Ce diaporama a bien été signalé.
Nous utilisons votre profil LinkedIn et vos données d’activité pour vous proposer des publicités personnalisées et pertinentes. Vous pouvez changer vos préférences de publicités à tout moment.

Ericsson Technology Review: Facilitating online trust with blockchains

309 vues

Publié le

The buzz around blockchain – from its initial release a decade ago until today – stems from the fact that it was the first technology to establish trust online via mathematics and collective protocolling alone. At Ericsson, we see significant value in blockchain technology as a trust enabler and potential disruptor that can enable completely new business models in the digital asset market.

The latest Ericsson Technology Review article explains blockchain technology from an Ericsson perspective and shares the key insights we have gained from a number of promising private blockchain use cases we have evaluated both on our own and together with global telco and enterprise customers. The article also discusses potential future developments and business considerations.

Publié dans : Technologie
  • Soyez le premier à commenter

  • Soyez le premier à aimer ceci

Ericsson Technology Review: Facilitating online trust with blockchains

  1. 1. Owner1 Owner2 User3D1 User2D1 User3D1 Blockchain Domain D1 Domain D2 Owner 1 User1D1 User2D1 User3D1 Owner2 ERICSSON TECHNOLOGY BLOCKCHAINS ANDONLINETRUST C H A R T I N G T H E F U T U R E O F I N N O V A T I O N | # 0 3 ∙ 2 0 1 9
  2. 2. ✱ BLOCKCHAINS AND ONLINE TRUST 2 ERICSSON TECHNOLOGY REVIEW ✱ APRIL 4, 2019 A decade after its launch, blockchain is still the only internet-age technology that is able to facilitate online trust using mathematics and collective protocolling exclusively. DANIEL BERGSTRÖM, BEN SMEETS, MIKAEL JAATINEN, JAMES KEMPF, JONAS LUNDBERG, NICKLAS SANDGREN, GASPAR WOSA blockchains FACILITATING ONLINE TRUST WITH One of the fundamental challenges in the online, digital world is that implicit, fundamental concepts in the off-line, physical world need to be formalized and made explicit. Trust is a prime example. ■ Inthephysicalworld,trustisintangiblebutitis nonethelesscentraltoourinteractionswithother peopleandtoourconsumptionofservices.Creating anonlineenvironmentinwhichpeoplefeelsecure wheninteractingandconsuminginasimilarway requiresthedevelopmentoftechnologiesand protocolsthatformalizeanddigitalizetrust. Thecurrentsolutiontothechallengeoffacilitating trustonlineistorelyontrustedthirdpartiessuchas banksandmajorinternetcompaniestoactastrust anchors,creatingandattestingcertificatesfor peopleorweb-basedservices.Eachdevice,browser andoperatingsystemcomespreconfiguredwitha listofthesetrustedthirdpartiesandtheir certificates–theirdigitalfingerprints.Byinstructing ourdevicestotrusttherootcertificateofthetrusted thirdparty,theyareabletocomputationallyinfer trustinallunderlyingentities. Theprimaryweaknessofthishierarchical approachtoestablishingtruststemsfromthe underlyingstructureofcentralizedpower.Theroot keysofeachcertificateauthorityareacoreassetof today’sinternet,buttheyareprivatelymanagedand sensitivetoexposure.Blockchainwasoriginally designedtouprootthishierarchyandcreateanew kindoftrustsystemforelectronictransactions.In essence,theblockchainitselfbecomesitsowntrust anchorbasedonadistributed,transparentand community-driveninfrastructure. Ablockchainremovestheneedfortrustedthird parties,distributesthecentralizedpowerofthe certificateauthorities,andallowsanonymous memberstojoinandcontributetotheinfrastructure attheirowndiscretion–althoughataveryhighcost
