SlideShare une entreprise Scribd logo
1  sur  35
Télécharger pour lire hors ligne
Laboratory of ecohydrology
´Ecole polytechnique f´ed´erale
de Lausanne
Data assimilation for distributed models:
an overview of applications with CATHY
Damiano Pasetto
Workshop on coupled hydrological modeling
Padova, 24 Sept. 2015
Damiano Pasetto DA for distributed models Padova - 24 September 2015
Table of Contents
Table of Contents
1 Introduction
2 Data assimilation methods
3 Hydrological applications
Damiano Pasetto DA for distributed models Padova - 24 September 2015
Introduction Motivations
State-space model
˙x(t) = f (x(t), λ, q(t), t) + w(t) t ∈ [0, ∞] transient model
y∗
k
y∗
k observations
x(t) state variables
Damiano Pasetto DA for distributed models Padova - 24 September 2015
Introduction Motivations
State-space model
˙x(t) = f (x(t), λ, q(t), t) + w(t) t ∈ [0, ∞] transient model
y∗
k
y∗
k observations
x(t) state variables
λ parameters
q(t) ATM forcings
x(0) initial condition
w(t) model structural error
Damiano Pasetto DA for distributed models Padova - 24 September 2015
Introduction Motivations
State-space model
˙x(t) = f (x(t), λ, q(t), t) + w(t) t ∈ [0, ∞] transient model
y∗
k ↔ yk = h (x, tk) + vk k = 1, . . . observation model
y∗
k observations
x(t) state variables
λ parameters
q(t) ATM forcings
x(0) initial condition
w(t) model structural error
vk measurement error
Damiano Pasetto DA for distributed models Padova - 24 September 2015
Introduction Motivations
State-space model
˙x(t) = f (x(t), λ, q(t), t) + w(t) t ∈ [0, ∞] transient model
y∗
k ↔ yk = h (x, tk) + vk k = 1, . . . observation model
y∗
k observations
x(t) state variables p (x(t))
λ parameters
q(t) ATM forcings
x(0) initial condition
w(t) model structural error
vk measurement error
Damiano Pasetto DA for distributed models Padova - 24 September 2015
Introduction Motivations
State-space model
˙x(t) = f (x(t), λ, q(t), t) + w(t) t ∈ [0, ∞] transient model
y∗
k ↔ yk = h (x, tk) + vk k = 1, . . . observation model
y∗
k observations
x(t) state variables p (x(t))
λ parameters p(λ)
q(t) ATM forcings
x(0) initial condition
w(t) model structural error
vk measurement error
Damiano Pasetto DA for distributed models Padova - 24 September 2015
Introduction Motivations
Motivations
Hydrological forecasting is subject to many sources of uncertainty
Initial condition
Forcing terms
Model parameters
(Model itself?)
Data Assimilation (DA)
Correct the model forecast considering the measurements
State . . . ˆxk−1 → x−
k ˆxk → x−
k+1 . . .
↓ ↑ ↓
Observations . . . y−
k ↔ y∗
k . . .
Damiano Pasetto DA for distributed models Padova - 24 September 2015
Introduction Motivations
Motivations
Hydrological forecasting is subject to many sources of uncertainty
Initial condition
Forcing terms
Model parameters
(Model itself?)
Data Assimilation (DA)
Correct the model forecast considering the measurements
State . . . ˆxk−1 → x−
k ˆxk → x−
k+1 . . .
↓ ↑ ↓
Observations . . . y−
k ↔ y∗
k . . .
Forecast pdf: π−(x(tk) | y1, . . . , yk−1)
Damiano Pasetto DA for distributed models Padova - 24 September 2015
Introduction Motivations
Motivations
Hydrological forecasting is subject to many sources of uncertainty
Initial condition
Forcing terms
Model parameters
(Model itself?)
Data Assimilation (DA)
Correct the model forecast considering the measurements
State . . . ˆxk−1 → x−
k ˆxk → x−
k+1 . . .
↓ ↑ ↓
Observations . . . y−
k ↔ y∗
k . . .
Forecast pdf: π−(x(tk) | y1, . . . , yk−1)
Filtering pdf: π+(x(tk) | y1, . . . , yk−1, yk)
Damiano Pasetto DA for distributed models Padova - 24 September 2015
Introduction A simple example with CATHY
Example: application to CATHY (CATchment HYdrology)
Coupled surface/subsurface model
Richards equation:
Sw(ψ)Ss
∂ψ
∂t
+ φ
∂Sw(ψ)
∂t
= · [KsKrw(Sw(ψ)) ( ψ + ηz)] + qss(h)
1-D path-based surface routing:
∂Q
∂t
+ ck
∂Q
∂s
= Dh
∂2Q
∂s2
+ ckqs(h, ψ)
BC-switching/forcing algorithm
(Camporese et al. 2010, WRR)
Damiano Pasetto DA for distributed models Padova - 24 September 2015
Introduction A simple example with CATHY
Example: application to CATHY (CATchment HYdrology)
Coupled surface/subsurface model
Richards equation:
Sw(ψ)Ss
∂ψ
∂t
+ φ
∂Sw(ψ)
∂t
= · [KsKrw(Sw(ψ)) ( ψ + ηz)] + qss(h)
1-D path-based surface routing:
∂Q
∂t
+ ck
∂Q
∂s
= Dh
∂2Q
∂s2
+ ckqs(h, ψ)
BC-switching/forcing algorithm
State variables: x = {ψ, Q}.
Measures: piezometric head, soil moisture, streamflow, electric
potential (ERT).
(Camporese et al. 2010, WRR)
Damiano Pasetto DA for distributed models Padova - 24 September 2015
Introduction A simple example with CATHY
DA: example on the V-catchment
