SlideShare une entreprise Scribd logo
1  sur  76
Candidate – Catalin Dincan
Main supervisor – Prof. Philip Kjær
Co-supervisors – Prof. Stig Munk Nielsen, Prof. Claus Leth Bak
Department of Energy Technology, 3rd.sept.2018
HIGH POWER MEDIUM VOLTAGE
DC/DC CONVERTER TECHNOLOGY
FOR DC WIND TURBINES
PH.D. DEFENCE
Agenda
Introduction
Application
Main hypotheses and objectives
Selection process
Survey of circuits & demonstrators
Proposed methodology
Selected topology
Topology (SRC#)
Theory
Simulated performance
10 MW Design example
Experiments
Proof of concept exp. (10 kW, 500V/5000V)
Soft-switching exp. with target devices
Conclusions
2www.dcc.et.aau.dk
HVAC (300 kVac)
MVAC (66 kVac)
HVDC (± 320 kVdc)
Introduction
Application
A case for HVDC wind farms with MVDC collection network
MVDC ((± 50 kVdc)
HVDC (± 320 kVdc)
3
www.dcc.et.aau.dk
How to decrease
cost of technology?
Introduction
Application:
Present solution: MVAC + HVDC Future solution: MVDC + HVDC
The new collection concept requires:
1. Turbines with MVDC output
2. DC cables from turbines to HVDC converter
3. MV/HV converter
*P. Kjær, Y. Chen – ECPE workshop 2015
4
www.dcc.et.aau.dk
G G G G G G G G G G
AC AC
DC
DC
AC
Onshore substation
HVDC
Submarine
Cable
400kV
400kV
HVDC
±320kVDC
3-Ph. XFMR
400kV/66kV
3-Ph. XFMR
400kV/66kV
66kV 66kV
WT WT WT WT WT WT WT WT WT WT
G G G G G G G G G G
AC
DC
AC
Onshore substation
HVDC
Submarine
Cable
400kV
HVDC
±320kVDC
DC/DC Converter
±320kVDC/
±50kVDC
WT WT WT WT WT WT WT WT WT WT
DC
DC
±50kVDC
DC
DC
±50kVDC
DC/DC Converter
±320kVDC/
±50kVDC
Introduction
Application
66kVAC wind
farm
±50kVDC wind
farm
Annual Energy losses
*P. Kjær, Y. Chen – ECPE workshop 2015
1-2% savings on losses
1-2% savings on BoM cost
No dc/dc converter
No experience
5
Meyer: “Key components for future offshore DC grids”, PhD RWTH
Aachen ISEA, 2007
Vulcan, Kjær, Helle, Sahukari, Haj-Maharsi, Singh: ”Cost of Energy Assessment
Methodology for offshore AC and DC wind power plants”, Proceedings of OPTIM,
pp.919-928, Brasov, Romania, May 2012www.dcc.et.aau.dk
Introduction
Main objectives
Pn = 5...15MW
Fsw = 0.5...X Khz
Vdc_out = ±35...±50kVdcVdc_in = ±0.5...±8kVdc
1. Identify
2. Design
3. Develop
High power
Medium voltage
DC/DC converter
Unidirectional Galvanic separation High voltage gain
6www.dcc.et.aau.dk
Off-the-shelf tech.
Requirements
optimal circuit
proof of concept
guide line
Selection process
Selected wind farm configuration
7www.dcc.et.aau.dk
~G
~
~G
~
~G
~G
~G
~ AC
Grid
Onshore
Substation
HVDC
Offshore
Substation
WTT cluster MVDC
Tomorrow
~G
~G
~G
AC
Grid
HVAC
WTT cluster MVDC
~
~ AC
Grid
Onshore
Substation
HVDC
Offshore
Substation 2
Today
~G
AC
Grid
HVAC
WTT cluster MVAC
~
~G
~
~G
~
~G
Offshore
Substation
1
WTT cluster MVAC
~
Offshore
Substation
1
~
Selection process
Turbine converter configuration
~G
1 2
~G
1 2
~G ~
~
1 2 3
~G ~ ~
1 2 3 4
8
Subject of interest!
Highest priorities: Circuit design, semiconductors
Lower priority: Transformer design
Selection process
Catalogue of circuits
Reduced Matrix
Full Bridge Matrix
SM SM
SM SM
SM SM
SM SM
SM SM
SM SM
SM
SM
SM
SM
SM
SM
SMSM
SMSM
SMSM
SMSM
SMSM
SMSM
SM
SM
SM
SM
SM
SM
MMC
Cell #1 Cell #2 Cell #N
Cascaded boost
SAB-Single Active Bridge
Dual Active Bridge
L Cs
Series Resonant Converter
LLC Converter
L
Lp
Cs
Jovcic 3phase step up resonant converter
Cell #1 Cell #2 Cell #N
37 topologies
. . . And others!
9
www.dcc.et.aau.dk
Selection process
Survey of demonstrators
Traction
10
Solid State Transformer
www.dcc.et.aau.dk
Selection process
Design drivers for DC wind turbines
List of functionalities:
1. Control DC power, voltage current
2. Reliable valve commutation
3. Maintenance
4. Reliability
5. Redundancy
6. Protection
7. EMC/EMI
Etc...
Design drivers:
Availability (rank-5)
Electrical losses (rank-4)
Ratings (rank-3)
Repair costs (rank-2)
Power density (rank-1)
11
AC/DCPMG DC/DC VMVDC
VLVDC
Grid conv. Control
?
Gen. Control
Torque Control DC link Control
www.dcc.et.aau.dk
www.dcc.et.aau.dk 12
A) C)
> 100 km
Monolithic transformer + rectifer
– Keep low number of components
– Start simple
Selection process
Modularity level
Selected modularity level
Introduction
Application
13
www.dcc.et.aau.dk
ESTIMATED ONLY FOR CORE SIZE
No longer bulky 50 Hz transformer! Savings in volume, weight!
AcoreA wdg = 2
kw Jrms Bmax
Pt
fsw
Volume
- rated power
kw
Bmax
Jrms
fsw
Pt
- Window utilization factor
- Flux density
- Winding current density
- Excitation frequency
Selection process
Proposed methodology
List of studies
Catalogue of circuits
SOA demonstrators
(Traction, SST, DC Wind turbines)
Selected topologies for further comparison
Specifications
Requirements
High power rating, Unidirectionality, High efficiency,
High power density, Galvanic separation, etc
List of Challenges + List of studies
Classic
Matrix
MMC isolated
M2DC non-isolated
High-gain
Single active bridge
Dual active bridge
Resonant
Switched capacitor cell
14www.dcc.et.aau.dk
M1
DC
DC
Steady state
M1
DC
DC
Dynamic
M1
DC
DC
Fault
M1
DC
DC
Short circuit
M1
DC
DC
Harmonics
List of studies
Sensitivity studies
Spice Spice Spice Plecs
M2 M3 M4 M5
FEM-thermal FEM-thermal
Ploss.diode
Ploss.IGBT
Ploss.trafo
PLECS
M6 M7 M8
Thermal studies
FEM-electric FEM-electric
Electrostatic/Electromagnetic
studies
M9 M10
Selection process
Turbine converter circuit specification is found from collector
network use cases (short circuit, surge, transients…)
15
0.95
1
1.05
1.1
1.15
1.2
1.25
1.3
1.35
F1 F2 F3 F4 F6 F7 D3
0
10
20
30
40
50
60
F1 F2 F3 F4 F6 F7 D3
Turbine circuit: DC capacitor voltage
Turbine circuit: Peak reactor current
x Vnom
x Inom
Simulation study results: overview of component loads
www.dcc.et.aau.dk
Output reactor value
Selection process
Proposed methodology
16www.dcc.et.aau.dk
Failure mode effect analysis
Data of
analysis
Team of
experts
Failure,
Effects,
Causes
Asses
criticality
assesment
Risk
mitigations
Actions
Effectivnes
analysis
Concept selection
with Pugh matrix
Enter current baseline
design
FULL Bridge converter
List optional concepts:
SAB
LLC
SRC
SRC#
List key design criterion
Availability
Losses
Ratings/Cost
Repair costs
Power density
Determine criterion
weight
Availability - 5
Losses - 4
Ratings/Cost - 3
Repair costs - 2
Power density - 1
Sum the scores for each
concept
Select best concept
Selection process
Circuits downselection
• From 37 topologies, down-select to 5 topologies
• Characteristics: single phase, unidirectional, galvanic separation, monolithic
transformer
17
www.dcc.et.aau.dk
Selection process
Hard-switched Full-bridge converter
18
Vgip
im
t
Pon
Poff
Full bridge converter - FB
Vg
is
ip
L
Selection process
Single active bridge
19
Single active bridge - SAB
Vg
is
ip 5
ip
im
Vg
t
Poff
L
Selection process
Impact of transformer non-idealities
Vp
Vs
Vp
Vs
Lm
Rm
LlkpRp RsLlks
Cp CsVp Vs
20www.dcc.et.aau.dk
AC
DC
Lm
Rm
LlkpRp RsLlks
ESR
RIGBT
ESR
Cr Lr
Cp
Cs
DC
AC
Transformer non-idealities – part of the resonant tank!
Issues with medium frequency/ high turns ratio transformers
Impact on
hard-switched rectifier
Selection process
Open loop – constant frequency LLC
21
Vg
is
ip
LLC converter, operated with constant frequency
ip im
Vg
No control possibility!
Soft-switching capability!
L C
Selection process
Open loop – constant frequency LLC
22
How to control a high power, medium voltage resonant converter ?
(a) Sub-resonant DCM
Vg
irp
Tr/2
Tsw/2
Fsw < Fr
Frequency control
Vg
irp
Tsw/2
ΦTr/2
Fsw > Fr
(a) Super-resonant DCM
Phase shift control
Fsw > Fr
a) Phase shift super-resonant (b) Phase shift sub-resonant
ΦTr/2
Tsw/2
Vg
irp
ΦTr/2
Tsw/2
Vg
irp
Fsw > Fr
Fsw < Fr
a) Dual control sub-resonant b)Dual control super-resonant
Vg
irp
Tsw/2
ΦTr/2
Vg
irp
Tsw/2
Tr/2
Fsw > Fr
Dual control
Selection process
Variable frequency Series Resonant Converter
23
Vg
is
ip
x
Φm
x
Animation
L C
Pn
Fsw
10MW
1MW
100Hz 1000Hz
Pout_avg
+Vg
-Vg
0
ir
im
t
t
t
Φm
x
Selection process
Series resonant converter with
Pulse Removal technique
24
Vg
is
ip
Series resonant converter with pulse removal technique – SRC#
x
Φm
Animation
L C Pn
Fsw
10MW
1MW
100Hz 1000Hz
im
is Vg Low power
im
is
Vg
Rated power
Possibillity to control power
Medium frequency transformer design
Soft-switching capability
Selection process
Classic SRC vs. SRC#
25
LIMITED OPERATIONAL RANGE
UP TO 6% LOSSES, DUE TO BULKY TRANSFORMER
www.dcc.et.aau.dk
Selection process
Selected topology – SRC#
26
SRC-series resonant converter
Foil
SRC#
Cover basic
design options!
´
Off-the-shelf technology
www.dcc.et.aau.dk
Topology – SRC#
Device waveforms
ZVS
Low
Turn-Off
Current
Vce Ice
S1
ZVS ZCS
D5
VdId
27www.dcc.et.aau.dk
S1 S3
S2 S4
D5 D7
D6 D8
S1 S3
S2 S4
D5 D7
D6 D8
Soft-switching  higher efficiency
Topology – SRC#
Modes of operation
28
V’G(t)
irs(t)
t
DC
AC
AC
DC
V’G
irs
VoutVin
t
V’G(t)
irs(t)
V’G(t)
irs(t)
t
t
V’G(t)
irs(t)
1 p.u. = 10 MW
0
0.5
1.0
1.5
2.0
2.5
3.0
Power[p.u] Fsw [Hz]
100 200 300 400 500 600 700 800 900 1000
DCM1
𝐏𝐨𝐮𝐭 = 𝟒 ∙ 𝐅𝐬𝐰 ∙ 𝐍 ∙ 𝐂 𝐫 ∙ 𝐕𝐢𝐧 ∙ 𝐕𝐨𝐮𝐭
DCM1
DCM2
CCM1-Hybrid
CCM1
www.dcc.et.aau.dk
Topology – SRC#
Voltage sharing in medium voltage diode valve
Rg
Cs
Rs
29
Line frequency diode
- cheap, robust, low cond. loss
”Characterization of diode valve in medium voltage dc/dc converter for wind turbines”, C. Dincan, P.C.Kjær, Proc. IEEE Eur. Conf.
Pow. Electron. And Appl. (EPE2016), Sept. 2016
Mineral oil
Diode Grading
resistor
RC
Snubber
Thermal
switch
Voltage
divider
Mineral oil
Metalic enclosure
Topology – SRC#
Voltage sharing in medium voltage diode valve
Rg
Cs
Rs
• R e v e r s e r e c o v e r y c h a r g e v a r i a t i o n
30
± 5%ΔQrr => ± 45% ΔV
Line frequency diode
- cheap, robust, low cond. loss
”Characterization of diode valve in medium voltage dc/dc converter for wind turbines”, C. Dincan, P.C.Kjær, Proc. IEEE Eur. Conf.
Pow. Electron. And Appl. (EPE2016), Sept. 2016
± 10%ΔCs => ± 10% ΔV
• s n u b b e r c a p a c i t o r v a r i a t i o n
Topology – SRC#
Line frequency diodes
31
irp
im irs
Tr/2
Tsw/2
TH
t[s]
If[A]
If[A]
Time[s] Time[s]
TH
Fsw,max
TH ≈20 us
TH < 0.2
2
Fsw,max ≈ 5 kHz
www.dcc.et.aau.dk
Topology – SRC#
Controller architecture
Pref
fsw
ΔV
PLANT
LPF
(CL FILTER)
Pref
Vin
fsw Io Ifil
Vo Vfil
FeedForward
Control
Modulator
Gate
pulses
PWMD=50%
Average
Calc.
+
+DIGITAL PI
COMPENSATOR+-
..
Iref Ierr
Io,avg
IoIo,avg