  3. 3. BLOCKCHAINS AND ONLINE TRUST ✱ APRIL 4, 2019 ✱ ERICSSON TECHNOLOGY REVIEW 3 Terms and abbreviations ABI – Application Binary Interface | IOT – Internet of Things | JSON – JavaScript Object Notation | POW – Proof of Work | REST– Representational State Transfer | SOFIE – Secure Open Federation for Internet Everywhere | TEE – Trusted Execution Environment intermsofthroughput.Whiledigitalcurrenciesare stronglyassociatedwithblockchains–the“coins” aregeneratedbycontributingresourcestothe networksandspentbymakingtransactionsthatare processedbythenetworks–thevalueofblockchains goesbeyonddigitalcurrencies. Publicversusprivateblockchains BitcoinandEthereumarebothclassifiedaspublic, permissionlessblockchains.Thesesystemshave threepropertiesthatformthebasisoftrust.Firstly, anyonecanbecomeaparticipantbycontributing computingresources–thereisnoneedtohavea priorrelationtoanyothernodeinthesystem. Secondly,generatinganewblockontheblockchain iscomputationallyexpensive,astheconsensus mechanismisdesignedtorequireacertainamount ofwall-clocktimetocompleteregardlessofthesize ofthenetwork.Andlastly,itisimpossibletopredict whichcontributorwillbethefirsttocompletethe nextblock. Ifmorethanhalfofthecomputationalresources inthesystemaretechnicallywell-behaved,their resultswilldominateanymaliciousor malfunctioningnodesthatmaytrytoalterthe historyofthesysteminanerroneousdirection.In theconsensusmethodusedinthesesystems,known asproofofwork(PoW),therearenoshortcutsto generatingnewblocks;itcanonlybedonethrougha computationallyintensivehashingprocess.Other schemesforconsensusarebeingdevelopedand discussed,butthesehaveyettoseewidespreaduse. Thedifferencebetweenpublicblockchainsand private,permissionedonesisthatthelatteremploy strongidentities,usermanagementandaprotected datastructure.Privateblockchainstargetusecases somewherebetweenapublicblockchaininan untrustedpublicenvironmentandadistributed databasehostedinafullytrustedinternal deployment.Thissegmentincludesbankconsortia, forexample,thathaveamutualrelianceandatleast somelevelofpreestablishedtrust,butwherea privatelymanagedbackendfortransaction managementisnotafeasiblealternative.Duetothe differenceinnetworkconstitutionandthepresence ofatleastpartialtrust,thecomputationallyexpensive PoWschemeisnotrequiredinprivateblockchains. Instead,theycanusethesameconsensusalgorithms thatareusedinotherdistributedsystems,designed tocompensateforbothmaliciousandmalfunctioning nodes. Thedifferencesinscopebetweenpublicand privateblockchainshavealargeimpacton technologychoices.Fromatechnicalstandpoint, thereisvirtuallynooverlapbetweenthetwodifferent typesofblockchains.Itisalsosignificanttonotethat publicblockchainsarebydesignverydifficultfor companiestomonetize,whichiswhymostfirmshave chosentofocusonprivateblockchainsinstead. [PRIVATEBLOCKCHAINS] EMPLOYSTRONGIDENTITIES, USERMANAGEMENTANDA PROTECTEDDATASTRUCTURE
  4. 4. ✱ BLOCKCHAINS AND ONLINE TRUST 4 ERICSSON TECHNOLOGY REVIEW ✱ APRIL 4, 2019 Themostcommonlyusedsoftwaretechnology torealizeprivateblockchaininstallationsis HyperledgerFabric. Keytechnicalpropertiesofsuitableusecases Wehaveidentifiedfourkeytechnicalproperties ofthepartial-trustusecasesthatweexpecttobe suitableforblockchains:(1)asharedtrustedhistory, (2)structurebuiltonmultiplestakeholdersof equalstanding,(3)largelyindependentnodes, and(4)accesstodatahistory. Sharedtrustedhistory Thekeybenefitoftheblockchainistrustbetween stakeholders,andtoestablishahistoryof transactionsthatisveryhardtotamperwith. Multiple,equalstakeholders Themainnicheofblockchainsliesintheareaof partialtrustbetweenroughlyequalstakeholders. Largelyindependentnodes Usecaseswhereeachnodeoperatesindependently andusestheblockchainforsupportaredesirable duetotherelativelyhighcostand/ordelayofrunning transactionsontheblockchain. Accesstodatahistory Becausethehistoricaldataisnormallyretained indefinitely,itishighlybeneficialifthereisavalueto theusecaseinhavingaccesstohistorical