SlideShare une entreprise Scribd logo
1  sur  57
Télécharger pour lire hors ligne
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
Development of a Pseudo-Spectral 3D Navier
Stokes Solver for Wind Turbine Wakes
Emre Barlas
Technical University of Denmark
s110988@student.dtu.dk
May 26, 2014
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 1/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
Overview
1 Introduction
2 Fourier & Chebyshev SM
3 3D Navier-Stokes
Time & Spatial Discretization
4 Comp. Domain & W.T. Representation
Computational Domain
Wind Turbine Representation Methods
5 Validation
AD-NR
AD-R
6 Simulations
7 Conclusions & Future Work
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 2/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
Introduction
∂ρ
∂t
+ · (ρu) = 0 + ρ
∂u
∂t
+ u · u = − p + µ 2
u + f
Approximate with;
• Finite Difference FD
• Finite Volume FVM
• Finite Element FEM
• Spectral Methods FUNCTIONAL
• Spectral Element Methods SEM
• Vortex/Particle VP
etc.
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 3/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
∂ρ
∂t
+ · (ρu) = 0 + ρ
∂u
∂t
+ u · u = − p + µ 2
u + f
Approximate with;
• Finite Difference DISCRETE
• Finite Volume DISCRETE
• Finite Element FUNCTIONAL
• Spectral Methods FUNCTIONAL
• Spectral Element Methods HYBRID
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 4/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
Approximate with;
• Finite Difference DISCRETE LOCAL
• Finite Volume DISCRETE LOCAL
• Finite Element FUNCTIONAL LOCAL
• Spectral Methods FUNCTIONAL GLOBAL
• Spectral Element Methods HYBRID
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 5/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
∂ρ
∂t
+ · (ρu) = 0 + ρ
∂u
∂t
+ u · u = − p + µ 2
u + f
Approximate with;
• Finite Difference FD
• Finite Volume FVM
• Finite Element FEM
• Spectral Methods GLOBAL+FUNCTIONAL
• Spectral Element Methods (maybe later)
etc.
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 6/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
Polynomial Approximation
Replacing;
u(x) = uN(x) =
N
k=0
ˆuk φk
results with a residual/error;
Lu(x) = f (x) ⇒ RN(x) = LuN(x) − f (x) = 0
minimize the residual/error;
(RN)w :=
Ω
RN(x)ω(x)dx = 0,
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 7/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
Spectral Collocation
RN(xk) = LuN(xk) − f (xk), 1 ≤ k ≤ N − 1
uN(x0) = g−, uN(xN) = g+
Plug this; uN(x) =
N
j=0
uN(xj)hj(x) into the above equations results;
N
j=0
[Lhj(xk)]uN(xj) = f (xk), 1 ≤ k ≤ N − 1
N
j=0
[hj(x0)]uN(xj) = g−,
N
j=0
[hj(xN)]uN(xj) = g+
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 8/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
Spectral Collocation
um
N (xk) =
N
j=0
dm
kj uN(xj), where dm
kj = hm
j (xk)
The matrix Dm = (dm
kj )k,j=0,...,N
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 9/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
Fourier Approximation & Differentiation
The approximation of a real, integrable periodic function with
truncated Fourier series;
uK (x) =
K
k=−K
ˆukeikx
via orthogonality;
2π
0
eikx
e−ilx
dx =
2π if k = l
0 if k = l
coefficients;
ˆuk =
1
2π
2π
0
u(x)e−ikx
dx, k = 0, ±1, ±2, . . .
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 10/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
Fourier Approximation & Differentiation
Nth order truncated Fourier series
PNu(x) =
N/2−1
k=−N/2
ˆukeikx
For 2π (not mapped) periodic, the collocation grid points;
xj =
2πj
N
, j = 0, . . . , N − 1
the coefficients (again via orthogonality);
ˆuk =
1
N
N−1
j=0
u(xj)e−ikxj
, k = −N/2, . . . , N/2 − 1
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 11/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
Fourier Approximation & Differentiation
1D Burgers Equation;
∂u
∂t
= v
∂2u
∂x2
− u
∂u
∂x
The discretized version;
1
∆t
(ˆun+1
k − ˆun
k ) = −vk2
ˆun+1
k − ˆun
k ikˆun
k
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 12/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
Fourier Approximation & Differentiation
Figure: 1D Burgers equation solved with increasing modes
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 13/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
Chebyshev Approximation & Differentiation
Basically Substituted ’Cosine’ functions;
Tk = cos(kz) where x = cos(z)
Possible FFT usage,or DCT
Suitable for Non-Periodic B.C.
Common collocation points;
Gauss (Chebyshev zero points)
xi = cos (i + 1
2 )π
k , i = 0, . . . , k − 1
Gauss-Lobatto points(Chebyshev extreme points)
xi = cos iπ
k , i = 0, . . . , k
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 14/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
Chebyshev Approximation & Differentiation
’Collocated’ on the Gauss-Lobatto points;
u(xi ) = uN(xi ) =
N
k=0
ˆukTk(xi ) =
N
k=0
ˆuk cos(
k π i
N
), i = 0, . . . , N
via orthogonality the coefficients are;
ˆuk =
2
ck N
N
i=0
1
ci
ui cos(
k π i
N
), k = 0, . . . , N
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 15/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
Chebyshev Approximation & Differentiation
1D Advection-Diffusion;
∂u
∂t
+ u
∂u
∂x
= v
∂2u
∂x2
Discretized version;
3
2∆t
ut+1
−
2
∆t
ut
+
1
2∆t
ut−1
− 2ut
Dut
+ 2ut−1
Dut−1
= vD2
ut+1
+ RHSt+1
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 16/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
Chebyshev Approximation & Differentiation
Figure: 1D Advection-Diffusion solutions with various Chebyshev modes
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 17/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
Chebyshev Approximation & Differentiation
10
1
10
2
10
−6
10
−5
10
−4
10
−3
10
−2
10
−1
