronomía - Universidad de la República Collaborating Institutions: Cornell University – CIAT - FLAR GWAS of Resistance to Stem and Sheath Diseases of Uruguayan Advanced Rice Breeding Germplasm Juan Rosas Advisors: Jean-Luc Jannink – Lucía Gutierrez Special Comittee: Marcos Malosetti (Wageningen University) Álvaro Roel (INIA) Funding: MBBISP, INIA (Rice Program, Rice GWAS
  • 2. Overview 1. Timeline 2. Background & Review Why? 3. Objectives What? 4. Materials & Methods How? 5. Preliminary Results Ouch! Wow! 6. Future work 7. Schedule When?
  • 3. Doctorate Program Timeline 2012 2013 2014 2015 2016 Cornell U. 1st. Anual Committee Meeting CIAT CU/UW Field pheno typing Greenhouse phenotyping (ROS & SCL) GH ph. (R.Solani) MBBISP Scholarship 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 Official start Oct 2012 Expected completion Thesis Project Defense Sep 2013 2nd Anual Committee Meeting Paper I Paper II Paper III Paper IV Year 1 Year 2 Year 3 Year 4 Year 5 Training in Statistics
  • 4. Rice facts Why rice matters to Uruguay? – Rice is the 3rd top Uruguayan export. – It accounts for 7% of country’s total income Source: www.uruguayxxi.gub.uy 0 200 400 600 800 1000 1200 1400 1600 2009 2010 2011 2012 USDx106 Soybeans Meat Rice Wheat
  • 5. Uruguay facts Why Uruguay matters to rice? Uruguay is the 7th major world rice exporter Source: FAOSTAT 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 tx106 Top Ten World Rice Exporters
  • 6. Uruguay facts Why Uruguay matters to rice? Uruguayan rice yields are among the highest of the world Source: http://ricestat.irri.org (Alphabetic order) CountryAverageYieldin2010(t/ha)
  • 7. Rice’s biggest adversaries What are the major constraints to rice production worldwide? Abiotic:  Water scarcity, poor soil conditions  Extreme temperatures Biotic (fungal diseases): 1. Blast (Pyricularia oryzae) 2. Sheath and stem diseases Worldwide: Uruguay & other temperate areas: Rhizoctonia solani Sclerotium oryzae Rhizoctonia oryzae-sativae
  • 8. Stem Rot Causal agent Sclerotium oryzae (A. Cattaneo, Italy 1876) Geographical distribution: Irrigated rice growing areas worldwide
  • 9. Stem Rot • The fungus forms sclerotia • Sclerotia can survive 1-2 years in soil surface or water, but prefers rice stubble.
  • 10. Stem Rot • Flooding help floating sclerotia reach the stems Early flooding = early infection = more severity • Stem surface promotes sclerotia germination • During the first day of contact, mycelium start developing • Appresoria penetrates host tissue and hyphae invades it
  • 11. Stem Rot • First symptoms at tillering • Blackish lesions.
  • 12. Stem Rot g) • Stresses (strong wind, herbicides, shadowing) promotes diseases progression • The fungus invades outer sheaths and progressively penetrates the stem. • High plant stand promotes disease
  • 14. Stem Rot • Stem rotting prevents nutrient translocation • Bad starch formation • Chalky and brittle grains • Bad milling quality
  • 15. Stem Rot • Advanced rotting weaken stems and promotes lodging • Not easy to harvest! • The fungus forms new sclerotia • Sclerotia can survive 1-2 years in soil surface or water, but prefers rice stubble.
  • 16. Aggregated Sheath Spot Causal agent • Rhizoctonia oryzae-sativae (Mordue 1974). • Geographical distribution: Irrigated rice growing areas worldwide, most relevant in sub-tropical and temperate areas.
  • 17. Aggregated Sheath Spot • Very similar cycle to that of Stem rot • First days of infection may be asymptomatic
  • 18. Aggregated Sheath Spot • Oval lesions with green or gray centers surrounded by a brown margin
  • 19. Aggregated Sheath Spot • Disease progress upward the leaf sheath • Lesions aggregate
  • 20. Aggregated Sheath Spot • Reaching panicle at booting stage can cause severe sterility
  • 21. Aggregated Sheath Spot • Rhizoctonia oryzae-sativae also produces sclerotia • Sclerotia can survive in soil surface or water, but prefers rice stubble.