3 m soil depth
Assimilation of streamflow
Uncertainty:
Initial conditions
ATM forcings
Damiano Pasetto DA for distributed models Padova - 24 September 2015
Introduction A simple example with CATHY
Forecast considering model uncertainties (open loop)
0 1800 3600 5400 7200 9000 10800 12600 14400
0
1
2
3
4
5
6Streamflow(m
3
/s)
TRUE
Observations
Open Loop
0 1800 3600 5400 7200 9000 10800 12600 14400
Time (s)
1.939
1.940
1.941
1.942
1.943
1.944
WaterStorage(10
6
m
3
)
Damiano Pasetto DA for distributed models Padova - 24 September 2015
Introduction A simple example with CATHY
Assimilation of measurement of streamflow
0 1800 3600 5400 7200 9000 10800 12600 14400
0
1
2
3
4
5
6Streamflow(m
3
/s)
TRUE
Observations
SIR
0 1800 3600 5400 7200 9000 10800 12600 14400
Time (s)
1.939
1.940
1.941
1.942
1.943
1.944
WaterStorage(10
6
m
3
)
Damiano Pasetto DA for distributed models Padova - 24 September 2015
Data assimilation methods EnKF and SIR
Forecast step: MC simulation
xi
0 ∼ p(x0), i = 1, . . . , N Initial samples
xi,−
k = f(xi
k−1, λi
, qi
k, tk) + wi
k Forecast
Damiano Pasetto DA for distributed models Padova - 24 September 2015
Data assimilation methods EnKF and SIR
Forecast step: MC simulation
xi
0 ∼ p(x0), i = 1, . . . , N Initial samples
xi,−
k = f(xi
k−1, λi
, qi
k, tk) + wi
k Forecast
Analysis step
Ensemble Kalman filter (EnKF, Evensen 1994): Kalman gain
ˆxi
k = xi,−
k + Kk y∗
k − h(xi,−
k )
Damiano Pasetto DA for distributed models Padova - 24 September 2015
Data assimilation methods EnKF and SIR
Forecast step: MC simulation
xi
0 ∼ p(x0), i = 1, . . . , N Initial samples
xi,−
k = f(xi
k−1, λi
, qi
k, tk) + wi
k Forecast
Analysis step
Ensemble Kalman filter (EnKF, Evensen 1994): Kalman gain
ˆxi
k = xi,−
k + Kk y∗
k − h(xi,−
k )
Sequential Importance Resampling (SIR):
weighted realizations xi
k, ωi
k
update weights with the likelihood and normalize
ωi
k = Cωi
k−1L(y∗
k | xi,−
k )
duplicate particles that have largest weights.
Damiano Pasetto DA for distributed models Padova - 24 September 2015
Data assimilation methods EnKF and SIR
Damiano Pasetto DA for distributed models Padova - 24 September 2015
−x ,N−1
{ }π
−
k 1:k−1
(x |y ) k
Hydrological applications 1. Geophysical coupled inversion
1. Geophysical coupled inversion: Electrical Resistivity Tomography
(Rossi et al. 2015, AWR)
Damiano Pasetto DA for distributed models Padova - 24 September 2015
Hydrological applications 1. Geophysical coupled inversion
Iterative particle filter
(Manoli et al. 2015, JCP)
Damiano Pasetto DA for distributed models Padova - 24 September 2015
Hydrological applications 1. Geophysical coupled inversion
Damiano Pasetto DA for distributed models Padova - 24 September 2015
Hydrological applications 2. Landscape Evolution Observatory (LEO)
2. Landscape Evolution Observatory (LEO)
Three convergent landscapes
30 m long, 11 m wide, 1 m soil
10 degrees average slope
Environmentally controlled
greenhouse facility
Landscape instrumentation
rainfall simulator
(3-45 mm/h)
10 load cells
6 flow meters for
seepage face
outflow
1,835 sensors
embedded in the
soil
Damiano Pasetto DA for distributed models Padova - 24 September 2015
Hydrological applications 2. Landscape Evolution Observatory (LEO)
First experiment at LEO (18 February 2013)
Experiment setup:
Unsaturated initial
conditions
Imposed rainfall:
≈12 mm/h
With homogeneous soil,
steady state expected
after 36 h
After the experiment: the rainfall was
stopped after 22 h due to the occurrence
of overland flow.
Damiano Pasetto DA for distributed models Padova - 24 September 2015
Hydrological applications 2. Landscape Evolution Observatory (LEO)
Synthetic scenario reproducing Experiment 1 at LEO
Assumption: Y = log(KS) is a Gaussian random field with exponential
covariance function. E[KS] = 10−4 m/s with coefficient of variation
100% (µY = −9.56, σY = 0.83)
Test case 1 (TC1): λx = λy = 8 m; λz= 0.5 m
Test case 2 (TC2): λx = λy = 4 m; λz= 0.25 m
Number of grid cells: 60×22×20= 26400
Sensor failure analysis
The assimilation is repeated decreasing the number of measurements,
from m=496 to m= 21 active sensors.
(Pasetto et al. 2015, AWR)
Damiano Pasetto DA for distributed models Padova - 24 September 2015
Hydrological applications 2. Landscape Evolution Observatory (LEO)
−5 0 5
5
10
15
20
25
d= 0.00÷0.05 m
x (m)
y(m)
−5 0 5
5
10
15
20
25
d= 0.15÷0.20 m
x (m)
−5 0 5
5
10
15
20
25
d= 0.30÷0.35 m
x (m)
−5 0 5
5
10
15
20
25
d= 0.50÷0.55 m
x (m)
−5 0 5
5
10
15
20
25
d= 0.80÷0.85 m
x (m)
−5 0 5
5
10
15
20
25
d= 0.95÷1.00 m
x (m)
10
−5
10
−4
10
−3
KS	
  (m/s)	
  True	
  
