SlideShare une entreprise Scribd logo
1  sur  9
Télécharger pour lire hors ligne
   
MODELING  UPPER  ARM  TRAUMA  USING  FINITE  
ELEMENT  ANALYSIS  
    
    
    
    
By  
    
Caroline  Ashford,  Brooke  Burns,  Connor  McDermott,  and  Maggie  Shilling  
    
Dr.  Cullinane  
    
Biomedical  Research  
    
April  11th,  2014  
    
  
    
    
    
  
  
  
  
  
  
  
  
  
 
INTRODUCTION  
  
Each  year  in  the  United  States,  six  million  men  and  women  are  victims  of  domestic  violence  
(Domestic  Violence  Resource  Center,  2013).  The  presence  of  bruising  can  be  an  indicator  of  
abuse,  particularly  in  locations  where  accidental  occurrence  is  infrequent  (Arkbarnia  and  
Campbell,  2005).  Bruising  in  soft  connective  tissue  occurs  when  a  load  from  blunt  trauma  
exceeds  the  ultimate  strength  of  capillaries  (Huang  et  al.,  2012).  Minimal  research  of  bruising  at  
the  capillary  level  inhibits  effective  abuse  diagnosis.  Determining  the  failure  threshold  of  
capillaries  and  investigating  the  mechanism  under  which  they  fail  may  eventually  enable  
physicians  to  better  differentiate  and  diagnose  abuse.    
When  capillaries  fail,  blood  pools  into  the  surrounding  tissue,  resulting  in  discoloration,  
minor  swelling,  and  pain  (Kumar  et.  al.,  2009;;  DiMaio  and  DiMaio,  2001).  Shear  stress  and  
hydraulic  induced  tensile  stress  are  two  hypothesized  modes  of  capillary  failure.  Shear  stress  
occurs  when  a  region  of  tissue  containing  a  capillary  bed  resists  two  opposing  forces  acting  in  
parallel  planes;;  resulting  in  shear  strain  (Tang  et  al.,  2013).  Hydraulic  induced  tensile  stress  in  
bruising  is  defined  as  when  a  capillary  deforms  under  high  pressure  and  forces  blood  outside  the  
compression  zone  (Tang  et  al.,  2013).  The  blood  being  forced  at  high  pressure  from  one  area  to  
another  acts  analogously  to  that  of  water  in  a  hose;;  stress  is  applied  to  a  capillary  in  the  
compression  zone  and  blood  disperses  from  the  area  of  impact  like  water  rushing  from  one  end  
of  a  hose  to  another  as  a  truck  runs  over  it.  Pressure,  known  as  tensile  stress,  builds  around  the  
capillary  wall  and  at  the  capillary’s  bifurcations;;  this  balloons  the  capillary  and  increases  its  
surface  area  (Tang  et  al.,  2013).  When  the  pressure  on  the  capillary  wall  exceeds  the  failure  
threshold,  bruising  occurs  (Tang  et  al.,  2013).  In  bruise  models,  the  blood  in  a  capillary  has  been  
modeled  as  an  incompressible  solid  (Tang  et  al.,  2013).  Because  blood  does  not  naturally  
behave  as  an  incompressible  solid,  the  capillary  responds  differently  to  applied  loads.  The  failure  
mechanism  of  a  capillary  modeled  with  a  fluid  is  hypothesized  to  differ  from  that  of  a  capillary  
modeled  with  an  incompressible  solid.  
Finite  Element  Analysis  solves  complex  systems  of  problems  as  a  series  of  discrete  
finite  parts  through  mathematical  analysis  (Huang  et  al.,  2012).  The  results  of  forces  applied  to  a  
capillary  modeled  through  ANSYS  Workbench®  15.0  precisely  demonstrate  the  true  mechanical  
behavior  of  a  capillary  (Tang,  et  al.  2013).  A  mesh  generated  through  FEA  divides  the  model  into  
subregions  that  are  connected  through  nodes.  As  the  regions  become  smaller,  the  simple  
approximation  number  becomes  more  precise,  resulting  in  an  exact  solution.  The  model  can  
then  be  solved  for  maximum  principal  stress  and  maximum  shear  strain.  The  stress  and  strain  
magnitudes  are  displayed  as  scaled  colors  on  the  model,  which  represent  different  degrees  of  
trauma  (Huang,  et  al.  2012).    
Knowledge  of  bruising  at  the  capillary  level  is  limited  despite  the  fact  that  bruising  can  be  
a  primary  clinical  indicator  of  abuse  (Akbarnia  and  Campbell,  2005).  Currently,  the  only  evidence  
of  abuse  involving  bruising  is  the  presence  and  placement  of  bruises.  The  mechanism  in  which  
a  capillary  fails  can  help  indicate  if  and  how  a  victim  was  abused,  and  thus  can  assist  in  abuse  
arrest  decisions.  Modeling  upper  arm  trauma  through  Finite  Element  Analysis  will  characterize  
bruising  at  the  capillary  level,  and  subsequently,  abuse.  
  
