Relating Big Data Business and Technical Performance Indicators, Barbara Pernici, itAIS 2018, 12/10/2018
1.
Relating Big Data
Business and Technical Performance
Indicators
Barbara Pernici, Chiara Francalanci, Angela
Geronazzo, Lucia Polidori, Stefano Ray, Leonardo Riva,
Politecnico di Milano, Italy
Arne Jørgen Berre,
SINTEF, Norway
Todor Ivanov,
University of Frankfurt, Germany
itAIS Conference, PAvia, October 12, 2018
12/12/2018 DataBench Project - GA Nr 780966 1
2.
12/12/2018 DataBench Project - GA Nr 780966 2
Main Activities
• Classify the main use cases of BDT
by industry
• Compile and assess technical
benchmarks
• Perform economic and market
analysis to assess industrial needs
• Evaluate business performance in
selected use cases
Expected Results
• A conceptual framework linking
technical and business benchmarks
• European industrial and
performance benchmarks
• A toolbox measuring optimal
benchmarking approaches
• A handbook to guide the use of
benchmarks
Building a bridge between technical and
business benchmarking
4.
Where Magic Happens
12/12/2018 DataBench Project - GA Nr 780966 4
5.
DataBench Project - GA Nr 780966 5
How to link technical and business benchmarking
WP2 – ECONOMIC MARKET AND
BUSINESS ANALYSIS
WP4 – EVALUATING BUSINESS
PERFORMANCE
Top-down
Bottom-up
• Focus on economic and industry analysis
and the EU Big Data market
• Classify leading Big Data technologies
use cases by industry
• Analyse industrial users benchmarking
needs and assess their relative
importance for EU economy and the
main industries
• Demonstrate the scalability, European
significance (high potential economic
impact) and industrial relevance
(responding to primary needs of users)
of the benchmarks
USE CASES = Typologies of technology
adoption in specific application domains
and/or business processes
Focus on data collection and
identification of use cases to be
monitored and measured
Evaluation of business performance of
specific Big Data initiatives
Leverage Databench toolbox
Provide the specific industrial
benchmarks to WP”
Produce the Databench Handbook, a
manual supporting the application of
the Databench toolbox
12/12/2018
6.
Results from the first year of the projects
• Modeling business indicators
• Modeling technical indicators
• Relating business and technical indicators
• Two surveys
• With BDVa Benchmarking group
• Databench survey
12/12/2018 DataBench Project - GA Nr 780966 6
7.
Business indicators
12/12/2018 DataBench Project - GA Nr 780966 7
Industry
Big Data
Maturity
KPI
Scope of Big Data
& Analytics
Data User
DB & Analytics
Application
Size of
Business
Data size Datasource
Finance Currently using Cost reduction
Decision
optimization task
Data
Enterpreneurs
Sales 5000 or more Gigabytes Distributed
Manufacturing
Piloting or
implementing
Time efficiency
Data driven
business
processes
Vendors in the
ICT industry
Customer
service &
support
2500 to 4999 Terabytes Centralized
Retail &
Wholesale
Considering or
evaluating for
future use
Product/service
quality
Data oriented
digital
transformation
User
companies
IT & data
operation
1000 to 2499 Petabytes
Telecom/ Media
Not using and no
plan to do so
Revenue growth
Governance risk
& compliance
250 to 999 Exabytes
Transport/
Accomodation
Customer
satisfaction
Product
management
50 to 249
Utility/Oil&Gas/
Energy
Business model
innovation
Marketing 10 to 49
Professional
services
Lauch of new
products and/or
services
Maintencance &
logistics
less than 10
Governamental/
Education
Product
innovation
Healthcare HR & Legal
R&D
Finance
8.
BDVa (Big Data Value Association) Architecture
• Towards technical indicators
• Tech areas
• Types of data
12/12/2018 DataBench Project - GA Nr 780966 8
9.
BDVA Extended (Digital Platform) Reference Model
10.
Technical
indicators
12/12/2018 DataBench Project - GA Nr 780966 10
Metrics Data Types
Benchmark
Data Usage
Storage Type
Processing
Type
Analytics
Type
Architecture
Patterns
Platform
Features
Execution time/
Latency
Business
Intelligence
(Tables,
Schema…)
Synthetic data
Distributed
File System
Batch Descriptive Data Preparation Fault-tolerance
Throughput
Graphs, Linked
Data
Real data
Databases/
RDBMS
Stream Diagnostic Data Pipeline Privacy
Cost Time Series, IoT
Hybrid (mix of
real and
synthetic) data
NoSQL
Interactive/(ne
ar) Real-time
Predictive Data Lake Security
Energy
consumption
Geospatial,
Temporal
NewSQL/ In-
Memory
Iterative/In-
memory
Prescriptive Data Warehouse Governance
Accuracy
Text (incl.
Natural
Language text)
Time Series
Lambda
Architecture
Data Quality
Precision
Media (Images,
Audio and
Video)
Kappa
Architecture
Veracity
Availability
Unified Batch
and Stream
architecture
Variability
Durability
Data
Management
CPU and Memory
Utilization
Data
Visualization
11.
