SlideShare une entreprise Scribd logo
1  sur  61
Télécharger pour lire hors ligne
Explaining the Postgres Query Optimizer
BRUCE MOMJIAN
January, 2015
The optimizer is the "brain" of the database, interpreting SQL
queries and determining the fastest method of execution. This
talk uses the EXPLAIN command to show how the optimizer
interprets queries and determines optimal execution.
Creative Commons Attribution License http://momjian.us/presentations
1 / 61
PostgreSQL the database…
◮ Open Source Object Relational DBMS since 1996
◮ Distributed under the PostgreSQL License
◮ Similar technical heritage as Oracle, SQL Server & DB2
◮ However, a strong adherence to standards (ANSI-SQL 2008)
◮ Highly extensible and adaptable design
◮ Languages, indexing, data types, etc.
◮ E.g. PostGIS, JSONB, SQL/MED
◮ Extensive use throughout the world for applications and
organizations of all types
◮ Bundled into Red Hat Enterprise Linux, Ubuntu, CentOS
and Amazon Linux
Explaining the Postgres Query Optimizer 2 / 61
PostgreSQL the community…
◮ Independent community led by a Core Team of six
◮ Large, active and vibrant community
◮ www.postgresql.org
◮ Downloads, Mailing lists, Documentation
◮ Sponsors sampler:
◮ Google, Red Hat, VMWare, Skype, Salesforce, HP and
EnterpriseDB
◮ http://www.postgresql.org/community/
Explaining the Postgres Query Optimizer 3 / 61
EnterpriseDB the company…
◮ The worldwide leader of Postgres based products and
services founded in 2004
◮ Customers include 50 of the Fortune 500 and 98 of the
Forbes Global 2000
◮ Enterprise offerings:
◮ PostgreSQL Support, Services and Training
◮ Postgres Plus Advanced Server with Oracle Compatibility
◮ Tools for Monitoring, Replication, HA, Backup & Recovery
Community
◮ Citizenship
◮ Contributor of key features: Materialized Views, JSON, &
more
◮ Nine community members on staff
Explaining the Postgres Query Optimizer 4 / 61
EnterpriseDB the company…
Explaining the Postgres Query Optimizer 5 / 61
Postgres Query Execution
User
Terminal
Code
Database
Server
Application
Queries
Results
PostgreSQL
Libpq
Explaining the Postgres Query Optimizer 6 / 61
Postgres Query Execution
utility
Plan
Optimal Path
Query
Postmaster
Postgres Postgres
Libpq
Main
Generate Plan
Traffic Cop
Generate Paths
Execute Plan
e.g. CREATE TABLE, COPY
SELECT, INSERT, UPDATE, DELETE
Rewrite Query
Parse Statement
Utility
Command
Storage ManagersCatalogUtilities
Access Methods Nodes / Lists
Explaining the Postgres Query Optimizer 7 / 61
Postgres Query Execution
utility
Plan
Optimal Path
Query
Generate Plan
Traffic Cop
Generate Paths
Execute Plan
e.g. CREATE TABLE, COPY
SELECT, INSERT, UPDATE, DELETE
Rewrite Query
Parse Statement
Utility
Command
Explaining the Postgres Query Optimizer 8 / 61
The Optimizer Is the Brain
http://www.wsmanaging.com/
Explaining the Postgres Query Optimizer 9 / 61
What Decisions Does the Optimizer Have to Make?
◮ Scan Method
◮ Join Method
◮ Join Order
Explaining the Postgres Query Optimizer 10 / 61
Which Scan Method?
◮ Sequential Scan
◮ Bitmap Index Scan
◮ Index Scan
Explaining the Postgres Query Optimizer 11 / 61
A Simple Example Using pg_class.relname
SELECT relname
FROM pg_class
ORDER BY 1
LIMIT 8;
relname
-----------------------------------
_pg_foreign_data_wrappers
_pg_foreign_servers
_pg_user_mappings
administrable_role_authorizations
applicable_roles
attributes
check_constraint_routine_usage
check_constraints
(8 rows)
Explaining the Postgres Query Optimizer 12 / 61
Let’s Use Just the First Letter of pg_class.relname
SELECT substring(relname, 1, 1)
FROM pg_class
ORDER BY 1
LIMIT 8;
substring
-----------
_
_
_
a
a
a
c
c
(8 rows)
Explaining the Postgres Query Optimizer 13 / 61
Create a Temporary Table with an Index
CREATE TEMPORARY TABLE sample (letter, junk) AS
SELECT substring(relname, 1, 1), repeat(’x’, 250)
FROM pg_class
ORDER BY random(); -- add rows in random order
SELECT 253
CREATE INDEX i_sample on sample (letter);
CREATE INDEX
All the queries used in this presentation are available at
http://momjian.us/main/writings/pgsql/optimizer.sql.
Explaining the Postgres Query Optimizer 14 / 61
Create an EXPLAIN Function
CREATE OR REPLACE FUNCTION lookup_letter(text) RETURNS SETOF text AS $$
BEGIN
RETURN QUERY EXECUTE ’
EXPLAIN SELECT letter
FROM sample
WHERE letter = ’’’ || $1 || ’’’’;
END
$$ LANGUAGE plpgsql;
CREATE FUNCTION
Explaining the Postgres Query Optimizer 15 / 61
What is the Distribution of the sample Table?
WITH letters (letter, count) AS (
SELECT letter, COUNT(*)
FROM sample
GROUP BY 1
)
SELECT letter, count, (count * 100.0 / (SUM(count) OVER ()))::numeric(4,1) AS "%"
FROM letters
ORDER BY 2 DESC;
Explaining the Postgres Query Optimizer 16 / 61
What is the Distribution of the sample Table?
letter | count | %
--------+-------+------
p | 199 | 78.7
s | 9 | 3.6
c | 8 | 3.2
r | 7 | 2.8
t | 5 | 2.0
v | 4 | 1.6
f | 4 | 1.6
d | 4 | 1.6
u | 3 | 1.2
a | 3 | 1.2
_ | 3 | 1.2
e | 2 | 0.8
i | 1 | 0.4
k | 1 | 0.4
(14 rows)
Explaining the Postgres Query Optimizer 17 / 61
Is the Distribution Important?
EXPLAIN SELECT letter
FROM sample
WHERE letter = ’p’;
QUERY PLAN
------------------------------------------------------------------------
Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=32)
Index Cond: (letter = ’p’::text)
(2 rows)
Explaining the Postgres Query Optimizer 18 / 61
Is the Distribution Important?
EXPLAIN SELECT letter
FROM sample
WHERE letter = ’d’;
QUERY PLAN
------------------------------------------------------------------------
Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=32)
Index Cond: (letter = ’d’::text)
(2 rows)
Explaining the Postgres Query Optimizer 19 / 61
Is the Distribution Important?
EXPLAIN SELECT letter
FROM sample
WHERE letter = ’k’;
QUERY PLAN
------------------------------------------------------------------------
Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=32)
Index Cond: (letter = ’k’::text)
(2 rows)
Explaining the Postgres Query Optimizer 20 / 61
Running ANALYZE Causes
a Sequential Scan for a Common Value
ANALYZE sample;
ANALYZE
EXPLAIN SELECT letter
FROM sample
WHERE letter = ’p’;
QUERY PLAN
---------------------------------------------------------
Seq Scan on sample (cost=0.00..13.16 rows=199 width=2)
Filter: (letter = ’p’::text)
(2 rows)
Autovacuum cannot ANALYZE (or VACUUM) temporary tables because
these tables are only visible to the creating session.
Explaining the Postgres Query Optimizer 21 / 61
Sequential Scan
T
A
D
A
T
A
D
A
T
A
D
A
T
A
D
A
T
A
D
A
T
A
D
A
T
A
D
A
T
A
D
A
T
A
D
8K
Heap
A
A
D
T
A
T
A
D
A
T
A
D
A
Explaining the Postgres Query Optimizer 22 / 61
A Less Common Value Causes a Bitmap Index Scan
EXPLAIN SELECT letter
FROM sample
WHERE letter = ’d’;
QUERY PLAN
-----------------------------------------------------------------------
Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2)
Recheck Cond: (letter = ’d’::text)
-> Bitmap Index Scan on i_sample (cost=0.00..4.28 rows=4 width=0)
Index Cond: (letter = ’d’::text)
(4 rows)
Explaining the Postgres Query Optimizer 23 / 61
Bitmap Index Scan
=&
Combined
’A’ AND ’NS’
1
0
1
0
TableIndex 1
col1 = ’A’
Index 2
1
0
0
col2 = ’NS’
1 0
1
0
0
Index
Explaining the Postgres Query Optimizer 24 / 61
An Even Rarer Value Causes an Index Scan
EXPLAIN SELECT letter
FROM sample
WHERE letter = ’k’;
QUERY PLAN
-----------------------------------------------------------------------
Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2)
Index Cond: (letter = ’k’::text)
(2 rows)
Explaining the Postgres Query Optimizer 25 / 61
Index Scan
A
D
A
T
A
D
A
T
A
D
A
T
A
D
A
T
A
D
A
T
A
D
A
T
A
D
< >=Key
< >=Key
Index
Heap
< >=Key
A
T
A
D
A
T
A
D
A
T
A
D
A
T
A
D
A
T
A
D
A
T
Explaining the Postgres Query Optimizer 26 / 61
Let’s Look at All Values and their Effects
WITH letter (letter, count) AS (
SELECT letter, COUNT(*)
FROM sample
GROUP BY 1
)
SELECT letter AS l, count, lookup_letter(letter)
FROM letter
ORDER BY 2 DESC;
l | count | lookup_letter
---+-------+-----------------------------------------------------------------------