  • 22. Rice’s adversaries strike again Major constraints to rice production Abiotic:  Water scarcity  Poor soil conditions  Extreme temperatures Biotic (fungal diseases): 1. Blast (Pyricularia oryzae) 2. Sheath and stem diseases Worldwide: Uruguay & other temperate areas: Rhizoctonia solani Sclerotium oryzae Rhizoctonia oryzae-sativae
  • 23. The Uruguayan Rice Defensive Line How do we face to these constraints to get those high yields? Abiotic:  Water scarcity  Poor soil conditions  Extreme temperatures Biotic (fungal diseases): 1. Blast (Pyricularia oryzae) 2. Sheath and stem diseases Worldwide: Uruguay & other temperate areas: Rhizoctonia solani Sclerotium oryzae Rhizoctonia oryzae-sativae New high-yield cold tolerant varieties New molecular markers for cold tolerance Resistance genes in high- yielding advanced lines Extended use of optimum management practices 100% Irrigated
  • 24. A Hole in the Defensive Line Top Uruguayan varieties are susceptible to St & Sh diseases Source: Avila 2000 & 2001. Sterility, dead sheaths and lodging caused by Aggregated Sheath Spot in INIA Tacuarí (grown in 15% of the area) Severe lodging caused by Stem Rot in El Paso 144 (grown in 50% of the area)
  • 25. Patching the Hole with Fungicide – Varietal susceptibility = Dependence on fungicide – Dependence on fungicide = higher input costs = trace levels in grain and environment – Trace levels = less top markets, lower price, environmental impact Dependence on fungicide = less economic and environmental sustainability Genetic resistance to St&Sh diseases is environmentally and economically the best option.
  • 26. Genetics of the resistance to StR • Quantitatively inherited (Ferreira & Webster 1975) • RILs with O. rufipogon introgressions (Ni et al 2001): – QTL in ch. 2, AFLP marker TAA/GTA167 45% phen. var. – QTL in ch. 3, RM232 - RM251 40% phen. var.
  • 27. Genetics of the resistance to AShS •Unknown but most likely quantitatively inherited as for to other Rhizoctonias. •QTL reported for resistance to R. solani (Srinivasachary et al. 2011): –16 consistent QTL (at least in 2 independent reports) • 7 QTL for escape mechanism (morphology or cycle, often undesirable traits) • 9 QTL hypothetically physiologic resistance mechanisms Importance of phenotyping to detect relevant QTL.
  • 28. Quantitative Trait Loci Discovery GWAS •Uses pre-existent populations •Simultaneously consider all allele diversity •Exploits multiple recombination events •“ready-to-use” SNP into the breeding germplasm Traditional bi-parental QTL studies •Population generation is time and resource consuming •Limited # and significance of detectable QTL (low allelic diversity) •Low mapping precision (few recombinations)
  • 29. GWAS SNP 1 Alelles: 0 or 1 Genotype Phenotype 0 6 9 1 7 5 Disease scores Do not reject identity between phenotypic means, p-value >>0.001 -log10(p-value) << 3 Phenotype Genotype0 1 No association (negative) -log10(p-value) SNP1 Loci or position
  • 30. GWAS SNP 2 Alelles: 0 or 1 Genotype Phenotype 0 6 9 1 7 5 Disease scores Phenotype Genotype0 1 Reject identity between phenotypic means, p-value <0.001 -log10(p-value) > 3 -log10(p-value) SNP1 SNP2 Association (positive) Loci or position
  • 31. GWAS The same for every SNP Alelles: 0 or 1 Genotype Phenotype 0 6 9 1 7 5 Disease scores -log10(p-value) Manhattan plot Loci or position
  • 32. GWAS What are the key issues for GWAS? As GWAS relies on correlation between phenotype & allelic states of marker’s loci – Non-linkage correlations between loci leads to false positives – i.e., False positives due to relationship among lines: • CROASE: Population estructure (sub-species, origin) • FINE: Kinship or co-ancestry (shared close ancestors)
  • 33. Correcting for Population Structure • Pritchard et al. 2000: •Correlations between unlinked markers to estimate p sub-populations •Probabilistic assignation of each n individual to one or more (admixtures) p. •STRUCTURE software facilitates to build a Q matrix n x p (estimates of each n belonging to a p)
  • 34. Correcting for Population Structure •Patterson et al.2006 Principal component analysis (PCA) • Statistically determines the minimum number of sub-groups (axes) which significantly explain genetic variation (from genotypic data).
  • 35. Correcting for Kinship • Loiselle et al. 1995 and Hardy & Vekemans, 2002 SPAGeDi software • Estimates the probability of identity-by-state (not by common ancestry) of alleles of random molecular markers = kinship coeficient.