MATERIALS  AND  METHODS  
A  capillary  bed  and  arm  were  modeled  using  Finite  Element  Analysis  through  ANSYS  
Workbench®  15.0.  When  constructing  the  capillary  two  primary  branches  were  swept  from  the  
origins  and  connected  to  a  base  by  the  spline  tool.  These  branches  were  further  bifurcated.The  
model  was  then  mirrored  to  create  a  complete  capillary  bed  and  material  properties  of  a  capillary  
wall  were  assigned.  The  diameters  of  the  capillary  bed’s  internal  and  external  walls  were  
0.007mm  and  0.008mm,  respectively.  The  length  of  the  capillary  bed  was  0.1  mm.  The  mesh  of  
the  capillary  bed  contained  102,000  elements  and  200,000  nodes  (Figure  1).    
A  cross  section  of  an  arm  inferior  to  the  deltoid  tuberosity  was  modeled  through  
SolidWorks®  and  transferred  onto  ANSYS  Workbench®  15.0.  The  image  used  for  this  model  
was  of  a  59  year-­old  female  cadaver  from  the  Visible  Human  Project.  Actual  measurements  of  
the  cross-­section  were  unavailable,  so  the  upper-­arm  circumference  of  eighteen  random  
females,  aged  50-­67  years  old,  were  recorded  in  a  community  survey.  The  average  arm  
thickness  was  292.1  mm.  Relative  thicknesses  of  the  skin,  adipose,  muscle,  and  bone  
sublayers  of  the  Visible  Human  Project  image  were  then  measured  through  ImageJ®.  The  arm  
thickness  obtained  through  ImageJ®  was  compared  to  the  thickness  of  the  average  female  arm,  
x̅=292.1  mm,  and  a  ratio  was  found.  Using  the  ratio,  the  estimated  thicknesses  of  the  skin,  
adipose,  muscle,  and  bone  sections  were  then  calculated.  The  thicknesses  of  the  adipose,  
muscle,  bone,  and  bone  marrow  sections  were  276.31  mm,  220.40  mm,  50.89  mm,  and  29.77  
mm  respectively  (Table  1).     
The  sublayers  of  skin,  adipose,  muscle  tissue,  and  bone,  modeled  through  SolidWorks®,  
were  separately  extruded  from  the  center  to  a  length  of  200mm.  This  model  was  then  
transferred  to  ANSYS  Workbench®  15.0  and  non-­linear  hyperelastic  material  properties  of  skin,  
adipose  and  muscle  tissue  were  separately  assigned.  The  bone  section  was  modeled  as  a  fixed  
support.  Modeling  hyper-­elastic  properties  better  characterizes  capillary  failure  because  the  
mechanical  properties  of  an  arm  are  represented  in  each  tissue  layer.  The  model  of  the  arm  
contained  81,000  elements  and  150,000  nodes  (Figure  2).    
Because  the  thickness  of  a  capillary  is  0.017%  of  the  thickness  of  an  arm,  four-­level  
hierarchical  sub-­models,  along  with  the  different  layers  of  the  arm,  skin,  adipose,  muscle  tissue,  
and  bone,  were  represented  in  the  global  model.  The  muscle  was  sectioned  into  three  
sub-­models,  the  smallest  containing  the  capillary  bed.  Using  ANSYS  Fluent,  a  fluid-­based  finite  
element  analysis  sub-­program,  a  blood-­simulating  fluid  was  embedded  into  the  capillary  model.  
Loads  less  than  and  equal  to  8.4x104
  Pa  were  applied  to  the  model  over  multiple  simulations,  
causing  the  capillary  to  deform  and  fail.    
  
Table  1:  Dimensions  of  Modeled  Arm  and  Capillary  
Name   Circumference  (mm)   Length  (mm)  
Global  Arm   292.1   100  
Skin   292.1   100  
Adipose   276.31   100  
Muscle   220.4   100  
Bone   50.89   100  
Bone  Marrow   29.77   100  
Capillary   Internal:  0.044  
External:  0.051  
.2  
  
Table  2:  Physical  and  Linear  Elastic  Material  Properties  (as  used  in  ANSYS  Workbench®  
15.0):  
Name   Density  (kg/mm^3)   Young’s  Modulus  
(MPa)  
Poisson’s  Ratio  
Skin   1.05e-­6   0.035   0.48  
Adipose   9.196e-­7   0.02442   0.49  
Muscle   1.06e-­6   0.077   0.37  
Capillary  wall   1e-­6   0.37   0.495  
*numbers  for  material  properties  values  referenced  from  (Huang  et  al.,  2012).  
 
