SlideShare une entreprise Scribd logo
1  sur  21
Télécharger pour lire hors ligne
1
HyperDiffusion: Generating Implicit Neural Fields with
Weight-Space Diffusion
Naruya Kondo (Digital Nature Group D1)
書誌情報
2
● HyperDiffusion: Generating Implicit Neural Fields with Weight-Space
Diffusion
○ Arxiv Submitted on 2023/03/29 (CVPR?)
○ by Technical University of Munich, Apple (⇦ Vision Pro (VR HMD) で話題の!!)
● ひとことで言うと
○ 3D / 4D の (条件付けなしの) 深層生成モデル
○ データセットの各データを (neural field) MLPで過適合させて、
MLP のパラメタ空間で diffusion model を学習、MLP パラメタの生成を可能にする
○ 4D でも同じやり方でできる
プロジェクトページ
https://ziyaerkoc.com/hyperdiffusion/?ref=aiartweekly
3
ここからの内容
• 背景
• 提案手法
– Per-Sample MLP Overfitting
– MLP Weight-Space Diffusion
– 実装のベース: G.pt
• 比較手法 (3つ)
• 評価指標 (4つ)
• 結果
• Limitation
• (関連研究)
• まとめと感想
4
HyperDiffusion
5
背景
• 3D の生成モデルの学習が難しい
– ボクセル (データ量が爆発)
– メッシュ (スパース、トポロジーの問題)
– (点群 (?) / Tri-Plane (?))
– …どういう表現ベースで学習すればいいのか
• 3D のデータがそんなにない
– 空間全体が学習できる (多様体が獲得できる) ほどもない
– 過適合を避けるとなると、詳細な形を生成するのが困難
• 各データに最適化されたMLPの空間で diffusion する!
– データが密
– High detailed な生成が期待できる
6
全体像
7
(過適合MLPを用意)
学習データ
(過適合されたような、新しいMLPを生成)
全体像 (これ自体は簡単)
8
(MLP Overfitting + Diffusion)
Per-Sample MLP Overfitting
• 入力 → 出力: xyz,(t) → in/out (1/0)
• モデル: 3層のMLP, hidden 128 (パラメタ数≈36k)
• データ数: 10万点 (一様) + 10万点 (表面付近)
• モデルの初期化: 1つめのデータに overfitting した MLPを使う
• 学習: BCE Loss, 800epoch, 6分 per shape
9
だいたい同じようなMLPの
パラメタが集められる!
MLP Weight-Space Diffusion
Diffusion
• transformerベース。500 diffusion step
• MLPパラメタに noise を足して除いて学習
transformer
• 2880 hidden, 12 layers, 16 attention head
• 9個のトークン (w,b × 4 + t)
10
w,b
(4箇所)
t: diffusion step
Learning to Learn with Generative Models of Neural Network
Checkpoints (ICLR 2023 Reject, reviewer「役に立つか分からない」)
• 勾配法 (の最適化器) は、過去の経験を参考にしない問題がある
– 常に目の前や少し前のデータしか考えてない
• 大量のモデルを学習させた時の checkpointsで diffusion してみた
• diffusion step でパラメタ最適化ができるようになり、
(そのタスクでは) 1stepだけで劇的にlossを更新できるようになる
• パラメータ空間の多様体を見ることができるようになる
• (狙ったloss / errorのモデルを作れるようになる)
• (感想: パラメタ空間 denoising のメタ学習ができたら最高そう)
実装のベース: G.pt
11
• PVD (Point Voxel Diffusion, ICCV 2021)
– 3D点群データで diffusion
– 球状の点群から始めて、point-voxel CNN で
点群全体を一括で少し動かすようにして denoise
• DPC (Diffusion Probabilistic Models, CVPR 2021)
– 3D点群データで diffusion
– auto-encoder の表現学習と組み合わせて、
点単位で動かす?
• Voxel ← オリジナルで追加のベースラインを用意 (for 3D, 4D)
– 24^3のボクセルに区切って、直接 transformer で diffusion
比較手法
12
評価指標
• FPD スコア
– 生成画像の品質と多様性の両方を評価
– FID スコアの 点群 ver. 学習済みPointNet++を代わりに使う。
• 学習済みモデルで正解データ、生成データの特徴量ベクトルを全部出して、特徴量ベクトルの多次元ガウ
ス分布のフレシェ距離がスコア。(多次元ガウス分布は特徴ベクトルの平均と共分散行列で作られる、フレ
シェ距離は、2つのガウス分布の平均の間のユークリッド距離と、それぞれの共分散行列のトレース (対角
成分の和) の差との和)
• (準備) Chamfer Distance (CD)
– 2つの点群X,Yの距離の定義の1つ (メッシュの距離にも使える)
• 点群Xの各点xについて一番近い点群Yのある点までの距離の総和 + そのXY逆版
• 4Dなら各時刻tでこのCDをとってTで平均
13
評価指標の詳しい説明がのってた論文 : https://arxiv.org/abs/2210.06978
Sr: 正解データ(点群)の集合、Sg: 生成データの集合
• MMD (Minimum matching distance) スコア
– どれだけ正解データセットに近い多様な生成ができているか
– 正解データそれぞれについて、一番近い生成データとの距離の和
– △ 悪い生成結果について評価されない
• COV (Coverage) スコア
– どれだけ正解データセットを網羅できているか
– 各生成データについて一番近い正解データを集めた集合の個数の、正解データ全体の個数に対する比率
評価指標
14
評価指標の詳しい説明がのってた論文 : https://arxiv.org/abs/2210.06978
COV だと誤って高く評価されてしまう例
はこんなの?この場合、次の1-NNA の
方が良さそう (by 近藤)
評価指標
• 1-NNA (1-nearest neighbor accuracy) スコア
– 生成画像の品質と多様性の両方を評価
– 生成に一番近いのが生成ならペナルティ1点、正解に一番近いのが正解ならペナルティ1点
– 正解データと生成データは空間の中で良く混ざっているといいよね、分布が完全に1対1対応レベルで一致して
いるとさらにいいよね。
あるデータ1個に注目して、(1番)近いサンプルのラベルだけからrかgかかを当てるときに、良く混ざってる (==
正解は50%) なら 0.5点、分布が完全一致 (== 正解は0%) なら 0点 (最高)、というスコア
15
評価指標の詳しい説明がのってた論文 : https://arxiv.org/abs/2210.06978
Nx : Sg ⋃ Sr - {X} の中で1番 X に近い要素
関数1[] : [] 内がYesなら1, Noなら0
結果
• データ: ShapeNet (3D), DeformingThings4D⇩ (4D)
• 3D
– 3000~6000個 /
カテゴリ
• 4D
– 1772 anim 採用
– 16 frame 16
結果
• 1-NNA と FPDが本命の評価指標。良かった
• 4D も voxel より良かった
• その他 ablation
– Positional Encoding ありの方が良い
– 1つめのNLPで残りのNLP初期化した方が良い
17
Limitations
• 明示的な surface reconstruction の最適化はできていない
– やってみたけどうまく行かなかったらしい
• 広域3Dデータに対して、MLP で表現するには限界がある
– (Block NeRF みたいに) ブロック分割して複数の MLP で表現できるかも
• (続きのanimation を生成するとかはたぶん難しそう (近藤))
18
関連研究
- GEM (2021) / Functa (2022)
- パラメタ空間の一部だけを生成したり、
潜在変数を使ってパラメタを変えたり
- DIFFUSION PROBABILISTIC FIELDS (2023)
- Explicit field representation で生成
19
functa
まとめと感想
• MLP のパラメタ空間で生成モデルを学習させる新しさ
– 高解像度化が期待できる
– 3D でも 4D でも同じやり方でできる
– 獲得した MLP は downstream タスクに使えるかも
– Diffusion Models の alternative アプローチとなるだろう
• 感想
– パラメタ空間のノイズってわかるものなのか・・・?
• (CNNの基底なら分かるっちゃ分かる(?)し、分かるのかな)
– より Diffusion が学習しやすい MLP のパラメタのパターンとかありそう
• そうなってくると使ってみたい
– Tri-Plane系とどっちの方がいいんだろう
20
(おまけ)
EMD (Earth-Mover-Distance)
• 点群Aの1点1点すべてを点群Bのどれかの点に被りなくかつ割り当てられない点も出ないように移動させたときの総
移動距離
• Chamfer Distanc の代わりに使われることがある。
• 最適な対応付けを効率的に見つけるアルゴリズム (ハンガリアンアルゴリズムなど) が存在します by GPT
21