  • 36. GWAS: Unified Mixed Model y: phenotypic data S: incidence matrix that relates y with the SNP effects α : vector of SNP effects Q: relates y with the p fitting values v: vector of estimates of fitting to a sub-population (estimated with STRUCTURE) K: relates y with the estimated kinship coefficients u : vector of kinship coefficients e: vector of residual effects e  KuQvSy • Yu et al. 2006
  • 37. Keys for a succesful GWAS – Increase power optimizing phenotyping: • Minimize Phenotypic variance • Maximize Heritability –Minimize false positive discovery by correcting causes of marker correlation other than linkage: • Population structure and kinship (subspecies, common ancestry) –In rice: consider ancient divergence between subspecies (explore separate analyses)
  • 38. Recap… • Uruguay is a top rice exporter; Rice is a top Uruguayan commodity • Top Uruguayan varieties are susceptible to Sclerotium oryzae (SCL) and Rhizoctonia oryzae-sativae (ROS), suffering losses up to 20%. • Genetic resistance is the best strategy • Resistance to St & Sh diseases is quantitative • GWAS is a good option for QTL discovery in breeding population • Good phenotyping is key for GWAS
  • 39. Objectives General Objective: Identify QTL for SCL and ROS that enable breeding new high- yielding cultivars with improved resistance to these diseases. Specific Objectives / Papers: I. Greenhouse phenotyping methodology (Paper 1). a. Choosing best inoculation method b. Applying it in high-throughput phenotyping greenhouse experiments II. QTL for resistance to SCL and ROS in greenhouse and field (Papers 2 and 3). III. Explore correlations between resistance to the three diseases (SCL, ROS and R. solani) Paper 4.
  • 40. Materials & Methods 1: Inoculation Methods • Inoculation Methods Method Description I 5-mm agar disc with growing micellium attached to stems II Flooded trays spread with sclerotia III Suspension of sclerotia in CMC IV Suspension of sclerotia in CMC covered with foil V Detached stems in test tube with water + sclerotia
  • 41. Materials & Methods 1: Inoculation Methods • Plant Materials Cultivar Subsp. Origin ROS SCL R. Solani El Paso 144 Indica Uy Int Int ? INIA Olimar Indica Uy Int Int ? Tetep Indica Vietnam ? Res Res INIA Tacuari Trop. Jap. Uy Int Int ? Parao Trop. Jap. Uy Int Int ? Lemont Trop. Jap. US ? Sus Sus
  • 42. Materials & Methods 1: Inoculation Methods • Greenhouse conditions • Temperature: 28/18 °C day/night • RH: 80/90% relative humidity • Light time: 12 h • Fungal Isolates • ROS: soil after INIA Tacuarí in UEPL 200 • SCL: plant Samba cv. In UEPL 2011 • Experimental Design: CRD, 6 rep. EU: pot with 4 plants • Analysis: Model with design factors Method compared by r H G G 22 2 2 e    ijig e ijY
  • 43. Results 1: Inoculation Methods • Best IM: I (agarose disk with micellium), for both pathogens Pathogen Method 2 G 2 R H2 ROS I (agar disk) 0.03 0.06 0.75 ROS II (flooded trays) 0.07 0.20 0.67 ROS III (CMC) 0.00 0.31 0.05 ROS IV (CMC+foil) 0.16 0.69 0.58 ROS V (tiller in tube) 1.25 5.24 0.59 SCL I (agar disk) 1.35 0.56 0.94 SCL II (flooded trays) 0.94 0.61 0.90 SCL III (CMC) 0.73 1.05 0.81 SCL IV (CMC+foil) 1.31 1.00 0.89 SCL V (tiller in tube) 0.92 2.04 0.73 2 G 2 e 2 H2 G 2 e 2 H
  • 44. Results 1: Inoculation Methods • High correlation, low interaction among IM SCL ROS
  • 45. M & M 2: Greenhouse Phenotyping • 3 exp. for ROS, 2 exp. for SCL • Population: 641 advanced INIA’s inbred lines • 316 indica • 325 tropical japonica • Inoculation I (Agar discs) • Same greenhouse conditions and fungal isolates than IM • Experimental Design: • Federer’s unrep, augmented RCBD, 12 blocks • Replicated checks: El Paso 144, INIA Olimar, Tetep, Parao, INIA Tacuarí and Lemont • EU: pot with 4 plants • Stem width measured as covariate.