p | 199 | Seq Scan on sample (cost=0.00..13.16 rows=199 width=2)
p | 199 | Filter: (letter = ’p’::text)
s | 9 | Seq Scan on sample (cost=0.00..13.16 rows=9 width=2)
s | 9 | Filter: (letter = ’s’::text)
c | 8 | Seq Scan on sample (cost=0.00..13.16 rows=8 width=2)
c | 8 | Filter: (letter = ’c’::text)
r | 7 | Seq Scan on sample (cost=0.00..13.16 rows=7 width=2)
r | 7 | Filter: (letter = ’r’::text)
…
Explaining the Postgres Query Optimizer 27 / 61
OK, Just the First Lines
WITH letter (letter, count) AS (
SELECT letter, COUNT(*)
FROM sample
GROUP BY 1
)
SELECT letter AS l, count,
(SELECT *
FROM lookup_letter(letter) AS l2
LIMIT 1) AS lookup_letter
FROM letter
ORDER BY 2 DESC;
Explaining the Postgres Query Optimizer 28 / 61
Just the First EXPLAIN Lines
l | count | lookup_letter
---+-------+-----------------------------------------------------------------------
p | 199 | Seq Scan on sample (cost=0.00..13.16 rows=199 width=2)
s | 9 | Seq Scan on sample (cost=0.00..13.16 rows=9 width=2)
c | 8 | Seq Scan on sample (cost=0.00..13.16 rows=8 width=2)
r | 7 | Seq Scan on sample (cost=0.00..13.16 rows=7 width=2)
t | 5 | Bitmap Heap Scan on sample (cost=4.29..12.76 rows=5 width=2)
f | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2)
v | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2)
d | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2)
a | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2)
_ | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2)
u | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2)
e | 2 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2)
i | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2)
k | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2)
(14 rows)
Explaining the Postgres Query Optimizer 29 / 61
We Can Force an Index Scan
SET enable_seqscan = false;
SET enable_bitmapscan = false;
WITH letter (letter, count) AS (
SELECT letter, COUNT(*)
FROM sample
GROUP BY 1
)
SELECT letter AS l, count,
(SELECT *
FROM lookup_letter(letter) AS l2
LIMIT 1) AS lookup_letter
FROM letter
ORDER BY 2 DESC;
Explaining the Postgres Query Optimizer 30 / 61
Notice the High Cost for Common Values
l | count | lookup_letter
---+-------+-----------------------------------------------------------------------
p | 199 | Index Scan using i_sample on sample (cost=0.00..39.33 rows=199 width=
s | 9 | Index Scan using i_sample on sample (cost=0.00..22.14 rows=9 width=2)
c | 8 | Index Scan using i_sample on sample (cost=0.00..19.84 rows=8 width=2)
r | 7 | Index Scan using i_sample on sample (cost=0.00..19.82 rows=7 width=2)
t | 5 | Index Scan using i_sample on sample (cost=0.00..15.21 rows=5 width=2)
d | 4 | Index Scan using i_sample on sample (cost=0.00..15.19 rows=4 width=2)
v | 4 | Index Scan using i_sample on sample (cost=0.00..15.19 rows=4 width=2)
f | 4 | Index Scan using i_sample on sample (cost=0.00..15.19 rows=4 width=2)
_ | 3 | Index Scan using i_sample on sample (cost=0.00..12.88 rows=3 width=2)
a | 3 | Index Scan using i_sample on sample (cost=0.00..12.88 rows=3 width=2)
u | 3 | Index Scan using i_sample on sample (cost=0.00..12.88 rows=3 width=2)
e | 2 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2)
i | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2)
k | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2)
(14 rows)
RESET ALL;
RESET
Explaining the Postgres Query Optimizer 31 / 61
This Was the Optimizer’s Preference
l | count | lookup_letter
---+-------+-----------------------------------------------------------------------
p | 199 | Seq Scan on sample (cost=0.00..13.16 rows=199 width=2)
s | 9 | Seq Scan on sample (cost=0.00..13.16 rows=9 width=2)
c | 8 | Seq Scan on sample (cost=0.00..13.16 rows=8 width=2)
r | 7 | Seq Scan on sample (cost=0.00..13.16 rows=7 width=2)
t | 5 | Bitmap Heap Scan on sample (cost=4.29..12.76 rows=5 width=2)
f | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2)
v | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2)
d | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2)
a | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2)
_ | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2)
u | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2)
e | 2 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2)
i | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2)
k | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2)
(14 rows)
Explaining the Postgres Query Optimizer 32 / 61
Which Join Method?
◮ Nested Loop
◮ With Inner Sequential Scan
◮ With Inner Index Scan
◮ Hash Join
◮ Merge Join
Explaining the Postgres Query Optimizer 33 / 61
What Is in pg_proc.oid?
SELECT oid
FROM pg_proc
ORDER BY 1
LIMIT 8;
oid
-----
31
33
34
35
38
39
40
41
(8 rows)
Explaining the Postgres Query Optimizer 34 / 61
Create Temporary Tables
from pg_proc and pg_class
CREATE TEMPORARY TABLE sample1 (id, junk) AS
SELECT oid, repeat(’x’, 250)
FROM pg_proc
ORDER BY random(); -- add rows in random order
SELECT 2256
CREATE TEMPORARY TABLE sample2 (id, junk) AS
SELECT oid, repeat(’x’, 250)
FROM pg_class
ORDER BY random(); -- add rows in random order
SELECT 260
These tables have no indexes and no optimizer statistics.
Explaining the Postgres Query Optimizer 35 / 61
Join the Two Tables
with a Tight Restriction
EXPLAIN SELECT sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id)
WHERE sample1.id = 33;
QUERY PLAN
---------------------------------------------------------------------
Nested Loop (cost=0.00..234.68 rows=300 width=32)
-> Seq Scan on sample1 (cost=0.00..205.54 rows=50 width=4)
Filter: (id = 33::oid)
-> Materialize (cost=0.00..25.41 rows=6 width=36)
-> Seq Scan on sample2 (cost=0.00..25.38 rows=6 width=36)
Filter: (id = 33::oid)
(6 rows)
Explaining the Postgres Query Optimizer 36 / 61
Nested Loop Join
with Inner Sequential Scan
aag
aar
aay aag
aas
aar
aaa
aay
aai
aag
No Setup Required
aai
Used For Small Tables
Outer Inner
Explaining the Postgres Query Optimizer 37 / 61
Pseudocode for Nested Loop Join
with Inner Sequential Scan
for (i = 0; i < length(outer); i++)
for (j = 0; j < length(inner); j++)
if (outer[i] == inner[j])
output(outer[i], inner[j]);
Explaining the Postgres Query Optimizer 38 / 61
Join the Two Tables with a Looser Restriction
EXPLAIN SELECT sample1.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id)
WHERE sample2.id > 33;
QUERY PLAN
----------------------------------------------------------------------
Hash Join (cost=30.50..950.88 rows=20424 width=32)
Hash Cond: (sample1.id = sample2.id)
-> Seq Scan on sample1 (cost=0.00..180.63 rows=9963 width=36)
-> Hash (cost=25.38..25.38 rows=410 width=4)
-> Seq Scan on sample2 (cost=0.00..25.38 rows=410 width=4)
Filter: (id > 33::oid)
(6 rows)
Explaining the Postgres Query Optimizer 39 / 61
Hash Join
Hashed
Must fit in Main Memory
aak
aar
aak
aay aaraam
aao aaw
aay
aag
aas
Outer Inner
Explaining the Postgres Query Optimizer 40 / 61
Pseudocode for Hash Join
for (j = 0; j < length(inner); j++)
hash_key = hash(inner[j]);
append(hash_store[hash_key], inner[j]);
for (i = 0; i < length(outer); i++)
hash_key = hash(outer[i]);
for (j = 0; j < length(hash_store[hash_key]); j++)
if (outer[i] == hash_store[hash_key][j])
output(outer[i], inner[j]);
Explaining the Postgres Query Optimizer 41 / 61
Join the Two Tables with No Restriction
EXPLAIN SELECT sample1.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id);
QUERY PLAN
-------------------------------------------------------------------------
Merge Join (cost=927.72..1852.95 rows=61272 width=32)
Merge Cond: (sample2.id = sample1.id)
-> Sort (cost=85.43..88.50 rows=1230 width=4)
Sort Key: sample2.id
-> Seq Scan on sample2 (cost=0.00..22.30 rows=1230 width=4)
-> Sort (cost=842.29..867.20 rows=9963 width=36)
Sort Key: sample1.id
-> Seq Scan on sample1 (cost=0.00..180.63 rows=9963 width=36)
(8 rows)
Explaining the Postgres Query Optimizer 42 / 61
Merge Join
Sorted
Sorted
Ideal for Large Tables
An Index Can Be Used to Eliminate the Sort