Figure  1:  3D  Capillary  Model  with  Generated  Mesh  
  
Image  3:  3D  Global  Model  of  Female  Arm  with  Generated  Mesh  
RESULTS  
A  model  of  an  arm  and  embedded  capillary  bed  were  successfully  created  and  loaded  with  a  
force  of  ___  over  10cm2
.  The  model  of  the  global  arm  consisted  of  sublayers  of  skin,  adipose,  
muscle  tissue,  and  bone,  was  200mm  in  length,  and  contained  81,000  elements  and  150,000  
nodes  (Figure  2).  The  diameters  of  the  capillary  bed’s  internal  and  external  walls  were  0.007mm  
and  0.008mm,  respectively.  The  length  of  the  capillary  bed  was  0.1  mm.  The  mesh  of  the  
capillary  bed  contained  102,000  elements  and  200,000  nodes  (Figure  1).  
The  capillary  was  embedded  with  a  blood-­simulating  fluid,  modeled  through  ANSYS  
Fluent  (Figure  1)  and  the  arm  was  loaded  with  varying  forces  of  ____Pa.    The  model  was  solved  
for  maximum  principal  stress  and  maximum  shear  strain,  which  were  displayed  through  varying  
colors  on  the  solved  model  (Figure  2.1).    Values  exceeding  8.4x104  
Pa  indicated  the  capillary  
failure  threshold.  The  maximum  principal  stress  recorded  in  the  solved  model  was  ___.  The  
locations  of  peak  stress  included_____.    
  
DISCUSSION  
  
A  model  of  a  0.2mmbyX  mirror  image  capillary  bed,  consisting  of  eight  branches,  was  
successfully  incorporated  into  a  global  arm  model  consisting  of  skin,  adipose,  muscle,  and  a  
bone-­representing  fixed  support.  Different  loads  were  applied  to  the  model  and  peak  stress  
occurred  under  the  impact  zone,  as  well  as  at  the  junctions  of  the  capillary.  The  shear  strain  did  
not  exceed  the  ultimate  strength  of  capillaries,  as  hypothesized.    
The  model  was  successfully  tested  for  hydraulic-­induced  tensile  stress  and  shear  
stress.  ANSYS  Fluent  was  successfully  run  and  realistically  simulated  blood  flow  in  the  capillary  
bed.  As  predicted,  the  blood  in  the  capillary  bed  pooled  into  one  area.The  capillary  failure  
threshold  was  8.4  X  104
  Pa  at  a  loading  rate  of  ___.     
This  study  hypothesized  that  the  capillary  would  be  more  sensitive  to  loading  when  
modeled  with  a  blood-­simulating  fluid.  This  is  due  to  the  viscoelasticity  of  blood  and  its  inability  to  
compress  fluid.  Because  an  incompressible  solid  has  properties  similar  to  those  of  wet  clay,  a  
capillary  modeled  with  an  incompressible  solid  responds  to  loading  in  a  way  which  allows  more  
time  for  the  simulated  blood  to  move  away  from  the  area  of  impact.  When  modeling  a  capillary  
through  ANSYS  Fluent,  the  blood-­simulating  fluid  is  forced  to  move  from  the  impact  zone  to  a  
new  area  in  less  time.  The  velocity  at  which  the  blood  disperses  is  faster  than  that  of  an  
incompressible  solid.  This  creates  an  increase  in  stress  upon  the  capillary  wall  and  makes  it  
more  sensitive  to  loading.  
  
    
    
  
  
  
  
  
  
  
  
  
  
  
  
References:  
1.  Akbarnia  BA,  Campbell  R.,  The  Role  of  the  Orthopaedic  Surgeon  in  Child  Abuse.  In:  Morrissy  RT,  
Weinstein  SL,  editors.  Pediatric  Orthopaedics.  6th  Ed.  Philadelphia:  Lippincott  Williams  &  Wilkins,  2005;;  
1423-­1445  
2.  Harris,  T.S.,  Bruises  in  Children:  Normal  or  Child  Abuse?  Journal  of  Pediatric  Health  Care,  2010.  24(4):  p.  
216-­221  
3.  Helfer  RE,  Kenpe  CH,  eds.  The  Battered  child.  Chicago:  University  of  Chicago  Press,  1968.  
4.  Huang  Lu,  Culliane  D,  Grosse  I.  Finite  Element  Model  For  Soft  Tissue  Bruising,  University  of  
Massachusetts  Amherst,  2012  
5.  Tang  K,  Sharpe  W,  Schulz  A,  Tam  E,  Grosse  I,  Tis  J,  Cullinane  D.  
Determining  Bruise  Etiology  in  Muscle  Tissue  Using  Finite  Element  Analysis.  Journal  of  Forensic  Sciences  
2013.  
6.  Zienkievicz  OC,  T.R,  Zhu  JZ.,  The  Finite  Element  Method:  Its  Basis  and  Fundamentals.  2005,  Amsterdam:  
Elsevier  Butterworth-­Heinemann  
7.  "Child  Abuse  and  Neglect  Statistics."  American  Human  Society.  American  Humane  Association,  2013.  Web.  14  
Nov.  2013.  
<http://www.americanhumane.org/children/stop-­child-­abuse/fact-­sheets/child-­abuse-­and-­neglect-­statistics.html>.    
8.  "Domestic  Violence  Statistics."  Domestic  Violence  Resource  Center.  Domestic  Violence  Resource  Center,  n.d.  
Web.  14  Nov.  2013.  <http://dvrc-­or.org/domestic/violence/resources/C61/#dom>.    
9.  OED.  2013.  Print.    
10.  Helfer  RE,  Kempe  CH,  eds.  The  battered  child.  Chicago:  University  of  Chicago  Press,  1968.  
11.  "The  Visible  Human  Project."  U.S.  National  Library  of  Medicine.  N.p.,  n.d.  Web.  6  Dec.  2013.  
<http://www.nlm.nih.gov/research/visible/>.  
12.  "Visible  Human  Project."  Wikipedia.  N.p.:  n.p.,  n.d.  Wikipedia.  Web.  6  Dec.  2013.  
<http://en.wikipedia.org/wiki/Visible_human_project>.    
  
