Accueil
Explorer
Soumettre la recherche
Mettre en ligne
S’identifier
S’inscrire
Check these out next
Executive S&OP Case Study presented at GPSEG
guestdd5f19
Executive S&Op Case Study Gpseg
guest268716d
SMAC Overview
Ole Wegger
forecast
Jawed Khan
Evaluation
SahayaPrabu
Rsh qam11 ch05 ge
Firas Husseini
Simple Regression
Khawaja Naveed
Compiling Analysis Results
Matt Hansen
1
sur
32
Top clipped slide
forecasting.ppt
23 Mar 2023
•
0 j'aime
0 j'aime
×
Soyez le premier à aimer ceci
afficher plus
•
4 vues
vues
×
Nombre de vues
0
Sur Slideshare
0
À partir des intégrations
0
Nombre d'intégrations
0
Télécharger maintenant
Télécharger pour lire hors ligne
Signaler
Business
forecasting matrial
DejeneDay
Suivre
Recommandé
Six Sigma Project- GB
Livanshu Kashyap
1.4K vues
•
48 diapositives
Forecasting of demand (management)
Manthan Chavda
903 vues
•
50 diapositives
Slides for ch05
Firas Husseini
728 vues
•
43 diapositives
05 forecasting
Firas Husseini
4.1K vues
•
76 diapositives
Chapter 16
bmcfad01
14.9K vues
•
45 diapositives
Forecasting Slides
knksmart
93.1K vues
•
82 diapositives
Contenu connexe
Similaire à forecasting.ppt
(20)
Executive S&OP Case Study presented at GPSEG
guestdd5f19
•
7.7K vues
Executive S&Op Case Study Gpseg
guest268716d
•
1.5K vues
SMAC Overview
Ole Wegger
•
69 vues
forecast
Jawed Khan
•
94 vues
Evaluation
SahayaPrabu
•
85 vues
Rsh qam11 ch05 ge
Firas Husseini
•
730 vues
Simple Regression
Khawaja Naveed
•
6K vues
Compiling Analysis Results
Matt Hansen
•
27 vues
Oracle Hyperion Financial Close Suite Tips and Tricks
Alithya
•
1.7K vues
Attributes.ppt
AlaaAbdelghani8
•
11 vues
Time series analysis- Part 2
QuantUniversity
•
745 vues
Project KPI
Qimiao Hu
•
88 vues
Presentation 4
uliana8
•
235 vues
Solutions Manual for Forecasting For Economics And Business 1st Edition by Gl...
HildaLa
•
1.4K vues
Quality Control PowerPoint Presentation Slides
SlideTeam
•
236 vues
Chapter 7 demand forecasting in a supply chain
sajidsharif2022
•
402 vues
Project attrition
digvijayra
•
1.1K vues
Forecasting for Economics and Business 1st Edition Gloria Gonzalez Rivera Sol...
vacenini
•
812 vues
Effective Cost Measurement through DMAIC.
Kaustav Lahiri
•
893 vues
forecasting
RINUSATHYAN
•
14 vues
Plus de DejeneDay
(17)
chapter 2 revised.pptx
DejeneDay
•
4 vues
chapter 6.ppt
DejeneDay
•
1 vue
chapter 3.pptx
DejeneDay
•
12 vues
chapter 2 revised.pptx
DejeneDay
•
10 vues
CH 4 comp.pptx
DejeneDay
•
2 vues
CM CH 2.pptx
DejeneDay
•
3 vues
production and cost for RVU.pptx
DejeneDay
•
3 vues
compnsation c-1 2015.pptx
DejeneDay
•
13 vues
compensationnn-nnn.pdf
DejeneDay
•
2 vues
chapter 2 post optimality.pptx
DejeneDay
•
10 vues
lp 2.ppt
DejeneDay
•
13 vues
forecasting.ppt
DejeneDay
•
5 vues
psychometrics chapter one.pptx
DejeneDay
•
14 vues
ob exam.docx
DejeneDay
•
5 vues
CMC.pptx
DejeneDay
•
7 vues
OB chapter 1 ppt.ppt
DejeneDay
•
3 vues
evalaution guidlines.pdf
DejeneDay
•
3 vues
Dernier
(20)
Presentation.pptx
NidhiBulchandani1
•
0 vue
Money & Banking_8 Islamic Banking.pptx
Habibullah Qayumi
•
0 vue
corporate citizenship.pptx
AjayKumar95854
•
0 vue
【本科生、研究生】美国肯塔基大学毕业证文凭购买指南
akuufux
•
0 vue
Mike Savage New Canaan
Mike Savage New Canaan
•
0 vue
Benefits of cameras with video and audio in a business.pdf
David Steinfeld, Esq.