aaa
aab
aac
aad
aaa
aab
aab
aaf
aaf
aac
aae
Outer Inner
Explaining the Postgres Query Optimizer 43 / 61
Pseudocode for Merge Join
sort(outer);
sort(inner);
i = 0;
j = 0;
save_j = 0;
while (i < length(outer))
if (outer[i] == inner[j])
output(outer[i], inner[j]);
if (outer[i] <= inner[j] && j < length(inner))
j++;
if (outer[i] < inner[j])
save_j = j;
else
i++;
j = save_j;
Explaining the Postgres Query Optimizer 44 / 61
Order of Joined Relations Is Insignificant
EXPLAIN SELECT sample2.junk
FROM sample2 JOIN sample1 ON (sample2.id = sample1.id);
QUERY PLAN
------------------------------------------------------------------------
Merge Join (cost=927.72..1852.95 rows=61272 width=32)
Merge Cond: (sample2.id = sample1.id)
-> Sort (cost=85.43..88.50 rows=1230 width=36)
Sort Key: sample2.id
-> Seq Scan on sample2 (cost=0.00..22.30 rows=1230 width=36)
-> Sort (cost=842.29..867.20 rows=9963 width=4)
Sort Key: sample1.id
-> Seq Scan on sample1 (cost=0.00..180.63 rows=9963 width=4)
(8 rows)
The most restrictive relation, e.g. sample2, is always on the outer side of
merge joins. All previous merge joins also had sample2 in outer position.
Explaining the Postgres Query Optimizer 45 / 61
Add Optimizer Statistics
ANALYZE sample1;
ANALYZE sample2;
Explaining the Postgres Query Optimizer 46 / 61
This Was a Merge Join without Optimizer Statistics
EXPLAIN SELECT sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id);
QUERY PLAN
------------------------------------------------------------------------
Hash Join (cost=15.85..130.47 rows=260 width=254)
Hash Cond: (sample1.id = sample2.id)
-> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=4)
-> Hash (cost=12.60..12.60 rows=260 width=258)
-> Seq Scan on sample2 (cost=0.00..12.60 rows=260 width=258)
(5 rows)
Explaining the Postgres Query Optimizer 47 / 61
Outer Joins Can Affect Optimizer Join Usage
EXPLAIN SELECT sample1.junk
FROM sample1 RIGHT OUTER JOIN sample2 ON (sample1.id = sample2.id);
QUERY PLAN
--------------------------------------------------------------------------
Hash Left Join (cost=131.76..148.26 rows=260 width=254)
Hash Cond: (sample2.id = sample1.id)
-> Seq Scan on sample2 (cost=0.00..12.60 rows=260 width=4)
-> Hash (cost=103.56..103.56 rows=2256 width=258)
-> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=258)
(5 rows)
Use of hashes for outer joins was added in Postgres 9.1.
Explaining the Postgres Query Optimizer 48 / 61
Cross Joins Are Nested Loop Joins
without Join Restriction
EXPLAIN SELECT sample1.junk
FROM sample1 CROSS JOIN sample2;
QUERY PLAN
----------------------------------------------------------------------
Nested Loop (cost=0.00..7448.81 rows=586560 width=254)
-> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=254)
-> Materialize (cost=0.00..13.90 rows=260 width=0)
-> Seq Scan on sample2 (cost=0.00..12.60 rows=260 width=0)
(4 rows)
Explaining the Postgres Query Optimizer 49 / 61
Create Indexes
CREATE INDEX i_sample1 on sample1 (id);
CREATE INDEX i_sample2 on sample2 (id);
Explaining the Postgres Query Optimizer 50 / 61
Nested Loop with Inner Index Scan Now Possible
EXPLAIN SELECT sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id)
WHERE sample1.id = 33;
QUERY PLAN
---------------------------------------------------------------------------------
Nested Loop (cost=0.00..16.55 rows=1 width=254)
-> Index Scan using i_sample1 on sample1 (cost=0.00..8.27 rows=1 width=4)
Index Cond: (id = 33::oid)
-> Index Scan using i_sample2 on sample2 (cost=0.00..8.27 rows=1 width=258)
Index Cond: (sample2.id = 33::oid)
(5 rows)
Explaining the Postgres Query Optimizer 51 / 61
Nested Loop Join with Inner Index Scan
aag
aar
aai
aay aag
aas
aar
aaa
aay
aai
aag
No Setup Required
Index Lookup
Index Must Already Exist
Outer Inner
Explaining the Postgres Query Optimizer 52 / 61
Pseudocode for Nested Loop Join
with Inner Index Scan
for (i = 0; i < length(outer); i++)
index_entry = get_first_match(outer[j])
while (index_entry)
output(outer[i], inner[index_entry]);
index_entry = get_next_match(index_entry);
Explaining the Postgres Query Optimizer 53 / 61
Query Restrictions Affect Join Usage
EXPLAIN SELECT sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id)
WHERE sample2.junk ˜ ’^aaa’;
QUERY PLAN
-------------------------------------------------------------------------------
Nested Loop (cost=0.00..21.53 rows=1 width=254)
-> Seq Scan on sample2 (cost=0.00..13.25 rows=1 width=258)
Filter: (junk ˜ ’^aaa’::text)
-> Index Scan using i_sample1 on sample1 (cost=0.00..8.27 rows=1 width=4)
Index Cond: (sample1.id = sample2.id)
(5 rows)
No junk rows begin with ’aaa’.
Explaining the Postgres Query Optimizer 54 / 61
All ’junk’ Columns Begin with ’xxx’
EXPLAIN SELECT sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id)
WHERE sample2.junk ˜ ’^xxx’;
QUERY PLAN
------------------------------------------------------------------------
Hash Join (cost=16.50..131.12 rows=260 width=254)
Hash Cond: (sample1.id = sample2.id)
-> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=4)
-> Hash (cost=13.25..13.25 rows=260 width=258)
-> Seq Scan on sample2 (cost=0.00..13.25 rows=260 width=258)
Filter: (junk ˜ ’^xxx’::text)
(6 rows)
Hash join was chosen because many more rows are expected. The
smaller table, e.g. sample2, is always hashed.
Explaining the Postgres Query Optimizer 55 / 61
Without LIMIT, Hash Is Used
for this Unrestricted Join
EXPLAIN SELECT sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id);
QUERY PLAN
------------------------------------------------------------------------
Hash Join (cost=15.85..130.47 rows=260 width=254)
Hash Cond: (sample1.id = sample2.id)
-> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=4)
-> Hash (cost=12.60..12.60 rows=260 width=258)
-> Seq Scan on sample2 (cost=0.00..12.60 rows=260 width=258)
(5 rows)
Explaining the Postgres Query Optimizer 56 / 61
LIMIT Can Affect Join Usage
EXPLAIN SELECT sample2.id, sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id)
ORDER BY 1
LIMIT 1;
QUERY PLAN
------------------------------------------------------------------------------------------
Limit (cost=0.00..1.83 rows=1 width=258)
-> Nested Loop (cost=0.00..477.02 rows=260 width=258)
-> Index Scan using i_sample2 on sample2 (cost=0.00..52.15 rows=260 width=258)
-> Index Scan using i_sample1 on sample1 (cost=0.00..1.62 rows=1 width=4)
Index Cond: (sample1.id = sample2.id)
(5 rows)
Explaining the Postgres Query Optimizer 57 / 61
LIMIT 10
EXPLAIN SELECT sample2.id, sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id)
ORDER BY 1
LIMIT 10;
QUERY PLAN
------------------------------------------------------------------------------------------
Limit (cost=0.00..18.35 rows=10 width=258)
-> Nested Loop (cost=0.00..477.02 rows=260 width=258)
-> Index Scan using i_sample2 on sample2 (cost=0.00..52.15 rows=260 width=258)
-> Index Scan using i_sample1 on sample1 (cost=0.00..1.62 rows=1 width=4)
Index Cond: (sample1.id = sample2.id)
(5 rows)
Explaining the Postgres Query Optimizer 58 / 61
LIMIT 100 Switches to Hash Join
EXPLAIN SELECT sample2.id, sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id)
ORDER BY 1
LIMIT 100;
QUERY PLAN
------------------------------------------------------------------------------------
Limit (cost=140.41..140.66 rows=100 width=258)
-> Sort (cost=140.41..141.06 rows=260 width=258)
Sort Key: sample2.id
-> Hash Join (cost=15.85..130.47 rows=260 width=258)
Hash Cond: (sample1.id = sample2.id)
-> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=4)
-> Hash (cost=12.60..12.60 rows=260 width=258)
-> Seq Scan on sample2 (cost=0.00..12.60 rows=260 width=258)
(8 rows)
Explaining the Postgres Query Optimizer 59 / 61
Additional Resources…
◮ Postgres Downloads:
◮ www.enterprisedb.com/downloads
◮ Product and Services information:
◮ info@enterprisedb.com
Explaining the Postgres Query Optimizer 60 / 61
Conclusion
http://momjian.us/presentations http://www.vivapixel.com/photo/14252
Explaining the Postgres Query Optimizer 61 / 61