Data
Privacy
Time
series,
IoT
Geo
Spatio
Temp
Media
Image
Audio
Text
NLP
Web
Graph
BDVA Reference Model
Struct
data/
BI
Data Processing Architectures
Data Visualisation and User Interaction
Data Analytics
Data Management
Infrastructure
BigDataPriorityTechAreas
Sectors: Manufacturing, Health, Energy, Media, Telco, Finance, EO, ..
Big data
Types &
semantics
BigBench
Hobbit-IV
BigDataBench
ALOJA
TPC
Hobbit-II
Hobbit-II
Hobbit-I+III
LDBC-3
Graphalytics
LDBC-2
SocialNet
LDBC-1
SemanticPub
BigBench
BigDataBench
BigBench
2.0
YStreamB
DeepMark DeepBench
RIoTBench
BigBench
2.0
Horizontal benchmarks
Vertical
benchmarks
SenseMark
ABench
SparkBench
YCSB
SparkBench
StreamBench
Big Data
Benchmarks
related to the
BDVA Big Data
Reference model
(ongoing work)
12.
Early Results from the
BDVa Questionnaire
BDVa Benchmarking group
(EU projects Hobbit and
DataBench)
12/12/2018 DataBench Project - GA Nr 780966 12
13.
BDVa Benchmarking questionnaire
• 36 respondents
• 35 projects (mainly IC)
12/12/2018 DataBench Project - GA Nr 780966 13
14.
Relating indicators
An example: business KPI (x-axis) vs Analysis type (y-axis)
12/12/2018 DataBench Project - GA Nr 780966 14
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
We do not use them We target revenue growth We target margin growth We target cost reduction We target time efficiency We target customer
satisfaction
We target product/service
quality
Descriptive
Inferential
Predictive
Prescriptive
15.
Analyzing requirements of industry sectors
12/12/2018 DataBench Project - GA Nr 780966 15
16.
Early Results from the
Databench Business users
Survey
12/12/2018 DataBench Project - GA Nr 780966 16
17.
Survey
• DataBench Survey, IDC, Interim results, 401 interviews
• Aiming at 800 (on going) + case studies
• October 2018
• 11 EU countries (7.7% in Italy)
• Final results to be presented at the European Big Data Value Forum
and in the DataBench report due in December 2018
12/12/2018 DataBench Project - GA Nr 780966 17
18.
12/12/2018 DataBench Project - GA Nr 780966 18
Source: Databench Survey, IDC, Interim results, 401 interviews, October 2018
Users recognize the relevance of business benchmarking…
41%
37%
22%
Respondents by Type of Use of BDA
UsingEvaluating
Piloting
DRAFT
22.
• Provide methodologies and tools to help assess and
maximise the business benefits of BDT adoption
• Provide criteria for the selection of the most appropriate
BDTs solutions
• Provide benchmarks of European and industrial significance
• Provide a questionnaire tool comparing your choices and
your KPIs with your peers
DataBench Project - GA Nr 780966 22
Goals of DataBench
Interested in participating?
Expression of interest to become a case study and monitoring
your Big Data KPIs
Answer a survey on your Big Data experiences
12/12/2018
23.
barbara.pernici@polimi.it
rstevens@idc.com
Evidence Based Big Data Benchmarking to
Improve Business Performance
Notes de l'éditeur
Gabriella Cattaneo (IDC) will provide ideas on how big data benchmarking could help organizations to get better business insights and take informed decision
Gabriella Cattaneo (IDC) will provide ideas on how big data benchmarking could help organizations to get better business insights and take informed decision
Gabriella Cattaneo (IDC) will provide ideas on how big data benchmarking could help organizations to get better business insights and take informed decision
Il semblerait que vous ayez déjà ajouté cette diapositive à .
Créer un clipboard
Vous avez clippé votre première diapositive !
En clippant ainsi les diapos qui vous intéressent, vous pourrez les revoir plus tard. Personnalisez le nom d’un clipboard pour mettre de côté vos diapositives.
Créer un clipboard
Partager ce SlideShare
Vous avez les pubs en horreur?
Obtenez SlideShare sans publicité
Bénéficiez d'un accès à des millions de présentations, documents, e-books, de livres audio, de magazines et bien plus encore, sans la moindre publicité.
Offre spéciale pour les lecteurs de SlideShare
Juste pour vous: Essai GRATUIT de 60 jours dans la plus grande bibliothèque numérique du monde.
La famille SlideShare vient de s'agrandir. Profitez de l'accès à des millions de livres numériques, livres audio, magazines et bien plus encore sur Scribd.
Apparemment, vous utilisez un bloqueur de publicités qui est en cours d'exécution. En ajoutant SlideShare à la liste blanche de votre bloqueur de publicités, vous soutenez notre communauté de créateurs de contenu.
Vous détestez les publicités?
Nous avons mis à jour notre politique de confidentialité.
Nous avons mis à jour notre politique de confidentialité pour nous conformer à l'évolution des réglementations mondiales en matière de confidentialité et pour vous informer de la manière dont nous utilisons vos données de façon limitée.
Vous pouvez consulter les détails ci-dessous. En cliquant sur Accepter, vous acceptez la politique de confidentialité mise à jour.