•
0 vue
Card making dies
Thestampsoflife
•
0 vue
Mike Savage New Canaan
Mike Savage New Canaan
•
0 vue
2.1 - Functions and Evolution of HRM (1).pptx
Dhjjvbn
•
0 vue
Wonderfull Works Ambassador Program Information
WonderfullWorks
•
0 vue
Documentation.pdf
Agus Sans
•
0 vue
mop bucket supplier in dubai, uae
Hygienelinks2
•
0 vue
ch07.ppt
AliHusnain805628
•
0 vue
LCP template-Fransidy Mei 2022.pptx
HanifNoerFachri
•
0 vue
Catherine Coppinger: Why Anchor Days Are Sinking Productivity & What to Do Ab...
Edunomica
•
0 vue
【本科生、研究生】美国陶森大学大学毕业证文凭购买指南
akuufux
•
0 vue
Office building Gen plan (1).pdf
GabriellaArmatis
•
0 vue
Balance of payment.pptx
Sana340690
•
0 vue
PENAWARAN PRODUK.pptx
RehanKayana
•
0 vue
【本科生、研究生】法国巴黎第八大学毕业证文凭购买指南
akuufux
•
0 vue
forecasting.ppt
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-1 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Quantitative Analysis for Management Forecasting
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-2 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Forecasting Models Moving Average Exponential Smoothing Trend Projections Time Series Methods Forecasting Techniques Delphi Methods Jury of Executive Opinion Sales Force Composite Consumer Market Survey Qualitative Models Causal Methods Regression Analysis Multiple Regression
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-3 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Scatter Diagram for Sales 0 50 100 150 200 250 300 350 400 450 0 2 4 6 8 10 12 Time (Years) Annual Sales Televisions
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-4 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Decomposition of Time Series Time series can be decomposed into: Trend (T): gradual up or down movement over time Seasonality (S): pattern of fluctuations above or below trend line that occurs every year Cycles(C): patterns in data that occur every several years Random variations (R): “blips”in the data caused by chance and unusual situations
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-5 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Product Demand Showing Components -150 -50 50 150 250 350 450 550 650 0 1 2 3 4 5 Time (Years Demand Trend Actual Data Cyclic Random
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-6 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Moving Averages n n) period in (demand : average Moving
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-7 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Calculation of Three-Month Moving Average Month Actual Shed Sales Three-Month Moving Average January 10 February 12 March 13 April 16 3 2 11 13)/3 12 (10 = + + May 19 3 2 13 16)/3 13 (12 = + + June 23 16 19)/3 16 (13 = + + July 26 3 1 19 23)/3 19 (16 = + +
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-8 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Weighted Moving Averages weights ) period in )(demand period for (weight average moving Weighted = n n
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-9 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Calculating Weighted Moving Averages Weights Applied Period 3 Last month 2 Two months ago 1 Three months ago 3*Sales last month + 2*Sales two months ago + 1*Sales three months ago 6 Sum of weights
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-10 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Calculation of Three-Month Moving Average Month Actual Shed Sales Three-Month Moving Average January 10 February 12 March 13 April 16 6 1 12 10)]/6 * (1 12) * (2 13) * [(3 = + + May 19 3 1 14 12)]/6 * (1 13) * (2 16) * [(3 = + + June 23 17 13)]/6 * (1 16) * (2 19) * [(3 = + + July 26 2 1 20 16)]/6 * (1 19) * (2 23) * [(3 = + +
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-11 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Exponential Smoothing New forecast = previous forecast + (previous actual - previous) or: where ( ) 1 1 1 - - - - + = t t t t F A F F actual period previous constant between 0~1 smoothing forecast previous forecast new = = = = -1 1 t t- t A F F
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-12 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Table 5.5
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-13 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Table 5.5 Continued =0.50 Qtr Actual Tonnage Unloaded Forecast using =0.50 1 180 175 2 168 177.50 =175.00+0.50(180-175) 3 159 172.75 =177.50+0.50(168-177.50) 4 175 165.38 =172.25+0.50(159-172.25) 5 190 170.19 =165.38+0.50(175-165.38) 6 205 179.09 =170.19+0.50(190-170.19) 7 180 179.54 =179.09+0.50(180-179.09) 8 182 182.00 =179.54+0.50(182-179.54) 9 ?