Contenu connexe

Tendances

MySQL Indexing - Best practices for MySQL 5.6
MySQL Indexing - Best practices for MySQL 5.6MySQL Indexing - Best practices for MySQL 5.6
MySQL Indexing - Best practices for MySQL 5.6
MYXPLAIN
 
Designing ETL Pipelines with Structured Streaming and Delta Lake—How to Archi...
Designing ETL Pipelines with Structured Streaming and Delta Lake—How to Archi...Designing ETL Pipelines with Structured Streaming and Delta Lake—How to Archi...
Designing ETL Pipelines with Structured Streaming and Delta Lake—How to Archi...
Databricks
 
PostgreSQL Performance Tuning
PostgreSQL Performance TuningPostgreSQL Performance Tuning
PostgreSQL Performance Tuning
elliando dias
 

Tendances (20)

MySQL Indexing - Best practices for MySQL 5.6
MySQL Indexing - Best practices for MySQL 5.6MySQL Indexing - Best practices for MySQL 5.6
MySQL Indexing - Best practices for MySQL 5.6
 
Designing ETL Pipelines with Structured Streaming and Delta Lake—How to Archi...
Designing ETL Pipelines with Structured Streaming and Delta Lake—How to Archi...Designing ETL Pipelines with Structured Streaming and Delta Lake—How to Archi...
Designing ETL Pipelines with Structured Streaming and Delta Lake—How to Archi...
 
Apache Spark Core – Practical Optimization
Apache Spark Core – Practical OptimizationApache Spark Core – Practical Optimization
Apache Spark Core – Practical Optimization
 
What is new in PostgreSQL 14?
What is new in PostgreSQL 14?What is new in PostgreSQL 14?
What is new in PostgreSQL 14?
 
Mastering PostgreSQL Administration
Mastering PostgreSQL AdministrationMastering PostgreSQL Administration
Mastering PostgreSQL Administration
 
PostgreSQL Performance Tuning
PostgreSQL Performance TuningPostgreSQL Performance Tuning
PostgreSQL Performance Tuning
 
PostgreSQL query planner's internals
PostgreSQL query planner's internalsPostgreSQL query planner's internals
PostgreSQL query planner's internals
 
Shipping Data from Postgres to Clickhouse, by Murat Kabilov, Adjust
Shipping Data from Postgres to Clickhouse, by Murat Kabilov, AdjustShipping Data from Postgres to Clickhouse, by Murat Kabilov, Adjust
Shipping Data from Postgres to Clickhouse, by Murat Kabilov, Adjust
 
Deep dive into PostgreSQL statistics.
Deep dive into PostgreSQL statistics.Deep dive into PostgreSQL statistics.
Deep dive into PostgreSQL statistics.
 
Everyday I'm Shuffling - Tips for Writing Better Spark Programs, Strata San J...
Everyday I'm Shuffling - Tips for Writing Better Spark Programs, Strata San J...Everyday I'm Shuffling - Tips for Writing Better Spark Programs, Strata San J...
Everyday I'm Shuffling - Tips for Writing Better Spark Programs, Strata San J...
 
The MySQL Query Optimizer Explained Through Optimizer Trace
The MySQL Query Optimizer Explained Through Optimizer TraceThe MySQL Query Optimizer Explained Through Optimizer Trace
The MySQL Query Optimizer Explained Through Optimizer Trace
 
Postgres Performance for Humans
Postgres Performance for HumansPostgres Performance for Humans
Postgres Performance for Humans
 
PostgreSQL
PostgreSQLPostgreSQL
PostgreSQL
 
Auditing and Monitoring PostgreSQL/EPAS
Auditing and Monitoring PostgreSQL/EPASAuditing and Monitoring PostgreSQL/EPAS
Auditing and Monitoring PostgreSQL/EPAS
 
Deep dive to PostgreSQL Indexes
Deep dive to PostgreSQL IndexesDeep dive to PostgreSQL Indexes
Deep dive to PostgreSQL Indexes
 
PostgreSQL Internals (1) for PostgreSQL 9.6 (English)
PostgreSQL Internals (1) for PostgreSQL 9.6 (English)PostgreSQL Internals (1) for PostgreSQL 9.6 (English)
PostgreSQL Internals (1) for PostgreSQL 9.6 (English)
 
Solving PostgreSQL wicked problems
Solving PostgreSQL wicked problemsSolving PostgreSQL wicked problems
Solving PostgreSQL wicked problems
 
PostgreSQL: Joining 1 million tables
PostgreSQL: Joining 1 million tablesPostgreSQL: Joining 1 million tables
PostgreSQL: Joining 1 million tables
 
Using Optimizer Hints to Improve MySQL Query Performance
Using Optimizer Hints to Improve MySQL Query PerformanceUsing Optimizer Hints to Improve MySQL Query Performance
Using Optimizer Hints to Improve MySQL Query Performance
 
ClickHouse Features for Advanced Users, by Aleksei Milovidov
ClickHouse Features for Advanced Users, by Aleksei MilovidovClickHouse Features for Advanced Users, by Aleksei Milovidov
ClickHouse Features for Advanced Users, by Aleksei Milovidov
 

En vedette

variedades linguisticas por Paola Espinoza
variedades linguisticas por Paola Espinozavariedades linguisticas por Paola Espinoza
variedades linguisticas por Paola Espinoza
paopeke26
 

En vedette (13)

Flexible Indexing with Postgres
Flexible Indexing with PostgresFlexible Indexing with Postgres
Flexible Indexing with Postgres
 
Postgres clusters
Postgres clustersPostgres clusters
Postgres clusters
 
Postgres-XC as a Key Value Store Compared To MongoDB
Postgres-XC as a Key Value Store Compared To MongoDBPostgres-XC as a Key Value Store Compared To MongoDB
Postgres-XC as a Key Value Store Compared To MongoDB
 
variedades linguisticas por Paola Espinoza
variedades linguisticas por Paola Espinozavariedades linguisticas por Paola Espinoza
variedades linguisticas por Paola Espinoza
 
1
11
1
 
Indexes: The neglected performance all rounder
Indexes: The neglected performance all rounderIndexes: The neglected performance all rounder
Indexes: The neglected performance all rounder
 
Postgres-XC: Symmetric PostgreSQL Cluster
Postgres-XC: Symmetric PostgreSQL ClusterPostgres-XC: Symmetric PostgreSQL Cluster
Postgres-XC: Symmetric PostgreSQL Cluster
 
Distributed Postgres
Distributed PostgresDistributed Postgres
Distributed Postgres
 
Multimaster
MultimasterMultimaster
Multimaster
 
GPGPU Accelerates PostgreSQL (English)
GPGPU Accelerates PostgreSQL (English)GPGPU Accelerates PostgreSQL (English)
GPGPU Accelerates PostgreSQL (English)
 
Postgres-XC Write Scalable PostgreSQL Cluster
Postgres-XC Write Scalable PostgreSQL ClusterPostgres-XC Write Scalable PostgreSQL Cluster
Postgres-XC Write Scalable PostgreSQL Cluster
 
SQL: Query optimization in practice
SQL: Query optimization in practiceSQL: Query optimization in practice
SQL: Query optimization in practice
 
Modern SQL in Open Source and Commercial Databases
Modern SQL in Open Source and Commercial DatabasesModern SQL in Open Source and Commercial Databases
Modern SQL in Open Source and Commercial Databases
 

Similaire à How the Postgres Query Optimizer Works

Explaining the Postgres Query Optimizer (Bruce Momjian)
Explaining the Postgres Query Optimizer (Bruce Momjian)Explaining the Postgres Query Optimizer (Bruce Momjian)
Explaining the Postgres Query Optimizer (Bruce Momjian)
Ontico
 
Overview of query evaluation
Overview of query evaluationOverview of query evaluation
Overview of query evaluation
avniS
 
PostgreSQL 8.4 TriLUG 2009-11-12
PostgreSQL 8.4 TriLUG 2009-11-12PostgreSQL 8.4 TriLUG 2009-11-12
PostgreSQL 8.4 TriLUG 2009-11-12
Andrew Dunstan
 

Similaire à How the Postgres Query Optimizer Works (20)

Explaining the Postgres Query Optimizer - PGCon 2014
Explaining the Postgres Query Optimizer - PGCon 2014Explaining the Postgres Query Optimizer - PGCon 2014
Explaining the Postgres Query Optimizer - PGCon 2014
 
Explaining the Postgres Query Optimizer
Explaining the Postgres Query OptimizerExplaining the Postgres Query Optimizer
Explaining the Postgres Query Optimizer
 
Explaining the Postgres Query Optimizer (Bruce Momjian)
Explaining the Postgres Query Optimizer (Bruce Momjian)Explaining the Postgres Query Optimizer (Bruce Momjian)
Explaining the Postgres Query Optimizer (Bruce Momjian)
 
Overview of query evaluation
Overview of query evaluationOverview of query evaluation
Overview of query evaluation
 
Correctness and Performance of Apache Spark SQL with Bogdan Ghit and Nicolas ...
Correctness and Performance of Apache Spark SQL with Bogdan Ghit and Nicolas ...Correctness and Performance of Apache Spark SQL with Bogdan Ghit and Nicolas ...
Correctness and Performance of Apache Spark SQL with Bogdan Ghit and Nicolas ...
 