transactions. Relatedtechnologies Thetechnicaldevelopmentandbroadeningof blockchainsisconstantlyongoing.Byalteringor extendingthecorefunctionality,wecanbothwiden thescopeandapplicabilityofblockchainsasa technologyandmitigatethelimitationsofexisting offerings. Smartcontracts Withtraditionaldatabases,itisstraightforwardto createsoftwarethatmonitorsadatabase,determines whetherornotacertainconditionhasbeenfulfilled, andupdatesthedatabaseaccordingly.Thisisexactly whatsmartcontractsdoaswell,butinthetrusted environmentofblockchains.Asmartcontractis neithersmartnoralegalcontract;rather,itisan agreementbetweentwoormorepartiesthatis formulatedandenforcedwithimmutable cryptographiccode.Thiscodeisexecutedonevery nodewithintheblockchainnetworkanddetermines howdatainthedistributedledgerismodified.Ifa smartcontractdependsonexternalinformation,an oraclemustbeusedtofeedthisinformationintothe ledgertomakeitaccessibletothesmartcontracts. Smartcontractsremoverelianceontrusted intermediarieswhenmakingbusinessagreements. Typically,asmartcontractincludestermsand conditions,performancemetricsandpossibly penalties.Duringexecution,thesmartcontractwill monitor,verifyandenforceagreedconditions automatically,whichcanpotentiallysavetimeand moneyforthepartiesinvolved. Thetechnologybehindsmartcontractsis promising,buttherearesomecaveats;smart contractsneedtobeverycarefullydesignedand implementedtoensurethattheresultingcontract actsexactlyasintendedgivenanyinputorevent. Misconfiguredsmartcontractsarevirtually impossibletocancel(unlesstheyhavebeendesigned forrenegotiationfromthestart),whichconsiderably increasesthedemandsofdeployingasmartcontract. THESMARTCONTRACT WILLMONITOR,VERIFY ANDENFORCEAGREED CONDITIONS AUTOMATICALLY
  5. 5. BLOCKCHAINS AND ONLINE TRUST ✱ APRIL 4, 2019 ✱ ERICSSON TECHNOLOGY REVIEW 5 Hashgraphs ThedrawbacksofthePoWconsensusalgorithm usedbypublicblockchains(intermsofdelay, throughput,energyefficiencyandtransactioncosts) haveinspiredthedevelopmentofothertechnologies targetingthechallengeofdistributedtrust. Hashgraphsareonesuchexample.Hashgraphs reorganizethetransactionblocksfromachainof blockstoadirectedacyclicgraphofblocks,which enablesnewblockstobeaddedtothesystemwithout waitingforallpreviousblockstobeorganized. Theorganizationofblocksenablesmultiplelines oftransactionstoberuninparallel,andintheory allowsforasystemthathasconsiderablylower delaysandhigherthroughputcomparedwitha conventionalblockchain.Hashgraphsalsotryto replacethecomputationallyexpensivePoW consensusalgorithmswithotherapproachesto increasethethroughputandenergyefficiencyofthe system.Smartcontractscanrunonhashgraphsina waythatissimilartohowtheyrunonblockchains. Hashgraphsrepresentaboldtechnologicalleap thatstrivestoovercomeallthedrawbacksofpublic blockchains.However,currenthashgraph technologiesarenotopenandavailableinthesame wayaspublicblockchaintechnologiesare,which arguablymakesthembettersuitedtosolvedifferent usecasesthatareclosertothoseofprivate blockchains.Somehashgraphtechnologiesarealso designedaroundpatentedalgorithmsandbuilt-in claimstopartsoftherevenue,whichgoesagainstthe originalintentionofblockchaintocreatea decentralizedanddemocraticinfrastructure. TrustedExecutionEnvironments ATrustedExecutionEnvironment(TEE)is establishedwithinanindividualdevicebyusingan enclave–ahardware-protectedpartoftheCPU chipsetthatoperatesonencryptedmemoryand storageforsecuritypurposes.Thisapproachenables theexecutionofselectedsoftwareinisolationfromthe underlyingoperatingsystemlayers,effectivelyin isolationfromanyattacksoriginatingfromhacking orexploitingoperatingsystemsoftware.The technologywasinitiallylaunchedforsomechipsetsin theearly2000sbuthasonlyrecentlyreachedwide-scale deploymentindevice,desktopandserverhardware. Fromapublicblockchainperspective,TEEsmay