fsw,FFfsw,CPref
Gain scheduled
fsw
Average
Calc.
Vo,avg Vo
Vo,avg
32www.dcc.et.aau.dk
1.1
1 p.u. = 10 MW
0
0.5
1.0
1.5
2.0
2.5
3.0
Power[p.u]
Fsw [Hz]
100 200 300 400 500 600 700 800 900 1000
ΔV=10%
Turbine nominal power
Output power Pout
” Control aspects for a high power, resonant converter for DC wind turbines”, A. Tonellotto, E. Sarra, C. Dincan, P.C. Kjær, S.M. Nielsen, C.L.Bak,
Trans. In Power Electronics and Applic., under review.
Basic controller structure –to operate at steady state operation
Topology – SRC#
10 MW design example
LV power
Stacks
Mineral Oil/Ester
Water+Glycol
a) b)
MV valve
Mineral Oil/Ester
c) d)
Natural air cooling
33www.dcc.et.aau.dk
Topology – SRC#
Semiconductor and cooling technologies
Inverter: 4 x 4 IGBTs (6.5kV x 750A)
Heat sink with water
cooling
Power Module
+ Gate Driver
DC-link caps
Bus bar
a) b)
Volume = 0.42 m^3
For 3 parallel inverters
Forced fan cooling
1400mm
500mm
200mm
Metalic enclosure
Heat sink with holes
Mineral oil RC Snubber
Press-Pack Diode
Selected diode:
5SDD 06D6000
150mm
600mm
150m
m
900mm
900m
m
900mm
Volume ≈0.73 m^3
60mm
Device 6500 V x 750 A
(FZ750R65KE3)
Number of devices 3 x 4
Total loss 0.27%
Inverter Rectifier
Device 6500 V x 750 A
(5SDD 06D6000)
Number of devices 4 x 40
Total loss 0.4%
34www.dcc.et.aau.dk
Topology – SRC#
MF transformer
Core material Amorphous
Flux density 1.5 T
Core material Metglas
2605SA1
Turns ratio 25
Mag. Inductance 10 mH
Sec. Leak. Inductance 78 mH
Core mass 800 kg
Windings mass 380 kg
Total losses 0.2%
Medium frequency Transformer
35
1400
1000
160
160
950
70
510
730
510
16,00
335
160
700
Primarywinding
Secondarywinding
mm
mm
mm
mm
mm
mm
mm
mm
mm
mm
mm
Volume ≈ 0.72 m^3
www.dcc.et.aau.dk
Topology – SRC#
Resonant and output capacitor bank
240 capacitors
Volume ≈ 0.1 m^3
750 capacitors
Volume ≈ 0.1 m^3
60mm
90 mm
50 mm
65mm
C = 15 uF
Vdc = 2200 V
Irms = 45 A
C = 7.5 uF
Vdc = 1800 V
Irms = 20 Aa) b)
Cr 250 nF
LC tank losses 0.28%
Total number of
capacitors
240
Energy 1.25 kJ
Cout 50 uF
Current ripple 1%
Total number of
capacitors
400
Energy 250 kJ (τ = 25ms)
Resonant capacitor bank
36
Output
capacitor
bank
Topology – SRC#
Estimated volume
6m
2.5m
2.6m
Rectifier
Output
DC-link
MF
Transformer
3 x
Inverters
0.73m1.6m
0.42m
3
3
3
1.4m
1.4m
0.92m
1.12m1.12m
1.12m 0.92m
0.92m
0.7m 0.5m
0.6m
0.72m
3
3300 mm
1900
m
m
3450mm
Total volume ≈ 22 m^3
DC
DC
Total volume ≈ 3.55 m^3
a) b)
22 m 3.5 m
50 Hz XFRM DC/DC
3 3
≈ 6x
37
Experiments
Challenges and strategy of testing at MV level
Medium Voltage Laboratory
Inverter
Rectifier
10kW Load
(≈2500Ω)
5000V
DC Source
Transformer
+
Resonant tank
DSP
500V
DC source
Behind the wall
From 500V
DC Source
Ground stick
Connection
DSP
Driver
DriverDriver
Driver
+5V+15V
A
VV
A
Inverter
Rectifier MVDC Network
Transformer
+
Resonant Tank
5000V500V
POWER
ROOM
CONTROL
ROOM
Control and
communication
Internet
connection
Remote Analog Control
+10V
10kW,500V to 5000V
dc/dc resonant converter
Testing methodology
1. Strategy of testing? – power circulation, source-sink, etc?
2. Number of iteration?
3. How to solve as much as possible with one experiment?
MV experiments
1. Safety issues (medium voltage testing)
2. Responsability
3. Proper training
38
Experiments
Proof of concept (10 kW, 500V/5000V)
39” Design of a high power, resonant converter for DC wind turbines”, C. Dincan, P.C.Kjaer, Y. Chen, S.M.Nielsen, C.L.Bak, E. Sarra, V.
Sriram - Trans. In Power Electronics and Applic., under review
Experiments
Proof of concept (10 kW, 500V/5000V)
40www.dcc.et.aau.dk
irp – primary resonant current
irs – secondary resonant currentVg – inverter output voltage
Vout – output voltage ripple
≈ 5000 Vdc !
Animation
Experiments
Measurement of losses
41www.dcc.et.aau.dk
Iin Vin
Iout Vout
Iin Vin
Input power
Ice
Vce
Id
Vd
Iout Vout
Output power
Ice Vce
IGBT
Id Vd
DIODE
Experiments
Proof of concept (10 kW, 500V/5000V)
42
IGBT –
25% utilization
Diode –
25% utilization
Poor design of LrHand
Winded
Topology – SRC#
Proof of concept (10 kW, 500V/5000V)
A
50kΩ
1uF
Voltage sharing in medium voltage diode valve
43www.dcc.et.aau.dk
2.5 kV
Vrrm = 1.6 kV
Topology – SRC#
Proof of concept (10 kW, 500V/5000V)
kΩ
A
1.0nF
250
b)
Voltage sharing in medium voltage diode valve
44www.dcc.et.aau.dk
Experiments
Soft-switching exp. with target devices
Vin
Cin
Cr=100uFLr=180uH
1:1
Cout Vout
A
Vce
Vd
Heating element Heating element
A
V
Output capacitor is charged from the
SRC# and not from the input source
T1
T2
T3
T4
T5
irp irs
Vgice id
D5 D7
D6
D8
R
R
Input
DC-link
Resonant
caps.
Input
DC-link
Rectifier
Full bridge
inverter
Vin
Input source
MF
Transformer
45
”Soft-switching characterization of medium voltage IGBT power modules and press-pack diodes in a 1 kHz mega-watt dc/dc
resonant converter”, C. Dincan, P.C.Kjær, S.M. Nielsen, C.L. Bak, Proc. IEEE Eur. Conf. Pow. Electron. And Appl. (EPE2018)
Vin 4000V
Vout 1000V-4000V
Cin 101 uF
Cout 106 uF
Lm 55 mH
Lr 180 uH
IGBT 6.5 kV/0.75 kA
Diodes 6.5 kV/0.75 kA
Experiments
Soft-switching exp. with target devices
46
Principle of operation
Vin
Vout
PWM
Vg
IrpIrp very
small
t0 t1 t2 t3 t4
Experiments
Soft-switching exp. with target devices
Fsw = 800 Hz
Fsw = 300 Hz
47
Experiments
IGBT losses
T2-experiment
48
T2-simulation T5-experiment
Pon PcondPoff
Vin
Cin
Cr=100uFLr=180uH
1:1
Cout Vout
A
Vce
Vd
Heating element Heating element
A
V
Output capacitor is charged from the
SRC# and not from the input source
T1
T2
T3
T4
T5
irp irs
Vgice id
D5 D7
D6
D8
R
R
HV fiber optic isolated probe
HV probe HV probe
LEM current sensor
Effect of
parasitic
inductance
Experiments
IGBT losses
Turn-on process Turn-off process
Turn-off losses
Gate signal
-10V
+19V
Turn-on losses
-10V
+19V
Eon=8[mJ]Pon=8[W]
Fsw=1000Hz
Poff=30[W] Eoff=30[mJ]
www.dcc.et.aau.dk 49
Experiments
DIODE losses
D6-exp D6-sim
Vin
Cin
Cr=100uFLr=180uH
1:1
Cout Vout
A
Vce
Vd
Heating element Heating element
A
V
Output capacitor is charged from the
SRC# and not from the input source
T1
T2
T3
T4
T5
irp irs
Vgice id
D5 D7
D6
D8
R
R
HV fiber optic isolated probe
HV probe HV probe
LEM current sensor
D6-exp – forward voltage drop
Pon PcondPrev
X sub-interval!
Reverse
Recovery
Effect of
parasitic
inductance
50
Experiments
DIODE losses
Reverse
recovery losses
Erev = 4700[mJ]
Eon = 0[mJ]
Prev = 4700[kW]
Pon 4700[kW]Turn on
losses
51
Pon = 0 [W]
Prev = 4700 [W]
Experiments
Measured losses on soft-switching setup
52
Losses per device!
www.dcc.et.aau.dk
Experiments
Predicted losses on 10 MW example
53
Inverter
losses
0.27%
Rectifier
losses
0.41%
Inverter
losses
0.24%
Rectifier
losses
0.78%
Pn = 10MW
(theoretical example)
Pn ≈ 2.8MW;
average power during one pulse with Fsw = 1000 Hz
Target diode
Qrr = 2000 uC
Lab diode
Qrr = 10000 uC
Experiments
Soft-switching exp. with target devices
54
Confidence in semiconductor model is high!
?
www.dcc.et.aau.dk
Conclusions
Summary
55www.dcc.et.aau.dk
G AC
DC DC
AC
MVAC
G AC
DC DC
AC
MVDC
AC
DC
3%
1.5%
≈6 lower volume
o A high power, medium voltage, resonant DC/DC converter (SRC#) has
been proposed for MVDC application
o Medium voltage experiments have been performed and technology
readiness level has been increased
Conclusions
Main contributions
• A new modulation scheme introduced for a single-phase series resonant
converter
• A new converter philosophy for DC wind turbine application was proposed
• Circuit conduction modes identified
• Increased technology readiness level to TRL4 with experimental proof of
concept
• Validation of semiconductor loss model
• Novel soft-switching characterization setup introduced
• A closed loop control architecture was proposed and validated
• A design guide line for the SRC# is proposed
56www.dcc.et.aau.dk
Conclusions
Outlook and future work challenges
• Increase technology readiness level to TRL6-7, through the completion
of a thermal concept (0.2 MW and ± 10kV)
• Transformer loss model validation
10 kW/ ± 2.5 kVdc
0.2 MW/ ± 2.5 kVdc
0.2 MW/ ± 10 kVdc
2 MW/ ± 10 kVdc
> 10 MW/ ± 50 kVdc
Proof of
principle
Proof of
concept
Proof of
concept
(thermal)
Product
development
TRL 3-4 TRL 6 TRL 7 TRL 8-9
Ccc
PccPs PpTa
Pce
CpCs
Cce
TccTpTs
Tce
c
Rth
Rthcp
Rthps
Rthwa
Rthca
57
Draft Material
59www.dcc.et.aau.dk
List of publications
1. ”High power, medium voltage, series resonant converter for DC wind turbines”, C. Dincan, P.C.Kjaer, Y. Chen, S.M.Nielsen, C.L.Bak-
Trans. In Power Electronics and Applic., sept. 2018
2. ”Analysis of a high power, resonant DC-DC converter for DC wind turbines”, C. Dincan, P.C.Kjaer, Y. Chen, S.M.Nielsen, C.L.Bak-
Trans. In Power Electronics and Applic., sept. 2018
3. ” Design of a high power, resonant converter for DC wind turbines”, C. Dincan, P.C.Kjaer, Y. Chen, S.M.Nielsen, C.L.Bak, E. Sarra,
V. Sriram - Trans. In Power Electronics and Applic., under review.
4. ” Control aspects for a high power, resonant converter for DC wind turbines”, A. Tonellotto, E. Sarra, C. Dincan, P.C. Kjær, S.M.
Nielsen, C.L.Bak, Trans. In Power Electronics and Applic., under review.
5. ”Soft-switching characterization of medium voltage IGBT power modules and press-pack diodes in a 1 kHz mega-watt dc/dc resonant
converter”, C. Dincan, P.C.Kjær, S.M. Nielsen, C.L. Bak, Proc. IEEE Eur. Conf. Pow. Electron. And Appl. (EPE2018)
6. ”Analysis and design of a series resonant converter with wide operating range and minimized transformer ratings”, C. Dincan,
P.C.Kjær, Y. Chen, S.M. Nielsen, C.L. Bak, Proc. IEEE Eur. Conf. Pow. Electron. And Appl. (EPE2017)
7. ”Selection of DC/DC converter for offshore wind farm with MVDC power collection”, C. Dincan, P.C.Kjær, Y. Chen, S.M. Nielsen, C.L.
Bak, Proc. IEEE Eur. Conf. Pow. Electron. And Appl. (EPE2017)
8. ”Establishment of functional requirements to DC-connected wind turbine and their use in concept selection”, C. Dincan, P.C.Kjær, Y.
Chen, S.M. Nielsen, C.L. Bak, Proc. IEEE Int. Conf. On DC. Microgrids (ICDCM), June-2017
9. ”Characterization of diode valve in medium voltage dc/dc converter for wind turbines”, C. Dincan, P.C.Kjær, Proc. IEEE Eur. Conf.
Pow. Electron. And Appl. (EPE2016), Sept. 2016
10. ”Control and modulation for loss minimization for dc/dc converter for wind turbines”, C. Dincan, P.C.Kjær, Proc. PCIM, May. 2016
11. ”DC-DC converter and DC-DC conversion method”’, European Patent Application, no. 70059, Filed March, 2017.