  

Contenu connexe

Similaire à Modeling Upper Arm Trauma Using Finite Element Analysis

Thesis_Censored_version - R Sjoukes
Thesis_Censored_version - R  SjoukesThesis_Censored_version - R  Sjoukes
Thesis_Censored_version - R SjoukesRuud Sjoukes
 
Considerations for analysis of endothelial shear stress — Robert Krams
Considerations for analysis of endothelial shear stress — Robert KramsConsiderations for analysis of endothelial shear stress — Robert Krams
Considerations for analysis of endothelial shear stress — Robert KramsRobert Krams
 
BaumannAP_EtAl_CMBBE2015
BaumannAP_EtAl_CMBBE2015BaumannAP_EtAl_CMBBE2015
BaumannAP_EtAl_CMBBE2015Andy Baumann
 
Compressive behavior of soft muscle tissues
Compressive behavior of soft muscle tissuesCompressive behavior of soft muscle tissues
Compressive behavior of soft muscle tissuesVivek Kumar
 
art%3A10.1007%2Fs10237-015-0729-2 (5)
art%3A10.1007%2Fs10237-015-0729-2 (5)art%3A10.1007%2Fs10237-015-0729-2 (5)
art%3A10.1007%2Fs10237-015-0729-2 (5)Desmond Dillon-Murphy
 
Ultrasound Elastography: Principles, techniques & clinical applications
Ultrasound Elastography: Principles, techniques & clinical applications Ultrasound Elastography: Principles, techniques & clinical applications
Ultrasound Elastography: Principles, techniques & clinical applications Abhishek Kaushik
 
043 thermo elastography
043 thermo elastography043 thermo elastography
043 thermo elastographySHAPE Society
 
A Novel Approach for Measuring Electrical Impedance Tomography for Local Tiss...
A Novel Approach for Measuring Electrical Impedance Tomography for Local Tiss...A Novel Approach for Measuring Electrical Impedance Tomography for Local Tiss...
A Novel Approach for Measuring Electrical Impedance Tomography for Local Tiss...CSCJournals
 
INVESTIGATING THE USE OF IMPEDANCE PLETHYSMOGRAPHY FOR DETECTING DECREASED BL...
INVESTIGATING THE USE OF IMPEDANCE PLETHYSMOGRAPHY FOR DETECTING DECREASED BL...INVESTIGATING THE USE OF IMPEDANCE PLETHYSMOGRAPHY FOR DETECTING DECREASED BL...
INVESTIGATING THE USE OF IMPEDANCE PLETHYSMOGRAPHY FOR DETECTING DECREASED BL...Mirza Baig
 
Aortic Valve Modelling
Aortic Valve ModellingAortic Valve Modelling
Aortic Valve Modellingsp435
 
MRI-Magnetic Resonance Elastography (MRE) -Avinesh Shrestha
MRI-Magnetic Resonance Elastography (MRE) -Avinesh ShresthaMRI-Magnetic Resonance Elastography (MRE) -Avinesh Shrestha
MRI-Magnetic Resonance Elastography (MRE) -Avinesh ShresthaAvinesh Shrestha
 
Stress and Deformation Analysis on a Simplified Elliptic Paraboloid Model of ...
Stress and Deformation Analysis on a Simplified Elliptic Paraboloid Model of ...Stress and Deformation Analysis on a Simplified Elliptic Paraboloid Model of ...
Stress and Deformation Analysis on a Simplified Elliptic Paraboloid Model of ...Jin Tanizaki
 
Van schie2010
Van schie2010Van schie2010
Van schie2010physiovj
 
Examine skin, bones and muscle histology
Examine skin, bones and muscle histologyExamine skin, bones and muscle histology
Examine skin, bones and muscle histologyNelsStewart
 