−5 −2 0 2 5
5
10
15
20
25
d= 0.00÷0.05 m
x (m)
y(m)
−5 −2 0 2 5
5
10
15
20
25
d= 0.15÷0.20 m
x (m)
−5 −2 0 2 5
5
10
15
20
25
d= 0.30÷0.35 m
x (m)
−5 −2 0 2 5
5
10
15
20
25
d= 0.50÷0.55 m
x (m)
−5 −2 0 2 5
5
10
15
20
25
d= 0.80÷0.85 m
x (m)
−5 −2 0 2 5
5
10
15
20
25
d= 0.95÷1.00 m
x (m)
10
−5
10
−4
10
−3
KS	
  (m/s)	
  m=	
  496	
  
True and estimated spatial distributions of KS in TC2.
Damiano Pasetto DA for distributed models Padova - 24 September 2015
Hydrological applications 2. Landscape Evolution Observatory (LEO)
0
0.5
1
1.5
OverlandFlow(m
3
/h)
Ensemble
Ensemble Mean
True
90% C.I.
TC1 (long correlation length)
0
0.5
1
1.5
SeepageFaceFlow(m
3
/h)
0 4 8 12 16 20 24 28 32 36
Time t (h)
40
60
80
100
120
WaterStorage(m
3
)
TC2 (short correlation length)
0 4 8 12 16 20 24 28 32 36
Time t (h)
Open loop: model response with 200 random realizations of the prior
distribution of Y = log(KS) without data assimilation.
Damiano Pasetto DA for distributed models Padova - 24 September 2015
Hydrological applications 2. Landscape Evolution Observatory (LEO)
0
0.5
Overland(m
3
/h)
True
m= 496
m= 196
m= 46
m= 21
TC1 (long correlation length)
0
0.5
1
1.5
Seepage(m
3
/h)
40
60
80
100
120
Storage(m
3
)
0 4 8 12 16 20 24 28
Time t (h)
0.001
0.01
RMSEonvwc
TC2 (short correlation length)
0 4 8 12 16 20 24 28 32 36
Time t (h)
Model response with the calibrated saturated hydraulic conductivity
Damiano Pasetto DA for distributed models Padova - 24 September 2015
Conclusions
Conclusions
Data assimilation methods help improve the forecast and reduce the
uncertainty of high dimensional hydrological models.
Data assimilation methods allow the online estimation of both the state
variables and the model parameters.
Damiano Pasetto DA for distributed models Padova - 24 September 2015
Conclusions
Conclusions
Data assimilation methods help improve the forecast and reduce the
uncertainty of high dimensional hydrological models.
Data assimilation methods allow the online estimation of both the state
variables and the model parameters.
Work in progress
Covariance localization and ensemble inflation to minimize
ill-conditioning and filter inbreeding in the EnKF update.
Update step performed with a combination of EnKF and SIR
(Gaussian Mixture Filters)
Surrogate models to accelerate the Monte Carlo simulation.
Damiano Pasetto DA for distributed models Padova - 24 September 2015
Conclusions
Thank you for your attention
References
D Pasetto, M Camporese, and M Putti. Ensemble Kalman filter versus particle filter for a
physically-based coupled surface-subsurface model, Adv Water Resources, 2012.
G Manoli, M Rossi, D Pasetto, R Deiana, S Ferraris, G Cassiani, and M Putti. An iterative
particle filter approach for coupled hydro-geophysical inversion of a controlled infiltration
experiment, J Comp Phys, 2015.
M Rossi, G Manoli, D Pasetto, R Deiana, S Ferraris, C Strobbia, M Putti, G Cassiani.
Coupled inverse modeling of a controlled irrigation experiment using multiple
hydro-geophysical data, Adv Water Resources, 2015.
D Pasetto, G-Y Niu, L Pangle, C Paniconi, M Putti, PA Troch. Impact of sensor failure on
the observability of flow dynamics at the Biosphere 2 LEO hillslopes, Adv Water
Resources, 2015.
Damiano Pasetto DA for distributed models Padova - 24 September 2015
Conclusions
Damiano Pasetto DA for distributed models Padova - 24 September 2015
Conclusions
Damiano Pasetto DA for distributed models Padova - 24 September 2015
Conclusions
Damiano Pasetto DA for distributed models Padova - 24 September 2015
Conclusions
Damiano Pasetto DA for distributed models Padova - 24 September 2015

Contenu connexe

Tendances

Morphological model of the river rhine branches from the concept to the opera...
Morphological model of the river rhine branches from the concept to the opera...Morphological model of the river rhine branches from the concept to the opera...
Morphological model of the river rhine branches from the concept to the opera...
Deltares
 
Question and answers webinar hydrodynamic modeling on the northwest european ...
Question and answers webinar hydrodynamic modeling on the northwest european ...Question and answers webinar hydrodynamic modeling on the northwest european ...
Question and answers webinar hydrodynamic modeling on the northwest european ...
Deltares
 
05 modello idrologico_bacini_rocciosi_di_testata_en
05 modello idrologico_bacini_rocciosi_di_testata_en05 modello idrologico_bacini_rocciosi_di_testata_en
05 modello idrologico_bacini_rocciosi_di_testata_en
CIAT
 
Non equilibrium equation for unsteady radial flow
Non equilibrium equation for unsteady radial flowNon equilibrium equation for unsteady radial flow
Non equilibrium equation for unsteady radial flow
Abhishek Gupta
 

Tendances (20)

Laura Gatel
Laura GatelLaura Gatel
Laura Gatel
 
Giacomo bertoldi seminar_30_padova_08
Giacomo bertoldi seminar_30_padova_08Giacomo bertoldi seminar_30_padova_08
Giacomo bertoldi seminar_30_padova_08
 
Simone Fatichi
Simone FatichiSimone Fatichi
Simone Fatichi
 
Aldo Fiori
Aldo FioriAldo Fiori
Aldo Fiori
 
Gabriele Baroni
Gabriele BaroniGabriele Baroni
Gabriele Baroni
 
Benettin ph.d. days presentation
Benettin ph.d. days presentationBenettin ph.d. days presentation
Benettin ph.d. days presentation
 
Morphological model of the river rhine branches from the concept to the opera...
Morphological model of the river rhine branches from the concept to the opera...Morphological model of the river rhine branches from the concept to the opera...
Morphological model of the river rhine branches from the concept to the opera...
 
DSD-INT 2017 A Metamodel To Estimate Run-Up Along Coral Reef-Lined Shorelines...
DSD-INT 2017 A Metamodel To Estimate Run-Up Along Coral Reef-Lined Shorelines...DSD-INT 2017 A Metamodel To Estimate Run-Up Along Coral Reef-Lined Shorelines...
DSD-INT 2017 A Metamodel To Estimate Run-Up Along Coral Reef-Lined Shorelines...
 