  • 46. M & M 2: Greenhouse Phenotyping • Statistical Models: BAS Compared based SPA on (Cullis et al. 2006) Yij, Yijmn disease score  intercept g Random block effect with and j={1,...,12} Gj = gk + cl genotypic effect, gk random effect of kth genoline with gk ~N(0,2 G), k={1,...,641} cl fixed effect of lth check, l={1,…,6} Rm random row effect, Rm ~N(0,2 r), m={1,...,35} Cn random column effect , Cn ~N(0,2 c), n={1,...,26} eij, eijmn residual, gk ~N(0,2 G) ijjiij GY eg  ijmninimjiijmn CRGY eg  )()( ),0(~ 2 Bi N g 2 2 2 1 G BLUP g v H  
  • 47. Results 2: Greenhouse Phenotyping • Medium to high H2. GxE interaction. Adapted sources of partial resistance
  • 48. M & M 3: Field Phenotyping • Same population than Greenhouse exp. • 2010, 2011, 2012: “Historical” data RCBD, 3 rep, natural infection. Checks: El Paso 144, INIA Olimar, Parao, INIA Tacuarí • 2013: Augmented alpha-lattice design, 6 rep, artificial inoculation • Same fungal isolates than greenhouse experiments. • Replicated checks: El Paso 144, INIA Olimar, Tetep, Parao, INIA Tacuarí and Lemont • EU: hill plots with ~10 adult plants • Length of life cycle measured as covariate.
  • 49. Materials & Methods 3: Field Phenotyping • Statistical Models: BAS Compared based COV on SPA (Cullis et al. 2006) CSP Yij, Yijmn disease score  overall mean g block effect, j={1,...,6} Gj = gk + cl genotypic effect, gk random effect of kth genoline, gk ~N(0,2 G), k={1,...,641} cl fixed effect of lth check, l={1,…,6} eij, eijmn residual, gk ~N(0,2 G) Rm row effect, Rm ~N(0,2 r), m={1,...,90} Cn column effect, Cn ~N(0,2 c), n={1,...,45} xij length of life cycle of ith genotype in jth block b regression slope of covariate ijjiij GY eg  ijijjiij xGY ebg  ijmnnmjiijmn CRGY eg  ijmnnmijjiijmn CRxGY ebg  2 2 2 1 G BLUP g v H  
  • 50. Results 3: Field Phenotyping (ROS) • Low to medium H2. GxE interaction. Adapted sources of partial resistance H2=0.42 H2=0.15 H2=0.06 H2=0.43
  • 51. Results 3: Field Phenotyping (SCL) • Medium to high H2. Lesser GxE interaction. Adapted sources of partial R H2=0.50 H2=0.24 H2=0.45 H2=0.72
  • 52. M & M 4: Genotypic data GBS raw data HapMaps 130K SNP Bioinformatic processing • Tag count (collapse identical reads) • Alignment with reference genome (Nipponbare) • Tassel Pipeline • Hapmap filtering • Lines with ≥5% SNP • SNP called in ≥5% lines • Allele frequency (intra line) ≥5% Indica 316 lines 94K SNP 641 lines 57K SNP FILLIN Imputation Japonica 325 lin. 44K SNP Indica 316 lines 18K SNP Japonica 325 lin. 12K SNP Conjoint SNP filtering Separate SNP filtering •SNP w/Allele frequency (inter lines) ≥5% •Lines w/ ≥5% SNP data < 50% missing
  • 53. Results 4: Genotypic data, whole, non imputed 641 lines 57K SNP • Genotype data: Most of the SNP are between-subesp. polymorphisms
  • 54. Results 4: Genotypic data, partial results Indica 316 lines 94K SNP 641 lines 57K SNP FILLIN Imputation Japonica 325 lin. 44K SNP Indica 316 lines 18K SNP Japonica 325 lin. 12K SNP Conjoint SNP filtering Separate SNP filtering •SNP w/Allele frequency (inter lines) ≥5% •Lines w/ ≥5% SNP data < 50% missing
  • 55. Results 4: Genotypic data, whole population 641 lines 57K SNP • Genetic Map: dense SNP evenly distributed in all 12 chr.