Contenu connexe

Tendances

SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜
SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜
SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜SSII
 
[DL輪読会]Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images
[DL輪読会]Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images[DL輪読会]Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images
[DL輪読会]Pixel2Mesh: Generating 3D Mesh Models from Single RGB ImagesDeep Learning JP
 
[DL輪読会]Neural Radiance Flow for 4D View Synthesis and Video Processing (NeRF...
[DL輪読会]Neural Radiance Flow for 4D View Synthesis and Video  Processing (NeRF...[DL輪読会]Neural Radiance Flow for 4D View Synthesis and Video  Processing (NeRF...
[DL輪読会]Neural Radiance Flow for 4D View Synthesis and Video Processing (NeRF...Deep Learning JP
 
[DL輪読会]Learning Transferable Visual Models From Natural Language Supervision
[DL輪読会]Learning Transferable Visual Models From Natural Language Supervision[DL輪読会]Learning Transferable Visual Models From Natural Language Supervision
[DL輪読会]Learning Transferable Visual Models From Natural Language SupervisionDeep Learning JP
 
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜SSII
 
[DL輪読会]Graph R-CNN for Scene Graph Generation
[DL輪読会]Graph R-CNN for Scene Graph Generation[DL輪読会]Graph R-CNN for Scene Graph Generation
[DL輪読会]Graph R-CNN for Scene Graph GenerationDeep Learning JP
 
Graph Attention Network
Graph Attention NetworkGraph Attention Network
Graph Attention NetworkTakahiro Kubo
 
Generating Diverse High-Fidelity Images with VQ-VAE-2
Generating Diverse High-Fidelity Images with VQ-VAE-2Generating Diverse High-Fidelity Images with VQ-VAE-2
Generating Diverse High-Fidelity Images with VQ-VAE-2harmonylab
 
【CVPR 2019】DeepSDF: Learning Continuous Signed Distance Functions for Shape R...
【CVPR 2019】DeepSDF: Learning Continuous Signed Distance Functions for Shape R...【CVPR 2019】DeepSDF: Learning Continuous Signed Distance Functions for Shape R...
【CVPR 2019】DeepSDF: Learning Continuous Signed Distance Functions for Shape R...cvpaper. challenge
 
三次元点群を取り扱うニューラルネットワークのサーベイ
三次元点群を取り扱うニューラルネットワークのサーベイ三次元点群を取り扱うニューラルネットワークのサーベイ
三次元点群を取り扱うニューラルネットワークのサーベイNaoya Chiba
 
近年のHierarchical Vision Transformer
近年のHierarchical Vision Transformer近年のHierarchical Vision Transformer
近年のHierarchical Vision TransformerYusuke Uchida
 
[DL輪読会]End-to-End Object Detection with Transformers
[DL輪読会]End-to-End Object Detection with Transformers[DL輪読会]End-to-End Object Detection with Transformers
[DL輪読会]End-to-End Object Detection with TransformersDeep Learning JP
 
[DLHacks]StyleGANとBigGANのStyle mixing, morphing
[DLHacks]StyleGANとBigGANのStyle mixing, morphing[DLHacks]StyleGANとBigGANのStyle mixing, morphing
[DLHacks]StyleGANとBigGANのStyle mixing, morphingDeep Learning JP
 
[DL輪読会]Vision Transformer with Deformable Attention (Deformable Attention Tra...
[DL輪読会]Vision Transformer with Deformable Attention (Deformable Attention Tra...[DL輪読会]Vision Transformer with Deformable Attention (Deformable Attention Tra...
[DL輪読会]Vision Transformer with Deformable Attention (Deformable Attention Tra...Deep Learning JP
 