Webinar presentation ocean modelling and early-warning system for the gulf ...
Webinar presentation   ocean modelling and early-warning system for the gulf ...Webinar presentation   ocean modelling and early-warning system for the gulf ...
Webinar presentation ocean modelling and early-warning system for the gulf ...
 
DSD-INT 2017 Rip current generation from intersecting waves: Laboratory exper...
DSD-INT 2017 Rip current generation from intersecting waves: Laboratory exper...DSD-INT 2017 Rip current generation from intersecting waves: Laboratory exper...
DSD-INT 2017 Rip current generation from intersecting waves: Laboratory exper...
 
Marcello Fiorentini
Marcello FiorentiniMarcello Fiorentini
Marcello Fiorentini
 
SImulating Past Flood Event using Nays 2D Flood
SImulating Past Flood Event using Nays 2D FloodSImulating Past Flood Event using Nays 2D Flood
SImulating Past Flood Event using Nays 2D Flood
 
Question and answers webinar hydrodynamic modeling on the northwest european ...
Question and answers webinar hydrodynamic modeling on the northwest european ...Question and answers webinar hydrodynamic modeling on the northwest european ...
Question and answers webinar hydrodynamic modeling on the northwest european ...
 
Alfonso Senatore
Alfonso SenatoreAlfonso Senatore
Alfonso Senatore
 
Simulating several flood events using Nays 2D Flood
Simulating several flood events using Nays 2D FloodSimulating several flood events using Nays 2D Flood
Simulating several flood events using Nays 2D Flood
 
05 modello idrologico_bacini_rocciosi_di_testata_en
05 modello idrologico_bacini_rocciosi_di_testata_en05 modello idrologico_bacini_rocciosi_di_testata_en
05 modello idrologico_bacini_rocciosi_di_testata_en
 
Lattice Boltzmann methhod slides
Lattice Boltzmann methhod slidesLattice Boltzmann methhod slides
Lattice Boltzmann methhod slides
 
radial flow pumping test
radial flow pumping testradial flow pumping test
radial flow pumping test
 
Aerodynamic and Acoustic Parameters of a Coandã Flow – a Numerical Investigation
Aerodynamic and Acoustic Parameters of a Coandã Flow – a Numerical InvestigationAerodynamic and Acoustic Parameters of a Coandã Flow – a Numerical Investigation
Aerodynamic and Acoustic Parameters of a Coandã Flow – a Numerical Investigation
 
Non equilibrium equation for unsteady radial flow
Non equilibrium equation for unsteady radial flowNon equilibrium equation for unsteady radial flow
Non equilibrium equation for unsteady radial flow
 

En vedette

GCCOM\_DART: Ensemble Data Assimilation Analysis System for Sub-mesoscale Pr...
GCCOM\_DART:  Ensemble Data Assimilation Analysis System for Sub-mesoscale Pr...GCCOM\_DART:  Ensemble Data Assimilation Analysis System for Sub-mesoscale Pr...
GCCOM\_DART: Ensemble Data Assimilation Analysis System for Sub-mesoscale Pr...
Mariangel (Angie) Garcia, Ph.D
 
Introduction_to_dataassimilation
Introduction_to_dataassimilationIntroduction_to_dataassimilation
Introduction_to_dataassimilation
Nils van Velzen
 
Damian Barrett_Improved soil moisture and canopy conductance data products fo...
Damian Barrett_Improved soil moisture and canopy conductance data products fo...Damian Barrett_Improved soil moisture and canopy conductance data products fo...
Damian Barrett_Improved soil moisture and canopy conductance data products fo...
TERN Australia
 
WE1.L10 - USE OF NASA DATA IN THE JOINT CENTER FOR SATELLITE DATA ASSIMILATION
WE1.L10 - USE OF NASA DATA IN THE JOINT CENTER FOR SATELLITE DATA ASSIMILATIONWE1.L10 - USE OF NASA DATA IN THE JOINT CENTER FOR SATELLITE DATA ASSIMILATION
WE1.L10 - USE OF NASA DATA IN THE JOINT CENTER FOR SATELLITE DATA ASSIMILATION
grssieee
 
Yangetal Efficient Letkf
Yangetal Efficient LetkfYangetal Efficient Letkf
Yangetal Efficient Letkf
ShuChih.Yang
 
Datta-Barua, URSI AT-RASC, 2015, Canary Islands, Ionospheric-Thermospheric St...
Datta-Barua, URSI AT-RASC, 2015, Canary Islands, Ionospheric-Thermospheric St...Datta-Barua, URSI AT-RASC, 2015, Canary Islands, Ionospheric-Thermospheric St...
Datta-Barua, URSI AT-RASC, 2015, Canary Islands, Ionospheric-Thermospheric St...
Daniel Miladinovich
 
The Lorenz Weather Model
The Lorenz Weather ModelThe Lorenz Weather Model
The Lorenz Weather Model
Abhranil Das
 

En vedette (17)

Giorgio Cassiani
Giorgio CassianiGiorgio Cassiani
Giorgio Cassiani
 
GCCOM\_DART: Ensemble Data Assimilation Analysis System for Sub-mesoscale Pr...
GCCOM\_DART:  Ensemble Data Assimilation Analysis System for Sub-mesoscale Pr...GCCOM\_DART:  Ensemble Data Assimilation Analysis System for Sub-mesoscale Pr...
GCCOM\_DART: Ensemble Data Assimilation Analysis System for Sub-mesoscale Pr...
 
Introduction_to_dataassimilation
Introduction_to_dataassimilationIntroduction_to_dataassimilation
Introduction_to_dataassimilation
 
Damian Barrett_Improved soil moisture and canopy conductance data products fo...
Damian Barrett_Improved soil moisture and canopy conductance data products fo...Damian Barrett_Improved soil moisture and canopy conductance data products fo...
Damian Barrett_Improved soil moisture and canopy conductance data products fo...
 