10
0
N
Error
Figure: Convergence of Chebyshev method for 1D advection-diffusion
equation
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 18/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
Pause & Recap
Introduced & Assessed the methods → SM,FD,FEM,FVM
Picked the method → S.M. - Collocation
Manipulated the methods individually → Fourier & Chebyshev
Next → Navier Stokes Implementation
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 19/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
Time & Spatial Discretization
Splitting Algorithm
Velocity Step
1
2∆t
3un+1/2
− 4un
+ un−1
−
1
Re
∆un+1/2
= 2hn
− hn−1
+ f
un+1/2
= gn+1/2
where h = u · u
Pressure Step
1
∆t
(un+1
− un+1/2
) + pn+1
= 0
· un+1
= 0
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 20/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
Time & Spatial Discretization
Staggered Grid
Figure: Staggered grid - [Canuto et.al.,Springer,2007]
yj = cos
jπ
Ny
, j = 0, ......, Ny (GL)
yj+1
2
= cos (j +
1
2
)
π
Ny
, j = 0, ......, Ny − 1 (G)Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 21/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
Time & Spatial Discretization
Velocity & Pressure Representation
u(x, y, z, t) =
Nx /2−1
kx =−Nx /2
Ny
m=0
Nz /2−1
kz =−Nz /2
ˆukx,m,kz
¯Tm(y)e2πi(kx x/Lx+kz z/Lz)
p(x, y, z, t) =
Nx /2−1
kx =−Nx /2
Ny−1
m=0
Nz /2−1
kz =−Nz /2
ˆpkx,m,kz
¯Tm(y)e2πi(kx x/Lx+kz z/Lz)
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 22/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
Time & Spatial Discretization
Pseudo-Code
1.Pre-Process
Grid,Re,Diff. Matrices,Operators
2.Turbine Preparation
Nodes,Airfoils,Indexing
3.Solver
1: for Time Marching do
2: Non-Linear Terms(Pseudo-Spectrally)
3: for each mode in X do
4: for each mode in Z do
5: Solve the system for intermediate vel where the forces are fed in.Then
solve for new pressure via that find the divergence free velocity
6: end for
7: end for
8: Check Continuity
9: Transform to the real space & update the forces
10: end for
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 23/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
Computational Domain
Computational Domain
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 24/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
Wind Turbine Representation Methods
AD-NR
UNIFORM FORCE DISTRIBUTION & NO ROTATION
LESS TIME CONSUMING
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 25/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
Wind Turbine Representation Methods
AD-R
The velocity components at the rotor disc are extracted from
the flow solver, Vx ,Vy ,Vz (for 3D Cartesian coordinates)
The inflow angle was calculated considering the angular
velocity of the turbine,Vθ (projected from Vy & Vz) and Vx
φ = tan−1 Vx
ωr + Vθ
The local twist and pitch is subtracted from inflow angle in
order to find the angle of attack.
α = φ − γ
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 26/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
Wind Turbine Representation Methods
AD-R
Via the look up tables the lift and drag coefficients
(Cl (α, Re), Cd (α, Re)) are stored.
The forces acting on the rotor disc are found , by considering
an annular area of differential size dA = 2πrdr. The resulting
force per unit rotor area is;
dF
dA
=
ρV 2
rel
2
Bc
2πr
(Cl el + Cd ed )
FORCE DISTRIBUTION W.R.T. LOCAL CHARACTERISTICS &
WITH ROTATION
MORE TIME CONSUMING & STILL A DISC NOT ACL
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 27/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
AD-NR
Validation
Grid Independency Simulations
Nx Ny Nz Disk Nodes Ct Re a,induction
192 28 64 39 0.6 1000 0.162
256 28 64 39 0.6 1000 0.158
192 42 64 61 0.6 1000 0.165
256 42 64 61 0.6 1000 0.167
300 42 64 61 0.6 1000 0.166
192 56 64 75 0.6 1000 0.183
256 56 64 75 0.6 1000 0.186
300 56 64 75 0.6 1000 0.186
...
...
...
...
...
...
...
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 28/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
AD-NR
ValidationAxialInductionFactor(a)
Disk Resolution (N)
20 40 60 80 100 120 140 160
0.28
0.3
0.32
0.34
Re 1000
Re 3000
Axial Induction Factor (a)
Ct&Cp
0 0.1 0.2 0.3 0.4 0.5
0
0.2
0.4
0.6
0.8
1
Ct-Theory
Cp-Theory
Computed
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 29/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
AD-NR
Brief Results
−6 0 4 9
0
1
V
Vo
−6 0 4 9
−0.2
0
P
x
D
Pressure
Velocity
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 30/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
AD-NR
Brief Results
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 31/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
AD-NR
Brief Results
V
V o
0.5 1
0
1
2
3
4
X
D =-2
y
D
0.5 1
X
D =0
y
D
0.5 1
X
D =1
y
D
0.5 1
X
D =2
y
D
0.5 1
X
D =4
y
D
0.5 1
0
1
2
3
4
X
D =6
y
D
0.5 1
X
D =10
y
D
0.5 1
X
D =14
y
D
0.5 1
X
D =18
y
D
0.5 1
X
D =20
y
D
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 32/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
AD-NR
Brief Results
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 33/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
AD-NR
Brief Results
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 34/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
AD-NR
Reynolds Number Effect
Figure: Contour of the streamwise velocity component at different
Reynolds Numbers; 500, 1000, 2500, 5000, 10000 (from top to bottom)
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 35/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
AD-R
Validation
Power Curve
Measurements
ACL−Troldborg
AD−R
Figure: Comparison of measured and computed power coefficient for the
Tjaereborg wind turbine