60www.dcc.et.aau.dk
Draft material
SRC# modes of operation
a) DCM1
V’G(t)
T1 X T2 X
irs(t)
t
irp(t)
VG(t)
im(t)
VCr(t)
b) DCM2
t
V’G(t)
irs(t)
T1 Q1 X T2 Q2 X
t
VG(t)
irp(t)
im(t)
VCr(t)
c) CCM1-hybrid
Q1T1 T2 Q2X X
V’G(t)
irs(t)
t
VG(t)
irp(t)
t
VCr(t)
im(t)
d) CCM1
t
T1 Q1 T2 Q2D1 D2
V’G(t)
irs(t)
t
VG(t)
irp(t)
VCr(t)
im(t)
VCr
irs
T1 T1
T2T2
VCr
irs
T1
Q1
Q2
T1
T2T2
VCr
irs
T1
Q1
Q2
T1
T2T2
VCr
irs
T1
Q1
Q2
T1
T2T2
D1
D2
61
”Analysis of a high power, resonant DC-DC converter for DC wind turbines”, C. Dincan, P.C.Kjaer, Y. Chen, S.M.Nielsen, C.L.Bak-
Trans. In Power Electronics and Applic., sept. 2018
www.dcc.et.aau.dk
Draft material
Design guide line
SRC# converter specification: (Table I)
Pin=Pin_min...Pin_max;
Vin=Vin_min...Vin_max;
Vout=Vout_min...Vout_max
Component
library
1. Device
selection
Inverter Transformer
Trade off
cost/
losses?
LC Tank Rectifier
2. Basic electric
design
Nb.of parallel
inverters and
devices
3. Loss model
4. Physical layout
Vol, Weight, Loss,
Cost, Utilization
1. Core and
winding selection
2. Determine
physical layout
3. Determine
transformer
elements
Rp, Rs, Lleak, Cw
Lleak≤Lr
4. Loss model
5. Physical layout
Trade off
cost/
losses?
Vol, Weight, Loss,
Cost, Utilization
1. Capacitor
selection
3. Basic electric
design
Nb.of caps
4. Loss model
5. Physical layout
2. If Lleak = Lr, no
Lr
Trade off
cost/
losses?
Vol, Weight, Loss,
Cost, Utilization
1. Device
selection
2. Basic electric
design/
Nb.of diodes
Snubber design
3. Loss model
4. Physical layout
5. Determine
parasitic elements
Trade off
cost/
losses?
Vol, Weight, Loss,
Cost, Utilization
Voltage
distribution?
Vs. Freq.
Sweep?
ΣCostΣLoss ΣBomΣVol
Optimisation
Selection of Fsw and Fr (Fsw ≤ Fr ε [500...5000] Hz)
Calculate LC tank parameters C = ...Eq(?) L = ...Eq(?)
SRC# model: mode of operation and sensitivity studies
Steady state and worst case scenario waveforms
Transistor
data base
Transformer
data base
Diode data
base
Capacitors
selection
Cooling
system
Step 2. Sub-systems ratings
DC Link bank
1. Capacitor
selection
3. Basic electric
design
Nb.of caps
4. Loss model
5. Physical layout
2. If Lleak = Lr, no
Lr
Trade off
cost/
losses?
Vol, Weight, Loss,
Cost, Utilization
Step 3. Losses and temp.
Step 4. Volume and mass
Step 1. Converter ratings
Input specifications
Select design parameters
Technology selection
62
www.dcc.et.aau.dk
Draft material
Simulation, design and analysis tools
63www.dcc.et.aau.dk
Plecs Simulation model
Matlab analytical model
Matlab Transformer design tool
Experiments
Other performed experiments
AC
programmable
source
1000hz
D1
Iprim
V Vinv Load
1:6
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
D16
Experiment 1 (10kW,300V/2500V,1000Hz)
Goal: Quantify spread
between diode dynamic
voltage sharing after turn-off
to determine necessary
voltage design margin.
• Reverse recovery charge variation
12kW
AC programmable
source
500-1000Hz
64www.dcc.et.aau.dk
1kHz transformer2.5kV rectifier
Experiments
Other performed experiments
Experiment 2 (1kW,250V/500V,1000Hz)
Lr Cr
Vin
T1 T3
T2 T4
D5
D7
D9
D8
D1 D3
D2 D4
Vout
Lm
[ir]
irp irs
im
Cin
Cin
Cf
Cf
iout
RLoad
D6 D10
D11
D12
Goal: Demonstrate circuit and control
functionality
65www.dcc.et.aau.dk
Draft material
Loss model
Semiconductor loss model Transformer loss model
I[A]
PcondPcond = aI+bI
2
Psw
Pon
Poff
Prev
AVG
Psw = cI+dI
2
Pinverter
Prectifier
Device
Current
Vmes
Vnom
AVG
Detect
switching
event
I[A]
D[0..0.5]
IGSEFsw[Hz]
B[T]
Mfe[kg]
W/kg Pcore
Winding
current
Winding Rac
Pwindings
Ptransformer
FFT
Rdc
Skin effect
Proximity effectNlayers
Nturns
MLT
Irmsh
RACh
66www.dcc.et.aau.dk
Draft material
MF transformer prototypes
10 kW, 500V/5000V, 1kHz 100 kW, 4000V/4000V, 1kHz
67www.dcc.et.aau.dk
Draft material
MF transformer prototypes
68www.dcc.et.aau.dk
51,00
132,00
16,00
120,00
51,00
120,00
16,00
152,00
96,0
FoilFoil
FoilFoil
21,5
51,00
120,00
16,00
152,00
LitzFoil
21,5
51,00
120,00
16,00
152,00
RoundFoil
21,5
16,00 16,00
51,00
120,00
16,00
152,00
RoundFoil
21,5
a) V1 b) V2 c) V3 d) V4 e) V5
58,00
8,00
120,00
16,00
152,00
13,00
8,00
21,5
60,00
100,00
68,00
16,00
25,00
80,45
10,00
50,25
15,00
51,00
120,00
16,00
152,00
FoilFoil
21,5
16,00
58,00
V7
8,00
120,00
16,00
152,00
13,00
8,00
58,00
8,00
120,00
16,00
152,00
13,00
8,00
Foil
Foil
Foil
Foil
Litz
Litz
Foil
Foil
Foil
Foil
Round
Round
58,00
8,00
120,00
16,00
152,00
13,00
8,00
Foil
Foil
Foil
Foil
21,5
21,5 21,5 21,5
Foil Foil
Foil
Foil
f) V6
g) V7 h) V8 i) V9 i) V10 i) V11 i) V12
Unit: cm
Different prototypes have been investigated with the team from NTU Singapore
Draft material
MF transformer prototypes
69www.dcc.et.aau.dk
0
20000
40000
60000
80000
100000
120000
1 2 3 4 5 6 7 8 9 10 11 12
Winding losses
Core losses
Powerloss[W]
Total loss [W]
V2 V3 V4 V5 V6 V7 V8 V9 V10 V11V1
C.core
Amorphous
Foil/Litz
C.core
Amorphous
Foil/Round
C.core
Silicon Iron
Foil/Foil
Shell.core
Amorphous
Foil/Foil
Shell.core
Amorphous
Foil/Litz
Shell.core
Amorphous
Foil/Round
Shell.core
Silicon Iron
Foil/Foil
C.core
Amorphous
Foil/Foil
C.core
Amorphous
Foil/Foil
C.core
Amorphous
Foil/Foil
10x!
10x!
C.core
Amorphous
Foil/Foil
V12
C.core
Nanocrystalline
Foil/Foil
Lm 4x
smaller
Different prototypes have been investigated with the team from NTU Singapore
Draft material
MF transformer prototypes
70www.dcc.et.aau.dk
Design variation V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 Unit
A 510 510 510 510 510 580 580 580 580 600 510 250 mm
B 1320 1520 1520 1520 1520 1520 1520 1520 1520 1000 1520 800 mm
C 160 160 160 160 160 80 80 80 80 160 160 100 mm
D 1200 1200 1200 1200 1200 1200 1200 1200 1200 680 1200 500 mm
E 0 0 0 0 0 160 160 160 160 0 0 0 mm
T 213 213 213 213 213 213 213 213 213 213 213 150 mm
Table 3: Core geometry
Table 4: Core property
Design variation V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 Unit
Type Foil Foil Foil Foil Foil Foil Foil Foil Foil Foil Foil Foil -
Material Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper -
Width 1 1 1 1 1 1 1 1 1 1 1 0,8 mm
Heigh 950 950 950 950 950 950 950 950 950 650 950 475 mm
Area 950 950 950 950 950 950 950 950 950 650 950 380 mm^2
Table 5: Primary wire property
Design variation V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 Unit
Type Foil Foil Litz Round Foil Foil Litz Round Foil Foil Foil Foil -
Material Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper -
Width 1 1 8,12 7,35 1 1 1 7,35 1 1 1 0,8 mm
Heigh 38 38 8,12 7,35 38 38 38 7,35 38 38 38 20 mm
Area 38 38 21 0,51 38 38 21 42,42 38 38 38 16 mm^2
Table 6: Secondary wire property
Design variation V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 Unit
Type C-core C-core C-core C-core C-core Shell Shell Shell Shell C-core C-core C-core -
Material Amorphous Amorphous Amorphous Amorphous Silicon Iron Amorphous Amorphous Amorphous Silicon Iron Amorphous Amorphous Nanocrystalline -
Area 280 280 280 280 280 280 280 280 280 280 280 116 cm^2
Volume 94827 116550 116553 116553 116553 121234 121234 121234 121234 87244 116533 26250 cm^3
Area product 777000 777024 777024 777024 777024 1063296 1063296 1063296 1063296 648883 777024 37500 cm^4
Weight 746 917 917 917 917 954 954 954 954 687 917 207 kg
Table 10: Design performance
Design variation V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 Unit
Flux density 1,58 0,78 0,78 0,78 0,78 0,78 0,78 0,78 0,78 0,78 0,76 0,97 T
Core loss 9481 3474 3474 3474 22000 3600 3600 3600 24000 10000 3310 8473 W
DC Winding loss 6849 14750 20990 154000 14750 16173 23800 15400 14750 - 15000 6569 W
AC Winding loss 11271 51168 55138 711000 51168 56131 60700 982000 51168 11000 54000 32000 W
Total loss 20752 54600 58612 714911 73168 59728 64400 985600 75168 21000 57300 40500 W
Efficiency 99,79 99,45 99,41 93,32 99,26832 99,4 99,36 91 99,24832 99.79 99,42 99,59 %
Draft material
Controller architecture
71www.dcc.et.aau.dk
” Control aspects for a high power, resonant converter for DC wind turbines”, A. Tonellotto, E. Sarra, C. Dincan, P.C. Kjær, S.M. Nielsen, C.L.Bak,
Trans. In Power Electronics and Applic., under review.
Draft material
Example-Protection during unintended trip
72www.dcc.et.aau.dk
Draft material
SRC# model with non-idealities included
73www.dcc.et.aau.dk
a)
b)
c)
d)
e)
f)
Qrr
RC
Qrr
Cp,Cs
Qrr
Lm
Rp,Rs
Rp,Rs
Cr Lr
Rp Rs Cr Lr
Lm
Rm
LlkpRp RsLlks Cr Lr
Lm
Rm
LlkpRp RsLlks Cr Lr
Qrr
Lm
Rm
LlkpRp RsLlks Cr Lr
Qrr
Csn
Rsn
Lm
Rm
LlkpRp RsLlks Cr Lr
Cp Cs
Qrr
Csn
Rsn
f)
irp
irp
Fsw=500 Hz
Fsw=900 Hz
10kW, 500V/5000V recorded waveforms vs. PLECs model
Selection process
Proposed methodology
74www.dcc.et.aau.dk
FMEA – Failure mode effect analysis
Data of
analysis
Team of
experts
Failure,
Effects,
Causes
Asses
criticality
assesment
Risk
mitigations
Actions
Effectivnes
analysis
FMEA procedure
1.System to sub-system decomposition
4. Classify levels of severity, occurence and detection
numbers for every sub-system failure mode.
2. Determine function for every sub-system
3. Determine failure mode, root cause and effects
Identify
likelihood of
failure
Occurence
Identify
severity
of failure
mode
Identify
likelyhood
of
detection
5.Calculate
RPN
Risk priority
Number
6.Identify
sub-systems
with highest
RPN
Selection process
Proposed methodology
75www.dcc.et.aau.dk
Careful at the Inverter!
Regardless of topology
RPN – risk priority number
”Establishment of functional requirements to DC-connected wind turbine and their use in concept selection”, C. Dincan,
P.C.Kjær, Y. Chen, S.M. Nielsen, C.L. Bak, Proc. IEEE Int. Conf. On DC. Microgrids (ICDCM), June-2017
Selection process
Proposed methodology
76
FB
SAB
LLCSRC
SRC#
0
1
Availability
Losses
Ratings
Repair costs
Power density
11
1 1
Worse
Better
Concept selection
with Pugh matrix
Enter current baseline
design
FULL Bridge converter
List optional concepts:
SAB
LLC
SRC
SRC#
List key design criterion
Availability
Losses
Ratings/Cost
Repair costs
Power density
Determine criterion
weight
Availability - 5
Losses - 4
Ratings/Cost - 3
Repair costs - 2
Power density - 1
Sum the scores for each
concept
Select best concept
”Selection of DC/DC converter for offshore wind farm with MVDC power collection”, C. Dincan, P.C.Kjær, Y. Chen, S.M. Nielsen, C.L. Bak, Proc. IEEE Eur. Conf.
Pow. Electron. And Appl. (EPE2017)
www.dcc.et.aau.dk