offerabreakthroughintermsofconsensus algorithms.AkeyfeatureofmodernTEEsisthe abilitytoattestthecoderunninginsidetheenclave throughahardware-supportedasymmetrickey exchange.Theabilitytoexecutetrustedand verifiablecodeonotherwisecompromisedsystems laysthefoundationforanewgenerationofconsensus algorithms,anchoringthetrustinthesignatureofthe codebeingexecutedratherthanintheworkbeing carriedoutortheidentityofthenodeowner.Early resultsofthisdevelopmentinpublicblockchainsshow considerablyincreasedtransactionspeedsandreduced energyconsumption.Theimplicationsareyettobe fullydeterminedforprivateblockchainsthatrelyon classicaldistributedsystemalgorithmsforconsensus. Usecasesandapplications AtEricsson,webelievethatarobustblockchain foundationcanincreaseecosysteminvolvementand enablenewbusinessmodelsforrevenuegeneration. Inlightofthis,wehavebeentestingtheapplication ofblockchaintechnologyintherealmof telecommunicationforsometime,andwehave identifiedthreeusecasesthatareparticularly promisingintermsofserviceswithmonetization potential.Oneiscalledthesmartcontractplatform, thesecondisknownasIDbrokering,andthethirdis aNubo-basedvirtualservicesmarketplace. TEEsMAYOFFERA BREAKTHROUGHIN TERMSOFCONSENSUS ALGORITHMS
  6. 6. ✱ BLOCKCHAINS AND ONLINE TRUST 6 ERICSSON TECHNOLOGY REVIEW ✱ APRIL 4, 2019 Smartcontractplatformforservicesproviders Thesmartcontractplatformisaninnovation platformdrivenbyEricssonthatallowsoperators whoareinnovatingwithustoexploreblockchain andsmart-contracttechnologytooffernew services,evaluateplatformbusinessopportunities andaddressinternalefficienciestoreduce thecostofdoingbusiness.Oneinteresting usecasefortheplatformisitsapplicationto roamingclearanceandsettlementservices[1] asdepictedinFigure1. Thehandlingofroamingsubscriberstoday reliesontrustedthirdparties(dataclearing companies,forexample)tomanagetheclearing processesandsettlementrelatedtobilling. Thesmartcontractplatformroamingsettlement applicationreplacesthese(oftenexpensive)third partieswithatrusted,distributedanddecentralized blockchainsolutionthatincludessmartcontracts (forexample,HyperledgerFabricchaincode). Thesmartcontractplatformcantakeadvantage ofcoreattributesofblockchain’ssharedledger approachtoprovidetrust,securityandtransparency acrosstheparticipatingecosystem.Smartcontracts canbeusedtosupportthefollowingthreemain groupsofservices: ❭❭ roaming management, including agreement definition and archiving ❭❭ data clearing, such as billing record creation, conversion services and fraud management ❭❭ financial clearing and settlement services for voice, SMS, MMS and data transactions. Theinsightsfromsmartcontractplatformexperiments willvalidatethekeytechnicalpropertieswheretrust Figure 1 Roaming clearance and settlement, with and without third-party support Roaming settlement via data clearing house Roaming settlement based on blockchain and smart contracts Operator A Operator C Operator C Operator B Operator BOperator A With data clearing house Without data clearing house (blockchain enabled)
  7. 7. BLOCKCHAINS AND ONLINE TRUST ✱ APRIL 4, 2019 ✱ ERICSSON TECHNOLOGY REVIEW 7 canbedistributedandgoverninadecentralized mannerandthroughdataintegrityandtransparency supportedbetweenthecounterparties. IDbrokering Wehavedesignedandimplementedadecentralized systemforIDbrokeringbasedonaconceptthat createstrustrelationsbetweendigitalidentities andthesystemsthathandlethem.Thesystem capitalizesonthestrengthofblockchainsto expressandmanagetrustrelationsinindustry- widesolutionsandcreatesaunifiedmechanism forIDmanagementacrossunderlying heterogeneousIDtechnologies. IDbrokeringmakesiteasytoestablishencrypted andtrustedconnectivityforIoTdevicesthatare onthemove,orforpersonaldevicesthatarecarried acrossdifferentadministrativenetworkdomains. Forexample,byallowingdeviceIDstoactasdigital