Centre Universitaire d’Informatique
Institute of Information Service Science
Seman&c	enrichment	of	places	
with	VGI	source...
Problem	Statement	
How	to	use	social	media	tags	to	iden2fy	places	and	their	
characteris2cs?	
	
•  Using	picture	tags	
•  ...
Example	
Characteris&cs	
•  Music	/	Musique		
•  Concert	/	Gigs	
•  Shows	
Tardy	et	al.,	University	of	Geneva	 3	
hJps://fl...
Method	
Tag	ti	
Geo	weight	
gw(ti)	
Sense	&	Category	
{ti,	sensei,	cati}	
Tardy	et	al.,	University	of	Geneva	 4	
geo	
proc...
Geo	Process	
Tardy	et	al.,	University	of	Geneva	 5
Localisa?on	Example	
Flickr	photo	loca?on	info	:	
	
<loca&on	la&tude="46.193959"	longitude="6.143385”	accuracy="16"	
conte...
Word	Sense	Process	
Tardy	et	al.,	University	of	Geneva	 7
Disambigua?on	
Tardy	et	al.,	University	of	Geneva	 8
Tags	Extrac?on	
Tardy	et	al.,	University	of	Geneva	 9
Example	
Actor	
Event	 Temporal	
Color	 Uniden&fied		
“Seman&c	Enhancement	of	
Places”	(SEP)	tags	:		
•  Ambiance	
•  Night...
Tes?ng	
Tardy	et	al.,	University	of	Geneva	 11	
hJps://flic.kr/p/qnvRLa
Results	
•  142	photos	
•  3	validators	
	
•  2	data	sets	in	Geneva	area,	Switzerland	
•  Mul?-label	precision-recall	:	
o...
Conclusion	
•  A	technique	that	combines	geographical	knowledge	and	the	
extrac?on	of	text	seman?cs	
•  Evalua?ons	show	th...
Prochain SlideShare
Chargement dans…5
×

Semantic enrichment of places with vgi sources a knowledge based approach

162 vues

Publié le

GIR'16 Workshop
Semantic; Folksonomy; Geographic Information; Coverage; VGI

Publié dans : Sciences
0 commentaire
0 j’aime
Statistiques
Remarques
  • Soyez le premier à commenter

  • Soyez le premier à aimer ceci

Aucun téléchargement
Vues
Nombre de vues
162
Sur SlideShare
0
Issues des intégrations
0
Intégrations
0
Actions
Partages
0
Téléchargements
2
Commentaires
0
J’aime
0
Intégrations 0
Aucune incorporation

Aucune remarque pour cette diapositive

Semantic enrichment of places with vgi sources a knowledge based approach

  1. 1. Centre Universitaire d’Informatique Institute of Information Service Science Seman&c enrichment of places with VGI sources: a knowledge based approach Tardy, C., Falquet, G., Moccozet, M. Workshop GIR’16 – SIG Spa2al 2016 November 2016 - San Francisco, California, USA
  2. 2. Problem Statement How to use social media tags to iden2fy places and their characteris2cs? •  Using picture tags •  Categoriza?on algorithm •  based on geographic and terminological knowledge resources •  not a sta?s?cal approach •  For places with small number of data Tardy et al., University of Geneva 2
  3. 3. Example Characteris&cs •  Music / Musique •  Concert / Gigs •  Shows Tardy et al., University of Geneva 3 hJps://flic.kr/p/m9ZBPB Places •  Geneva/Genève •  Switzerland •  Plainpalais •  Carouge •  Alpes/Alps •  Chat Noir •  Théatre Pitoëff •  Canada
  4. 4. Method Tag ti Geo weight gw(ti) Sense & Category {ti, sensei, cati} Tardy et al., University of Geneva 4 geo process word sense process Disambigua?on 1.  Find ngw(ti) 2.  Compare weights Dispatch tag Geo OR non Geo Geo coverage Characteris?cs Discard
  5. 5. Geo Process Tardy et al., University of Geneva 5
  6. 6. Localisa?on Example Flickr photo loca?on info : <loca&on la&tude="46.193959" longitude="6.143385” accuracy="16" context="0" place_id="EDcBbVFWWrj07WE” woeid="782861”> Tardy et al., University of Geneva 6
  7. 7. Word Sense Process Tardy et al., University of Geneva 7
  8. 8. Disambigua?on Tardy et al., University of Geneva 8
  9. 9. Tags Extrac?on Tardy et al., University of Geneva 9
  10. 10. Example Actor Event Temporal Color Uniden&fied “Seman&c Enhancement of Places” (SEP) tags : •  Ambiance •  Nightlife •  Music / Musique •  Concert / Gigs •  Shows •  Fes?val •  ASMV Tardy et al., University of Geneva 10 In geo coverage : à Théâtre Pitoëff Geographic feature / Geographic feature class hJps://flic.kr/p/m9ZBPB
  11. 11. Tes?ng Tardy et al., University of Geneva 11 hJps://flic.kr/p/qnvRLa
  12. 12. Results •  142 photos •  3 validators •  2 data sets in Geneva area, Switzerland •  Mul?-label precision-recall : o precision = 72.5%; o recall = 66.7%; o F-measure = 0.695 Tardy et al., University of Geneva 12
  13. 13. Conclusion •  A technique that combines geographical knowledge and the extrac?on of text seman?cs •  Evalua?ons show that the technique is effec?ve –  Can be used to enhance spa?al descrip?ons in geo-services (Citygml, OpenStreetMap) –  Works on geographic zones with low density of resources Future explora?ons •  Use it as a pre-treatment to sta?s?cal approach •  Refine the analysis for photos describing mul?ple geo features Tardy et al., University of Geneva 13

×