Contenu connexe

Tendances

Doc speed control of a dc motor using micro controller 8051
Doc speed control of a dc motor using micro controller 8051Doc speed control of a dc motor using micro controller 8051
Doc speed control of a dc motor using micro controller 8051
embdnew
 
Plc presentation
Plc presentationPlc presentation
Plc presentation
Akshay Modi
 

Tendances (20)

Gate driver design and inductance fabrication
Gate driver design and inductance fabricationGate driver design and inductance fabrication
Gate driver design and inductance fabrication
 
power electronics(ii)
power electronics(ii)power electronics(ii)
power electronics(ii)
 
INTERVIEW QUESTIONS ON POWER ELECTRONICS BY RAJ
INTERVIEW QUESTIONS ON POWER ELECTRONICS BY RAJ INTERVIEW QUESTIONS ON POWER ELECTRONICS BY RAJ
INTERVIEW QUESTIONS ON POWER ELECTRONICS BY RAJ
 
Design and simulation of Arduino Nano controlled DC-DC converters for low and...
Design and simulation of Arduino Nano controlled DC-DC converters for low and...Design and simulation of Arduino Nano controlled DC-DC converters for low and...
Design and simulation of Arduino Nano controlled DC-DC converters for low and...
 
High voltage power transformer construction
High voltage power transformer constructionHigh voltage power transformer construction
High voltage power transformer construction
 
Basics of plc_programming1
Basics of plc_programming1Basics of plc_programming1
Basics of plc_programming1
 
Kraus &amp; naimer control switches for special application kn130 gb0816
Kraus &amp; naimer control switches for special application kn130 gb0816Kraus &amp; naimer control switches for special application kn130 gb0816
Kraus &amp; naimer control switches for special application kn130 gb0816
 
INDUSTRIAL AUTOMATION USING PLC
INDUSTRIAL AUTOMATION USING PLCINDUSTRIAL AUTOMATION USING PLC
INDUSTRIAL AUTOMATION USING PLC
 
Doc speed control of a dc motor using micro controller 8051
Doc speed control of a dc motor using micro controller 8051Doc speed control of a dc motor using micro controller 8051
Doc speed control of a dc motor using micro controller 8051
 
Plc presentation
Plc presentationPlc presentation
Plc presentation
 
Arduino: Arduino lcd
Arduino: Arduino lcdArduino: Arduino lcd
Arduino: Arduino lcd
 
Gsm based transformer fault detection system
Gsm based transformer fault detection systemGsm based transformer fault detection system
Gsm based transformer fault detection system
 
Low Power Design Techniques for ASIC / SOC Design
Low Power Design Techniques for ASIC / SOC DesignLow Power Design Techniques for ASIC / SOC Design
Low Power Design Techniques for ASIC / SOC Design
 
Led monitors
Led monitorsLed monitors
Led monitors
 
Power Grid Control System
Power Grid Control SystemPower Grid Control System
Power Grid Control System
 
Plc 101
Plc 101Plc 101
Plc 101
 
Speed Control Of DC motor By Using PWM Technique
Speed Control Of DC motor By Using PWM TechniqueSpeed Control Of DC motor By Using PWM Technique
Speed Control Of DC motor By Using PWM Technique
 