passportsandregisteringthe(non-sensitive) passportIDsofdeviceswhenbookingatrip,the networksthedevicespassthrough(including airports,hotelsandconferencefacilities)canuse theirowntrustedIDstograntsecureinternet accesswithoutmanualauthentication. TheIDbrokeringconceptisbasedon threekeyaspects: 1. the self-sovereignty of ID domains, where devices are provisioned with any secure ID technology deemed appropriate, and where the ID secret is securely stored in a TEE 2. authentication utilizes the trust relation expressed in a blockchain-based backend, where instantaneous access rights for specific devices in specific networks are managed 3. the blockchain backend enables the system to reach a shared consensus on a global scale, as no single party is the main controller or beneficiary of the system. EricssondemonstratedanIDbrokering implementation–inthiscaseacustomlayerontopof HyperledgerFabricusingblockchainsandTEEs–at MobileWorldCongressin2017.Init,eachIoTdevice isrepresentedbyanode,belongstoadomain,and hasrelationswithownersexpressedbylinks,as illustratedinFigure2.Withthisapproach,we emphasizethedecentralizednatureofapplications enabledbytheblockchain.Eachdomainowner Figure 2 ID domain creation and ID crosslinking with the support of blockchain Owner1 Owner2 Owner3 OwnerD3 User3D1 User2D1 User3D1 User1D3 User2D3 Blockchain Domain D1 Domain D2 Domain D3 Owner 1 User1D1 User2D1 User3D1 Owner2 Owner3 OwnerD2 User1D3 User2D3
  8. 8. ✱ BLOCKCHAINS AND ONLINE TRUST 8 ERICSSON TECHNOLOGY REVIEW ✱ APRIL 4, 2019 hasfullsovereigntyoftheirdomain,andshared contextoftheblockchainenablesadomainto interactandtograntandrevokeaccessdynamically. TheIDbrokeringsolutionsharestheconceptof self-sovereigntywiththeSovrinsystem[2],andis oblivioustothespecificIDtechnologiesusedfor authenticationandIDprovisioning.Since2017, wehavebeenworkingonIDbrokeringandits coexistencewithpublickeyinfrastructuresolutions. Nubo virtualservicesmarketplace New5Gfeaturesenableoperatornetworkstobe virtuallysegmentedintodifferentlogicalnetworks (slices)similarlytohownetworkresourcesincloud infrastructurecanprovidedifferentvirtualnetworks fordifferenttenants.Theriseofvirtualnetwork functions–thatis,virtualizedandsoftware-based routersorfirewalls–hascreatedthefoundationfora marketofnetworkserviceswherethesetof componentscanbecomposedspecificallyforeach tenant.Withslicingandvirtualizationofnetwork componentsin5G,weenvisionthatfuture5G operatorservicesarelikelytohavesimilar characteristics,withatailoredcompositionof servicesforeachnetworkslice. WedesignedtheNubovirtualservices marketplacetomeetthespecificrequirementsof virtualizationusecases.Itsarchitectureisillustrated inFigure3.TheNubomarketplaceismadeupof buyersofvirtualizedservices,referredtoas“tenants”, andthesellersofthoseservices,referredtoas “serviceproviders”.Thetenantscanbeindividual users,enterprisecustomersorevenoperators.A blockchainwithsmartcontractsprovidesthetenants withthebasictrustplatformforpricediscoveryon theservices.Nubo’stenantandservicemanagement Figure 3 Nubo virtual services marketplace architecture Nubo portal Tenant Service provider Settlement processor Saranyu tenant REST Saranyu tenant REST Web3 ABI Bulk service usage data Saranyu Dapp Cassandra Quorum Service manager Non-multi- tenant services Multi-tenant services Saranyu service REST Service manager REST Saranyu service REST