Data assimilation with OpenDA
Data assimilation with OpenDAData assimilation with OpenDA
Data assimilation with OpenDA
 
Hidro Modelamiento
Hidro ModelamientoHidro Modelamiento
Hidro Modelamiento
 
WE1.L10 - USE OF NASA DATA IN THE JOINT CENTER FOR SATELLITE DATA ASSIMILATION
WE1.L10 - USE OF NASA DATA IN THE JOINT CENTER FOR SATELLITE DATA ASSIMILATIONWE1.L10 - USE OF NASA DATA IN THE JOINT CENTER FOR SATELLITE DATA ASSIMILATION
WE1.L10 - USE OF NASA DATA IN THE JOINT CENTER FOR SATELLITE DATA ASSIMILATION
 
Uncertainty Analysis and Data Assimilation of Remote Sensing Data for the Cal...
Uncertainty Analysis and Data Assimilation of Remote Sensing Data for the Cal...Uncertainty Analysis and Data Assimilation of Remote Sensing Data for the Cal...
Uncertainty Analysis and Data Assimilation of Remote Sensing Data for the Cal...
 
Yangetal Efficient Letkf
Yangetal Efficient LetkfYangetal Efficient Letkf
Yangetal Efficient Letkf
 
DSD-INT 2016 Data assimilation to improve volcanic ash forecasts using LOTOS-...
DSD-INT 2016 Data assimilation to improve volcanic ash forecasts using LOTOS-...DSD-INT 2016 Data assimilation to improve volcanic ash forecasts using LOTOS-...
DSD-INT 2016 Data assimilation to improve volcanic ash forecasts using LOTOS-...
 
Datta-Barua, URSI AT-RASC, 2015, Canary Islands, Ionospheric-Thermospheric St...
Datta-Barua, URSI AT-RASC, 2015, Canary Islands, Ionospheric-Thermospheric St...Datta-Barua, URSI AT-RASC, 2015, Canary Islands, Ionospheric-Thermospheric St...
Datta-Barua, URSI AT-RASC, 2015, Canary Islands, Ionospheric-Thermospheric St...
 
Luca Brocca seminario trento
Luca Brocca seminario trentoLuca Brocca seminario trento
Luca Brocca seminario trento
 
Dielectrics
DielectricsDielectrics
Dielectrics
 
Uni texus austin
Uni texus austinUni texus austin
Uni texus austin
 
The Lorenz Weather Model
The Lorenz Weather ModelThe Lorenz Weather Model
The Lorenz Weather Model
 
Introduction to remote sensing and gis
Introduction to remote sensing and gisIntroduction to remote sensing and gis
Introduction to remote sensing and gis
 
Application of Biostatistics
Application of BiostatisticsApplication of Biostatistics
Application of Biostatistics
 

Similaire à Damiano Pasetto

QCD Phase Diagram
QCD Phase DiagramQCD Phase Diagram
QCD Phase Diagram
RomanHllwieser
 
Sampling strategies for Sequential Monte Carlo (SMC) methods
Sampling strategies for Sequential Monte Carlo (SMC) methodsSampling strategies for Sequential Monte Carlo (SMC) methods
Sampling strategies for Sequential Monte Carlo (SMC) methods
Stephane Senecal
 
Physics-driven Spatiotemporal Regularization for High-dimensional Predictive...
 Physics-driven Spatiotemporal Regularization for High-dimensional Predictive... Physics-driven Spatiotemporal Regularization for High-dimensional Predictive...
Physics-driven Spatiotemporal Regularization for High-dimensional Predictive...
Hui Yang
 
Using Qualitative Knowledge in Numerical Learning
Using Qualitative Knowledge in Numerical LearningUsing Qualitative Knowledge in Numerical Learning
Using Qualitative Knowledge in Numerical Learning
butest
 
QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...
QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...
QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...
The Statistical and Applied Mathematical Sciences Institute
 
Lec02 feasibility problems
Lec02 feasibility problemsLec02 feasibility problems
Lec02 feasibility problems
Danny Luk
 

Similaire à Damiano Pasetto (20)

A contribution towards the development of a Virtual Wind Tunnel (VWT)
A contribution towards the development of a Virtual Wind Tunnel (VWT)A contribution towards the development of a Virtual Wind Tunnel (VWT)
A contribution towards the development of a Virtual Wind Tunnel (VWT)
 
QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...
QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...
QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...
 
Traffic flow modeling on road networks using Hamilton-Jacobi equations
Traffic flow modeling on road networks using Hamilton-Jacobi equationsTraffic flow modeling on road networks using Hamilton-Jacobi equations
Traffic flow modeling on road networks using Hamilton-Jacobi equations
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
 
Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d...
Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d...Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d...
Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d...
 
QCD Phase Diagram
QCD Phase DiagramQCD Phase Diagram
QCD Phase Diagram
 
Sampling strategies for Sequential Monte Carlo (SMC) methods
Sampling strategies for Sequential Monte Carlo (SMC) methodsSampling strategies for Sequential Monte Carlo (SMC) methods
Sampling strategies for Sequential Monte Carlo (SMC) methods
 
Micro to macro passage in traffic models including multi-anticipation effect
Micro to macro passage in traffic models including multi-anticipation effectMicro to macro passage in traffic models including multi-anticipation effect
Micro to macro passage in traffic models including multi-anticipation effect
 
Physics-driven Spatiotemporal Regularization for High-dimensional Predictive...
 Physics-driven Spatiotemporal Regularization for High-dimensional Predictive... Physics-driven Spatiotemporal Regularization for High-dimensional Predictive...
Physics-driven Spatiotemporal Regularization for High-dimensional Predictive...
 
Using Qualitative Knowledge in Numerical Learning
Using Qualitative Knowledge in Numerical LearningUsing Qualitative Knowledge in Numerical Learning
Using Qualitative Knowledge in Numerical Learning
 
Stein's method for functional Poisson approximation
Stein's method for functional Poisson approximationStein's method for functional Poisson approximation
Stein's method for functional Poisson approximation
 
Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applica...
Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applica...Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applica...
Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applica...
 
Mesoscopic multiclass traffic flow modeling on multi-lane sections
Mesoscopic multiclass traffic flow modeling on multi-lane sectionsMesoscopic multiclass traffic flow modeling on multi-lane sections
Mesoscopic multiclass traffic flow modeling on multi-lane sections
 
QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...
QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...
QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...
 
