Ce diaporama a bien été signalé.
Le téléchargement de votre SlideShare est en cours. ×

Missing cone artifact removal in odt using unsupervised deep learning in the projection domain

Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité

Consultez-les par la suite

1 sur 18 Publicité

Plus De Contenu Connexe

Diaporamas pour vous (20)

Similaire à Missing cone artifact removal in odt using unsupervised deep learning in the projection domain (20)

Publicité

Plus par Chung Hyung Jin (11)

Plus récents (20)

Publicité

Missing cone artifact removal in odt using unsupervised deep learning in the projection domain

  1. 1. Missing Cone Artifact Removal in ODT Using Unsupervised Deep Learning in the Projection Domain BISPL - BioImaging, Signal Processing, and Learning lab. KAIST, Korea
  2. 2. Part I: Missing cone artifact removal in ODT using unsupervised deep learning in the projection domain Optical Diffraction Tomography  Measures 3D refractive index with optical illumination  Reconstruction through field-retrieval (Fourier diffraction theorem)  GP used to enhance resolution 2
  3. 3. Part I: Missing cone artifact removal in ODT using unsupervised deep learning in the projection domain Missing cone prblem 3 … … 𝑘𝑚, 𝑘𝑛 𝑘𝑝 Measurement (hologram)  Problem arising in diffraction tomography • Low axial resolution, elongation in the optical axes Fourier Diffraction theorem
  4. 4. Part I: Missing cone artifact removal in ODT using unsupervised deep learning in the projection domain Missing cone prblem 4 … … 𝑘𝑚, 𝑘𝑛 𝑘𝑝 Measurement (hologram)  Problem arising in diffraction tomography • Low axial resolution, elongation in the optical axes Fourier Diffraction theorem
  5. 5. Part I: Missing cone artifact removal in ODT using unsupervised deep learning in the projection domain Missing cone prblem 5 … … 𝑘𝑚, 𝑘𝑛 𝑘𝑝 Measurement (hologram)  Problem arising in diffraction tomography • Low axial resolution, elongation in the optical axes Fourier Diffraction theorem
  6. 6. Part I: Missing cone artifact removal in ODT using unsupervised deep learning in the projection domain Missing cone prblem 6 … … 𝑘𝑚, 𝑘𝑛 𝑘𝑝 Measurement (hologram) Missing cone Missing cone problem in 3D  Problem arising in diffraction tomography • Low axial resolution, elongation in the optical axes
  7. 7. Part I: Missing cone artifact removal in ODT using unsupervised deep learning in the projection domain Missing cone prblem 7 Low resolution  Problem arising in diffraction tomography • Low axial resolution, elongation in the optical axes
  8. 8. Part I: Missing cone artifact removal in ODT using unsupervised deep learning in the projection domain Research Motivation 8 Parallel-ray projections gp-reconstruction  Close relationship btw. non-diffraction / diffraction tomography Approximation possible!
  9. 9. Part I: Missing cone artifact removal in ODT using unsupervised deep learning in the projection domain Research Motivation 9 Parallel-ray projections gp-reconstruction  Close relationship btw. non-diffraction / diffraction tomography • Projections aligned w. measurement angle: high resolution • Projections un-aligned w. measurement angle: low resolution 𝒴Ω
  10. 10. Part I: Missing cone artifact removal in ODT using unsupervised deep learning in the projection domain Research Motivation 10 Parallel-ray projections gp-reconstruction  Close relationship btw. non-diffraction / diffraction tomography • Projections aligned w. measurement angle: high resolution • Projections un-aligned w. measurement angle: low resolution 𝒴Ω 𝒴Ωc
  11. 11. Part I: Missing cone artifact removal in ODT using unsupervised deep learning in the projection domain Research Motivation 11 Parallel-ray projections gp-reconstruction  Close relationship btw. non-diffraction / diffraction tomography • Projections aligned w. measurement angle: high resolution • Projections un-aligned w. measurement angle: low resolution 𝒴Ω 𝒴Ωc projectionGAN 0° 20° 40° 80° 100° 60°
  12. 12. Part I: Missing cone artifact removal in ODT using unsupervised deep learning in the projection domain projectionGAN Field-retrieval GP-reconstruction … … 1st 23th 49th Cell Source Incident Wave Diffracted Wave Measured Hologram 1. Reconstruction 12
  13. 13. Part I: Missing cone artifact removal in ODT using unsupervised deep learning in the projection domain projectionGAN Field-retrieval GP-reconstruction … … 1st 23th 49th Cell Source Incident Wave Diffracted Wave TomoGAN Final reconstruction X-ray transform 𝜔1 𝜔2 𝜔3 𝜔4 𝜔5 𝜔1 𝜔2 𝜔3 𝜔4 𝜔5 FBP Measured Hologram 13 2. projectionGAN 1. Reconstruction
  14. 14. Part I: Missing cone artifact removal in ODT using unsupervised deep learning in the projection domain Results: numerical simulation 14 Elongation False signal projectionGAN
  15. 15. Part I: Missing cone artifact removal in ODT using unsupervised deep learning in the projection domain Results: microbead 15 Missing cone Inhomogeneous shape RI (True: 1.46) projectionGAN
  16. 16. Part I: Missing cone artifact removal in ODT using unsupervised deep learning in the projection domain Results: biological cells 16
  17. 17. Part I: Missing cone artifact removal in ODT using unsupervised deep learning in the projection domain Results: biological cells 17
  18. 18. Part I: Missing cone artifact removal in ODT using unsupervised deep learning in the projection domain Results: biological cells 18

×