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 36/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
AD-R
Validation
0
0.1
0.2
r/R
AxialInduction
0 0.2 0.4 0.6 0.8 1
0
0.1
r/R
Circulation
Figure: Loading (1- V
Vo ) and Circulation ( Γ
RVo ) along the blade
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 37/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
AD-R
Validation
(3dvo)
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 38/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
AD-R
3D Vorticity Field
(vorfield)
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 39/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
AD-NR & AD-R Simulations
Simulations 1 & 2 & 3 & 4
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 40/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
AD-NR & AD-R COMPARISON
(adrcompnew)
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 41/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
AD-NR & AD-R COMPARISON
Figure: Contours of the streamwise velocity. Comparison of AD-NR
(Top), AD-R (Bottom)
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 42/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
AD-NR & AD-R COMPARISON
¯u
V o
0.6 1
X
D =15
y
D
0.6 1
X
D =12
y
D
0.6 1
X
D =10
y
D
0.6 1
X
D =7
y
D
0.6 1
0
1
2
3
4
X
D =4
y
D
0.6 1
X
D =3
y
D
0.6 1
X
D =2
y
D
0.6 1
X
D =1
y
D
0.6 1
X
D =0
y
D
0.6 1
0
1
2
3
4
X
D =-3
y
D
AD-NR
AD-R
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 43/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
AD-NR & AD-R COMPARISON
Figure: Contours of the streamwise turbulence intensity, σu
¯u . Comparison
of AD-NR (Top), AD-R (Bottom)
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 44/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
AD-NR & AD-R COMPARISON
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 45/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
Reynolds Number Effect , AD-R
(Re500)
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 46/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
Reynolds Number Effect , AD-R
Figure: Time averaged stream-wise velocity, ¯u
Vo ([∼]), at the middle
vertical plane. Comparison Re-500 (Top), Re-2000 (Bottom)
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 47/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
Reynolds Number Effect , AD-R
Figure: Contours of stream-wise turbulence intensity,σu
¯u ,at the middle
vertical plane. Comparison Re-500 (Top), Re-2000 (Bottom)
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 48/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
Reynolds Number Effect , AD-R
Figure: Contours of turbulence kinetic energy (u )2+(v )2+(w )2
2 at the
middle vertical plane. Comparison Re-500 (Top), Re-2000 (Bottom)
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 49/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
Mixing Effect , 2 Turbines, Laminar&Disturbed
(2TurbineYESTurb)
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 50/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
Mixing Effect , 2 Turbines, Laminar&Disturbed
Figure: Time averaged stream-wise velocity, ¯u
Vo [], at the middle vertical
plane. Comparison Perturbed Inflow (Top), Laminar Inflow (Bottom)
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 51/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
Mixing Effect , 2 Turbines, Laminar&Disturbed
¯u
V o
0.6 1
X
D =17
y
D
0.6 1
X
D =14
y
D
0.6 1
X
D =12y
D
0.6 1
X
D =9
y
D
0.6 1
0
1
2
3
4
X
D =6
y
D
0.6 1
X
D
=3
y
D
0.6 1
X
D
=2
y
D
0.6 1
X
D
=1
y
D
0.6 1
X
D
=0
y
D
0.6 1
0
1
2
3
4
X
D
=-3
y
D
Turb-Inflow
Uni-Inflow
Figure: Time averaged stream-wise velocity, ¯u
Vo [], vertical profiles at
various downstream positions. Comparison Perturbed Inflow & LaminarEmre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 52/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
Mixing Effect , 3 Turbines, Laminar&Disturbed
Figure: Time averaged stream-wise velocity, ¯u
Vo [], at the middle vertical
plane. Comparison Perturbed Inflow (Top), Laminar Inflow (Bottom)
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 53/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
Staggered
(Staggered)
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 54/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
Conclusions
Spectral methods are very convenient for such flows. Fast
codes can be developed
Chebyshev grid distribution was not very suitable for a case
where the boundaries are not of paramount interest
Under uniform inflow conditions both models perform
similarly, in terms of wake modelling apart from the near wake
region
Axis symmetric wake development were captured
TI-The tips are the regions where the highest turbulence
occurs. If the tower was modelled this might have been valid
for only ’upper-side’
Reynolds number’s role for wake development for laminar and
perturbed inflow are different
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 55/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
Future Work
In order to reach more realistic atmospheric Reynolds numbers
with reasonable grid points, it is required to implement a
turbulence model to this code.
The boundary layer inflow.
Taking energy equation into account in order to see the
atmospheric stability effect in the wind turbine/farm wakes.
Chebyshev grid issue.
Tip correction for more detailed loading investigations
ACL,sacrificing from computational time
Continuous and controlled turbulence should be provided to
the flow.
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 56/57
Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl
The End
QUESTIONS & REMARKS
Emre Barlas DTU-Wind Energy
Spectral 3D Navier Stokes Solver for WT Wakes 57/57