  9. 9. BLOCKCHAINS AND ONLINE TRUST ✱ APRIL 4, 2019 ✱ ERICSSON TECHNOLOGY REVIEW 9 microservice(knownasSaranyu)utilizestheJ.P. MorganQuorumblockchain,whichsupportssmart contractswritteninSolidity. Tenantsandserviceshavecontractaccountson theblockchain,whichgoverntheirinteractionwith themarketplaceandeachother.Serviceslisttheir resourceofferingsontheblockchainthrough SaranyuintheformofaJSON(JavaScriptObject Notation)documentdescribingtheattributesofthe resources.Attributescanbequotalimitedorhave chargesassociatedwiththem.Tenantsrequestthe delegationofresourcesandmustcryptographically signtheJSONdocument,indicatingthatthey committoabidebythechargingandquota advertisedintheresourceofferings. Servicesrecordtenantusageandsendusage recordstoSaranyu,whichSaranyustoresinthe Cassandradistributeddatabase,depositingasigned hashoftherecordintotheblockchaintoensurethe recordsarenotchanged.Periodically,Saranyuruns abillingcycleinwhichtenantchargesforservices aretotaledupandsubmittedtoasettlement processor,whichcanbeacreditcardprocessorora cryptocurrencyaccount. Nubocanalsosupportcloudcompute/ networking/storageservicesaswellasserverless functionsordistributedoperatingsystemtypesof services.AprototypeofNubowasdevelopedat Ericssonin2018,featuringanexperimental cryptocurrencychargingsystemthatchargedfor servicesusingaprivateEthereumaccountdeployed intheEricssonResearchDataCenterinLund, Sweden.ServiceslistedincludedtheNefeleCloud 3.0distributedoperatingsystem,theEthereum serverlessfunctionsystem,andtheUniversityof California,Berkeley,RISELabartificialintelligence executionenvironmentRay. Standardizationandexternalcollaboration Themassadoptionofblockchainswillrequireboth technicalandbusiness-modelinteroperability betweenorganizations,permissionedblockchain consortia,andevenpermissionlessblockchains. Consequently,blockchainstandardizationis underwayandseveralindustryconsortiahave formedtostriveforinteroperabilityandharmonized processes.Ericssoniscontributingtothe standardizationprocessthroughouractive involvementintheGSMAandallmajortelecom andICTstandardizationbodies,aswellasby becomingafoundingmemberinanETSI (EuropeanTelecommunicationsStandards Institute)workinggrouponpermission distributedledgers. Withrespecttocollaboration,theEUand severalnationalgovernmentsarecurrently sponsoringacademicandindustrialcollaboration forblockchainresearchandbusinessacceleration. EricssonhaschosentoparticipateintheEUH2020- IoTSOFIE(SecureOpenFederationforInternet Everywhere)project2018-2020togetherwith severalindustry-leadingcompaniesandacademic institutionstoresearchblockchaininteroperability acrosssiloedIoTapplications,includingthe demonstrationofresultsthroughseverallivepilots. Wearealsocollaboratingdirectlywithglobal technologycompaniesintheareasoftrusted computingandblockchains. Conclusion Ericssonseessignificantvalueinblockchainsasa trustenablerandpotentialdisruptorthatcanenable completelynewbusinessmodelsinthedigitalasset market.Theusecaseswehaveevaluatedforprivate blockchainssofar,bothin-houseandtogetherwith THEMASSADOPTION OFBLOCKCHAINSWILL REQUIREBOTHTECHNICAL ANDBUSINESS-MODEL INTEROPERABILITY
  10. 10. ✱ BLOCKCHAINS AND ONLINE TRUST 10 ERICSSON TECHNOLOGY REVIEW ✱ APRIL 4, 2019 Further reading ❭❭ Ericsson, blog, Secure brokering of digital identities, available at: https://www.ericsson.com/en/blog/2017/7/secure-brokering-of-digital-identities ❭❭ Ericsson, blog, Smart contracts for identities, available at: https://www.ericsson.com/en/blog/2017/10/smart-contracts-for-identities ❭❭ Ericsson, blog, Secure IoT identities, available at: https://www.ericsson.com/en/blog/2017/3/secure-iot-identities References 1. Monitor Deloitte, Blockchain @ Telco: How blockchain can impact the telecommunications industry and its relevance to the C-Suite, 2016, available at: https://www2.deloitte.com/content/dam/Deloitte/za/ Documents/technology-media-telecommunications/za_TMT_Blockchain_TelCo.pdf 2. White paper, Evernym in cooperation with the Sovrin Foundation, What Goes on the Ledger?, September 2018, available at: https://sovrin.org/wp-content/uploads/2018/10/What-Goes-On-The-Ledger.pdf