Dissolved Gas Analysis in Transformer Oil
Dissolved Gas Analysis in Transformer OilDissolved Gas Analysis in Transformer Oil
Dissolved Gas Analysis in Transformer Oil
 
PLC Architecture
PLC ArchitecturePLC Architecture
PLC Architecture
 
FPGA Based Speed Control of BLDC Motor
FPGA Based Speed Control of BLDC MotorFPGA Based Speed Control of BLDC Motor
FPGA Based Speed Control of BLDC Motor
 

Similaire à Ph.D. Defence on "High power medium voltage dc/dc converter technology for DC wind turbines"

Final Report -Group-41
Final Report -Group-41Final Report -Group-41
Final Report -Group-41
Habib Ali Khan
 
Power factor corrector
Power factor correctorPower factor corrector
Power factor corrector
JoeChueng
 
Medium-Voltage, Gas-Insulated Arc-Resistant Switchgear Types 8DA10 & 8DB10
Medium-Voltage, Gas-Insulated Arc-Resistant Switchgear Types 8DA10 & 8DB10Medium-Voltage, Gas-Insulated Arc-Resistant Switchgear Types 8DA10 & 8DB10
Medium-Voltage, Gas-Insulated Arc-Resistant Switchgear Types 8DA10 & 8DB10
Power System Operation
 
Cigre test system description justifications and simulation results v3
Cigre test system   description justifications and simulation results v3Cigre test system   description justifications and simulation results v3
Cigre test system description justifications and simulation results v3
sebden
 

Similaire à Ph.D. Defence on "High power medium voltage dc/dc converter technology for DC wind turbines" (20)

Imperix - Rapid control prototyping solutions for power electronics
Imperix - Rapid control prototyping solutions for power electronicsImperix - Rapid control prototyping solutions for power electronics
Imperix - Rapid control prototyping solutions for power electronics
 
Switching Over Voltages (SOV)_Temporary Over Voltage (TOV).pdf
Switching Over Voltages (SOV)_Temporary Over Voltage (TOV).pdfSwitching Over Voltages (SOV)_Temporary Over Voltage (TOV).pdf
Switching Over Voltages (SOV)_Temporary Over Voltage (TOV).pdf
 
5378086.ppt
5378086.ppt5378086.ppt
5378086.ppt
 
Electrical Engineering Basics - What Design Engineers Need to Know
Electrical Engineering Basics - What Design Engineers Need to KnowElectrical Engineering Basics - What Design Engineers Need to Know
Electrical Engineering Basics - What Design Engineers Need to Know
 
Final Report -Group-41
Final Report -Group-41Final Report -Group-41
Final Report -Group-41
 
Maritime afternoon Event short
Maritime afternoon Event shortMaritime afternoon Event short
Maritime afternoon Event short
 
Group 8 hvdc
Group  8 hvdcGroup  8 hvdc
Group 8 hvdc
 
Group 8 hvdc
Group  8 hvdcGroup  8 hvdc
Group 8 hvdc
 
ACCC Conductor brochure
ACCC Conductor brochureACCC Conductor brochure
ACCC Conductor brochure
 
Split core ct, rogowski coil (2016)
Split core ct, rogowski coil (2016)Split core ct, rogowski coil (2016)
Split core ct, rogowski coil (2016)
 
3-Anandi.ppt
3-Anandi.ppt3-Anandi.ppt
3-Anandi.ppt
 
LPVLSI.ppt
LPVLSI.pptLPVLSI.ppt
LPVLSI.ppt
 
Low power methods.ppt
Low power methods.pptLow power methods.ppt
Low power methods.ppt
 
Anandi.ppt
Anandi.pptAnandi.ppt
Anandi.ppt
 
LPflow_updated.ppt
LPflow_updated.pptLPflow_updated.ppt
LPflow_updated.ppt
 
Power factor corrector
Power factor correctorPower factor corrector
Power factor corrector
 
Medium-Voltage, Gas-Insulated Arc-Resistant Switchgear Types 8DA10 & 8DB10
Medium-Voltage, Gas-Insulated Arc-Resistant Switchgear Types 8DA10 & 8DB10Medium-Voltage, Gas-Insulated Arc-Resistant Switchgear Types 8DA10 & 8DB10
Medium-Voltage, Gas-Insulated Arc-Resistant Switchgear Types 8DA10 & 8DB10
 
Neil Kirby: VSC HVDC Transmission and Emerging Technologies in DC Grids
Neil Kirby: VSC HVDC Transmission and Emerging Technologies in DC GridsNeil Kirby: VSC HVDC Transmission and Emerging Technologies in DC Grids
Neil Kirby: VSC HVDC Transmission and Emerging Technologies in DC Grids
 
Cigre test system description justifications and simulation results v3
Cigre test system   description justifications and simulation results v3Cigre test system   description justifications and simulation results v3
Cigre test system description justifications and simulation results v3
 
Three phase BLDC motor
Three phase BLDC motorThree phase BLDC motor
Three phase BLDC motor
 

Dernier

VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
dollysharma2066
 
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoorTop Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
dharasingh5698
 
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
amitlee9823
 

Dernier (20)

A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
 
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoorTop Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
 

Ph.D. Defence on "High power medium voltage dc/dc converter technology for DC wind turbines"