Correctness and Performance of Apache Spark SQL
Correctness and Performance of Apache Spark SQLCorrectness and Performance of Apache Spark SQL
Correctness and Performance of Apache Spark SQL
 
Fast and Reliable Apache Spark SQL Releases
Fast and Reliable Apache Spark SQL ReleasesFast and Reliable Apache Spark SQL Releases
Fast and Reliable Apache Spark SQL Releases
 
Fast and Reliable Apache Spark SQL Engine
Fast and Reliable Apache Spark SQL EngineFast and Reliable Apache Spark SQL Engine
Fast and Reliable Apache Spark SQL Engine
 
Presentación Oracle Database Migración consideraciones 10g/11g/12c
Presentación Oracle Database Migración consideraciones 10g/11g/12cPresentación Oracle Database Migración consideraciones 10g/11g/12c
Presentación Oracle Database Migración consideraciones 10g/11g/12c
 
SQL Performance Tuning and New Features in Oracle 19c
SQL Performance Tuning and New Features in Oracle 19cSQL Performance Tuning and New Features in Oracle 19c
SQL Performance Tuning and New Features in Oracle 19c
 
Managing Statistics for Optimal Query Performance
Managing Statistics for Optimal Query PerformanceManaging Statistics for Optimal Query Performance
Managing Statistics for Optimal Query Performance
 
Cost-Based Optimizer in Apache Spark 2.2
Cost-Based Optimizer in Apache Spark 2.2 Cost-Based Optimizer in Apache Spark 2.2
Cost-Based Optimizer in Apache Spark 2.2
 
Summarizing Software API Usage Examples Using Clustering Techniques
Summarizing Software API Usage Examples Using Clustering TechniquesSummarizing Software API Usage Examples Using Clustering Techniques
Summarizing Software API Usage Examples Using Clustering Techniques
 
Top 10 Oracle SQL tuning tips
Top 10 Oracle SQL tuning tipsTop 10 Oracle SQL tuning tips
Top 10 Oracle SQL tuning tips
 
PostgreSQL 8.4 TriLUG 2009-11-12
PostgreSQL 8.4 TriLUG 2009-11-12PostgreSQL 8.4 TriLUG 2009-11-12
PostgreSQL 8.4 TriLUG 2009-11-12
 
Cost-Based Optimizer in Apache Spark 2.2 Ron Hu, Sameer Agarwal, Wenchen Fan ...
Cost-Based Optimizer in Apache Spark 2.2 Ron Hu, Sameer Agarwal, Wenchen Fan ...Cost-Based Optimizer in Apache Spark 2.2 Ron Hu, Sameer Agarwal, Wenchen Fan ...
Cost-Based Optimizer in Apache Spark 2.2 Ron Hu, Sameer Agarwal, Wenchen Fan ...
 
Advanced pg_stat_statements: Filtering, Regression Testing & more
Advanced pg_stat_statements: Filtering, Regression Testing & moreAdvanced pg_stat_statements: Filtering, Regression Testing & more
Advanced pg_stat_statements: Filtering, Regression Testing & more
 
10 Reasons to Start Your Analytics Project with PostgreSQL
10 Reasons to Start Your Analytics Project with PostgreSQL10 Reasons to Start Your Analytics Project with PostgreSQL
10 Reasons to Start Your Analytics Project with PostgreSQL
 
Query optimizer vivek sharma
Query optimizer vivek sharmaQuery optimizer vivek sharma
Query optimizer vivek sharma
 
Sql and PL/SQL Best Practices I
Sql and PL/SQL Best Practices ISql and PL/SQL Best Practices I
Sql and PL/SQL Best Practices I
 

Plus de EDB

EFM Office Hours - APJ - July 29, 2021
EFM Office Hours - APJ - July 29, 2021EFM Office Hours - APJ - July 29, 2021
EFM Office Hours - APJ - July 29, 2021
EDB
 
Is There Anything PgBouncer Can’t Do?
Is There Anything PgBouncer Can’t Do?Is There Anything PgBouncer Can’t Do?
Is There Anything PgBouncer Can’t Do?
EDB
 
A Deeper Dive into EXPLAIN
A Deeper Dive into EXPLAINA Deeper Dive into EXPLAIN
A Deeper Dive into EXPLAIN
EDB
 

Plus de EDB (20)

Cloud Migration Paths: Kubernetes, IaaS, or DBaaS
Cloud Migration Paths: Kubernetes, IaaS, or DBaaSCloud Migration Paths: Kubernetes, IaaS, or DBaaS
Cloud Migration Paths: Kubernetes, IaaS, or DBaaS
 
Die 10 besten PostgreSQL-Replikationsstrategien für Ihr Unternehmen
Die 10 besten PostgreSQL-Replikationsstrategien für Ihr UnternehmenDie 10 besten PostgreSQL-Replikationsstrategien für Ihr Unternehmen
Die 10 besten PostgreSQL-Replikationsstrategien für Ihr Unternehmen
 
Migre sus bases de datos Oracle a la nube
Migre sus bases de datos Oracle a la nube Migre sus bases de datos Oracle a la nube
Migre sus bases de datos Oracle a la nube
 
EFM Office Hours - APJ - July 29, 2021
EFM Office Hours - APJ - July 29, 2021EFM Office Hours - APJ - July 29, 2021
EFM Office Hours - APJ - July 29, 2021
 
Benchmarking Cloud Native PostgreSQL
Benchmarking Cloud Native PostgreSQLBenchmarking Cloud Native PostgreSQL
Benchmarking Cloud Native PostgreSQL
 
Las Variaciones de la Replicación de PostgreSQL
Las Variaciones de la Replicación de PostgreSQLLas Variaciones de la Replicación de PostgreSQL
Las Variaciones de la Replicación de PostgreSQL
 
NoSQL and Spatial Database Capabilities using PostgreSQL
NoSQL and Spatial Database Capabilities using PostgreSQLNoSQL and Spatial Database Capabilities using PostgreSQL
NoSQL and Spatial Database Capabilities using PostgreSQL
 
Is There Anything PgBouncer Can’t Do?
Is There Anything PgBouncer Can’t Do?Is There Anything PgBouncer Can’t Do?
Is There Anything PgBouncer Can’t Do?
 
Data Analysis with TensorFlow in PostgreSQL
Data Analysis with TensorFlow in PostgreSQLData Analysis with TensorFlow in PostgreSQL
Data Analysis with TensorFlow in PostgreSQL
 
Practical Partitioning in Production with Postgres
Practical Partitioning in Production with PostgresPractical Partitioning in Production with Postgres
Practical Partitioning in Production with Postgres
 
A Deeper Dive into EXPLAIN
A Deeper Dive into EXPLAINA Deeper Dive into EXPLAIN
A Deeper Dive into EXPLAIN
 
IOT with PostgreSQL
IOT with PostgreSQLIOT with PostgreSQL
IOT with PostgreSQL
 
A Journey from Oracle to PostgreSQL
A Journey from Oracle to PostgreSQLA Journey from Oracle to PostgreSQL
A Journey from Oracle to PostgreSQL
 
Psql is awesome!
Psql is awesome!Psql is awesome!
Psql is awesome!
 