A three dimensional finite element analysis of tilted or parallel implant.ppt...
A three dimensional finite element analysis of tilted or parallel implant.ppt...A three dimensional finite element analysis of tilted or parallel implant.ppt...
A three dimensional finite element analysis of tilted or parallel implant.ppt...enochrao
 

Similaire à Modeling Upper Arm Trauma Using Finite Element Analysis (20)

Thesis_Censored_version - R Sjoukes
Thesis_Censored_version - R  SjoukesThesis_Censored_version - R  Sjoukes
Thesis_Censored_version - R Sjoukes
 
MR Elastography
MR ElastographyMR Elastography
MR Elastography
 
Considerations for analysis of endothelial shear stress — Robert Krams
Considerations for analysis of endothelial shear stress — Robert KramsConsiderations for analysis of endothelial shear stress — Robert Krams
Considerations for analysis of endothelial shear stress — Robert Krams
 
BaumannAP_EtAl_CMBBE2015
BaumannAP_EtAl_CMBBE2015BaumannAP_EtAl_CMBBE2015
BaumannAP_EtAl_CMBBE2015
 
Compressive behavior of soft muscle tissues
Compressive behavior of soft muscle tissuesCompressive behavior of soft muscle tissues
Compressive behavior of soft muscle tissues
 
art%3A10.1007%2Fs10237-015-0729-2 (5)
art%3A10.1007%2Fs10237-015-0729-2 (5)art%3A10.1007%2Fs10237-015-0729-2 (5)
art%3A10.1007%2Fs10237-015-0729-2 (5)
 
Ultrasound Elastography: Principles, techniques & clinical applications
Ultrasound Elastography: Principles, techniques & clinical applications Ultrasound Elastography: Principles, techniques & clinical applications
Ultrasound Elastography: Principles, techniques & clinical applications
 
Thermo elastography
Thermo elastographyThermo elastography
Thermo elastography
 
043 thermo elastography
043 thermo elastography043 thermo elastography
043 thermo elastography
 
043 thermo elastography
043 thermo elastography043 thermo elastography
043 thermo elastography
 
A Novel Approach for Measuring Electrical Impedance Tomography for Local Tiss...
A Novel Approach for Measuring Electrical Impedance Tomography for Local Tiss...A Novel Approach for Measuring Electrical Impedance Tomography for Local Tiss...
A Novel Approach for Measuring Electrical Impedance Tomography for Local Tiss...
 
Df reg3
Df reg3Df reg3
Df reg3
 
INVESTIGATING THE USE OF IMPEDANCE PLETHYSMOGRAPHY FOR DETECTING DECREASED BL...
INVESTIGATING THE USE OF IMPEDANCE PLETHYSMOGRAPHY FOR DETECTING DECREASED BL...INVESTIGATING THE USE OF IMPEDANCE PLETHYSMOGRAPHY FOR DETECTING DECREASED BL...
INVESTIGATING THE USE OF IMPEDANCE PLETHYSMOGRAPHY FOR DETECTING DECREASED BL...
 
Aortic Valve Modelling
Aortic Valve ModellingAortic Valve Modelling
Aortic Valve Modelling
 
Elastography
ElastographyElastography
Elastography
 
MRI-Magnetic Resonance Elastography (MRE) -Avinesh Shrestha
MRI-Magnetic Resonance Elastography (MRE) -Avinesh ShresthaMRI-Magnetic Resonance Elastography (MRE) -Avinesh Shrestha
MRI-Magnetic Resonance Elastography (MRE) -Avinesh Shrestha
 
Stress and Deformation Analysis on a Simplified Elliptic Paraboloid Model of ...
Stress and Deformation Analysis on a Simplified Elliptic Paraboloid Model of ...Stress and Deformation Analysis on a Simplified Elliptic Paraboloid Model of ...
Stress and Deformation Analysis on a Simplified Elliptic Paraboloid Model of ...
 
Van schie2010
Van schie2010Van schie2010
Van schie2010
 
Examine skin, bones and muscle histology
Examine skin, bones and muscle histologyExamine skin, bones and muscle histology
Examine skin, bones and muscle histology
 
A three dimensional finite element analysis of tilted or parallel implant.ppt...
A three dimensional finite element analysis of tilted or parallel implant.ppt...A three dimensional finite element analysis of tilted or parallel implant.ppt...
A three dimensional finite element analysis of tilted or parallel implant.ppt...
 