  • 1. Candidate – Catalin Dincan Main supervisor – Prof. Philip Kjær Co-supervisors – Prof. Stig Munk Nielsen, Prof. Claus Leth Bak Department of Energy Technology, 3rd.sept.2018 HIGH POWER MEDIUM VOLTAGE DC/DC CONVERTER TECHNOLOGY FOR DC WIND TURBINES PH.D. DEFENCE
  • 2. Agenda Introduction Application Main hypotheses and objectives Selection process Survey of circuits & demonstrators Proposed methodology Selected topology Topology (SRC#) Theory Simulated performance 10 MW Design example Experiments Proof of concept exp. (10 kW, 500V/5000V) Soft-switching exp. with target devices Conclusions 2www.dcc.et.aau.dk
  • 3. HVAC (300 kVac) MVAC (66 kVac) HVDC (± 320 kVdc) Introduction Application A case for HVDC wind farms with MVDC collection network MVDC ((± 50 kVdc) HVDC (± 320 kVdc) 3 www.dcc.et.aau.dk How to decrease cost of technology?
  • 4. Introduction Application: Present solution: MVAC + HVDC Future solution: MVDC + HVDC The new collection concept requires: 1. Turbines with MVDC output 2. DC cables from turbines to HVDC converter 3. MV/HV converter *P. Kjær, Y. Chen – ECPE workshop 2015 4 www.dcc.et.aau.dk G G G G G G G G G G AC AC DC DC AC Onshore substation HVDC Submarine Cable 400kV 400kV HVDC ±320kVDC 3-Ph. XFMR 400kV/66kV 3-Ph. XFMR 400kV/66kV 66kV 66kV WT WT WT WT WT WT WT WT WT WT G G G G G G G G G G AC DC AC Onshore substation HVDC Submarine Cable 400kV HVDC ±320kVDC DC/DC Converter ±320kVDC/ ±50kVDC WT WT WT WT WT WT WT WT WT WT DC DC ±50kVDC DC DC ±50kVDC DC/DC Converter ±320kVDC/ ±50kVDC
  • 5. Introduction Application 66kVAC wind farm ±50kVDC wind farm Annual Energy losses *P. Kjær, Y. Chen – ECPE workshop 2015 1-2% savings on losses 1-2% savings on BoM cost No dc/dc converter No experience 5 Meyer: “Key components for future offshore DC grids”, PhD RWTH Aachen ISEA, 2007 Vulcan, Kjær, Helle, Sahukari, Haj-Maharsi, Singh: ”Cost of Energy Assessment Methodology for offshore AC and DC wind power plants”, Proceedings of OPTIM, pp.919-928, Brasov, Romania, May 2012www.dcc.et.aau.dk
  • 6. Introduction Main objectives Pn = 5...15MW Fsw = 0.5...X Khz Vdc_out = ±35...±50kVdcVdc_in = ±0.5...±8kVdc 1. Identify 2. Design 3. Develop High power Medium voltage DC/DC converter Unidirectional Galvanic separation High voltage gain 6www.dcc.et.aau.dk Off-the-shelf tech. Requirements optimal circuit proof of concept guide line
  • 7. Selection process Selected wind farm configuration 7www.dcc.et.aau.dk ~G ~ ~G ~ ~G ~G ~G ~ AC Grid Onshore Substation HVDC Offshore Substation WTT cluster MVDC Tomorrow ~G ~G ~G AC Grid HVAC WTT cluster MVDC ~ ~ AC Grid Onshore Substation HVDC Offshore Substation 2 Today ~G AC Grid HVAC WTT cluster MVAC ~ ~G ~ ~G ~ ~G Offshore Substation 1 WTT cluster MVAC ~ Offshore Substation 1 ~
  • 8. Selection process Turbine converter configuration ~G 1 2 ~G 1 2 ~G ~ ~ 1 2 3 ~G ~ ~ 1 2 3 4 8 Subject of interest! Highest priorities: Circuit design, semiconductors Lower priority: Transformer design
  • 9. Selection process Catalogue of circuits Reduced Matrix Full Bridge Matrix SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM SMSM SMSM SMSM SMSM SMSM SMSM SM SM SM SM SM SM MMC Cell #1 Cell #2 Cell #N Cascaded boost SAB-Single Active Bridge Dual Active Bridge L Cs Series Resonant Converter LLC Converter L Lp Cs Jovcic 3phase step up resonant converter Cell #1 Cell #2 Cell #N 37 topologies . . . And others! 9 www.dcc.et.aau.dk
  • 10. Selection process Survey of demonstrators Traction 10 Solid State Transformer www.dcc.et.aau.dk
  • 11. Selection process Design drivers for DC wind turbines List of functionalities: 1. Control DC power, voltage current 2. Reliable valve commutation 3. Maintenance 4. Reliability 5. Redundancy 6. Protection 7. EMC/EMI Etc... Design drivers: Availability (rank-5) Electrical losses (rank-4) Ratings (rank-3) Repair costs (rank-2) Power density (rank-1) 11 AC/DCPMG DC/DC VMVDC VLVDC Grid conv. Control ? Gen. Control Torque Control DC link Control www.dcc.et.aau.dk
  • 12. www.dcc.et.aau.dk 12 A) C) > 100 km Monolithic transformer + rectifer – Keep low number of components – Start simple Selection process Modularity level Selected modularity level
  • 13. Introduction Application 13 www.dcc.et.aau.dk ESTIMATED ONLY FOR CORE SIZE No longer bulky 50 Hz transformer! Savings in volume, weight! AcoreA wdg = 2 kw Jrms Bmax Pt fsw Volume - rated power kw Bmax Jrms fsw Pt - Window utilization factor - Flux density - Winding current density - Excitation frequency
  • 14. Selection process Proposed methodology List of studies Catalogue of circuits SOA demonstrators (Traction, SST, DC Wind turbines) Selected topologies for further comparison Specifications Requirements High power rating, Unidirectionality, High efficiency, High power density, Galvanic separation, etc List of Challenges + List of studies Classic Matrix MMC isolated M2DC non-isolated High-gain Single active bridge Dual active bridge Resonant Switched capacitor cell 14www.dcc.et.aau.dk M1 DC DC Steady state M1 DC DC Dynamic M1 DC DC Fault M1 DC DC Short circuit M1 DC DC Harmonics List of studies Sensitivity studies Spice Spice Spice Plecs M2 M3 M4 M5 FEM-thermal FEM-thermal Ploss.diode Ploss.IGBT Ploss.trafo PLECS M6 M7 M8 Thermal studies FEM-electric FEM-electric Electrostatic/Electromagnetic studies M9 M10
  • 15. Selection process Turbine converter circuit specification is found from collector network use cases (short circuit, surge, transients…) 15 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 F1 F2 F3 F4 F6 F7 D3 0 10 20 30 40 50 60 F1 F2 F3 F4 F6 F7 D3 Turbine circuit: DC capacitor voltage Turbine circuit: Peak reactor current x Vnom x Inom Simulation study results: overview of component loads www.dcc.et.aau.dk Output reactor value
  • 16. Selection process Proposed methodology 16www.dcc.et.aau.dk Failure mode effect analysis Data of analysis Team of experts Failure, Effects, Causes Asses criticality assesment Risk mitigations Actions Effectivnes analysis Concept selection with Pugh matrix Enter current baseline design FULL Bridge converter List optional concepts: SAB LLC SRC SRC# List key design criterion Availability Losses Ratings/Cost Repair costs Power density Determine criterion weight Availability - 5 Losses - 4 Ratings/Cost - 3 Repair costs - 2 Power density - 1 Sum the scores for each concept Select best concept
  • 17. Selection process Circuits downselection • From 37 topologies, down-select to 5 topologies • Characteristics: single phase, unidirectional, galvanic separation, monolithic transformer 17 www.dcc.et.aau.dk
  • 18. Selection process Hard-switched Full-bridge converter 18 Vgip im t Pon Poff Full bridge converter - FB Vg is ip L
  • 19. Selection process Single active bridge 19 Single active bridge - SAB Vg is ip 5 ip im Vg t Poff L
  • 20. Selection process Impact of transformer non-idealities Vp Vs Vp Vs Lm Rm LlkpRp RsLlks Cp CsVp Vs 20www.dcc.et.aau.dk AC DC Lm Rm LlkpRp RsLlks ESR RIGBT ESR Cr Lr Cp Cs DC AC Transformer non-idealities – part of the resonant tank! Issues with medium frequency/ high turns ratio transformers Impact on hard-switched rectifier
  • 21. Selection process Open loop – constant frequency LLC 21 Vg is ip LLC converter, operated with constant frequency ip im Vg No control possibility! Soft-switching capability! L C
  • 22. Selection process Open loop – constant frequency LLC 22 How to control a high power, medium voltage resonant converter ? (a) Sub-resonant DCM Vg irp Tr/2 Tsw/2 Fsw < Fr Frequency control Vg irp Tsw/2 ΦTr/2 Fsw > Fr (a) Super-resonant DCM Phase shift control Fsw > Fr a) Phase shift super-resonant (b) Phase shift sub-resonant ΦTr/2 Tsw/2 Vg irp ΦTr/2 Tsw/2 Vg irp Fsw > Fr Fsw < Fr a) Dual control sub-resonant b)Dual control super-resonant Vg irp Tsw/2 ΦTr/2 Vg irp Tsw/2 Tr/2 Fsw > Fr Dual control
  • 23. Selection process Variable frequency Series Resonant Converter 23 Vg is ip x Φm x Animation L C Pn Fsw 10MW 1MW 100Hz 1000Hz Pout_avg +Vg -Vg 0 ir im t t t Φm x
  • 24. Selection process Series resonant converter with Pulse Removal technique 24 Vg is ip Series resonant converter with pulse removal technique – SRC# x Φm Animation L C Pn Fsw 10MW 1MW 100Hz 1000Hz im is Vg Low power im is Vg Rated power Possibillity to control power Medium frequency transformer design Soft-switching capability
  • 25. Selection process Classic SRC vs. SRC# 25 LIMITED OPERATIONAL RANGE UP TO 6% LOSSES, DUE TO BULKY TRANSFORMER www.dcc.et.aau.dk
  • 26. Selection process Selected topology – SRC# 26 SRC-series resonant converter Foil SRC# Cover basic design options! ´ Off-the-shelf technology www.dcc.et.aau.dk
  • 27. Topology – SRC# Device waveforms ZVS Low Turn-Off Current Vce Ice S1 ZVS ZCS D5 VdId 27www.dcc.et.aau.dk S1 S3 S2 S4 D5 D7 D6 D8 S1 S3 S2 S4 D5 D7 D6 D8 Soft-switching  higher efficiency
  • 28. Topology – SRC# Modes of operation 28 V’G(t) irs(t) t DC AC AC DC V’G irs VoutVin t V’G(t) irs(t) V’G(t) irs(t) t t V’G(t) irs(t) 1 p.u. = 10 MW 0 0.5 1.0 1.5 2.0 2.5 3.0 Power[p.u] Fsw [Hz] 100 200 300 400 500 600 700 800 900 1000 DCM1 𝐏𝐨𝐮𝐭 = 𝟒 ∙ 𝐅𝐬𝐰 ∙ 𝐍 ∙ 𝐂 𝐫 ∙ 𝐕𝐢𝐧 ∙ 𝐕𝐨𝐮𝐭 DCM1 DCM2 CCM1-Hybrid CCM1 www.dcc.et.aau.dk
  • 29. Topology – SRC# Voltage sharing in medium voltage diode valve Rg Cs Rs 29 Line frequency diode - cheap, robust, low cond. loss ”Characterization of diode valve in medium voltage dc/dc converter for wind turbines”, C. Dincan, P.C.Kjær, Proc. IEEE Eur. Conf. Pow. Electron. And Appl. (EPE2016), Sept. 2016 Mineral oil Diode Grading resistor RC Snubber Thermal switch Voltage divider Mineral oil Metalic enclosure
  • 30. Topology – SRC# Voltage sharing in medium voltage diode valve Rg Cs Rs • R e v e r s e r e c o v e r y c h a r g e v a r i a t i o n 30 ± 5%ΔQrr => ± 45% ΔV Line frequency diode - cheap, robust, low cond. loss ”Characterization of diode valve in medium voltage dc/dc converter for wind turbines”, C. Dincan, P.C.Kjær, Proc. IEEE Eur. Conf. Pow. Electron. And Appl. (EPE2016), Sept. 2016 ± 10%ΔCs => ± 10% ΔV • s n u b b e r c a p a c i t o r v a r i a t i o n
  • 31. Topology – SRC# Line frequency diodes 31 irp im irs Tr/2 Tsw/2 TH t[s] If[A] If[A] Time[s] Time[s] TH Fsw,max TH ≈20 us TH < 0.2 2 Fsw,max ≈ 5 kHz www.dcc.et.aau.dk
  • 32. Topology – SRC# Controller architecture Pref fsw ΔV PLANT LPF (CL FILTER) Pref Vin fsw Io Ifil Vo Vfil FeedForward Control Modulator Gate pulses PWMD=50% Average Calc. + +DIGITAL PI COMPENSATOR+- .. Iref Ierr Io,avg IoIo,avg fsw,FFfsw,CPref Gain scheduled fsw Average Calc. Vo,avg Vo Vo,avg 32www.dcc.et.aau.dk 1.1 1 p.u. = 10 MW 0 0.5 1.0 1.5 2.0 2.5 3.0 Power[p.u] Fsw [Hz] 100 200 300 400 500 600 700 800 900 1000 ΔV=10% Turbine nominal power Output power Pout ” Control aspects for a high power, resonant converter for DC wind turbines”, A. Tonellotto, E. Sarra, C. Dincan, P.C. Kjær, S.M. Nielsen, C.L.Bak, Trans. In Power Electronics and Applic., under review. Basic controller structure –to operate at steady state operation