EDB 13 - New Enhancements for Security and Usability - APJ
EDB 13 - New Enhancements for Security and Usability - APJEDB 13 - New Enhancements for Security and Usability - APJ
EDB 13 - New Enhancements for Security and Usability - APJ
 
Comment sauvegarder correctement vos données
Comment sauvegarder correctement vos donnéesComment sauvegarder correctement vos données
Comment sauvegarder correctement vos données
 
Cloud Native PostgreSQL - Italiano
Cloud Native PostgreSQL - ItalianoCloud Native PostgreSQL - Italiano
Cloud Native PostgreSQL - Italiano
 
New enhancements for security and usability in EDB 13
New enhancements for security and usability in EDB 13New enhancements for security and usability in EDB 13
New enhancements for security and usability in EDB 13
 
Best Practices in Security with PostgreSQL
Best Practices in Security with PostgreSQLBest Practices in Security with PostgreSQL
Best Practices in Security with PostgreSQL
 
Cloud Native PostgreSQL - APJ
Cloud Native PostgreSQL - APJCloud Native PostgreSQL - APJ
Cloud Native PostgreSQL - APJ
 

Dernier

Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Victor Rentea
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 

Dernier (20)

Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
Exploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusExploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with Milvus
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challenges
 
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamDEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
 
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
 
Six Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal OntologySix Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal Ontology
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectors
 
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot ModelMcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf
 