[DL輪読会]Life-Long Disentangled Representation Learning with Cross-Domain Laten...
[DL輪読会]Life-Long Disentangled Representation Learning with Cross-Domain Laten...[DL輪読会]Life-Long Disentangled Representation Learning with Cross-Domain Laten...
[DL輪読会]Life-Long Disentangled Representation Learning with Cross-Domain Laten...Deep Learning JP
 
[第2回3D勉強会 研究紹介] Neural 3D Mesh Renderer (CVPR 2018)
[第2回3D勉強会 研究紹介] Neural 3D Mesh Renderer (CVPR 2018)[第2回3D勉強会 研究紹介] Neural 3D Mesh Renderer (CVPR 2018)
[第2回3D勉強会 研究紹介] Neural 3D Mesh Renderer (CVPR 2018)Hiroharu Kato
 
【DL輪読会】Perceiver io a general architecture for structured inputs & outputs
【DL輪読会】Perceiver io  a general architecture for structured inputs & outputs 【DL輪読会】Perceiver io  a general architecture for structured inputs & outputs
【DL輪読会】Perceiver io a general architecture for structured inputs & outputs Deep Learning JP
 
[DL輪読会]Disentangling by Factorising
[DL輪読会]Disentangling by Factorising[DL輪読会]Disentangling by Factorising
[DL輪読会]Disentangling by FactorisingDeep Learning JP
 
[解説スライド] NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
[解説スライド] NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis[解説スライド] NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
[解説スライド] NeRF: Representing Scenes as Neural Radiance Fields for View SynthesisKento Doi
 

Tendances (20)

SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜
SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜
SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜
 
[DL輪読会]Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images
[DL輪読会]Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images[DL輪読会]Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images
[DL輪読会]Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images
 
[DL輪読会]Neural Radiance Flow for 4D View Synthesis and Video Processing (NeRF...
[DL輪読会]Neural Radiance Flow for 4D View Synthesis and Video  Processing (NeRF...[DL輪読会]Neural Radiance Flow for 4D View Synthesis and Video  Processing (NeRF...
[DL輪読会]Neural Radiance Flow for 4D View Synthesis and Video Processing (NeRF...
 
[DL輪読会]Learning Transferable Visual Models From Natural Language Supervision
[DL輪読会]Learning Transferable Visual Models From Natural Language Supervision[DL輪読会]Learning Transferable Visual Models From Natural Language Supervision
[DL輪読会]Learning Transferable Visual Models From Natural Language Supervision
 
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
 
[DL輪読会]Graph R-CNN for Scene Graph Generation
[DL輪読会]Graph R-CNN for Scene Graph Generation[DL輪読会]Graph R-CNN for Scene Graph Generation
[DL輪読会]Graph R-CNN for Scene Graph Generation
 
Graph Attention Network
Graph Attention NetworkGraph Attention Network
Graph Attention Network
 
Generating Diverse High-Fidelity Images with VQ-VAE-2
Generating Diverse High-Fidelity Images with VQ-VAE-2Generating Diverse High-Fidelity Images with VQ-VAE-2
Generating Diverse High-Fidelity Images with VQ-VAE-2
 
【CVPR 2019】DeepSDF: Learning Continuous Signed Distance Functions for Shape R...
【CVPR 2019】DeepSDF: Learning Continuous Signed Distance Functions for Shape R...【CVPR 2019】DeepSDF: Learning Continuous Signed Distance Functions for Shape R...
【CVPR 2019】DeepSDF: Learning Continuous Signed Distance Functions for Shape R...
 
三次元点群を取り扱うニューラルネットワークのサーベイ
三次元点群を取り扱うニューラルネットワークのサーベイ三次元点群を取り扱うニューラルネットワークのサーベイ
三次元点群を取り扱うニューラルネットワークのサーベイ
 
近年のHierarchical Vision Transformer
近年のHierarchical Vision Transformer近年のHierarchical Vision Transformer
近年のHierarchical Vision Transformer
 
[DL輪読会]End-to-End Object Detection with Transformers
[DL輪読会]End-to-End Object Detection with Transformers[DL輪読会]End-to-End Object Detection with Transformers
[DL輪読会]End-to-End Object Detection with Transformers
 
[DLHacks]StyleGANとBigGANのStyle mixing, morphing
[DLHacks]StyleGANとBigGANのStyle mixing, morphing[DLHacks]StyleGANとBigGANのStyle mixing, morphing
[DLHacks]StyleGANとBigGANのStyle mixing, morphing
 
[DL輪読会]Vision Transformer with Deformable Attention (Deformable Attention Tra...
[DL輪読会]Vision Transformer with Deformable Attention (Deformable Attention Tra...[DL輪読会]Vision Transformer with Deformable Attention (Deformable Attention Tra...
[DL輪読会]Vision Transformer with Deformable Attention (Deformable Attention Tra...
 
[DL輪読会]World Models
[DL輪読会]World Models[DL輪読会]World Models
[DL輪読会]World Models
 
[DL輪読会]Life-Long Disentangled Representation Learning with Cross-Domain Laten...
[DL輪読会]Life-Long Disentangled Representation Learning with Cross-Domain Laten...[DL輪読会]Life-Long Disentangled Representation Learning with Cross-Domain Laten...
[DL輪読会]Life-Long Disentangled Representation Learning with Cross-Domain Laten...
 