CLIM: Transition Workshop - Accounting for Model Errors Due to Sub-Grid Scale...
CLIM: Transition Workshop - Accounting for Model Errors Due to Sub-Grid Scale...CLIM: Transition Workshop - Accounting for Model Errors Due to Sub-Grid Scale...
CLIM: Transition Workshop - Accounting for Model Errors Due to Sub-Grid Scale...
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
Computational methods and vibrational properties applied to materials modeling
Computational methods and vibrational properties applied to materials modelingComputational methods and vibrational properties applied to materials modeling
Computational methods and vibrational properties applied to materials modeling
 
Lec02 feasibility problems
Lec02 feasibility problemsLec02 feasibility problems
Lec02 feasibility problems
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 

Dernier

Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and Classifications
Areesha Ahmad
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
levieagacer
 
Introduction,importance and scope of horticulture.pptx
Introduction,importance and scope of horticulture.pptxIntroduction,importance and scope of horticulture.pptx
Introduction,importance and scope of horticulture.pptx
Bhagirath Gogikar
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
PirithiRaju
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY
1301aanya
 
Conjugation, transduction and transformation
Conjugation, transduction and transformationConjugation, transduction and transformation
Conjugation, transduction and transformation
Areesha Ahmad
 

Dernier (20)

pumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit flypumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit fly
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)
 
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
 
Site Acceptance Test .
Site Acceptance Test                    .Site Acceptance Test                    .
Site Acceptance Test .
 
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts ServiceJustdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
 
Unit5-Cloud.pptx for lpu course cse121 o
Unit5-Cloud.pptx for lpu course cse121 oUnit5-Cloud.pptx for lpu course cse121 o
Unit5-Cloud.pptx for lpu course cse121 o
 
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and Classifications
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
 
Introduction,importance and scope of horticulture.pptx
Introduction,importance and scope of horticulture.pptxIntroduction,importance and scope of horticulture.pptx
Introduction,importance and scope of horticulture.pptx
 
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verifiedConnaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
 
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICESAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 
Dopamine neurotransmitter determination using graphite sheet- graphene nano-s...
Dopamine neurotransmitter determination using graphite sheet- graphene nano-s...Dopamine neurotransmitter determination using graphite sheet- graphene nano-s...
Dopamine neurotransmitter determination using graphite sheet- graphene nano-s...
 
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
 
COMPUTING ANTI-DERIVATIVES (Integration by SUBSTITUTION)
COMPUTING ANTI-DERIVATIVES(Integration by SUBSTITUTION)COMPUTING ANTI-DERIVATIVES(Integration by SUBSTITUTION)
COMPUTING ANTI-DERIVATIVES (Integration by SUBSTITUTION)
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY
 
Conjugation, transduction and transformation
Conjugation, transduction and transformationConjugation, transduction and transformation
Conjugation, transduction and transformation
 