How the Postgres Query Optimizer Works

  • 1. Explaining the Postgres Query Optimizer BRUCE MOMJIAN January, 2015 The optimizer is the "brain" of the database, interpreting SQL queries and determining the fastest method of execution. This talk uses the EXPLAIN command to show how the optimizer interprets queries and determines optimal execution. Creative Commons Attribution License http://momjian.us/presentations 1 / 61
  • 2. PostgreSQL the database… ◮ Open Source Object Relational DBMS since 1996 ◮ Distributed under the PostgreSQL License ◮ Similar technical heritage as Oracle, SQL Server & DB2 ◮ However, a strong adherence to standards (ANSI-SQL 2008) ◮ Highly extensible and adaptable design ◮ Languages, indexing, data types, etc. ◮ E.g. PostGIS, JSONB, SQL/MED ◮ Extensive use throughout the world for applications and organizations of all types ◮ Bundled into Red Hat Enterprise Linux, Ubuntu, CentOS and Amazon Linux Explaining the Postgres Query Optimizer 2 / 61
  • 3. PostgreSQL the community… ◮ Independent community led by a Core Team of six ◮ Large, active and vibrant community ◮ www.postgresql.org ◮ Downloads, Mailing lists, Documentation ◮ Sponsors sampler: ◮ Google, Red Hat, VMWare, Skype, Salesforce, HP and EnterpriseDB ◮ http://www.postgresql.org/community/ Explaining the Postgres Query Optimizer 3 / 61
  • 4. EnterpriseDB the company… ◮ The worldwide leader of Postgres based products and services founded in 2004 ◮ Customers include 50 of the Fortune 500 and 98 of the Forbes Global 2000 ◮ Enterprise offerings: ◮ PostgreSQL Support, Services and Training ◮ Postgres Plus Advanced Server with Oracle Compatibility ◮ Tools for Monitoring, Replication, HA, Backup & Recovery Community ◮ Citizenship ◮ Contributor of key features: Materialized Views, JSON, & more ◮ Nine community members on staff Explaining the Postgres Query Optimizer 4 / 61
  • 5. EnterpriseDB the company… Explaining the Postgres Query Optimizer 5 / 61
  • 7. Postgres Query Execution utility Plan Optimal Path Query Postmaster Postgres Postgres Libpq Main Generate Plan Traffic Cop Generate Paths Execute Plan e.g. CREATE TABLE, COPY SELECT, INSERT, UPDATE, DELETE Rewrite Query Parse Statement Utility Command Storage ManagersCatalogUtilities Access Methods Nodes / Lists Explaining the Postgres Query Optimizer 7 / 61
  • 8. Postgres Query Execution utility Plan Optimal Path Query Generate Plan Traffic Cop Generate Paths Execute Plan e.g. CREATE TABLE, COPY SELECT, INSERT, UPDATE, DELETE Rewrite Query Parse Statement Utility Command Explaining the Postgres Query Optimizer 8 / 61
  • 9. The Optimizer Is the Brain http://www.wsmanaging.com/ Explaining the Postgres Query Optimizer 9 / 61
  • 10. What Decisions Does the Optimizer Have to Make? ◮ Scan Method ◮ Join Method ◮ Join Order Explaining the Postgres Query Optimizer 10 / 61
  • 11. Which Scan Method? ◮ Sequential Scan ◮ Bitmap Index Scan ◮ Index Scan Explaining the Postgres Query Optimizer 11 / 61
  • 12. A Simple Example Using pg_class.relname SELECT relname FROM pg_class ORDER BY 1 LIMIT 8; relname ----------------------------------- _pg_foreign_data_wrappers _pg_foreign_servers _pg_user_mappings administrable_role_authorizations applicable_roles attributes check_constraint_routine_usage check_constraints (8 rows) Explaining the Postgres Query Optimizer 12 / 61
  • 13. Let’s Use Just the First Letter of pg_class.relname SELECT substring(relname, 1, 1) FROM pg_class ORDER BY 1 LIMIT 8; substring ----------- _ _ _ a a a c c (8 rows) Explaining the Postgres Query Optimizer 13 / 61
  • 14. Create a Temporary Table with an Index CREATE TEMPORARY TABLE sample (letter, junk) AS SELECT substring(relname, 1, 1), repeat(’x’, 250) FROM pg_class ORDER BY random(); -- add rows in random order SELECT 253 CREATE INDEX i_sample on sample (letter); CREATE INDEX All the queries used in this presentation are available at http://momjian.us/main/writings/pgsql/optimizer.sql. Explaining the Postgres Query Optimizer 14 / 61
  • 15. Create an EXPLAIN Function CREATE OR REPLACE FUNCTION lookup_letter(text) RETURNS SETOF text AS $$ BEGIN RETURN QUERY EXECUTE ’ EXPLAIN SELECT letter FROM sample WHERE letter = ’’’ || $1 || ’’’’; END $$ LANGUAGE plpgsql; CREATE FUNCTION Explaining the Postgres Query Optimizer 15 / 61
  • 16. What is the Distribution of the sample Table? WITH letters (letter, count) AS ( SELECT letter, COUNT(*) FROM sample GROUP BY 1 ) SELECT letter, count, (count * 100.0 / (SUM(count) OVER ()))::numeric(4,1) AS "%" FROM letters ORDER BY 2 DESC; Explaining the Postgres Query Optimizer 16 / 61
  • 17. What is the Distribution of the sample Table? letter | count | % --------+-------+------ p | 199 | 78.7 s | 9 | 3.6 c | 8 | 3.2 r | 7 | 2.8 t | 5 | 2.0 v | 4 | 1.6 f | 4 | 1.6 d | 4 | 1.6 u | 3 | 1.2 a | 3 | 1.2 _ | 3 | 1.2 e | 2 | 0.8 i | 1 | 0.4 k | 1 | 0.4 (14 rows) Explaining the Postgres Query Optimizer 17 / 61
  • 18. Is the Distribution Important? EXPLAIN SELECT letter FROM sample WHERE letter = ’p’; QUERY PLAN ------------------------------------------------------------------------ Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=32) Index Cond: (letter = ’p’::text) (2 rows) Explaining the Postgres Query Optimizer 18 / 61
  • 19. Is the Distribution Important? EXPLAIN SELECT letter FROM sample WHERE letter = ’d’; QUERY PLAN ------------------------------------------------------------------------ Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=32) Index Cond: (letter = ’d’::text) (2 rows) Explaining the Postgres Query Optimizer 19 / 61
  • 20. Is the Distribution Important? EXPLAIN SELECT letter FROM sample WHERE letter = ’k’; QUERY PLAN ------------------------------------------------------------------------ Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=32) Index Cond: (letter = ’k’::text) (2 rows) Explaining the Postgres Query Optimizer 20 / 61
  • 21. Running ANALYZE Causes a Sequential Scan for a Common Value ANALYZE sample; ANALYZE EXPLAIN SELECT letter FROM sample WHERE letter = ’p’; QUERY PLAN --------------------------------------------------------- Seq Scan on sample (cost=0.00..13.16 rows=199 width=2) Filter: (letter = ’p’::text) (2 rows) Autovacuum cannot ANALYZE (or VACUUM) temporary tables because these tables are only visible to the creating session. Explaining the Postgres Query Optimizer 21 / 61
  • 23. A Less Common Value Causes a Bitmap Index Scan EXPLAIN SELECT letter FROM sample WHERE letter = ’d’; QUERY PLAN ----------------------------------------------------------------------- Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2) Recheck Cond: (letter = ’d’::text) -> Bitmap Index Scan on i_sample (cost=0.00..4.28 rows=4 width=0) Index Cond: (letter = ’d’::text) (4 rows) Explaining the Postgres Query Optimizer 23 / 61
  • 24. Bitmap Index Scan =& Combined ’A’ AND ’NS’ 1 0 1 0 TableIndex 1 col1 = ’A’ Index 2 1 0 0 col2 = ’NS’ 1 0 1 0 0 Index Explaining the Postgres Query Optimizer 24 / 61
  • 25. An Even Rarer Value Causes an Index Scan EXPLAIN SELECT letter FROM sample WHERE letter = ’k’; QUERY PLAN ----------------------------------------------------------------------- Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) Index Cond: (letter = ’k’::text) (2 rows) Explaining the Postgres Query Optimizer 25 / 61
  • 26. Index Scan A D A T A D A T A D A T A D A T A D A T A D A T A D < >=Key < >=Key Index Heap < >=Key A T A D A T A D A T A D A T A D A T A D A T Explaining the Postgres Query Optimizer 26 / 61
  • 27. Let’s Look at All Values and their Effects WITH letter (letter, count) AS ( SELECT letter, COUNT(*) FROM sample GROUP BY 1 ) SELECT letter AS l, count, lookup_letter(letter) FROM letter ORDER BY 2 DESC; l | count | lookup_letter ---+-------+----------------------------------------------------------------------- p | 199 | Seq Scan on sample (cost=0.00..13.16 rows=199 width=2) p | 199 | Filter: (letter = ’p’::text) s | 9 | Seq Scan on sample (cost=0.00..13.16 rows=9 width=2) s | 9 | Filter: (letter = ’s’::text) c | 8 | Seq Scan on sample (cost=0.00..13.16 rows=8 width=2) c | 8 | Filter: (letter = ’c’::text) r | 7 | Seq Scan on sample (cost=0.00..13.16 rows=7 width=2) r | 7 | Filter: (letter = ’r’::text) … Explaining the Postgres Query Optimizer 27 / 61
  • 28. OK, Just the First Lines WITH letter (letter, count) AS ( SELECT letter, COUNT(*) FROM sample GROUP BY 1 ) SELECT letter AS l, count, (SELECT * FROM lookup_letter(letter) AS l2 LIMIT 1) AS lookup_letter FROM letter ORDER BY 2 DESC; Explaining the Postgres Query Optimizer 28 / 61
  • 29. Just the First EXPLAIN Lines l | count | lookup_letter ---+-------+----------------------------------------------------------------------- p | 199 | Seq Scan on sample (cost=0.00..13.16 rows=199 width=2) s | 9 | Seq Scan on sample (cost=0.00..13.16 rows=9 width=2) c | 8 | Seq Scan on sample (cost=0.00..13.16 rows=8 width=2) r | 7 | Seq Scan on sample (cost=0.00..13.16 rows=7 width=2) t | 5 | Bitmap Heap Scan on sample (cost=4.29..12.76 rows=5 width=2) f | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2) v | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2) d | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2) a | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2) _ | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2) u | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2) e | 2 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) i | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) k | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) (14 rows) Explaining the Postgres Query Optimizer 29 / 61
  • 30. We Can Force an Index Scan SET enable_seqscan = false; SET enable_bitmapscan = false; WITH letter (letter, count) AS ( SELECT letter, COUNT(*) FROM sample GROUP BY 1 ) SELECT letter AS l, count, (SELECT * FROM lookup_letter(letter) AS l2 LIMIT 1) AS lookup_letter FROM letter ORDER BY 2 DESC; Explaining the Postgres Query Optimizer 30 / 61
  • 31. Notice the High Cost for Common Values l | count | lookup_letter ---+-------+----------------------------------------------------------------------- p | 199 | Index Scan using i_sample on sample (cost=0.00..39.33 rows=199 width= s | 9 | Index Scan using i_sample on sample (cost=0.00..22.14 rows=9 width=2) c | 8 | Index Scan using i_sample on sample (cost=0.00..19.84 rows=8 width=2) r | 7 | Index Scan using i_sample on sample (cost=0.00..19.82 rows=7 width=2) t | 5 | Index Scan using i_sample on sample (cost=0.00..15.21 rows=5 width=2) d | 4 | Index Scan using i_sample on sample (cost=0.00..15.19 rows=4 width=2) v | 4 | Index Scan using i_sample on sample (cost=0.00..15.19 rows=4 width=2) f | 4 | Index Scan using i_sample on sample (cost=0.00..15.19 rows=4 width=2) _ | 3 | Index Scan using i_sample on sample (cost=0.00..12.88 rows=3 width=2) a | 3 | Index Scan using i_sample on sample (cost=0.00..12.88 rows=3 width=2) u | 3 | Index Scan using i_sample on sample (cost=0.00..12.88 rows=3 width=2) e | 2 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) i | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) k | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) (14 rows) RESET ALL; RESET Explaining the Postgres Query Optimizer 31 / 61
  • 32. This Was the Optimizer’s Preference l | count | lookup_letter ---+-------+----------------------------------------------------------------------- p | 199 | Seq Scan on sample (cost=0.00..13.16 rows=199 width=2) s | 9 | Seq Scan on sample (cost=0.00..13.16 rows=9 width=2) c | 8 | Seq Scan on sample (cost=0.00..13.16 rows=8 width=2) r | 7 | Seq Scan on sample (cost=0.00..13.16 rows=7 width=2) t | 5 | Bitmap Heap Scan on sample (cost=4.29..12.76 rows=5 width=2) f | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2) v | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2) d | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2) a | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2) _ | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2) u | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2) e | 2 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) i | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) k | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) (14 rows) Explaining the Postgres Query Optimizer 32 / 61