[第2回3D勉強会 研究紹介] Neural 3D Mesh Renderer (CVPR 2018)
[第2回3D勉強会 研究紹介] Neural 3D Mesh Renderer (CVPR 2018)[第2回3D勉強会 研究紹介] Neural 3D Mesh Renderer (CVPR 2018)
[第2回3D勉強会 研究紹介] Neural 3D Mesh Renderer (CVPR 2018)
 
【DL輪読会】Perceiver io a general architecture for structured inputs & outputs
【DL輪読会】Perceiver io  a general architecture for structured inputs & outputs 【DL輪読会】Perceiver io  a general architecture for structured inputs & outputs
【DL輪読会】Perceiver io a general architecture for structured inputs & outputs
 
[DL輪読会]Disentangling by Factorising
[DL輪読会]Disentangling by Factorising[DL輪読会]Disentangling by Factorising
[DL輪読会]Disentangling by Factorising
 
[解説スライド] NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
[解説スライド] NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis[解説スライド] NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
[解説スライド] NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
 

Similaire à 【DL輪読会】HyperDiffusion: Generating Implicit Neural Fields withWeight-Space Diffusion

[DL輪読会]VoxelPose: Towards Multi-Camera 3D Human Pose Estimation in Wild Envir...
[DL輪読会]VoxelPose: Towards Multi-Camera 3D Human Pose Estimation in Wild Envir...[DL輪読会]VoxelPose: Towards Multi-Camera 3D Human Pose Estimation in Wild Envir...
[DL輪読会]VoxelPose: Towards Multi-Camera 3D Human Pose Estimation in Wild Envir...Deep Learning JP
 
【CVPR 2020 メタサーベイ】Neural Generative Models
【CVPR 2020 メタサーベイ】Neural Generative Models【CVPR 2020 メタサーベイ】Neural Generative Models
【CVPR 2020 メタサーベイ】Neural Generative Modelscvpaper. challenge
 
[DL輪読会]BANMo: Building Animatable 3D Neural Models from Many Casual Videos
[DL輪読会]BANMo: Building Animatable 3D Neural Models from Many Casual Videos[DL輪読会]BANMo: Building Animatable 3D Neural Models from Many Casual Videos
[DL輪読会]BANMo: Building Animatable 3D Neural Models from Many Casual VideosDeep Learning JP
 
Learning Spatial Common Sense with Geometry-Aware Recurrent Networks
Learning Spatial Common Sense with Geometry-Aware Recurrent NetworksLearning Spatial Common Sense with Geometry-Aware Recurrent Networks
Learning Spatial Common Sense with Geometry-Aware Recurrent NetworksKento Doi
 
論文紹介:Dueling network architectures for deep reinforcement learning
論文紹介:Dueling network architectures for deep reinforcement learning論文紹介:Dueling network architectures for deep reinforcement learning
論文紹介:Dueling network architectures for deep reinforcement learningKazuki Adachi
 
[DL輪読会]EfficientDet: Scalable and Efficient Object Detection
[DL輪読会]EfficientDet: Scalable and Efficient Object Detection[DL輪読会]EfficientDet: Scalable and Efficient Object Detection
[DL輪読会]EfficientDet: Scalable and Efficient Object DetectionDeep Learning JP
 
これからのコンピュータビジョン技術 - cvpaper.challenge in PRMU Grand Challenge 2016 (PRMU研究会 2...
これからのコンピュータビジョン技術 - cvpaper.challenge in PRMU Grand Challenge 2016 (PRMU研究会 2...これからのコンピュータビジョン技術 - cvpaper.challenge in PRMU Grand Challenge 2016 (PRMU研究会 2...
これからのコンピュータビジョン技術 - cvpaper.challenge in PRMU Grand Challenge 2016 (PRMU研究会 2...cvpaper. challenge
 
Combinatorial optimization with graph convolutional networks and guided
Combinatorial optimization with graph convolutional networks and guidedCombinatorial optimization with graph convolutional networks and guided
Combinatorial optimization with graph convolutional networks and guidedShuntaro Ohno
 
Combinatorial optimization with graph convolutional networks and guided ver20...
Combinatorial optimization with graph convolutional networks and guided ver20...Combinatorial optimization with graph convolutional networks and guided ver20...
Combinatorial optimization with graph convolutional networks and guided ver20...Shuntaro Ohno
 
ICCV 2019 論文紹介 (26 papers)
ICCV 2019 論文紹介 (26 papers)ICCV 2019 論文紹介 (26 papers)
ICCV 2019 論文紹介 (26 papers)Hideki Okada
 
LCCC2010:Learning on Cores, Clusters and Cloudsの解説
LCCC2010:Learning on Cores,  Clusters and Cloudsの解説LCCC2010:Learning on Cores,  Clusters and Cloudsの解説
LCCC2010:Learning on Cores, Clusters and Cloudsの解説Preferred Networks
 
【DL輪読会】Data-Efficient Reinforcement Learning with Self-Predictive Representat...
【DL輪読会】Data-Efficient Reinforcement Learning with Self-Predictive Representat...【DL輪読会】Data-Efficient Reinforcement Learning with Self-Predictive Representat...
【DL輪読会】Data-Efficient Reinforcement Learning with Self-Predictive Representat...Deep Learning JP
 
Deep learning勉強会20121214ochi
Deep learning勉強会20121214ochiDeep learning勉強会20121214ochi
Deep learning勉強会20121214ochiOhsawa Goodfellow
 
【DL輪読会】DiffRF: Rendering-guided 3D Radiance Field Diffusion [N. Muller+ CVPR2...
【DL輪読会】DiffRF: Rendering-guided 3D Radiance Field Diffusion [N. Muller+ CVPR2...【DL輪読会】DiffRF: Rendering-guided 3D Radiance Field Diffusion [N. Muller+ CVPR2...
【DL輪読会】DiffRF: Rendering-guided 3D Radiance Field Diffusion [N. Muller+ CVPR2...Deep Learning JP
 
DAシンポジウム2019招待講演「深層学習モデルの高速なTraining/InferenceのためのHW/SW技術」 金子紘也hare
DAシンポジウム2019招待講演「深層学習モデルの高速なTraining/InferenceのためのHW/SW技術」 金子紘也hareDAシンポジウム2019招待講演「深層学習モデルの高速なTraining/InferenceのためのHW/SW技術」 金子紘也hare
DAシンポジウム2019招待講演「深層学習モデルの高速なTraining/InferenceのためのHW/SW技術」 金子紘也harePreferred Networks
 
点群深層学習 Meta-study
点群深層学習 Meta-study点群深層学習 Meta-study
点群深層学習 Meta-studyNaoya Chiba
 
MapReduceによる大規模データを利用した機械学習
MapReduceによる大規模データを利用した機械学習MapReduceによる大規模データを利用した機械学習
MapReduceによる大規模データを利用した機械学習Preferred Networks
 
(文献紹介)深層学習による動被写体ロバストなカメラの動き推定
(文献紹介)深層学習による動被写体ロバストなカメラの動き推定(文献紹介)深層学習による動被写体ロバストなカメラの動き推定
(文献紹介)深層学習による動被写体ロバストなカメラの動き推定Morpho, Inc.
 