Contenu connexe

Similaire à Development of a Pseudo-Spectral 3D Navier Stokes Solver for Wind Turbine Applications

Sampling and low-rank tensor approximations
Sampling and low-rank tensor approximationsSampling and low-rank tensor approximations
Sampling and low-rank tensor approximationsAlexander Litvinenko
 
Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...Alexander Litvinenko
 
dhirota_hone_corrected
dhirota_hone_correcteddhirota_hone_corrected
dhirota_hone_correctedAndy Hone
 
Bayesian inference on mixtures
Bayesian inference on mixturesBayesian inference on mixtures
Bayesian inference on mixturesChristian Robert
 
Zeros of orthogonal polynomials generated by a Geronimus perturbation of meas...
Zeros of orthogonal polynomials generated by a Geronimus perturbation of meas...Zeros of orthogonal polynomials generated by a Geronimus perturbation of meas...
Zeros of orthogonal polynomials generated by a Geronimus perturbation of meas...Edmundo José Huertas Cejudo
 
Adamek_SestoGR18.pdf
Adamek_SestoGR18.pdfAdamek_SestoGR18.pdf
Adamek_SestoGR18.pdfgarfacio30
 
25 johnarry tonye ngoji 250-263
25 johnarry tonye ngoji 250-26325 johnarry tonye ngoji 250-263
25 johnarry tonye ngoji 250-263Alexander Decker
 
Electromagnetic fields
Electromagnetic fieldsElectromagnetic fields
Electromagnetic fieldsFFMdeMul
 
Solucionario serway cap 27
Solucionario serway cap 27Solucionario serway cap 27
Solucionario serway cap 27Carlo Magno
 
TwoLevelMedium
TwoLevelMediumTwoLevelMedium
TwoLevelMediumJohn Paul
 
PART VII.3 - Quantum Electrodynamics
PART VII.3 - Quantum ElectrodynamicsPART VII.3 - Quantum Electrodynamics
PART VII.3 - Quantum ElectrodynamicsMaurice R. TREMBLAY
 
Dsp U Lec10 DFT And FFT
Dsp U   Lec10  DFT And  FFTDsp U   Lec10  DFT And  FFT
Dsp U Lec10 DFT And FFTtaha25
 

Similaire à Development of a Pseudo-Spectral 3D Navier Stokes Solver for Wind Turbine Applications (20)

Sampling and low-rank tensor approximations
Sampling and low-rank tensor approximationsSampling and low-rank tensor approximations
Sampling and low-rank tensor approximations
 
Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...
 