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-14 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Trend Projection General regression equation: + = 2 X 2 n X Y X n XY b Y a Y where bX a Y - - = = = intercept axis - variable) (dependent predicted be to variable the of value computed
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-15 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Table5.7
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-16 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Solved Formula
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-17 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Midwestern Manufacturing’s Demand 60 70 80 90 100 110 120 130 140 150 160 1993 1994 1995 1996 1997 1998 1999 2000 2001 Forecast points Trend Line Actual demand line X y 54 . 10 70 . 56 + =
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-18 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Computing Seasonality Indices Using Answering Machine Sales
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-19 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Trend Analysis with Seasonal Indices Y = 1150 + 20x Where x=1,2,…12 for Jan, Feb,….Dec So; Jan =[1150+20(1)]*.957 = 1119.69 Feb =[1150+50(2)]*.851 = 1012.69 Mar =[1150+20(3)]*.904 = 1093.84 . . Dec = [1150*20(12)]*.851 = 1182.89
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-20 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Trend Analysis Example with Seasonality: Trend analysis was used to forecast the number of new hotel registrants (in ooo’s). The following data was used. yr1 yr2 1 Jan 17 17 2 Feb 16 15 3 Mar 16 17 4 Apr 25 24 5 May 24 23 6 June 25 25 7 July 23 24 8 Aug 20 19 9 Sep 20 20 10 Oct 16 15 11 Nov 16 15 12 Dec 17 17
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-21 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 The trend analysis, using year1 data was Y= 20.5 + 0.1455X a) Compute the seasonal index b) Forecast July of year3, October of year3 c) What is the forecast for December if the average yearly demand for year is thought to increase by 10% higher than year1? Trend Analysis Example :
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-22 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Using Regression Analysis to Forecast(Causal) Y Triple A' Sales ($100,000's) X Local Payroll ($100,000,000) 2.0 1 3.0 3 2.5 4 2.0 2 2.0 1 3.5 7
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-23 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Using Regression Analysis to Forecast - continued Sales, Y Payroll, X X2 XY 2.0 1 1 2.0 3.0 3 9 9.0 2.5 4 16 10.0 2.0 2 4 4.0 2.0 1 1 2.0 3.5 7 49 24.5 S Y = 15.0 SX = 18 SX2 = 80 SXY = 51.5
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-24 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Using Regression Analysis to Forecast - continued Calculating the required parameters: ( )( )( ) ( )( ) ( )( ) X . . Ŷ . . . X b Y a . . . X n X Y X n XY b . Y Y X X 25 0 75 1 75 1 3 25 0 5 2 25 0 6 80 5 2 3 6 5 51 5 2 6 15 6 3 6 18 6 3 2 2 2 + = = - = - = = - - = - - = = = = = = =
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-25 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Regression Equation 0 1 2 3 4 0 1 2 3 4 5 6 7 8 Area Payroll ($100,000,000) Triple A's Sale s ($100,000)
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-26 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Methods to evaluate the Casual Regression Equation Standard Error of the Estimate (the standard deviation) Correlation Coefficient -1 < r <1 Coefficient of Determination 0 < r <1 the percent of variation in Y ( the dependent variable ) that is described by the X’s (independent variables ) 2
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-27 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Standard Error of the Estimate - continued ( ) points data of number equation regression the from computed variable dependent the of value point data each of value = = - = - - = n Y Y Y where n Y Y S c c X , Y 2 2 This is the standard deviation of the regression For Payroll example, S = 0.306 Y,X
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-28 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Correlation Coefficient = ( ) [ ] - 2 2 ( ) [ ] - - 2 2 2 Y Y ( Y n X X n - Y X XY n r For Payroll example, r = 0.91
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-29 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Coefficient - Four Values Fig. 5.7
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-30 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Multiple Regression to Forecast #5-32 SUMMARY OUTPUT Regression Statistics Multiple R 0.656652082 R Square 0.431191956 Adjusted R Square 0.374311152 Standard Error 8.302983493 Observations 12 ANOVA df SS MS F Significance F Regression 1 522.6046512 522.6046512 7.580623398 0.020362831 Residual 10 689.3953488 68.93953488 Total 11 1212 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept 6.441860465 5.476681644 1.176234239 0.266742687 -5.760948796 18.64466973 # Tourists 1.23255814 0.447666868 2.753293191 0.020362831 0.235094026 2.230022253
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-31 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Multiple Regression to Forecast #5-32 SUMMARY OUTPUT Regression Statistics Multiple R 0.673989793 R Square 0.454262242 Adjusted R Square 0.332987184 Standard Error 8.572787458 Observations 12 ANOVA df SS MS F Significance F Regression 2 550.5658367 275.2829184 3.745718626 0.065528166 Residual 9 661.4341633 73.49268481 Total 11 1212 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept 7.720611916 6.022703676 1.281917944 0.231907613 -5.903700728 21.34492456 Year -0.54576985 0.884817709 -0.616816147 0.552637609 -2.547368093 1.455828393 # Tourists 1.438808374 0.570482864 2.522088682 0.032656541 0.148285494 2.729331253
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-32 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Regression SAS printout Problem Attendance Wins 40,000 6 60,000 11 60,000 9 50,000 9 45,000 8 55,000 8 50,000 10 a) What is the dependent variable? b) Plot the data is it correlated?