Modeling Upper Arm Trauma Using Finite Element Analysis

  • 1.     MODELING  UPPER  ARM  TRAUMA  USING  FINITE   ELEMENT  ANALYSIS                   By       Caroline  Ashford,  Brooke  Burns,  Connor  McDermott,  and  Maggie  Shilling       Dr.  Cullinane       Biomedical  Research       April  11th,  2014                                      
  • 2.   INTRODUCTION     Each  year  in  the  United  States,  six  million  men  and  women  are  victims  of  domestic  violence   (Domestic  Violence  Resource  Center,  2013).  The  presence  of  bruising  can  be  an  indicator  of   abuse,  particularly  in  locations  where  accidental  occurrence  is  infrequent  (Arkbarnia  and   Campbell,  2005).  Bruising  in  soft  connective  tissue  occurs  when  a  load  from  blunt  trauma   exceeds  the  ultimate  strength  of  capillaries  (Huang  et  al.,  2012).  Minimal  research  of  bruising  at   the  capillary  level  inhibits  effective  abuse  diagnosis.  Determining  the  failure  threshold  of   capillaries  and  investigating  the  mechanism  under  which  they  fail  may  eventually  enable   physicians  to  better  differentiate  and  diagnose  abuse.     When  capillaries  fail,  blood  pools  into  the  surrounding  tissue,  resulting  in  discoloration,   minor  swelling,  and  pain  (Kumar  et.  al.,  2009;;  DiMaio  and  DiMaio,  2001).  Shear  stress  and   hydraulic  induced  tensile  stress  are  two  hypothesized  modes  of  capillary  failure.  Shear  stress   occurs  when  a  region  of  tissue  containing  a  capillary  bed  resists  two  opposing  forces  acting  in   parallel  planes;;  resulting  in  shear  strain  (Tang  et  al.,  2013).  Hydraulic  induced  tensile  stress  in   bruising  is  defined  as  when  a  capillary  deforms  under  high  pressure  and  forces  blood  outside  the   compression  zone  (Tang  et  al.,  2013).  The  blood  being  forced  at  high  pressure  from  one  area  to   another  acts  analogously  to  that  of  water  in  a  hose;;  stress  is  applied  to  a  capillary  in  the   compression  zone  and  blood  disperses  from  the  area  of  impact  like  water  rushing  from  one  end   of  a  hose  to  another  as  a  truck  runs  over  it.  Pressure,  known  as  tensile  stress,  builds  around  the   capillary  wall  and  at  the  capillary’s  bifurcations;;  this  balloons  the  capillary  and  increases  its   surface  area  (Tang  et  al.,  2013).  When  the  pressure  on  the  capillary  wall  exceeds  the  failure   threshold,  bruising  occurs  (Tang  et  al.,  2013).  In  bruise  models,  the  blood  in  a  capillary  has  been   modeled  as  an  incompressible  solid  (Tang  et  al.,  2013).  Because  blood  does  not  naturally  
  • 3. behave  as  an  incompressible  solid,  the  capillary  responds  differently  to  applied  loads.  The  failure   mechanism  of  a  capillary  modeled  with  a  fluid  is  hypothesized  to  differ  from  that  of  a  capillary   modeled  with  an  incompressible  solid.   Finite  Element  Analysis  solves  complex  systems  of  problems  as  a  series  of  discrete   finite  parts  through  mathematical  analysis  (Huang  et  al.,  2012).  The  results  of  forces  applied  to  a   capillary  modeled  through  ANSYS  Workbench®  15.0  precisely  demonstrate  the  true  mechanical   behavior  of  a  capillary  (Tang,  et  al.  2013).  A  mesh  generated  through  FEA  divides  the  model  into   subregions  that  are  connected  through  nodes.  As  the  regions  become  smaller,  the  simple   approximation  number  becomes  more  precise,  resulting  in  an  exact  solution.  The  model  can   then  be  solved  for  maximum  principal  stress  and  maximum  shear  strain.  The  stress  and  strain   magnitudes  are  displayed  as  scaled  colors  on  the  model,  which  represent  different  degrees  of   trauma  (Huang,  et  al.  2012).     Knowledge  of  bruising  at  the  capillary  level  is  limited  despite  the  fact  that  bruising  can  be   a  primary  clinical  indicator  of  abuse  (Akbarnia  and  Campbell,  2005).  Currently,  the  only  evidence   of  abuse  involving  bruising  is  the  presence  and  placement  of  bruises.  The  mechanism  in  which   a  capillary  fails  can  help  indicate  if  and  how  a  victim  was  abused,  and  thus  can  assist  in  abuse   arrest  decisions.  Modeling  upper  arm  trauma  through  Finite  Element  Analysis  will  characterize   bruising  at  the  capillary  level,  and  subsequently,  abuse.     MATERIALS  AND  METHODS   A  capillary  bed  and  arm  were  modeled  using  Finite  Element  Analysis  through  ANSYS   Workbench®  15.0.  When  constructing  the  capillary  two  primary  branches  were  swept  from  the   origins  and  connected  to  a  base  by  the  spline  tool.  These  branches  were  further  bifurcated.The   model  was  then  mirrored  to  create  a  complete  capillary  bed  and  material  properties  of  a  capillary  