Damiano Pasetto

  • 1. Laboratory of ecohydrology ´Ecole polytechnique f´ed´erale de Lausanne Data assimilation for distributed models: an overview of applications with CATHY Damiano Pasetto Workshop on coupled hydrological modeling Padova, 24 Sept. 2015 Damiano Pasetto DA for distributed models Padova - 24 September 2015
  • 2. Table of Contents Table of Contents 1 Introduction 2 Data assimilation methods 3 Hydrological applications Damiano Pasetto DA for distributed models Padova - 24 September 2015
  • 3. Introduction Motivations State-space model ˙x(t) = f (x(t), λ, q(t), t) + w(t) t ∈ [0, ∞] transient model y∗ k y∗ k observations x(t) state variables Damiano Pasetto DA for distributed models Padova - 24 September 2015
  • 4. Introduction Motivations State-space model ˙x(t) = f (x(t), λ, q(t), t) + w(t) t ∈ [0, ∞] transient model y∗ k y∗ k observations x(t) state variables λ parameters q(t) ATM forcings x(0) initial condition w(t) model structural error Damiano Pasetto DA for distributed models Padova - 24 September 2015
  • 5. Introduction Motivations State-space model ˙x(t) = f (x(t), λ, q(t), t) + w(t) t ∈ [0, ∞] transient model y∗ k ↔ yk = h (x, tk) + vk k = 1, . . . observation model y∗ k observations x(t) state variables λ parameters q(t) ATM forcings x(0) initial condition w(t) model structural error vk measurement error Damiano Pasetto DA for distributed models Padova - 24 September 2015
  • 6. Introduction Motivations State-space model ˙x(t) = f (x(t), λ, q(t), t) + w(t) t ∈ [0, ∞] transient model y∗ k ↔ yk = h (x, tk) + vk k = 1, . . . observation model y∗ k observations x(t) state variables p (x(t)) λ parameters q(t) ATM forcings x(0) initial condition w(t) model structural error vk measurement error Damiano Pasetto DA for distributed models Padova - 24 September 2015
  • 7. Introduction Motivations State-space model ˙x(t) = f (x(t), λ, q(t), t) + w(t) t ∈ [0, ∞] transient model y∗ k ↔ yk = h (x, tk) + vk k = 1, . . . observation model y∗ k observations x(t) state variables p (x(t)) λ parameters p(λ) q(t) ATM forcings x(0) initial condition w(t) model structural error vk measurement error Damiano Pasetto DA for distributed models Padova - 24 September 2015
  • 8. Introduction Motivations Motivations Hydrological forecasting is subject to many sources of uncertainty Initial condition Forcing terms Model parameters (Model itself?) Data Assimilation (DA) Correct the model forecast considering the measurements State . . . ˆxk−1 → x− k ˆxk → x− k+1 . . . ↓ ↑ ↓ Observations . . . y− k ↔ y∗ k . . . Damiano Pasetto DA for distributed models Padova - 24 September 2015
  • 9. Introduction Motivations Motivations Hydrological forecasting is subject to many sources of uncertainty Initial condition Forcing terms Model parameters (Model itself?) Data Assimilation (DA) Correct the model forecast considering the measurements State . . . ˆxk−1 → x− k ˆxk → x− k+1 . . . ↓ ↑ ↓ Observations . . . y− k ↔ y∗ k . . . Forecast pdf: π−(x(tk) | y1, . . . , yk−1) Damiano Pasetto DA for distributed models Padova - 24 September 2015
  • 10. Introduction Motivations Motivations Hydrological forecasting is subject to many sources of uncertainty Initial condition Forcing terms Model parameters (Model itself?) Data Assimilation (DA) Correct the model forecast considering the measurements State . . . ˆxk−1 → x− k ˆxk → x− k+1 . . . ↓ ↑ ↓ Observations . . . y− k ↔ y∗ k . . . Forecast pdf: π−(x(tk) | y1, . . . , yk−1) Filtering pdf: π+(x(tk) | y1, . . . , yk−1, yk) Damiano Pasetto DA for distributed models Padova - 24 September 2015
  • 11. Introduction A simple example with CATHY Example: application to CATHY (CATchment HYdrology) Coupled surface/subsurface model Richards equation: Sw(ψ)Ss ∂ψ ∂t + φ ∂Sw(ψ) ∂t = · [KsKrw(Sw(ψ)) ( ψ + ηz)] + qss(h) 1-D path-based surface routing: ∂Q ∂t + ck ∂Q ∂s = Dh ∂2Q ∂s2 + ckqs(h, ψ) BC-switching/forcing algorithm (Camporese et al. 2010, WRR) Damiano Pasetto DA for distributed models Padova - 24 September 2015
  • 12. Introduction A simple example with CATHY Example: application to CATHY (CATchment HYdrology) Coupled surface/subsurface model Richards equation: Sw(ψ)Ss ∂ψ ∂t + φ ∂Sw(ψ) ∂t = · [KsKrw(Sw(ψ)) ( ψ + ηz)] + qss(h) 1-D path-based surface routing: ∂Q ∂t + ck ∂Q ∂s = Dh ∂2Q ∂s2 + ckqs(h, ψ) BC-switching/forcing algorithm State variables: x = {ψ, Q}. Measures: piezometric head, soil moisture, streamflow, electric potential (ERT). (Camporese et al. 2010, WRR) Damiano Pasetto DA for distributed models Padova - 24 September 2015
  • 13. Introduction A simple example with CATHY DA: example on the V-catchment 3 m soil depth Assimilation of streamflow Uncertainty: Initial conditions ATM forcings Damiano Pasetto DA for distributed models Padova - 24 September 2015
  • 14. Introduction A simple example with CATHY Forecast considering model uncertainties (open loop) 0 1800 3600 5400 7200 9000 10800 12600 14400 0 1 2 3 4 5 6Streamflow(m 3 /s) TRUE Observations Open Loop 0 1800 3600 5400 7200 9000 10800 12600 14400 Time (s) 1.939 1.940 1.941 1.942 1.943 1.944 WaterStorage(10 6 m 3 ) Damiano Pasetto DA for distributed models Padova - 24 September 2015
  • 15. Introduction A simple example with CATHY Assimilation of measurement of streamflow 0 1800 3600 5400 7200 9000 10800 12600 14400 0 1 2 3 4 5 6Streamflow(m 3 /s) TRUE Observations SIR 0 1800 3600 5400 7200 9000 10800 12600 14400 Time (s) 1.939 1.940 1.941 1.942 1.943 1.944 WaterStorage(10 6 m 3 ) Damiano Pasetto DA for distributed models Padova - 24 September 2015
  • 16. Data assimilation methods EnKF and SIR Forecast step: MC simulation xi 0 ∼ p(x0), i = 1, . . . , N Initial samples xi,− k = f(xi k−1, λi , qi k, tk) + wi k Forecast Damiano Pasetto DA for distributed models Padova - 24 September 2015
  • 17. Data assimilation methods EnKF and SIR Forecast step: MC simulation xi 0 ∼ p(x0), i = 1, . . . , N Initial samples xi,− k = f(xi k−1, λi , qi k, tk) + wi k Forecast Analysis step Ensemble Kalman filter (EnKF, Evensen 1994): Kalman gain ˆxi k = xi,− k + Kk y∗ k − h(xi,− k ) Damiano Pasetto DA for distributed models Padova - 24 September 2015
  • 18. Data assimilation methods EnKF and SIR Forecast step: MC simulation xi 0 ∼ p(x0), i = 1, . . . , N Initial samples xi,− k = f(xi k−1, λi , qi k, tk) + wi k Forecast Analysis step Ensemble Kalman filter (EnKF, Evensen 1994): Kalman gain ˆxi k = xi,− k + Kk y∗ k − h(xi,− k ) Sequential Importance Resampling (SIR): weighted realizations xi k, ωi k update weights with the likelihood and normalize ωi k = Cωi k−1L(y∗ k | xi,− k ) duplicate particles that have largest weights. Damiano Pasetto DA for distributed models Padova - 24 September 2015