BNL_Research_Report
BNL_Research_ReportBNL_Research_Report
BNL_Research_Report
 
Electromagnetic.pdf
Electromagnetic.pdfElectromagnetic.pdf
Electromagnetic.pdf
 
dhirota_hone_corrected
dhirota_hone_correcteddhirota_hone_corrected
dhirota_hone_corrected
 
Bayesian inference on mixtures
Bayesian inference on mixturesBayesian inference on mixtures
Bayesian inference on mixtures
 
Zeros of orthogonal polynomials generated by a Geronimus perturbation of meas...
Zeros of orthogonal polynomials generated by a Geronimus perturbation of meas...Zeros of orthogonal polynomials generated by a Geronimus perturbation of meas...
Zeros of orthogonal polynomials generated by a Geronimus perturbation of meas...
 
CS-ChapterI.pdf
CS-ChapterI.pdfCS-ChapterI.pdf
CS-ChapterI.pdf
 
Adamek_SestoGR18.pdf
Adamek_SestoGR18.pdfAdamek_SestoGR18.pdf
Adamek_SestoGR18.pdf
 
PhotonModel
PhotonModelPhotonModel
PhotonModel
 
25 johnarry tonye ngoji 250-263
25 johnarry tonye ngoji 250-26325 johnarry tonye ngoji 250-263
25 johnarry tonye ngoji 250-263
 
Electromagnetic fields
Electromagnetic fieldsElectromagnetic fields
Electromagnetic fields
 
Solucionario serway cap 27
Solucionario serway cap 27Solucionario serway cap 27
Solucionario serway cap 27
 
Sm chapter27
Sm chapter27Sm chapter27
Sm chapter27
 
TwoLevelMedium
TwoLevelMediumTwoLevelMedium
TwoLevelMedium
 
Matlab time series example
Matlab time series exampleMatlab time series example
Matlab time series example
 
PART VII.3 - Quantum Electrodynamics
PART VII.3 - Quantum ElectrodynamicsPART VII.3 - Quantum Electrodynamics
PART VII.3 - Quantum Electrodynamics
 
Dsp U Lec10 DFT And FFT
Dsp U   Lec10  DFT And  FFTDsp U   Lec10  DFT And  FFT
Dsp U Lec10 DFT And FFT
 
NANO266 - Lecture 7 - QM Modeling of Periodic Structures
NANO266 - Lecture 7 - QM Modeling of Periodic StructuresNANO266 - Lecture 7 - QM Modeling of Periodic Structures
NANO266 - Lecture 7 - QM Modeling of Periodic Structures
 
Final_presentation
Final_presentationFinal_presentation
Final_presentation
 

Dernier

Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlysanyuktamishra911
 
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur EscortsRussian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Christo Ananth
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college projectTonystark477637
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdfKamal Acharya
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingrknatarajan
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performancesivaprakash250
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...ranjana rawat
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Bookingdharasingh5698
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
Glass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesGlass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesPrabhanshu Chaturvedi
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordAsst.prof M.Gokilavani
 

Dernier (20)

Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur EscortsRussian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdf
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
Glass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesGlass Ceramics: Processing and Properties
Glass Ceramics: Processing and Properties
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 

Development of a Pseudo-Spectral 3D Navier Stokes Solver for Wind Turbine Applications