  • 4. wall  were  assigned.  The  diameters  of  the  capillary  bed’s  internal  and  external  walls  were   0.007mm  and  0.008mm,  respectively.  The  length  of  the  capillary  bed  was  0.1  mm.  The  mesh  of   the  capillary  bed  contained  102,000  elements  and  200,000  nodes  (Figure  1).     A  cross  section  of  an  arm  inferior  to  the  deltoid  tuberosity  was  modeled  through   SolidWorks®  and  transferred  onto  ANSYS  Workbench®  15.0.  The  image  used  for  this  model   was  of  a  59  year-­old  female  cadaver  from  the  Visible  Human  Project.  Actual  measurements  of   the  cross-­section  were  unavailable,  so  the  upper-­arm  circumference  of  eighteen  random   females,  aged  50-­67  years  old,  were  recorded  in  a  community  survey.  The  average  arm   thickness  was  292.1  mm.  Relative  thicknesses  of  the  skin,  adipose,  muscle,  and  bone   sublayers  of  the  Visible  Human  Project  image  were  then  measured  through  ImageJ®.  The  arm   thickness  obtained  through  ImageJ®  was  compared  to  the  thickness  of  the  average  female  arm,   x̅=292.1  mm,  and  a  ratio  was  found.  Using  the  ratio,  the  estimated  thicknesses  of  the  skin,   adipose,  muscle,  and  bone  sections  were  then  calculated.  The  thicknesses  of  the  adipose,   muscle,  bone,  and  bone  marrow  sections  were  276.31  mm,  220.40  mm,  50.89  mm,  and  29.77   mm  respectively  (Table  1).     The  sublayers  of  skin,  adipose,  muscle  tissue,  and  bone,  modeled  through  SolidWorks®,   were  separately  extruded  from  the  center  to  a  length  of  200mm.  This  model  was  then   transferred  to  ANSYS  Workbench®  15.0  and  non-­linear  hyperelastic  material  properties  of  skin,   adipose  and  muscle  tissue  were  separately  assigned.  The  bone  section  was  modeled  as  a  fixed   support.  Modeling  hyper-­elastic  properties  better  characterizes  capillary  failure  because  the   mechanical  properties  of  an  arm  are  represented  in  each  tissue  layer.  The  model  of  the  arm   contained  81,000  elements  and  150,000  nodes  (Figure  2).     Because  the  thickness  of  a  capillary  is  0.017%  of  the  thickness  of  an  arm,  four-­level   hierarchical  sub-­models,  along  with  the  different  layers  of  the  arm,  skin,  adipose,  muscle  tissue,  
  • 5. and  bone,  were  represented  in  the  global  model.  The  muscle  was  sectioned  into  three   sub-­models,  the  smallest  containing  the  capillary  bed.  Using  ANSYS  Fluent,  a  fluid-­based  finite   element  analysis  sub-­program,  a  blood-­simulating  fluid  was  embedded  into  the  capillary  model.   Loads  less  than  and  equal  to  8.4x104  Pa  were  applied  to  the  model  over  multiple  simulations,   causing  the  capillary  to  deform  and  fail.       Table  1:  Dimensions  of  Modeled  Arm  and  Capillary   Name   Circumference  (mm)   Length  (mm)   Global  Arm   292.1   100   Skin   292.1   100   Adipose   276.31   100   Muscle   220.4   100   Bone   50.89   100   Bone  Marrow   29.77   100   Capillary   Internal:  0.044   External:  0.051   .2     Table  2:  Physical  and  Linear  Elastic  Material  Properties  (as  used  in  ANSYS  Workbench®   15.0):   Name   Density  (kg/mm^3)   Young’s  Modulus   (MPa)   Poisson’s  Ratio   Skin   1.05e-­6   0.035   0.48   Adipose   9.196e-­7   0.02442   0.49   Muscle   1.06e-­6   0.077   0.37   Capillary  wall   1e-­6   0.37   0.495   *numbers  for  material  properties  values  referenced  from  (Huang  et  al.,  2012).  
  • 6.   Figure  1:  3D  Capillary  Model  with  Generated  Mesh     Image  3:  3D  Global  Model  of  Female  Arm  with  Generated  Mesh  