globaltelcoandenterprisecustomers,haveachieved promisingresults.Todate,wehavedemonstrated thevalueofblockchainforroamingsettlementand otherusecasessuchasIoTdatamonetization,supply chainmanagement,handlingofprivacy-sensitive data,licensemanagementandIDmanagement. OURNEXTSTEPS WILLINCLUDEFURTHER EXPLORATIONOFTHE POTENTIALOFPUBLIC BLOCKCHAINSAND HASHGRAPHS Ournextstepswillincludefurtherexplorationof thepotentialofpublicblockchainsandhashgraphs. Whilewearekeentoaccelerateourblockchain effortsfromexplorationtocommodificationand massadoption,werecognizethatanumberof fundamentalissuesmustberesolvedbefore wegetthere.Appropriategovernancemodels aroundblockchainconsortiamustbeestablished, forexample,alongwithtechnologyandbusiness modelinteroperability.Thequestionsofhowto createaviableplatformbusinessandhowto ensurethatcontractsactontrustworthydata mustalsobeanswered.Wewillcontinuetowork ontheseaspectsinclosecollaborationwithour customersandotherindustrystakeholders throughstandardizationandjointinnovation.
  11. 11. BLOCKCHAINS AND ONLINE TRUST ✱ APRIL 4, 2019 ✱ ERICSSON TECHNOLOGY REVIEW 11 Daniel Bergström ◆ is a senior researcher in distributed computing at Ericsson Research. He joined Ericsson in 2014 and works with all things distributed. His current focus is on secure infrastructures for artificial intelligence workloads. He holds a Ph.D. in computing science from Umeå University, Sweden. Ben Smeets ◆ is a senior expert in trusted computing at Ericsson Research. He holds a Ph.D. in information theory from Lund University, Sweden, where he also serves as a professor. He joined Ericsson in 1998, working on security solutions for mobile phone platforms. Smeets is currently working on trusted computing technologies in connection with containers and secure enclaves. Mikael Jaatinen ◆ is a security specialist at Business Area Technologies and New Businesses. He joined Ericsson in 1996 and has been working with blockchains since 2014. He holds an M.Sc. in computer science from Åbo Akademi University in Turku, Finland. Jaatinen is currently responsible for work packages in the blockchain project SOFIE and with artificial intelligence/ machine learning-based security analytics. James Kempf ◆ worked for Ericsson Research in Silicon Valley as a principal researcher from 2008 to 2018. He earned a Ph.D. in systems engineering from the University of Arizona in Tucson, the US, in 1984, holds 21 patents and is the author of three books and many papers. He currently works as a senior principal architect for Equinix in Sunnyvale, California. Jonas Lundberg ◆ joined Ericsson in 1997 and currently serves as a senior researcher at Ericsson Research. His research interests include distributed computing and blockchain technology, and his current focus is blockchain platforms for rapid prototyping. Lundberg holds an M.Sc. in computer science from Luleå University of Technology, Sweden. Nicklas Sandgren ◆ is a senior researcher in the field of distributed computing at Ericsson Research. He joined Ericsson in 1998 and has worked in many different areas, including speech and channel coding, VoIP prototyping, WebRTC and DevOps. He holds an M.Sc. in computer science from Luleå University of Technology. Gaspar Wosa ◆ currently serves as innovation manager at Ericsson ONE in Business Area Technologies and New Businesses. He joined Ericsson in 1997 and his primary interest at present is the business model impact of blockchain and smart contracts. He holds a B.Sc. in telecommunication engineering from Polytechnic University of Indonesia and an MBA from IPMI International Business School in Kalibata, Indonesia. theauthors
  12. 12. ISSN 0014-0171 284 23-3327 | Uen © Ericsson AB 2019 Ericsson SE-164 83 Stockholm, Sweden Phone: +46 10 719 0000

×