  • 1. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl Development of a Pseudo-Spectral 3D Navier Stokes Solver for Wind Turbine Wakes Emre Barlas Technical University of Denmark s110988@student.dtu.dk May 26, 2014 Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 1/57
  • 2. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl Overview 1 Introduction 2 Fourier & Chebyshev SM 3 3D Navier-Stokes Time & Spatial Discretization 4 Comp. Domain & W.T. Representation Computational Domain Wind Turbine Representation Methods 5 Validation AD-NR AD-R 6 Simulations 7 Conclusions & Future Work Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 2/57
  • 3. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl Introduction ∂ρ ∂t + · (ρu) = 0 + ρ ∂u ∂t + u · u = − p + µ 2 u + f Approximate with; • Finite Difference FD • Finite Volume FVM • Finite Element FEM • Spectral Methods FUNCTIONAL • Spectral Element Methods SEM • Vortex/Particle VP etc. Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 3/57
  • 4. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl ∂ρ ∂t + · (ρu) = 0 + ρ ∂u ∂t + u · u = − p + µ 2 u + f Approximate with; • Finite Difference DISCRETE • Finite Volume DISCRETE • Finite Element FUNCTIONAL • Spectral Methods FUNCTIONAL • Spectral Element Methods HYBRID Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 4/57
  • 5. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl Approximate with; • Finite Difference DISCRETE LOCAL • Finite Volume DISCRETE LOCAL • Finite Element FUNCTIONAL LOCAL • Spectral Methods FUNCTIONAL GLOBAL • Spectral Element Methods HYBRID Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 5/57
  • 6. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl ∂ρ ∂t + · (ρu) = 0 + ρ ∂u ∂t + u · u = − p + µ 2 u + f Approximate with; • Finite Difference FD • Finite Volume FVM • Finite Element FEM • Spectral Methods GLOBAL+FUNCTIONAL • Spectral Element Methods (maybe later) etc. Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 6/57
  • 7. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl Polynomial Approximation Replacing; u(x) = uN(x) = N k=0 ˆuk φk results with a residual/error; Lu(x) = f (x) ⇒ RN(x) = LuN(x) − f (x) = 0 minimize the residual/error; (RN)w := Ω RN(x)ω(x)dx = 0, Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 7/57
  • 8. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl Spectral Collocation RN(xk) = LuN(xk) − f (xk), 1 ≤ k ≤ N − 1 uN(x0) = g−, uN(xN) = g+ Plug this; uN(x) = N j=0 uN(xj)hj(x) into the above equations results; N j=0 [Lhj(xk)]uN(xj) = f (xk), 1 ≤ k ≤ N − 1 N j=0 [hj(x0)]uN(xj) = g−, N j=0 [hj(xN)]uN(xj) = g+ Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 8/57
  • 9. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl Spectral Collocation um N (xk) = N j=0 dm kj uN(xj), where dm kj = hm j (xk) The matrix Dm = (dm kj )k,j=0,...,N Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 9/57
  • 10. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl Fourier Approximation & Differentiation The approximation of a real, integrable periodic function with truncated Fourier series; uK (x) = K k=−K ˆukeikx via orthogonality; 2π 0 eikx e−ilx dx = 2π if k = l 0 if k = l coefficients; ˆuk = 1 2π 2π 0 u(x)e−ikx dx, k = 0, ±1, ±2, . . . Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 10/57
  • 11. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl Fourier Approximation & Differentiation Nth order truncated Fourier series PNu(x) = N/2−1 k=−N/2 ˆukeikx For 2π (not mapped) periodic, the collocation grid points; xj = 2πj N , j = 0, . . . , N − 1 the coefficients (again via orthogonality); ˆuk = 1 N N−1 j=0 u(xj)e−ikxj , k = −N/2, . . . , N/2 − 1 Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 11/57
  • 12. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl Fourier Approximation & Differentiation 1D Burgers Equation; ∂u ∂t = v ∂2u ∂x2 − u ∂u ∂x The discretized version; 1 ∆t (ˆun+1 k − ˆun k ) = −vk2 ˆun+1 k − ˆun k ikˆun k Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 12/57
  • 13. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl Fourier Approximation & Differentiation Figure: 1D Burgers equation solved with increasing modes Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 13/57
  • 14. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl Chebyshev Approximation & Differentiation Basically Substituted ’Cosine’ functions; Tk = cos(kz) where x = cos(z) Possible FFT usage,or DCT Suitable for Non-Periodic B.C. Common collocation points; Gauss (Chebyshev zero points) xi = cos (i + 1 2 )π k , i = 0, . . . , k − 1 Gauss-Lobatto points(Chebyshev extreme points) xi = cos iπ k , i = 0, . . . , k Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 14/57
  • 15. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl Chebyshev Approximation & Differentiation ’Collocated’ on the Gauss-Lobatto points; u(xi ) = uN(xi ) = N k=0 ˆukTk(xi ) = N k=0 ˆuk cos( k π i N ), i = 0, . . . , N via orthogonality the coefficients are; ˆuk = 2 ck N N i=0 1 ci ui cos( k π i N ), k = 0, . . . , N Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 15/57
  • 16. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl Chebyshev Approximation & Differentiation 1D Advection-Diffusion; ∂u ∂t + u ∂u ∂x = v ∂2u ∂x2 Discretized version; 3 2∆t ut+1 − 2 ∆t ut + 1 2∆t ut−1 − 2ut Dut + 2ut−1 Dut−1 = vD2 ut+1 + RHSt+1 Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 16/57
  • 17. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl Chebyshev Approximation & Differentiation Figure: 1D Advection-Diffusion solutions with various Chebyshev modes Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 17/57
  • 18. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl Chebyshev Approximation & Differentiation 10 1 10 2 10 −6 10 −5 10 −4 10 −3 10 −2 10 −1 10 0 N Error Figure: Convergence of Chebyshev method for 1D advection-diffusion equation Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 18/57