Graph-to-Sequence Learning using Gated Graph Neural Networks. [ACL'18] 論文紹介
Graph-to-Sequence Learning using Gated Graph Neural Networks. [ACL'18] 論文紹介Graph-to-Sequence Learning using Gated Graph Neural Networks. [ACL'18] 論文紹介
Graph-to-Sequence Learning using Gated Graph Neural Networks. [ACL'18] 論文紹介Masayoshi Kondo
 
[DL輪読会]A Higher-Dimensional Representation for Topologically Varying Neural R...
[DL輪読会]A Higher-Dimensional Representation for Topologically Varying Neural R...[DL輪読会]A Higher-Dimensional Representation for Topologically Varying Neural R...
[DL輪読会]A Higher-Dimensional Representation for Topologically Varying Neural R...Deep Learning JP
 

Similaire à 【DL輪読会】HyperDiffusion: Generating Implicit Neural Fields withWeight-Space Diffusion (20)

[DL輪読会]VoxelPose: Towards Multi-Camera 3D Human Pose Estimation in Wild Envir...
[DL輪読会]VoxelPose: Towards Multi-Camera 3D Human Pose Estimation in Wild Envir...[DL輪読会]VoxelPose: Towards Multi-Camera 3D Human Pose Estimation in Wild Envir...
[DL輪読会]VoxelPose: Towards Multi-Camera 3D Human Pose Estimation in Wild Envir...
 
【CVPR 2020 メタサーベイ】Neural Generative Models
【CVPR 2020 メタサーベイ】Neural Generative Models【CVPR 2020 メタサーベイ】Neural Generative Models
【CVPR 2020 メタサーベイ】Neural Generative Models
 
[DL輪読会]BANMo: Building Animatable 3D Neural Models from Many Casual Videos
[DL輪読会]BANMo: Building Animatable 3D Neural Models from Many Casual Videos[DL輪読会]BANMo: Building Animatable 3D Neural Models from Many Casual Videos
[DL輪読会]BANMo: Building Animatable 3D Neural Models from Many Casual Videos
 
Learning Spatial Common Sense with Geometry-Aware Recurrent Networks
Learning Spatial Common Sense with Geometry-Aware Recurrent NetworksLearning Spatial Common Sense with Geometry-Aware Recurrent Networks
Learning Spatial Common Sense with Geometry-Aware Recurrent Networks
 
論文紹介:Dueling network architectures for deep reinforcement learning
論文紹介:Dueling network architectures for deep reinforcement learning論文紹介:Dueling network architectures for deep reinforcement learning
論文紹介:Dueling network architectures for deep reinforcement learning
 
[DL輪読会]EfficientDet: Scalable and Efficient Object Detection
[DL輪読会]EfficientDet: Scalable and Efficient Object Detection[DL輪読会]EfficientDet: Scalable and Efficient Object Detection
[DL輪読会]EfficientDet: Scalable and Efficient Object Detection
 
これからのコンピュータビジョン技術 - cvpaper.challenge in PRMU Grand Challenge 2016 (PRMU研究会 2...
これからのコンピュータビジョン技術 - cvpaper.challenge in PRMU Grand Challenge 2016 (PRMU研究会 2...これからのコンピュータビジョン技術 - cvpaper.challenge in PRMU Grand Challenge 2016 (PRMU研究会 2...
これからのコンピュータビジョン技術 - cvpaper.challenge in PRMU Grand Challenge 2016 (PRMU研究会 2...
 
Combinatorial optimization with graph convolutional networks and guided
Combinatorial optimization with graph convolutional networks and guidedCombinatorial optimization with graph convolutional networks and guided
Combinatorial optimization with graph convolutional networks and guided
 
Combinatorial optimization with graph convolutional networks and guided ver20...
Combinatorial optimization with graph convolutional networks and guided ver20...Combinatorial optimization with graph convolutional networks and guided ver20...
Combinatorial optimization with graph convolutional networks and guided ver20...
 
ICCV 2019 論文紹介 (26 papers)
ICCV 2019 論文紹介 (26 papers)ICCV 2019 論文紹介 (26 papers)
ICCV 2019 論文紹介 (26 papers)
 
LCCC2010:Learning on Cores, Clusters and Cloudsの解説
LCCC2010:Learning on Cores,  Clusters and Cloudsの解説LCCC2010:Learning on Cores,  Clusters and Cloudsの解説
LCCC2010:Learning on Cores, Clusters and Cloudsの解説
 
【DL輪読会】Data-Efficient Reinforcement Learning with Self-Predictive Representat...
【DL輪読会】Data-Efficient Reinforcement Learning with Self-Predictive Representat...【DL輪読会】Data-Efficient Reinforcement Learning with Self-Predictive Representat...
【DL輪読会】Data-Efficient Reinforcement Learning with Self-Predictive Representat...
 
Deep learning勉強会20121214ochi
Deep learning勉強会20121214ochiDeep learning勉強会20121214ochi
Deep learning勉強会20121214ochi
 
【DL輪読会】DiffRF: Rendering-guided 3D Radiance Field Diffusion [N. Muller+ CVPR2...
【DL輪読会】DiffRF: Rendering-guided 3D Radiance Field Diffusion [N. Muller+ CVPR2...【DL輪読会】DiffRF: Rendering-guided 3D Radiance Field Diffusion [N. Muller+ CVPR2...
【DL輪読会】DiffRF: Rendering-guided 3D Radiance Field Diffusion [N. Muller+ CVPR2...
 