  • 33. Which Join Method? ◮ Nested Loop ◮ With Inner Sequential Scan ◮ With Inner Index Scan ◮ Hash Join ◮ Merge Join Explaining the Postgres Query Optimizer 33 / 61
  • 34. What Is in pg_proc.oid? SELECT oid FROM pg_proc ORDER BY 1 LIMIT 8; oid ----- 31 33 34 35 38 39 40 41 (8 rows) Explaining the Postgres Query Optimizer 34 / 61
  • 35. Create Temporary Tables from pg_proc and pg_class CREATE TEMPORARY TABLE sample1 (id, junk) AS SELECT oid, repeat(’x’, 250) FROM pg_proc ORDER BY random(); -- add rows in random order SELECT 2256 CREATE TEMPORARY TABLE sample2 (id, junk) AS SELECT oid, repeat(’x’, 250) FROM pg_class ORDER BY random(); -- add rows in random order SELECT 260 These tables have no indexes and no optimizer statistics. Explaining the Postgres Query Optimizer 35 / 61
  • 36. Join the Two Tables with a Tight Restriction EXPLAIN SELECT sample2.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id) WHERE sample1.id = 33; QUERY PLAN --------------------------------------------------------------------- Nested Loop (cost=0.00..234.68 rows=300 width=32) -> Seq Scan on sample1 (cost=0.00..205.54 rows=50 width=4) Filter: (id = 33::oid) -> Materialize (cost=0.00..25.41 rows=6 width=36) -> Seq Scan on sample2 (cost=0.00..25.38 rows=6 width=36) Filter: (id = 33::oid) (6 rows) Explaining the Postgres Query Optimizer 36 / 61
  • 37. Nested Loop Join with Inner Sequential Scan aag aar aay aag aas aar aaa aay aai aag No Setup Required aai Used For Small Tables Outer Inner Explaining the Postgres Query Optimizer 37 / 61
  • 38. Pseudocode for Nested Loop Join with Inner Sequential Scan for (i = 0; i < length(outer); i++) for (j = 0; j < length(inner); j++) if (outer[i] == inner[j]) output(outer[i], inner[j]); Explaining the Postgres Query Optimizer 38 / 61
  • 39. Join the Two Tables with a Looser Restriction EXPLAIN SELECT sample1.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id) WHERE sample2.id > 33; QUERY PLAN ---------------------------------------------------------------------- Hash Join (cost=30.50..950.88 rows=20424 width=32) Hash Cond: (sample1.id = sample2.id) -> Seq Scan on sample1 (cost=0.00..180.63 rows=9963 width=36) -> Hash (cost=25.38..25.38 rows=410 width=4) -> Seq Scan on sample2 (cost=0.00..25.38 rows=410 width=4) Filter: (id > 33::oid) (6 rows) Explaining the Postgres Query Optimizer 39 / 61
  • 40. Hash Join Hashed Must fit in Main Memory aak aar aak aay aaraam aao aaw aay aag aas Outer Inner Explaining the Postgres Query Optimizer 40 / 61
  • 41. Pseudocode for Hash Join for (j = 0; j < length(inner); j++) hash_key = hash(inner[j]); append(hash_store[hash_key], inner[j]); for (i = 0; i < length(outer); i++) hash_key = hash(outer[i]); for (j = 0; j < length(hash_store[hash_key]); j++) if (outer[i] == hash_store[hash_key][j]) output(outer[i], inner[j]); Explaining the Postgres Query Optimizer 41 / 61
  • 42. Join the Two Tables with No Restriction EXPLAIN SELECT sample1.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id); QUERY PLAN ------------------------------------------------------------------------- Merge Join (cost=927.72..1852.95 rows=61272 width=32) Merge Cond: (sample2.id = sample1.id) -> Sort (cost=85.43..88.50 rows=1230 width=4) Sort Key: sample2.id -> Seq Scan on sample2 (cost=0.00..22.30 rows=1230 width=4) -> Sort (cost=842.29..867.20 rows=9963 width=36) Sort Key: sample1.id -> Seq Scan on sample1 (cost=0.00..180.63 rows=9963 width=36) (8 rows) Explaining the Postgres Query Optimizer 42 / 61
  • 43. Merge Join Sorted Sorted Ideal for Large Tables An Index Can Be Used to Eliminate the Sort aaa aab aac aad aaa aab aab aaf aaf aac aae Outer Inner Explaining the Postgres Query Optimizer 43 / 61
  • 44. Pseudocode for Merge Join sort(outer); sort(inner); i = 0; j = 0; save_j = 0; while (i < length(outer)) if (outer[i] == inner[j]) output(outer[i], inner[j]); if (outer[i] <= inner[j] && j < length(inner)) j++; if (outer[i] < inner[j]) save_j = j; else i++; j = save_j; Explaining the Postgres Query Optimizer 44 / 61
  • 45. Order of Joined Relations Is Insignificant EXPLAIN SELECT sample2.junk FROM sample2 JOIN sample1 ON (sample2.id = sample1.id); QUERY PLAN ------------------------------------------------------------------------ Merge Join (cost=927.72..1852.95 rows=61272 width=32) Merge Cond: (sample2.id = sample1.id) -> Sort (cost=85.43..88.50 rows=1230 width=36) Sort Key: sample2.id -> Seq Scan on sample2 (cost=0.00..22.30 rows=1230 width=36) -> Sort (cost=842.29..867.20 rows=9963 width=4) Sort Key: sample1.id -> Seq Scan on sample1 (cost=0.00..180.63 rows=9963 width=4) (8 rows) The most restrictive relation, e.g. sample2, is always on the outer side of merge joins. All previous merge joins also had sample2 in outer position. Explaining the Postgres Query Optimizer 45 / 61
  • 46. Add Optimizer Statistics ANALYZE sample1; ANALYZE sample2; Explaining the Postgres Query Optimizer 46 / 61
  • 47. This Was a Merge Join without Optimizer Statistics EXPLAIN SELECT sample2.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id); QUERY PLAN ------------------------------------------------------------------------ Hash Join (cost=15.85..130.47 rows=260 width=254) Hash Cond: (sample1.id = sample2.id) -> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=4) -> Hash (cost=12.60..12.60 rows=260 width=258) -> Seq Scan on sample2 (cost=0.00..12.60 rows=260 width=258) (5 rows) Explaining the Postgres Query Optimizer 47 / 61
  • 48. Outer Joins Can Affect Optimizer Join Usage EXPLAIN SELECT sample1.junk FROM sample1 RIGHT OUTER JOIN sample2 ON (sample1.id = sample2.id); QUERY PLAN -------------------------------------------------------------------------- Hash Left Join (cost=131.76..148.26 rows=260 width=254) Hash Cond: (sample2.id = sample1.id) -> Seq Scan on sample2 (cost=0.00..12.60 rows=260 width=4) -> Hash (cost=103.56..103.56 rows=2256 width=258) -> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=258) (5 rows) Use of hashes for outer joins was added in Postgres 9.1. Explaining the Postgres Query Optimizer 48 / 61
  • 49. Cross Joins Are Nested Loop Joins without Join Restriction EXPLAIN SELECT sample1.junk FROM sample1 CROSS JOIN sample2; QUERY PLAN ---------------------------------------------------------------------- Nested Loop (cost=0.00..7448.81 rows=586560 width=254) -> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=254) -> Materialize (cost=0.00..13.90 rows=260 width=0) -> Seq Scan on sample2 (cost=0.00..12.60 rows=260 width=0) (4 rows) Explaining the Postgres Query Optimizer 49 / 61
  • 50. Create Indexes CREATE INDEX i_sample1 on sample1 (id); CREATE INDEX i_sample2 on sample2 (id); Explaining the Postgres Query Optimizer 50 / 61
  • 51. Nested Loop with Inner Index Scan Now Possible EXPLAIN SELECT sample2.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id) WHERE sample1.id = 33; QUERY PLAN --------------------------------------------------------------------------------- Nested Loop (cost=0.00..16.55 rows=1 width=254) -> Index Scan using i_sample1 on sample1 (cost=0.00..8.27 rows=1 width=4) Index Cond: (id = 33::oid) -> Index Scan using i_sample2 on sample2 (cost=0.00..8.27 rows=1 width=258) Index Cond: (sample2.id = 33::oid) (5 rows) Explaining the Postgres Query Optimizer 51 / 61
  • 52. Nested Loop Join with Inner Index Scan aag aar aai aay aag aas aar aaa aay aai aag No Setup Required Index Lookup Index Must Already Exist Outer Inner Explaining the Postgres Query Optimizer 52 / 61
  • 53. Pseudocode for Nested Loop Join with Inner Index Scan for (i = 0; i < length(outer); i++) index_entry = get_first_match(outer[j]) while (index_entry) output(outer[i], inner[index_entry]); index_entry = get_next_match(index_entry); Explaining the Postgres Query Optimizer 53 / 61
  • 54. Query Restrictions Affect Join Usage EXPLAIN SELECT sample2.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id) WHERE sample2.junk ˜ ’^aaa’; QUERY PLAN ------------------------------------------------------------------------------- Nested Loop (cost=0.00..21.53 rows=1 width=254) -> Seq Scan on sample2 (cost=0.00..13.25 rows=1 width=258) Filter: (junk ˜ ’^aaa’::text) -> Index Scan using i_sample1 on sample1 (cost=0.00..8.27 rows=1 width=4) Index Cond: (sample1.id = sample2.id) (5 rows) No junk rows begin with ’aaa’. Explaining the Postgres Query Optimizer 54 / 61
  • 55. All ’junk’ Columns Begin with ’xxx’ EXPLAIN SELECT sample2.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id) WHERE sample2.junk ˜ ’^xxx’; QUERY PLAN ------------------------------------------------------------------------ Hash Join (cost=16.50..131.12 rows=260 width=254) Hash Cond: (sample1.id = sample2.id) -> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=4) -> Hash (cost=13.25..13.25 rows=260 width=258) -> Seq Scan on sample2 (cost=0.00..13.25 rows=260 width=258) Filter: (junk ˜ ’^xxx’::text) (6 rows) Hash join was chosen because many more rows are expected. The smaller table, e.g. sample2, is always hashed. Explaining the Postgres Query Optimizer 55 / 61
  • 56. Without LIMIT, Hash Is Used for this Unrestricted Join EXPLAIN SELECT sample2.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id); QUERY PLAN ------------------------------------------------------------------------ Hash Join (cost=15.85..130.47 rows=260 width=254) Hash Cond: (sample1.id = sample2.id) -> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=4) -> Hash (cost=12.60..12.60 rows=260 width=258) -> Seq Scan on sample2 (cost=0.00..12.60 rows=260 width=258) (5 rows) Explaining the Postgres Query Optimizer 56 / 61
  • 57. LIMIT Can Affect Join Usage EXPLAIN SELECT sample2.id, sample2.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id) ORDER BY 1 LIMIT 1; QUERY PLAN ------------------------------------------------------------------------------------------ Limit (cost=0.00..1.83 rows=1 width=258) -> Nested Loop (cost=0.00..477.02 rows=260 width=258) -> Index Scan using i_sample2 on sample2 (cost=0.00..52.15 rows=260 width=258) -> Index Scan using i_sample1 on sample1 (cost=0.00..1.62 rows=1 width=4) Index Cond: (sample1.id = sample2.id) (5 rows) Explaining the Postgres Query Optimizer 57 / 61
  • 58. LIMIT 10 EXPLAIN SELECT sample2.id, sample2.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id) ORDER BY 1 LIMIT 10; QUERY PLAN ------------------------------------------------------------------------------------------ Limit (cost=0.00..18.35 rows=10 width=258) -> Nested Loop (cost=0.00..477.02 rows=260 width=258) -> Index Scan using i_sample2 on sample2 (cost=0.00..52.15 rows=260 width=258) -> Index Scan using i_sample1 on sample1 (cost=0.00..1.62 rows=1 width=4) Index Cond: (sample1.id = sample2.id) (5 rows) Explaining the Postgres Query Optimizer 58 / 61
  • 59. LIMIT 100 Switches to Hash Join EXPLAIN SELECT sample2.id, sample2.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id) ORDER BY 1 LIMIT 100; QUERY PLAN ------------------------------------------------------------------------------------ Limit (cost=140.41..140.66 rows=100 width=258) -> Sort (cost=140.41..141.06 rows=260 width=258) Sort Key: sample2.id -> Hash Join (cost=15.85..130.47 rows=260 width=258) Hash Cond: (sample1.id = sample2.id) -> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=4) -> Hash (cost=12.60..12.60 rows=260 width=258) -> Seq Scan on sample2 (cost=0.00..12.60 rows=260 width=258) (8 rows) Explaining the Postgres Query Optimizer 59 / 61
  • 60. Additional Resources… ◮ Postgres Downloads: ◮ www.enterprisedb.com/downloads ◮ Product and Services information: ◮ info@enterprisedb.com Explaining the Postgres Query Optimizer 60 / 61