  • 33. Topology – SRC# 10 MW design example LV power Stacks Mineral Oil/Ester Water+Glycol a) b) MV valve Mineral Oil/Ester c) d) Natural air cooling 33www.dcc.et.aau.dk
  • 34. Topology – SRC# Semiconductor and cooling technologies Inverter: 4 x 4 IGBTs (6.5kV x 750A) Heat sink with water cooling Power Module + Gate Driver DC-link caps Bus bar a) b) Volume = 0.42 m^3 For 3 parallel inverters Forced fan cooling 1400mm 500mm 200mm Metalic enclosure Heat sink with holes Mineral oil RC Snubber Press-Pack Diode Selected diode: 5SDD 06D6000 150mm 600mm 150m m 900mm 900m m 900mm Volume ≈0.73 m^3 60mm Device 6500 V x 750 A (FZ750R65KE3) Number of devices 3 x 4 Total loss 0.27% Inverter Rectifier Device 6500 V x 750 A (5SDD 06D6000) Number of devices 4 x 40 Total loss 0.4% 34www.dcc.et.aau.dk
  • 35. Topology – SRC# MF transformer Core material Amorphous Flux density 1.5 T Core material Metglas 2605SA1 Turns ratio 25 Mag. Inductance 10 mH Sec. Leak. Inductance 78 mH Core mass 800 kg Windings mass 380 kg Total losses 0.2% Medium frequency Transformer 35 1400 1000 160 160 950 70 510 730 510 16,00 335 160 700 Primarywinding Secondarywinding mm mm mm mm mm mm mm mm mm mm mm Volume ≈ 0.72 m^3 www.dcc.et.aau.dk
  • 36. Topology – SRC# Resonant and output capacitor bank 240 capacitors Volume ≈ 0.1 m^3 750 capacitors Volume ≈ 0.1 m^3 60mm 90 mm 50 mm 65mm C = 15 uF Vdc = 2200 V Irms = 45 A C = 7.5 uF Vdc = 1800 V Irms = 20 Aa) b) Cr 250 nF LC tank losses 0.28% Total number of capacitors 240 Energy 1.25 kJ Cout 50 uF Current ripple 1% Total number of capacitors 400 Energy 250 kJ (τ = 25ms) Resonant capacitor bank 36 Output capacitor bank
  • 37. Topology – SRC# Estimated volume 6m 2.5m 2.6m Rectifier Output DC-link MF Transformer 3 x Inverters 0.73m1.6m 0.42m 3 3 3 1.4m 1.4m 0.92m 1.12m1.12m 1.12m 0.92m 0.92m 0.7m 0.5m 0.6m 0.72m 3 3300 mm 1900 m m 3450mm Total volume ≈ 22 m^3 DC DC Total volume ≈ 3.55 m^3 a) b) 22 m 3.5 m 50 Hz XFRM DC/DC 3 3 ≈ 6x 37
  • 38. Experiments Challenges and strategy of testing at MV level Medium Voltage Laboratory Inverter Rectifier 10kW Load (≈2500Ω) 5000V DC Source Transformer + Resonant tank DSP 500V DC source Behind the wall From 500V DC Source Ground stick Connection DSP Driver DriverDriver Driver +5V+15V A VV A Inverter Rectifier MVDC Network Transformer + Resonant Tank 5000V500V POWER ROOM CONTROL ROOM Control and communication Internet connection Remote Analog Control +10V 10kW,500V to 5000V dc/dc resonant converter Testing methodology 1. Strategy of testing? – power circulation, source-sink, etc? 2. Number of iteration? 3. How to solve as much as possible with one experiment? MV experiments 1. Safety issues (medium voltage testing) 2. Responsability 3. Proper training 38
  • 39. Experiments Proof of concept (10 kW, 500V/5000V) 39” Design of a high power, resonant converter for DC wind turbines”, C. Dincan, P.C.Kjaer, Y. Chen, S.M.Nielsen, C.L.Bak, E. Sarra, V. Sriram - Trans. In Power Electronics and Applic., under review
  • 40. Experiments Proof of concept (10 kW, 500V/5000V) 40www.dcc.et.aau.dk irp – primary resonant current irs – secondary resonant currentVg – inverter output voltage Vout – output voltage ripple ≈ 5000 Vdc ! Animation
  • 41. Experiments Measurement of losses 41www.dcc.et.aau.dk Iin Vin Iout Vout Iin Vin Input power Ice Vce Id Vd Iout Vout Output power Ice Vce IGBT Id Vd DIODE
  • 42. Experiments Proof of concept (10 kW, 500V/5000V) 42 IGBT – 25% utilization Diode – 25% utilization Poor design of LrHand Winded
  • 43. Topology – SRC# Proof of concept (10 kW, 500V/5000V) A 50kΩ 1uF Voltage sharing in medium voltage diode valve 43www.dcc.et.aau.dk 2.5 kV Vrrm = 1.6 kV
  • 44. Topology – SRC# Proof of concept (10 kW, 500V/5000V) kΩ A 1.0nF 250 b) Voltage sharing in medium voltage diode valve 44www.dcc.et.aau.dk
  • 45. Experiments Soft-switching exp. with target devices Vin Cin Cr=100uFLr=180uH 1:1 Cout Vout A Vce Vd Heating element Heating element A V Output capacitor is charged from the SRC# and not from the input source T1 T2 T3 T4 T5 irp irs Vgice id D5 D7 D6 D8 R R Input DC-link Resonant caps. Input DC-link Rectifier Full bridge inverter Vin Input source MF Transformer 45 ”Soft-switching characterization of medium voltage IGBT power modules and press-pack diodes in a 1 kHz mega-watt dc/dc resonant converter”, C. Dincan, P.C.Kjær, S.M. Nielsen, C.L. Bak, Proc. IEEE Eur. Conf. Pow. Electron. And Appl. (EPE2018) Vin 4000V Vout 1000V-4000V Cin 101 uF Cout 106 uF Lm 55 mH Lr 180 uH IGBT 6.5 kV/0.75 kA Diodes 6.5 kV/0.75 kA
  • 46. Experiments Soft-switching exp. with target devices 46 Principle of operation Vin Vout PWM Vg IrpIrp very small t0 t1 t2 t3 t4
  • 47. Experiments Soft-switching exp. with target devices Fsw = 800 Hz Fsw = 300 Hz 47
  • 48. Experiments IGBT losses T2-experiment 48 T2-simulation T5-experiment Pon PcondPoff Vin Cin Cr=100uFLr=180uH 1:1 Cout Vout A Vce Vd Heating element Heating element A V Output capacitor is charged from the SRC# and not from the input source T1 T2 T3 T4 T5 irp irs Vgice id D5 D7 D6 D8 R R HV fiber optic isolated probe HV probe HV probe LEM current sensor Effect of parasitic inductance
  • 49. Experiments IGBT losses Turn-on process Turn-off process Turn-off losses Gate signal -10V +19V Turn-on losses -10V +19V Eon=8[mJ]Pon=8[W] Fsw=1000Hz Poff=30[W] Eoff=30[mJ] www.dcc.et.aau.dk 49
  • 50. Experiments DIODE losses D6-exp D6-sim Vin Cin Cr=100uFLr=180uH 1:1 Cout Vout A Vce Vd Heating element Heating element A V Output capacitor is charged from the SRC# and not from the input source T1 T2 T3 T4 T5 irp irs Vgice id D5 D7 D6 D8 R R HV fiber optic isolated probe HV probe HV probe LEM current sensor D6-exp – forward voltage drop Pon PcondPrev X sub-interval! Reverse Recovery Effect of parasitic inductance 50
  • 51. Experiments DIODE losses Reverse recovery losses Erev = 4700[mJ] Eon = 0[mJ] Prev = 4700[kW] Pon 4700[kW]Turn on losses 51 Pon = 0 [W] Prev = 4700 [W]
  • 52. Experiments Measured losses on soft-switching setup 52 Losses per device! www.dcc.et.aau.dk
  • 53. Experiments Predicted losses on 10 MW example 53 Inverter losses 0.27% Rectifier losses 0.41% Inverter losses 0.24% Rectifier losses 0.78% Pn = 10MW (theoretical example) Pn ≈ 2.8MW; average power during one pulse with Fsw = 1000 Hz Target diode Qrr = 2000 uC Lab diode Qrr = 10000 uC
  • 54. Experiments Soft-switching exp. with target devices 54 Confidence in semiconductor model is high! ? www.dcc.et.aau.dk
  • 55. Conclusions Summary 55www.dcc.et.aau.dk G AC DC DC AC MVAC G AC DC DC AC MVDC AC DC 3% 1.5% ≈6 lower volume o A high power, medium voltage, resonant DC/DC converter (SRC#) has been proposed for MVDC application o Medium voltage experiments have been performed and technology readiness level has been increased
  • 56. Conclusions Main contributions • A new modulation scheme introduced for a single-phase series resonant converter • A new converter philosophy for DC wind turbine application was proposed • Circuit conduction modes identified • Increased technology readiness level to TRL4 with experimental proof of concept • Validation of semiconductor loss model • Novel soft-switching characterization setup introduced • A closed loop control architecture was proposed and validated • A design guide line for the SRC# is proposed 56www.dcc.et.aau.dk
  • 57. Conclusions Outlook and future work challenges • Increase technology readiness level to TRL6-7, through the completion of a thermal concept (0.2 MW and ± 10kV) • Transformer loss model validation 10 kW/ ± 2.5 kVdc 0.2 MW/ ± 2.5 kVdc 0.2 MW/ ± 10 kVdc 2 MW/ ± 10 kVdc > 10 MW/ ± 50 kVdc Proof of principle Proof of concept Proof of concept (thermal) Product development TRL 3-4 TRL 6 TRL 7 TRL 8-9 Ccc PccPs PpTa Pce CpCs Cce TccTpTs Tce c Rth Rthcp Rthps Rthwa Rthca 57
  • 58.
  • 60. List of publications 1. ”High power, medium voltage, series resonant converter for DC wind turbines”, C. Dincan, P.C.Kjaer, Y. Chen, S.M.Nielsen, C.L.Bak- Trans. In Power Electronics and Applic., sept. 2018 2. ”Analysis of a high power, resonant DC-DC converter for DC wind turbines”, C. Dincan, P.C.Kjaer, Y. Chen, S.M.Nielsen, C.L.Bak- Trans. In Power Electronics and Applic., sept. 2018 3. ” Design of a high power, resonant converter for DC wind turbines”, C. Dincan, P.C.Kjaer, Y. Chen, S.M.Nielsen, C.L.Bak, E. Sarra, V. Sriram - Trans. In Power Electronics and Applic., under review. 4. ” Control aspects for a high power, resonant converter for DC wind turbines”, A. Tonellotto, E. Sarra, C. Dincan, P.C. Kjær, S.M. Nielsen, C.L.Bak, Trans. In Power Electronics and Applic., under review. 5. ”Soft-switching characterization of medium voltage IGBT power modules and press-pack diodes in a 1 kHz mega-watt dc/dc resonant converter”, C. Dincan, P.C.Kjær, S.M. Nielsen, C.L. Bak, Proc. IEEE Eur. Conf. Pow. Electron. And Appl. (EPE2018) 6. ”Analysis and design of a series resonant converter with wide operating range and minimized transformer ratings”, C. Dincan, P.C.Kjær, Y. Chen, S.M. Nielsen, C.L. Bak, Proc. IEEE Eur. Conf. Pow. Electron. And Appl. (EPE2017) 7. ”Selection of DC/DC converter for offshore wind farm with MVDC power collection”, C. Dincan, P.C.Kjær, Y. Chen, S.M. Nielsen, C.L. Bak, Proc. IEEE Eur. Conf. Pow. Electron. And Appl. (EPE2017) 8. ”Establishment of functional requirements to DC-connected wind turbine and their use in concept selection”, C. Dincan, P.C.Kjær, Y. Chen, S.M. Nielsen, C.L. Bak, Proc. IEEE Int. Conf. On DC. Microgrids (ICDCM), June-2017 9. ”Characterization of diode valve in medium voltage dc/dc converter for wind turbines”, C. Dincan, P.C.Kjær, Proc. IEEE Eur. Conf. Pow. Electron. And Appl. (EPE2016), Sept. 2016 10. ”Control and modulation for loss minimization for dc/dc converter for wind turbines”, C. Dincan, P.C.Kjær, Proc. PCIM, May. 2016 11. ”DC-DC converter and DC-DC conversion method”’, European Patent Application, no. 70059, Filed March, 2017. 60www.dcc.et.aau.dk
  • 61. Draft material SRC# modes of operation a) DCM1 V’G(t) T1 X T2 X irs(t) t irp(t) VG(t) im(t) VCr(t) b) DCM2 t V’G(t) irs(t) T1 Q1 X T2 Q2 X t VG(t) irp(t) im(t) VCr(t) c) CCM1-hybrid Q1T1 T2 Q2X X V’G(t) irs(t) t VG(t) irp(t) t VCr(t) im(t) d) CCM1 t T1 Q1 T2 Q2D1 D2 V’G(t) irs(t) t VG(t) irp(t) VCr(t) im(t) VCr irs T1 T1 T2T2 VCr irs T1 Q1 Q2 T1 T2T2 VCr irs T1 Q1 Q2 T1 T2T2 VCr irs T1 Q1 Q2 T1 T2T2 D1 D2 61 ”Analysis of a high power, resonant DC-DC converter for DC wind turbines”, C. Dincan, P.C.Kjaer, Y. Chen, S.M.Nielsen, C.L.Bak- Trans. In Power Electronics and Applic., sept. 2018 www.dcc.et.aau.dk