DAシンポジウム2019招待講演「深層学習モデルの高速なTraining/InferenceのためのHW/SW技術」 金子紘也hare
DAシンポジウム2019招待講演「深層学習モデルの高速なTraining/InferenceのためのHW/SW技術」 金子紘也hareDAシンポジウム2019招待講演「深層学習モデルの高速なTraining/InferenceのためのHW/SW技術」 金子紘也hare
DAシンポジウム2019招待講演「深層学習モデルの高速なTraining/InferenceのためのHW/SW技術」 金子紘也hare
 
点群深層学習 Meta-study
点群深層学習 Meta-study点群深層学習 Meta-study
点群深層学習 Meta-study
 
MapReduceによる大規模データを利用した機械学習
MapReduceによる大規模データを利用した機械学習MapReduceによる大規模データを利用した機械学習
MapReduceによる大規模データを利用した機械学習
 
(文献紹介)深層学習による動被写体ロバストなカメラの動き推定
(文献紹介)深層学習による動被写体ロバストなカメラの動き推定(文献紹介)深層学習による動被写体ロバストなカメラの動き推定
(文献紹介)深層学習による動被写体ロバストなカメラの動き推定
 
Graph-to-Sequence Learning using Gated Graph Neural Networks. [ACL'18] 論文紹介
Graph-to-Sequence Learning using Gated Graph Neural Networks. [ACL'18] 論文紹介Graph-to-Sequence Learning using Gated Graph Neural Networks. [ACL'18] 論文紹介
Graph-to-Sequence Learning using Gated Graph Neural Networks. [ACL'18] 論文紹介
 
[DL輪読会]A Higher-Dimensional Representation for Topologically Varying Neural R...
[DL輪読会]A Higher-Dimensional Representation for Topologically Varying Neural R...[DL輪読会]A Higher-Dimensional Representation for Topologically Varying Neural R...
[DL輪読会]A Higher-Dimensional Representation for Topologically Varying Neural R...
 

Plus de Deep Learning JP

【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving PlannersDeep Learning JP
 
【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについて【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについてDeep Learning JP
 
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...Deep Learning JP
 
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-ResolutionDeep Learning JP
 
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxivDeep Learning JP
 
【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLM【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLMDeep Learning JP
 
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo... 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...Deep Learning JP
 
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place RecognitionDeep Learning JP
 
【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?Deep Learning JP
 
【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究についてDeep Learning JP
 
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )Deep Learning JP
 
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...Deep Learning JP
 
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"Deep Learning JP
 
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "Deep Learning JP
 
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat ModelsDeep Learning JP
 
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"Deep Learning JP
 
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...Deep Learning JP
 
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...Deep Learning JP
 
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...Deep Learning JP
 
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...Deep Learning JP
 

Plus de Deep Learning JP (20)

【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
 
【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについて【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについて
 
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
 
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
 
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
 
【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLM【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLM
 
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo... 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
 
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
 
【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?
 
【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について
 
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
 
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
 
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
 
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
 
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
 
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
 
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
 
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
 
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
 
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
 

Dernier

業務で生成AIを活用したい人のための生成AI入門講座(社外公開版:キンドリルジャパン社内勉強会:2024年4月発表)
業務で生成AIを活用したい人のための生成AI入門講座(社外公開版:キンドリルジャパン社内勉強会:2024年4月発表)業務で生成AIを活用したい人のための生成AI入門講座(社外公開版:キンドリルジャパン社内勉強会:2024年4月発表)
業務で生成AIを活用したい人のための生成AI入門講座(社外公開版:キンドリルジャパン社内勉強会:2024年4月発表)Hiroshi Tomioka
 
モーダル間の変換後の一致性とジャンル表を用いた解釈可能性の考察 ~Text-to-MusicとText-To-ImageかつImage-to-Music...
モーダル間の変換後の一致性とジャンル表を用いた解釈可能性の考察  ~Text-to-MusicとText-To-ImageかつImage-to-Music...モーダル間の変換後の一致性とジャンル表を用いた解釈可能性の考察  ~Text-to-MusicとText-To-ImageかつImage-to-Music...
モーダル間の変換後の一致性とジャンル表を用いた解釈可能性の考察 ~Text-to-MusicとText-To-ImageかつImage-to-Music...博三 太田
 
NewSQLの可用性構成パターン(OCHaCafe Season 8 #4 発表資料)
NewSQLの可用性構成パターン(OCHaCafe Season 8 #4 発表資料)NewSQLの可用性構成パターン(OCHaCafe Season 8 #4 発表資料)
NewSQLの可用性構成パターン(OCHaCafe Season 8 #4 発表資料)NTT DATA Technology & Innovation
 
CTO, VPoE, テックリードなどリーダーポジションに登用したくなるのはどんな人材か?
CTO, VPoE, テックリードなどリーダーポジションに登用したくなるのはどんな人材か?CTO, VPoE, テックリードなどリーダーポジションに登用したくなるのはどんな人材か?
CTO, VPoE, テックリードなどリーダーポジションに登用したくなるのはどんな人材か?akihisamiyanaga1
 
クラウドネイティブなサーバー仮想化基盤 - OpenShift Virtualization.pdf
クラウドネイティブなサーバー仮想化基盤 - OpenShift Virtualization.pdfクラウドネイティブなサーバー仮想化基盤 - OpenShift Virtualization.pdf
クラウドネイティブなサーバー仮想化基盤 - OpenShift Virtualization.pdfFumieNakayama
 
自分史上一番早い2024振り返り〜コロナ後、仕事は通常ペースに戻ったか〜 by IoT fullstack engineer
自分史上一番早い2024振り返り〜コロナ後、仕事は通常ペースに戻ったか〜 by IoT fullstack engineer自分史上一番早い2024振り返り〜コロナ後、仕事は通常ペースに戻ったか〜 by IoT fullstack engineer
自分史上一番早い2024振り返り〜コロナ後、仕事は通常ペースに戻ったか〜 by IoT fullstack engineerYuki Kikuchi
 
AWS の OpenShift サービス (ROSA) を使った OpenShift Virtualizationの始め方.pdf
AWS の OpenShift サービス (ROSA) を使った OpenShift Virtualizationの始め方.pdfAWS の OpenShift サービス (ROSA) を使った OpenShift Virtualizationの始め方.pdf
AWS の OpenShift サービス (ROSA) を使った OpenShift Virtualizationの始め方.pdfFumieNakayama
 