  • 19. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl Pause & Recap Introduced & Assessed the methods → SM,FD,FEM,FVM Picked the method → S.M. - Collocation Manipulated the methods individually → Fourier & Chebyshev Next → Navier Stokes Implementation Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 19/57
  • 20. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl Time & Spatial Discretization Splitting Algorithm Velocity Step 1 2∆t 3un+1/2 − 4un + un−1 − 1 Re ∆un+1/2 = 2hn − hn−1 + f un+1/2 = gn+1/2 where h = u · u Pressure Step 1 ∆t (un+1 − un+1/2 ) + pn+1 = 0 · un+1 = 0 Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 20/57
  • 21. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl Time & Spatial Discretization Staggered Grid Figure: Staggered grid - [Canuto et.al.,Springer,2007] yj = cos jπ Ny , j = 0, ......, Ny (GL) yj+1 2 = cos (j + 1 2 ) π Ny , j = 0, ......, Ny − 1 (G)Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 21/57
  • 22. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl Time & Spatial Discretization Velocity & Pressure Representation u(x, y, z, t) = Nx /2−1 kx =−Nx /2 Ny m=0 Nz /2−1 kz =−Nz /2 ˆukx,m,kz ¯Tm(y)e2πi(kx x/Lx+kz z/Lz) p(x, y, z, t) = Nx /2−1 kx =−Nx /2 Ny−1 m=0 Nz /2−1 kz =−Nz /2 ˆpkx,m,kz ¯Tm(y)e2πi(kx x/Lx+kz z/Lz) Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 22/57
  • 23. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl Time & Spatial Discretization Pseudo-Code 1.Pre-Process Grid,Re,Diff. Matrices,Operators 2.Turbine Preparation Nodes,Airfoils,Indexing 3.Solver 1: for Time Marching do 2: Non-Linear Terms(Pseudo-Spectrally) 3: for each mode in X do 4: for each mode in Z do 5: Solve the system for intermediate vel where the forces are fed in.Then solve for new pressure via that find the divergence free velocity 6: end for 7: end for 8: Check Continuity 9: Transform to the real space & update the forces 10: end for Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 23/57
  • 24. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl Computational Domain Computational Domain Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 24/57
  • 25. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl Wind Turbine Representation Methods AD-NR UNIFORM FORCE DISTRIBUTION & NO ROTATION LESS TIME CONSUMING Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 25/57
  • 26. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl Wind Turbine Representation Methods AD-R The velocity components at the rotor disc are extracted from the flow solver, Vx ,Vy ,Vz (for 3D Cartesian coordinates) The inflow angle was calculated considering the angular velocity of the turbine,Vθ (projected from Vy & Vz) and Vx φ = tan−1 Vx ωr + Vθ The local twist and pitch is subtracted from inflow angle in order to find the angle of attack. α = φ − γ Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 26/57
  • 27. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl Wind Turbine Representation Methods AD-R Via the look up tables the lift and drag coefficients (Cl (α, Re), Cd (α, Re)) are stored. The forces acting on the rotor disc are found , by considering an annular area of differential size dA = 2πrdr. The resulting force per unit rotor area is; dF dA = ρV 2 rel 2 Bc 2πr (Cl el + Cd ed ) FORCE DISTRIBUTION W.R.T. LOCAL CHARACTERISTICS & WITH ROTATION MORE TIME CONSUMING & STILL A DISC NOT ACL Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 27/57
  • 28. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl AD-NR Validation Grid Independency Simulations Nx Ny Nz Disk Nodes Ct Re a,induction 192 28 64 39 0.6 1000 0.162 256 28 64 39 0.6 1000 0.158 192 42 64 61 0.6 1000 0.165 256 42 64 61 0.6 1000 0.167 300 42 64 61 0.6 1000 0.166 192 56 64 75 0.6 1000 0.183 256 56 64 75 0.6 1000 0.186 300 56 64 75 0.6 1000 0.186 ... ... ... ... ... ... ... Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 28/57
  • 29. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl AD-NR ValidationAxialInductionFactor(a) Disk Resolution (N) 20 40 60 80 100 120 140 160 0.28 0.3 0.32 0.34 Re 1000 Re 3000 Axial Induction Factor (a) Ct&Cp 0 0.1 0.2 0.3 0.4 0.5 0 0.2 0.4 0.6 0.8 1 Ct-Theory Cp-Theory Computed Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 29/57
  • 30. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl AD-NR Brief Results −6 0 4 9 0 1 V Vo −6 0 4 9 −0.2 0 P x D Pressure Velocity Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 30/57
  • 31. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl AD-NR Brief Results Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 31/57
  • 32. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl AD-NR Brief Results V V o 0.5 1 0 1 2 3 4 X D =-2 y D 0.5 1 X D =0 y D 0.5 1 X D =1 y D 0.5 1 X D =2 y D 0.5 1 X D =4 y D 0.5 1 0 1 2 3 4 X D =6 y D 0.5 1 X D =10 y D 0.5 1 X D =14 y D 0.5 1 X D =18 y D 0.5 1 X D =20 y D Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 32/57
  • 33. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl AD-NR Brief Results Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 33/57
  • 34. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl AD-NR Brief Results Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 34/57
  • 35. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl AD-NR Reynolds Number Effect Figure: Contour of the streamwise velocity component at different Reynolds Numbers; 500, 1000, 2500, 5000, 10000 (from top to bottom) Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 35/57
  • 36. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl AD-R Validation Power Curve Measurements ACL−Troldborg AD−R Figure: Comparison of measured and computed power coefficient for the Tjaereborg wind turbine Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 36/57