  • 56. Results 4: Genotypic data, whole population 641 lines 57K SNP • PCA: PC1: inter subspecies variation PC2: inter indica variation indica japonica
  • 57. Results 4: Genotypic data, whole population 641 lines 57K SNP • PCA: PC1 ~50% gv PC2 ~5% gv
  • 58. Results 4: Genotypic data, Indica ssp • Genotype data: Some big blocks with low LD decay. Indica 316 lines 18K SNP
  • 59. Results 4: Genotypic data, Indica ssp • Genetic Map: Many fixed regions, including all Chr. 11 Indica 316 lines 18K SNP
  • 60. Results 4: Genotypic data, Indica ssp • PCA: Over-represented “Olimar-like” lines from FLAR and INIA Indica 316 lines 18K SNP El Paso 144 INIA Olimar FLAR INIA
  • 61. Results 4: Genotypic data, Indica ssp • PCA: PC1 to 8 explain ~50%gv Indica 316 lines 18K SNP
  • 62. Results 4: Genotypic data, Japonica, non imputed • Genotype data: Haplotype blocks . Japonica 325 lin. 12K SNP
  • 63. Results 4: Genotypic data, Japonica ssp • Genetic Map: Many fixed regions Japonica 325 lin. 12K SNP
  • 64. Results 4: Genotypic data, Japonica ssp • PCA: weak intra- subspecies structure. Japonica 325 lin. 12K SNP L5287 EEA 404 INIA Tacuari
  • 65. Results 4: Genotypic data, Japonica ssp • PCA: More than 10 PC to explain 50% gv Japonica 325 lin. 12K SNP
  • 66. Materials & Methods 5: GWAS y: phenotypic data b : vector of SNP fixed effects X: incidence matrix that relates y with the SNP effects v: vector of fixed estimates of fitting to a sub- population (estimated with STRUCTURE) Q: incidence matrix for population effects u : vector of kinship coefficients, Var(u)=K2 , K kinship matrix Z: relates y with the estimated kinship coefficients e: vector of residual effects, Var(e)=I2 e eb  ZuQvXy • Mixed model (Yu et al. 2006, Malosetti et al. 2007) “Q+K”, as implemented in GWAS function from rrBLUP package: eb  QvXy “Eigenstrat”, as implemented in GWAS.analysis function from mmQTL package: y: phenotypic data b : vector of SNP fixed effects X: incidence matrix that relates y with the SNP effects v: vector of random PC scores (eigenvalues). Q: relates y with the PC scores e: vector of residual effects, Var(e)=I2 e
  • 67. Results 5: GWAS Indica 316 lines 94K SNP 641 lines 57K SNP FILLIN Imputation Japonica 325 lin. 44K SNP Indica 316 lines 18K SNP Japonica 325 lin. 12K SNP Conjoint SNP filtering Separate SNP filtering •SNP w/Allele frequency (inter lines) ≥5% •Lines w/ ≥5% SNP data < 50% missing Field GH Eigenstrat ROS SCL ROS SCL Q+K ROS SCL ROS SCL Eigenstrat ROS SCL ROS SCL Q+K ROS SCL ROS SCL Eigenstrat ROS SCL ROS SCL Q+K ROS SCL ROS SCL Eigenstrat ROS SCL ROS SCL K ROS SCL ROS SCL Eigenstrat ROS SCL ROS SCL K ROS SCL ROS SCL
  • 68. Results 5: GWAS – ROS in Japonica • QTLxE interaction. • Consistent QTL: chr. 3 ~1 Kb Field 2010 Field 2011 Field 2012 Field 2013 GH ROS1 GH ROS2 GH ROS3
  • 69. Results 5: GWAS – ROS in Indica • QTLxE interaction • Consistent QTL: chr. 3 ~1 Kb •. QTL chr. 3Field 2010 Field 2011 Field 2012 Field 2013 GH ROS1 GH ROS2 GH ROS3
  • 70. Results 5: GWAS – SCL in Japonica • QTLxE interaction. • Consistent QTL: chr. 3 ~1 Mb chr. 9 ~14 Mb Field 2010 Field 2011 Field 2012 Field 2013 GH SCL1 GH SCL2
  • 71. Results 4: GWAS – SCL in Indica Field 2010 Field 2011 Field 2012 Field 2013 GH SCL1 GH SCL2 • QTLxE interaction. • Consistent QTL: chr. 3 ~1 Mb chr. 9 ~14 Mb
  • 72. Results 4: GWAS Summary: • QTL at ~1 Kb Chr. 1 for both pathogens, both subspecies and all environments • QTL at ~14 Kb Chr. 9 for SCL, both subspecies, almost all environments
  • 73. Future Work • Greenhouse phenotyping for resistance to R. solani at CIAT • Analysis of phenotypic means • Association analysis: • LD blocks and haplotypes • GWAS for R. solani
  • 74. Coordinación Victoria Bonnecarrere Mejoramiento Pedro Blanco Fernando Pérez de Vida Fitopatología Sebastián Martínez Bioinformática Silvia Garaycochea Schubert Fernández Marcadores moleculares Victoria Bonnecarrere Wanda Iriarte Bioestadística Lucía Gutierrez Gastón Quero Natalia Berberián Juan Rosas Cornell University Eliana Monteverde Susan McCouch Jean-Luc Jannink Proyecto Mapeo Asociativo en Arroz Uruguayo