  • 62. Draft material Design guide line SRC# converter specification: (Table I) Pin=Pin_min...Pin_max; Vin=Vin_min...Vin_max; Vout=Vout_min...Vout_max Component library 1. Device selection Inverter Transformer Trade off cost/ losses? LC Tank Rectifier 2. Basic electric design Nb.of parallel inverters and devices 3. Loss model 4. Physical layout Vol, Weight, Loss, Cost, Utilization 1. Core and winding selection 2. Determine physical layout 3. Determine transformer elements Rp, Rs, Lleak, Cw Lleak≤Lr 4. Loss model 5. Physical layout Trade off cost/ losses? Vol, Weight, Loss, Cost, Utilization 1. Capacitor selection 3. Basic electric design Nb.of caps 4. Loss model 5. Physical layout 2. If Lleak = Lr, no Lr Trade off cost/ losses? Vol, Weight, Loss, Cost, Utilization 1. Device selection 2. Basic electric design/ Nb.of diodes Snubber design 3. Loss model 4. Physical layout 5. Determine parasitic elements Trade off cost/ losses? Vol, Weight, Loss, Cost, Utilization Voltage distribution? Vs. Freq. Sweep? ΣCostΣLoss ΣBomΣVol Optimisation Selection of Fsw and Fr (Fsw ≤ Fr ε [500...5000] Hz) Calculate LC tank parameters C = ...Eq(?) L = ...Eq(?) SRC# model: mode of operation and sensitivity studies Steady state and worst case scenario waveforms Transistor data base Transformer data base Diode data base Capacitors selection Cooling system Step 2. Sub-systems ratings DC Link bank 1. Capacitor selection 3. Basic electric design Nb.of caps 4. Loss model 5. Physical layout 2. If Lleak = Lr, no Lr Trade off cost/ losses? Vol, Weight, Loss, Cost, Utilization Step 3. Losses and temp. Step 4. Volume and mass Step 1. Converter ratings Input specifications Select design parameters Technology selection 62 www.dcc.et.aau.dk
  • 63. Draft material Simulation, design and analysis tools 63www.dcc.et.aau.dk Plecs Simulation model Matlab analytical model Matlab Transformer design tool
  • 64. Experiments Other performed experiments AC programmable source 1000hz D1 Iprim V Vinv Load 1:6 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 Experiment 1 (10kW,300V/2500V,1000Hz) Goal: Quantify spread between diode dynamic voltage sharing after turn-off to determine necessary voltage design margin. • Reverse recovery charge variation 12kW AC programmable source 500-1000Hz 64www.dcc.et.aau.dk 1kHz transformer2.5kV rectifier
  • 65. Experiments Other performed experiments Experiment 2 (1kW,250V/500V,1000Hz) Lr Cr Vin T1 T3 T2 T4 D5 D7 D9 D8 D1 D3 D2 D4 Vout Lm [ir] irp irs im Cin Cin Cf Cf iout RLoad D6 D10 D11 D12 Goal: Demonstrate circuit and control functionality 65www.dcc.et.aau.dk
  • 66. Draft material Loss model Semiconductor loss model Transformer loss model I[A] PcondPcond = aI+bI 2 Psw Pon Poff Prev AVG Psw = cI+dI 2 Pinverter Prectifier Device Current Vmes Vnom AVG Detect switching event I[A] D[0..0.5] IGSEFsw[Hz] B[T] Mfe[kg] W/kg Pcore Winding current Winding Rac Pwindings Ptransformer FFT Rdc Skin effect Proximity effectNlayers Nturns MLT Irmsh RACh 66www.dcc.et.aau.dk
  • 67. Draft material MF transformer prototypes 10 kW, 500V/5000V, 1kHz 100 kW, 4000V/4000V, 1kHz 67www.dcc.et.aau.dk
  • 68. Draft material MF transformer prototypes 68www.dcc.et.aau.dk 51,00 132,00 16,00 120,00 51,00 120,00 16,00 152,00 96,0 FoilFoil FoilFoil 21,5 51,00 120,00 16,00 152,00 LitzFoil 21,5 51,00 120,00 16,00 152,00 RoundFoil 21,5 16,00 16,00 51,00 120,00 16,00 152,00 RoundFoil 21,5 a) V1 b) V2 c) V3 d) V4 e) V5 58,00 8,00 120,00 16,00 152,00 13,00 8,00 21,5 60,00 100,00 68,00 16,00 25,00 80,45 10,00 50,25 15,00 51,00 120,00 16,00 152,00 FoilFoil 21,5 16,00 58,00 V7 8,00 120,00 16,00 152,00 13,00 8,00 58,00 8,00 120,00 16,00 152,00 13,00 8,00 Foil Foil Foil Foil Litz Litz Foil Foil Foil Foil Round Round 58,00 8,00 120,00 16,00 152,00 13,00 8,00 Foil Foil Foil Foil 21,5 21,5 21,5 21,5 Foil Foil Foil Foil f) V6 g) V7 h) V8 i) V9 i) V10 i) V11 i) V12 Unit: cm Different prototypes have been investigated with the team from NTU Singapore
  • 69. Draft material MF transformer prototypes 69www.dcc.et.aau.dk 0 20000 40000 60000 80000 100000 120000 1 2 3 4 5 6 7 8 9 10 11 12 Winding losses Core losses Powerloss[W] Total loss [W] V2 V3 V4 V5 V6 V7 V8 V9 V10 V11V1 C.core Amorphous Foil/Litz C.core Amorphous Foil/Round C.core Silicon Iron Foil/Foil Shell.core Amorphous Foil/Foil Shell.core Amorphous Foil/Litz Shell.core Amorphous Foil/Round Shell.core Silicon Iron Foil/Foil C.core Amorphous Foil/Foil C.core Amorphous Foil/Foil C.core Amorphous Foil/Foil 10x! 10x! C.core Amorphous Foil/Foil V12 C.core Nanocrystalline Foil/Foil Lm 4x smaller Different prototypes have been investigated with the team from NTU Singapore
  • 70. Draft material MF transformer prototypes 70www.dcc.et.aau.dk Design variation V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 Unit A 510 510 510 510 510 580 580 580 580 600 510 250 mm B 1320 1520 1520 1520 1520 1520 1520 1520 1520 1000 1520 800 mm C 160 160 160 160 160 80 80 80 80 160 160 100 mm D 1200 1200 1200 1200 1200 1200 1200 1200 1200 680 1200 500 mm E 0 0 0 0 0 160 160 160 160 0 0 0 mm T 213 213 213 213 213 213 213 213 213 213 213 150 mm Table 3: Core geometry Table 4: Core property Design variation V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 Unit Type Foil Foil Foil Foil Foil Foil Foil Foil Foil Foil Foil Foil - Material Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper - Width 1 1 1 1 1 1 1 1 1 1 1 0,8 mm Heigh 950 950 950 950 950 950 950 950 950 650 950 475 mm Area 950 950 950 950 950 950 950 950 950 650 950 380 mm^2 Table 5: Primary wire property Design variation V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 Unit Type Foil Foil Litz Round Foil Foil Litz Round Foil Foil Foil Foil - Material Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper Copper - Width 1 1 8,12 7,35 1 1 1 7,35 1 1 1 0,8 mm Heigh 38 38 8,12 7,35 38 38 38 7,35 38 38 38 20 mm Area 38 38 21 0,51 38 38 21 42,42 38 38 38 16 mm^2 Table 6: Secondary wire property Design variation V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 Unit Type C-core C-core C-core C-core C-core Shell Shell Shell Shell C-core C-core C-core - Material Amorphous Amorphous Amorphous Amorphous Silicon Iron Amorphous Amorphous Amorphous Silicon Iron Amorphous Amorphous Nanocrystalline - Area 280 280 280 280 280 280 280 280 280 280 280 116 cm^2 Volume 94827 116550 116553 116553 116553 121234 121234 121234 121234 87244 116533 26250 cm^3 Area product 777000 777024 777024 777024 777024 1063296 1063296 1063296 1063296 648883 777024 37500 cm^4 Weight 746 917 917 917 917 954 954 954 954 687 917 207 kg Table 10: Design performance Design variation V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 Unit Flux density 1,58 0,78 0,78 0,78 0,78 0,78 0,78 0,78 0,78 0,78 0,76 0,97 T Core loss 9481 3474 3474 3474 22000 3600 3600 3600 24000 10000 3310 8473 W DC Winding loss 6849 14750 20990 154000 14750 16173 23800 15400 14750 - 15000 6569 W AC Winding loss 11271 51168 55138 711000 51168 56131 60700 982000 51168 11000 54000 32000 W Total loss 20752 54600 58612 714911 73168 59728 64400 985600 75168 21000 57300 40500 W Efficiency 99,79 99,45 99,41 93,32 99,26832 99,4 99,36 91 99,24832 99.79 99,42 99,59 %
  • 71. Draft material Controller architecture 71www.dcc.et.aau.dk ” Control aspects for a high power, resonant converter for DC wind turbines”, A. Tonellotto, E. Sarra, C. Dincan, P.C. Kjær, S.M. Nielsen, C.L.Bak, Trans. In Power Electronics and Applic., under review.
  • 72. Draft material Example-Protection during unintended trip 72www.dcc.et.aau.dk
  • 73. Draft material SRC# model with non-idealities included 73www.dcc.et.aau.dk a) b) c) d) e) f) Qrr RC Qrr Cp,Cs Qrr Lm Rp,Rs Rp,Rs Cr Lr Rp Rs Cr Lr Lm Rm LlkpRp RsLlks Cr Lr Lm Rm LlkpRp RsLlks Cr Lr Qrr Lm Rm LlkpRp RsLlks Cr Lr Qrr Csn Rsn Lm Rm LlkpRp RsLlks Cr Lr Cp Cs Qrr Csn Rsn f) irp irp Fsw=500 Hz Fsw=900 Hz 10kW, 500V/5000V recorded waveforms vs. PLECs model
  • 74. Selection process Proposed methodology 74www.dcc.et.aau.dk FMEA – Failure mode effect analysis Data of analysis Team of experts Failure, Effects, Causes Asses criticality assesment Risk mitigations Actions Effectivnes analysis FMEA procedure 1.System to sub-system decomposition 4. Classify levels of severity, occurence and detection numbers for every sub-system failure mode. 2. Determine function for every sub-system 3. Determine failure mode, root cause and effects Identify likelihood of failure Occurence Identify severity of failure mode Identify likelyhood of detection 5.Calculate RPN Risk priority Number 6.Identify sub-systems with highest RPN
  • 75. Selection process Proposed methodology 75www.dcc.et.aau.dk Careful at the Inverter! Regardless of topology RPN – risk priority number ”Establishment of functional requirements to DC-connected wind turbine and their use in concept selection”, C. Dincan, P.C.Kjær, Y. Chen, S.M. Nielsen, C.L. Bak, Proc. IEEE Int. Conf. On DC. Microgrids (ICDCM), June-2017
  • 76. Selection process Proposed methodology 76 FB SAB LLCSRC SRC# 0 1 Availability Losses Ratings Repair costs Power density 11 1 1 Worse Better Concept selection with Pugh matrix Enter current baseline design FULL Bridge converter List optional concepts: SAB LLC SRC SRC# List key design criterion Availability Losses Ratings/Cost Repair costs Power density Determine criterion weight Availability - 5 Losses - 4 Ratings/Cost - 3 Repair costs - 2 Power density - 1 Sum the scores for each concept Select best concept ”Selection of DC/DC converter for offshore wind farm with MVDC power collection”, C. Dincan, P.C.Kjær, Y. Chen, S.M. Nielsen, C.L. Bak, Proc. IEEE Eur. Conf. Pow. Electron. And Appl. (EPE2017) www.dcc.et.aau.dk

Notes de l'éditeur

  1. Agenda-two line stories - mixed theory, experiment and engineering quest
  2. Output reactor value - from list of studies
  3. SAB-DAB
  4. LC tank losses
  5. Control and protection were prioritized enough to operate at correct steady state operation, while neglecting any small signal stabiltiy between boundary modes.
  6. Add take aways for Vestas guys
  7. What’s this man?
  8. Maybe make an animation – or something more user friendly Hey-which are the design drivers?
  9. Maybe make an animation – or something more user friendly Hey-which are the design drivers?
  10. Maybe make an animation – or something more user friendly Hey-which are the design drivers?