デジタル・フォレンジックの最新動向(2024年4月27日情洛会総会特別講演スライド)
デジタル・フォレンジックの最新動向(2024年4月27日情洛会総会特別講演スライド)デジタル・フォレンジックの最新動向(2024年4月27日情洛会総会特別講演スライド)
デジタル・フォレンジックの最新動向(2024年4月27日情洛会総会特別講演スライド)UEHARA, Tetsutaro
 

Dernier (8)

業務で生成AIを活用したい人のための生成AI入門講座(社外公開版:キンドリルジャパン社内勉強会:2024年4月発表)
業務で生成AIを活用したい人のための生成AI入門講座(社外公開版:キンドリルジャパン社内勉強会:2024年4月発表)業務で生成AIを活用したい人のための生成AI入門講座(社外公開版:キンドリルジャパン社内勉強会:2024年4月発表)
業務で生成AIを活用したい人のための生成AI入門講座(社外公開版:キンドリルジャパン社内勉強会:2024年4月発表)
 
モーダル間の変換後の一致性とジャンル表を用いた解釈可能性の考察 ~Text-to-MusicとText-To-ImageかつImage-to-Music...
モーダル間の変換後の一致性とジャンル表を用いた解釈可能性の考察  ~Text-to-MusicとText-To-ImageかつImage-to-Music...モーダル間の変換後の一致性とジャンル表を用いた解釈可能性の考察  ~Text-to-MusicとText-To-ImageかつImage-to-Music...
モーダル間の変換後の一致性とジャンル表を用いた解釈可能性の考察 ~Text-to-MusicとText-To-ImageかつImage-to-Music...
 
NewSQLの可用性構成パターン(OCHaCafe Season 8 #4 発表資料)
NewSQLの可用性構成パターン(OCHaCafe Season 8 #4 発表資料)NewSQLの可用性構成パターン(OCHaCafe Season 8 #4 発表資料)
NewSQLの可用性構成パターン(OCHaCafe Season 8 #4 発表資料)
 
CTO, VPoE, テックリードなどリーダーポジションに登用したくなるのはどんな人材か?
CTO, VPoE, テックリードなどリーダーポジションに登用したくなるのはどんな人材か?CTO, VPoE, テックリードなどリーダーポジションに登用したくなるのはどんな人材か?
CTO, VPoE, テックリードなどリーダーポジションに登用したくなるのはどんな人材か?
 
クラウドネイティブなサーバー仮想化基盤 - OpenShift Virtualization.pdf
クラウドネイティブなサーバー仮想化基盤 - OpenShift Virtualization.pdfクラウドネイティブなサーバー仮想化基盤 - OpenShift Virtualization.pdf
クラウドネイティブなサーバー仮想化基盤 - OpenShift Virtualization.pdf
 
自分史上一番早い2024振り返り〜コロナ後、仕事は通常ペースに戻ったか〜 by IoT fullstack engineer
自分史上一番早い2024振り返り〜コロナ後、仕事は通常ペースに戻ったか〜 by IoT fullstack engineer自分史上一番早い2024振り返り〜コロナ後、仕事は通常ペースに戻ったか〜 by IoT fullstack engineer
自分史上一番早い2024振り返り〜コロナ後、仕事は通常ペースに戻ったか〜 by IoT fullstack engineer
 
AWS の OpenShift サービス (ROSA) を使った OpenShift Virtualizationの始め方.pdf
AWS の OpenShift サービス (ROSA) を使った OpenShift Virtualizationの始め方.pdfAWS の OpenShift サービス (ROSA) を使った OpenShift Virtualizationの始め方.pdf
AWS の OpenShift サービス (ROSA) を使った OpenShift Virtualizationの始め方.pdf
 
デジタル・フォレンジックの最新動向(2024年4月27日情洛会総会特別講演スライド)
デジタル・フォレンジックの最新動向(2024年4月27日情洛会総会特別講演スライド)デジタル・フォレンジックの最新動向(2024年4月27日情洛会総会特別講演スライド)
デジタル・フォレンジックの最新動向(2024年4月27日情洛会総会特別講演スライド)
 

【DL輪読会】HyperDiffusion: Generating Implicit Neural Fields withWeight-Space Diffusion