  • 7. RESULTS   A  model  of  an  arm  and  embedded  capillary  bed  were  successfully  created  and  loaded  with  a   force  of  ___  over  10cm2 .  The  model  of  the  global  arm  consisted  of  sublayers  of  skin,  adipose,   muscle  tissue,  and  bone,  was  200mm  in  length,  and  contained  81,000  elements  and  150,000   nodes  (Figure  2).  The  diameters  of  the  capillary  bed’s  internal  and  external  walls  were  0.007mm   and  0.008mm,  respectively.  The  length  of  the  capillary  bed  was  0.1  mm.  The  mesh  of  the   capillary  bed  contained  102,000  elements  and  200,000  nodes  (Figure  1).   The  capillary  was  embedded  with  a  blood-­simulating  fluid,  modeled  through  ANSYS   Fluent  (Figure  1)  and  the  arm  was  loaded  with  varying  forces  of  ____Pa.    The  model  was  solved   for  maximum  principal  stress  and  maximum  shear  strain,  which  were  displayed  through  varying   colors  on  the  solved  model  (Figure  2.1).    Values  exceeding  8.4x104   Pa  indicated  the  capillary   failure  threshold.  The  maximum  principal  stress  recorded  in  the  solved  model  was  ___.  The   locations  of  peak  stress  included_____.       DISCUSSION     A  model  of  a  0.2mmbyX  mirror  image  capillary  bed,  consisting  of  eight  branches,  was   successfully  incorporated  into  a  global  arm  model  consisting  of  skin,  adipose,  muscle,  and  a   bone-­representing  fixed  support.  Different  loads  were  applied  to  the  model  and  peak  stress   occurred  under  the  impact  zone,  as  well  as  at  the  junctions  of  the  capillary.  The  shear  strain  did   not  exceed  the  ultimate  strength  of  capillaries,  as  hypothesized.     The  model  was  successfully  tested  for  hydraulic-­induced  tensile  stress  and  shear   stress.  ANSYS  Fluent  was  successfully  run  and  realistically  simulated  blood  flow  in  the  capillary   bed.  As  predicted,  the  blood  in  the  capillary  bed  pooled  into  one  area.The  capillary  failure   threshold  was  8.4  X  104  Pa  at  a  loading  rate  of  ___.    
  • 8. This  study  hypothesized  that  the  capillary  would  be  more  sensitive  to  loading  when   modeled  with  a  blood-­simulating  fluid.  This  is  due  to  the  viscoelasticity  of  blood  and  its  inability  to   compress  fluid.  Because  an  incompressible  solid  has  properties  similar  to  those  of  wet  clay,  a   capillary  modeled  with  an  incompressible  solid  responds  to  loading  in  a  way  which  allows  more   time  for  the  simulated  blood  to  move  away  from  the  area  of  impact.  When  modeling  a  capillary   through  ANSYS  Fluent,  the  blood-­simulating  fluid  is  forced  to  move  from  the  impact  zone  to  a   new  area  in  less  time.  The  velocity  at  which  the  blood  disperses  is  faster  than  that  of  an   incompressible  solid.  This  creates  an  increase  in  stress  upon  the  capillary  wall  and  makes  it   more  sensitive  to  loading.                                    
  • 9. References:   1.  Akbarnia  BA,  Campbell  R.,  The  Role  of  the  Orthopaedic  Surgeon  in  Child  Abuse.  In:  Morrissy  RT,   Weinstein  SL,  editors.  Pediatric  Orthopaedics.  6th  Ed.  Philadelphia:  Lippincott  Williams  &  Wilkins,  2005;;   1423-­1445   2.  Harris,  T.S.,  Bruises  in  Children:  Normal  or  Child  Abuse?  Journal  of  Pediatric  Health  Care,  2010.  24(4):  p.   216-­221   3.  Helfer  RE,  Kenpe  CH,  eds.  The  Battered  child.  Chicago:  University  of  Chicago  Press,  1968.   4.  Huang  Lu,  Culliane  D,  Grosse  I.  Finite  Element  Model  For  Soft  Tissue  Bruising,  University  of   Massachusetts  Amherst,  2012   5.  Tang  K,  Sharpe  W,  Schulz  A,  Tam  E,  Grosse  I,  Tis  J,  Cullinane  D.   Determining  Bruise  Etiology  in  Muscle  Tissue  Using  Finite  Element  Analysis.  Journal  of  Forensic  Sciences   2013.   6.  Zienkievicz  OC,  T.R,  Zhu  JZ.,  The  Finite  Element  Method:  Its  Basis  and  Fundamentals.  2005,  Amsterdam:   Elsevier  Butterworth-­Heinemann   7.  "Child  Abuse  and  Neglect  Statistics."  American  Human  Society.  American  Humane  Association,  2013.  Web.  14   Nov.  2013.   <http://www.americanhumane.org/children/stop-­child-­abuse/fact-­sheets/child-­abuse-­and-­neglect-­statistics.html>.     8.  "Domestic  Violence  Statistics."  Domestic  Violence  Resource  Center.  Domestic  Violence  Resource  Center,  n.d.   Web.  14  Nov.  2013.  <http://dvrc-­or.org/domestic/violence/resources/C61/#dom>.     9.  OED.  2013.  Print.     10.  Helfer  RE,  Kempe  CH,  eds.  The  battered  child.  Chicago:  University  of  Chicago  Press,  1968.   11.  "The  Visible  Human  Project."  U.S.  National  Library  of  Medicine.  N.p.,  n.d.  Web.  6  Dec.  2013.   <http://www.nlm.nih.gov/research/visible/>.   12.  "Visible  Human  Project."  Wikipedia.  N.p.:  n.p.,  n.d.  Wikipedia.  Web.  6  Dec.  2013.   <http://en.wikipedia.org/wiki/Visible_human_project>.