  • 37. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl AD-R Validation 0 0.1 0.2 r/R AxialInduction 0 0.2 0.4 0.6 0.8 1 0 0.1 r/R Circulation Figure: Loading (1- V Vo ) and Circulation ( Γ RVo ) along the blade Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 37/57
  • 38. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl AD-R Validation (3dvo) Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 38/57
  • 39. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl AD-R 3D Vorticity Field (vorfield) Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 39/57
  • 40. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl AD-NR & AD-R Simulations Simulations 1 & 2 & 3 & 4 Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 40/57
  • 41. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl AD-NR & AD-R COMPARISON (adrcompnew) Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 41/57
  • 42. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl AD-NR & AD-R COMPARISON Figure: Contours of the streamwise velocity. Comparison of AD-NR (Top), AD-R (Bottom) Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 42/57
  • 43. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl AD-NR & AD-R COMPARISON ¯u V o 0.6 1 X D =15 y D 0.6 1 X D =12 y D 0.6 1 X D =10 y D 0.6 1 X D =7 y D 0.6 1 0 1 2 3 4 X D =4 y D 0.6 1 X D =3 y D 0.6 1 X D =2 y D 0.6 1 X D =1 y D 0.6 1 X D =0 y D 0.6 1 0 1 2 3 4 X D =-3 y D AD-NR AD-R Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 43/57
  • 44. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl AD-NR & AD-R COMPARISON Figure: Contours of the streamwise turbulence intensity, σu ¯u . Comparison of AD-NR (Top), AD-R (Bottom) Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 44/57
  • 45. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl AD-NR & AD-R COMPARISON Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 45/57
  • 46. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl Reynolds Number Effect , AD-R (Re500) Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 46/57
  • 47. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl Reynolds Number Effect , AD-R Figure: Time averaged stream-wise velocity, ¯u Vo ([∼]), at the middle vertical plane. Comparison Re-500 (Top), Re-2000 (Bottom) Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 47/57
  • 48. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl Reynolds Number Effect , AD-R Figure: Contours of stream-wise turbulence intensity,σu ¯u ,at the middle vertical plane. Comparison Re-500 (Top), Re-2000 (Bottom) Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 48/57
  • 49. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl Reynolds Number Effect , AD-R Figure: Contours of turbulence kinetic energy (u )2+(v )2+(w )2 2 at the middle vertical plane. Comparison Re-500 (Top), Re-2000 (Bottom) Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 49/57
  • 50. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl Mixing Effect , 2 Turbines, Laminar&Disturbed (2TurbineYESTurb) Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 50/57
  • 51. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl Mixing Effect , 2 Turbines, Laminar&Disturbed Figure: Time averaged stream-wise velocity, ¯u Vo [], at the middle vertical plane. Comparison Perturbed Inflow (Top), Laminar Inflow (Bottom) Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 51/57
  • 52. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl Mixing Effect , 2 Turbines, Laminar&Disturbed ¯u V o 0.6 1 X D =17 y D 0.6 1 X D =14 y D 0.6 1 X D =12y D 0.6 1 X D =9 y D 0.6 1 0 1 2 3 4 X D =6 y D 0.6 1 X D =3 y D 0.6 1 X D =2 y D 0.6 1 X D =1 y D 0.6 1 X D =0 y D 0.6 1 0 1 2 3 4 X D =-3 y D Turb-Inflow Uni-Inflow Figure: Time averaged stream-wise velocity, ¯u Vo [], vertical profiles at various downstream positions. Comparison Perturbed Inflow & LaminarEmre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 52/57
  • 53. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl Mixing Effect , 3 Turbines, Laminar&Disturbed Figure: Time averaged stream-wise velocity, ¯u Vo [], at the middle vertical plane. Comparison Perturbed Inflow (Top), Laminar Inflow (Bottom) Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 53/57
  • 54. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl Staggered (Staggered) Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 54/57
  • 55. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl Conclusions Spectral methods are very convenient for such flows. Fast codes can be developed Chebyshev grid distribution was not very suitable for a case where the boundaries are not of paramount interest Under uniform inflow conditions both models perform similarly, in terms of wake modelling apart from the near wake region Axis symmetric wake development were captured TI-The tips are the regions where the highest turbulence occurs. If the tower was modelled this might have been valid for only ’upper-side’ Reynolds number’s role for wake development for laminar and perturbed inflow are different Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 55/57
  • 56. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl Future Work In order to reach more realistic atmospheric Reynolds numbers with reasonable grid points, it is required to implement a turbulence model to this code. The boundary layer inflow. Taking energy equation into account in order to see the atmospheric stability effect in the wind turbine/farm wakes. Chebyshev grid issue. Tip correction for more detailed loading investigations ACL,sacrificing from computational time Continuous and controlled turbulence should be provided to the flow. Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 56/57
  • 57. Introduction Fourier & Chebyshev SM 3D Navier-Stokes Comp. Domain & W.T. Representation Validation Simulations Concl The End QUESTIONS & REMARKS Emre Barlas DTU-Wind Energy Spectral 3D Navier Stokes Solver for WT Wakes 57/57