  • 1. 1 HyperDiffusion: Generating Implicit Neural Fields with Weight-Space Diffusion Naruya Kondo (Digital Nature Group D1)
  • 2. 書誌情報 2 ● HyperDiffusion: Generating Implicit Neural Fields with Weight-Space Diffusion ○ Arxiv Submitted on 2023/03/29 (CVPR?) ○ by Technical University of Munich, Apple (⇦ Vision Pro (VR HMD) で話題の!!) ● ひとことで言うと ○ 3D / 4D の (条件付けなしの) 深層生成モデル ○ データセットの各データを (neural field) MLPで過適合させて、 MLP のパラメタ空間で diffusion model を学習、MLP パラメタの生成を可能にする ○ 4D でも同じやり方でできる
  • 4. ここからの内容 • 背景 • 提案手法 – Per-Sample MLP Overfitting – MLP Weight-Space Diffusion – 実装のベース: G.pt • 比較手法 (3つ) • 評価指標 (4つ) • 結果 • Limitation • (関連研究) • まとめと感想 4
  • 6. 背景 • 3D の生成モデルの学習が難しい – ボクセル (データ量が爆発) – メッシュ (スパース、トポロジーの問題) – (点群 (?) / Tri-Plane (?)) – …どういう表現ベースで学習すればいいのか • 3D のデータがそんなにない – 空間全体が学習できる (多様体が獲得できる) ほどもない – 過適合を避けるとなると、詳細な形を生成するのが困難 • 各データに最適化されたMLPの空間で diffusion する! – データが密 – High detailed な生成が期待できる 6
  • 9. Per-Sample MLP Overfitting • 入力 → 出力: xyz,(t) → in/out (1/0) • モデル: 3層のMLP, hidden 128 (パラメタ数≈36k) • データ数: 10万点 (一様) + 10万点 (表面付近) • モデルの初期化: 1つめのデータに overfitting した MLPを使う • 学習: BCE Loss, 800epoch, 6分 per shape 9 だいたい同じようなMLPの パラメタが集められる!
  • 10. MLP Weight-Space Diffusion Diffusion • transformerベース。500 diffusion step • MLPパラメタに noise を足して除いて学習 transformer • 2880 hidden, 12 layers, 16 attention head • 9個のトークン (w,b × 4 + t) 10 w,b (4箇所) t: diffusion step
  • 11. Learning to Learn with Generative Models of Neural Network Checkpoints (ICLR 2023 Reject, reviewer「役に立つか分からない」) • 勾配法 (の最適化器) は、過去の経験を参考にしない問題がある – 常に目の前や少し前のデータしか考えてない • 大量のモデルを学習させた時の checkpointsで diffusion してみた • diffusion step でパラメタ最適化ができるようになり、 (そのタスクでは) 1stepだけで劇的にlossを更新できるようになる • パラメータ空間の多様体を見ることができるようになる • (狙ったloss / errorのモデルを作れるようになる) • (感想: パラメタ空間 denoising のメタ学習ができたら最高そう) 実装のベース: G.pt 11
  • 12. • PVD (Point Voxel Diffusion, ICCV 2021) – 3D点群データで diffusion – 球状の点群から始めて、point-voxel CNN で 点群全体を一括で少し動かすようにして denoise • DPC (Diffusion Probabilistic Models, CVPR 2021) – 3D点群データで diffusion – auto-encoder の表現学習と組み合わせて、 点単位で動かす? • Voxel ← オリジナルで追加のベースラインを用意 (for 3D, 4D) – 24^3のボクセルに区切って、直接 transformer で diffusion 比較手法 12
  • 13. 評価指標 • FPD スコア – 生成画像の品質と多様性の両方を評価 – FID スコアの 点群 ver. 学習済みPointNet++を代わりに使う。 • 学習済みモデルで正解データ、生成データの特徴量ベクトルを全部出して、特徴量ベクトルの多次元ガウ ス分布のフレシェ距離がスコア。(多次元ガウス分布は特徴ベクトルの平均と共分散行列で作られる、フレ シェ距離は、2つのガウス分布の平均の間のユークリッド距離と、それぞれの共分散行列のトレース (対角 成分の和) の差との和) • (準備) Chamfer Distance (CD) – 2つの点群X,Yの距離の定義の1つ (メッシュの距離にも使える) • 点群Xの各点xについて一番近い点群Yのある点までの距離の総和 + そのXY逆版 • 4Dなら各時刻tでこのCDをとってTで平均 13 評価指標の詳しい説明がのってた論文 : https://arxiv.org/abs/2210.06978
  • 14. Sr: 正解データ(点群)の集合、Sg: 生成データの集合 • MMD (Minimum matching distance) スコア – どれだけ正解データセットに近い多様な生成ができているか – 正解データそれぞれについて、一番近い生成データとの距離の和 – △ 悪い生成結果について評価されない • COV (Coverage) スコア – どれだけ正解データセットを網羅できているか – 各生成データについて一番近い正解データを集めた集合の個数の、正解データ全体の個数に対する比率 評価指標 14 評価指標の詳しい説明がのってた論文 : https://arxiv.org/abs/2210.06978 COV だと誤って高く評価されてしまう例 はこんなの?この場合、次の1-NNA の 方が良さそう (by 近藤)
  • 15. 評価指標 • 1-NNA (1-nearest neighbor accuracy) スコア – 生成画像の品質と多様性の両方を評価 – 生成に一番近いのが生成ならペナルティ1点、正解に一番近いのが正解ならペナルティ1点 – 正解データと生成データは空間の中で良く混ざっているといいよね、分布が完全に1対1対応レベルで一致して いるとさらにいいよね。 あるデータ1個に注目して、(1番)近いサンプルのラベルだけからrかgかかを当てるときに、良く混ざってる (== 正解は50%) なら 0.5点、分布が完全一致 (== 正解は0%) なら 0点 (最高)、というスコア 15 評価指標の詳しい説明がのってた論文 : https://arxiv.org/abs/2210.06978 Nx : Sg ⋃ Sr - {X} の中で1番 X に近い要素 関数1[] : [] 内がYesなら1, Noなら0
  • 16. 結果 • データ: ShapeNet (3D), DeformingThings4D⇩ (4D) • 3D – 3000~6000個 / カテゴリ • 4D – 1772 anim 採用 – 16 frame 16
  • 17. 結果 • 1-NNA と FPDが本命の評価指標。良かった • 4D も voxel より良かった • その他 ablation – Positional Encoding ありの方が良い – 1つめのNLPで残りのNLP初期化した方が良い 17
  • 18. Limitations • 明示的な surface reconstruction の最適化はできていない – やってみたけどうまく行かなかったらしい • 広域3Dデータに対して、MLP で表現するには限界がある – (Block NeRF みたいに) ブロック分割して複数の MLP で表現できるかも • (続きのanimation を生成するとかはたぶん難しそう (近藤)) 18
  • 19. 関連研究 - GEM (2021) / Functa (2022) - パラメタ空間の一部だけを生成したり、 潜在変数を使ってパラメタを変えたり - DIFFUSION PROBABILISTIC FIELDS (2023) - Explicit field representation で生成 19 functa
  • 20. まとめと感想 • MLP のパラメタ空間で生成モデルを学習させる新しさ – 高解像度化が期待できる – 3D でも 4D でも同じやり方でできる – 獲得した MLP は downstream タスクに使えるかも – Diffusion Models の alternative アプローチとなるだろう • 感想 – パラメタ空間のノイズってわかるものなのか・・・? • (CNNの基底なら分かるっちゃ分かる(?)し、分かるのかな) – より Diffusion が学習しやすい MLP のパラメタのパターンとかありそう • そうなってくると使ってみたい – Tri-Plane系とどっちの方がいいんだろう 20
  • 21. (おまけ) EMD (Earth-Mover-Distance) • 点群Aの1点1点すべてを点群Bのどれかの点に被りなくかつ割り当てられない点も出ないように移動させたときの総 移動距離 • Chamfer Distanc の代わりに使われることがある。 • 最適な対応付けを効率的に見つけるアルゴリズム (ハンガリアンアルゴリズムなど) が存在します by GPT 21