  • 19. Data assimilation methods EnKF and SIR Damiano Pasetto DA for distributed models Padova - 24 September 2015 −x ,N−1 { }π − k 1:k−1 (x |y ) k
  • 20. Hydrological applications 1. Geophysical coupled inversion 1. Geophysical coupled inversion: Electrical Resistivity Tomography (Rossi et al. 2015, AWR) Damiano Pasetto DA for distributed models Padova - 24 September 2015
  • 21. Hydrological applications 1. Geophysical coupled inversion Iterative particle filter (Manoli et al. 2015, JCP) Damiano Pasetto DA for distributed models Padova - 24 September 2015
  • 22. Hydrological applications 1. Geophysical coupled inversion Damiano Pasetto DA for distributed models Padova - 24 September 2015
  • 23. Hydrological applications 2. Landscape Evolution Observatory (LEO) 2. Landscape Evolution Observatory (LEO) Three convergent landscapes 30 m long, 11 m wide, 1 m soil 10 degrees average slope Environmentally controlled greenhouse facility Landscape instrumentation rainfall simulator (3-45 mm/h) 10 load cells 6 flow meters for seepage face outflow 1,835 sensors embedded in the soil Damiano Pasetto DA for distributed models Padova - 24 September 2015
  • 24. Hydrological applications 2. Landscape Evolution Observatory (LEO) First experiment at LEO (18 February 2013) Experiment setup: Unsaturated initial conditions Imposed rainfall: ≈12 mm/h With homogeneous soil, steady state expected after 36 h After the experiment: the rainfall was stopped after 22 h due to the occurrence of overland flow. Damiano Pasetto DA for distributed models Padova - 24 September 2015
  • 25. Hydrological applications 2. Landscape Evolution Observatory (LEO) Synthetic scenario reproducing Experiment 1 at LEO Assumption: Y = log(KS) is a Gaussian random field with exponential covariance function. E[KS] = 10−4 m/s with coefficient of variation 100% (µY = −9.56, σY = 0.83) Test case 1 (TC1): λx = λy = 8 m; λz= 0.5 m Test case 2 (TC2): λx = λy = 4 m; λz= 0.25 m Number of grid cells: 60×22×20= 26400 Sensor failure analysis The assimilation is repeated decreasing the number of measurements, from m=496 to m= 21 active sensors. (Pasetto et al. 2015, AWR) Damiano Pasetto DA for distributed models Padova - 24 September 2015
  • 26. Hydrological applications 2. Landscape Evolution Observatory (LEO) −5 0 5 5 10 15 20 25 d= 0.00÷0.05 m x (m) y(m) −5 0 5 5 10 15 20 25 d= 0.15÷0.20 m x (m) −5 0 5 5 10 15 20 25 d= 0.30÷0.35 m x (m) −5 0 5 5 10 15 20 25 d= 0.50÷0.55 m x (m) −5 0 5 5 10 15 20 25 d= 0.80÷0.85 m x (m) −5 0 5 5 10 15 20 25 d= 0.95÷1.00 m x (m) 10 −5 10 −4 10 −3 KS  (m/s)  True   −5 −2 0 2 5 5 10 15 20 25 d= 0.00÷0.05 m x (m) y(m) −5 −2 0 2 5 5 10 15 20 25 d= 0.15÷0.20 m x (m) −5 −2 0 2 5 5 10 15 20 25 d= 0.30÷0.35 m x (m) −5 −2 0 2 5 5 10 15 20 25 d= 0.50÷0.55 m x (m) −5 −2 0 2 5 5 10 15 20 25 d= 0.80÷0.85 m x (m) −5 −2 0 2 5 5 10 15 20 25 d= 0.95÷1.00 m x (m) 10 −5 10 −4 10 −3 KS  (m/s)  m=  496   True and estimated spatial distributions of KS in TC2. Damiano Pasetto DA for distributed models Padova - 24 September 2015
  • 27. Hydrological applications 2. Landscape Evolution Observatory (LEO) 0 0.5 1 1.5 OverlandFlow(m 3 /h) Ensemble Ensemble Mean True 90% C.I. TC1 (long correlation length) 0 0.5 1 1.5 SeepageFaceFlow(m 3 /h) 0 4 8 12 16 20 24 28 32 36 Time t (h) 40 60 80 100 120 WaterStorage(m 3 ) TC2 (short correlation length) 0 4 8 12 16 20 24 28 32 36 Time t (h) Open loop: model response with 200 random realizations of the prior distribution of Y = log(KS) without data assimilation. Damiano Pasetto DA for distributed models Padova - 24 September 2015
  • 28. Hydrological applications 2. Landscape Evolution Observatory (LEO) 0 0.5 Overland(m 3 /h) True m= 496 m= 196 m= 46 m= 21 TC1 (long correlation length) 0 0.5 1 1.5 Seepage(m 3 /h) 40 60 80 100 120 Storage(m 3 ) 0 4 8 12 16 20 24 28 Time t (h) 0.001 0.01 RMSEonvwc TC2 (short correlation length) 0 4 8 12 16 20 24 28 32 36 Time t (h) Model response with the calibrated saturated hydraulic conductivity Damiano Pasetto DA for distributed models Padova - 24 September 2015
  • 29. Conclusions Conclusions Data assimilation methods help improve the forecast and reduce the uncertainty of high dimensional hydrological models. Data assimilation methods allow the online estimation of both the state variables and the model parameters. Damiano Pasetto DA for distributed models Padova - 24 September 2015
  • 30. Conclusions Conclusions Data assimilation methods help improve the forecast and reduce the uncertainty of high dimensional hydrological models. Data assimilation methods allow the online estimation of both the state variables and the model parameters. Work in progress Covariance localization and ensemble inflation to minimize ill-conditioning and filter inbreeding in the EnKF update. Update step performed with a combination of EnKF and SIR (Gaussian Mixture Filters) Surrogate models to accelerate the Monte Carlo simulation. Damiano Pasetto DA for distributed models Padova - 24 September 2015
  • 31. Conclusions Thank you for your attention References D Pasetto, M Camporese, and M Putti. Ensemble Kalman filter versus particle filter for a physically-based coupled surface-subsurface model, Adv Water Resources, 2012. G Manoli, M Rossi, D Pasetto, R Deiana, S Ferraris, G Cassiani, and M Putti. An iterative particle filter approach for coupled hydro-geophysical inversion of a controlled infiltration experiment, J Comp Phys, 2015. M Rossi, G Manoli, D Pasetto, R Deiana, S Ferraris, C Strobbia, M Putti, G Cassiani. Coupled inverse modeling of a controlled irrigation experiment using multiple hydro-geophysical data, Adv Water Resources, 2015. D Pasetto, G-Y Niu, L Pangle, C Paniconi, M Putti, PA Troch. Impact of sensor failure on the observability of flow dynamics at the Biosphere 2 LEO hillslopes, Adv Water Resources, 2015. Damiano Pasetto DA for distributed models Padova - 24 September 2015
  • 32. Conclusions Damiano Pasetto DA for distributed models Padova - 24 September 2015
  • 33. Conclusions Damiano Pasetto DA for distributed models Padova - 24 September 2015
  • 34. Conclusions Damiano Pasetto DA for distributed models Padova - 24 September 2015
  • 35. Conclusions Damiano Pasetto DA for distributed models Padova - 24 September 2015