SlideShare une entreprise Scribd logo
1  sur  17
REPÚBLICA BOLIVARIANA DE VENEZUELA
INSTITUTO UNIVERSITARIO POLITÉCNICO
“SANTIAGO MARIÑO”
ESCUELA DE INGENERIA INDUSTRIAL
AMPLIACION MARACAIBO
TEOREMAS DE CIRCUITOS
REALIZADO POR:
RINCON CABALLERO ERWIN JOSE
C.I.N°:
20.371.783
MARACAIBO, MARZO DE 2017
CONTENIDO
1. Superposición.
2. Teoremas de Thévenin y Norton.
3. Máxima transferencia de potencia a una carga resistiva.
4. Reciprocidad y Compensación.
5. Transformación estrella- delta y delta-estrella.
6. Dualidad, circuitos duales.
7. Análisis de los teorema de circuitos eléctricos
1.- Superposición
El teorema de superposición sólo se puede utilizar en el caso de circuitos
eléctricos lineales, es decir circuitos formados únicamente por componentes
lineales (en los cuales la amplitud de la corriente que los atraviesa es proporcional
a la amplitud de voltaje a sus extremidades).
El teorema de superposición ayuda a encontrar:
 Valores de voltaje, en una posición de un circuito, que tiene más de una fuente
independiente.
 Valores de corriente, en un circuito con más de una fuente independiente.
Este teorema establece que el efecto que dos o más fuentes tienen sobre una
impedancia es igual, a la suma de cada uno de los efectos de cada fuente
tomados por separado, sustituyendo todas las fuentes de voltaje restantes por un
corto circuito, y todas las fuentes de corriente restantes por un circuito abierto.
Suponga que en un circuito hay una cantidad n de fuentes independientes E (tanto
de voltaje como de corriente). En el caso de un voltaje específico, la respuesta
sería dada por la suma de las contribuciones de cada fuente; dicho de otro modo:
La corriente, al igual que el voltaje, estaría dada por la suma de las
contribuciones de cada fuente independiente.
En principio, el teorema de superposición puede utilizarse para calcular circuitos
haciendo cálculos parciales, como hemos hecho en el ejemplo precedente. Pero
eso no presenta ningún interés práctico porque la aplicación del teorema alarga
los cálculos en lugar de simplificarlos. Otros métodos de cálculo son mucho más
útiles, en especial a la hora de tratar con circuitos que poseen muchas fuentes y
muchos elementos.
El verdadero interés del teorema de superposición es teórico. El teorema justifica
métodos de trabajo con circuitos que simplifican verdaderamente los cálculos. Por
ejemplo, justifica que se hagan separadamente los cálculos de corriente continua y
los cálculos de señales (corriente alterna) en circuitos con Componentes
activos (transistores, amplificadores operacionales, etc.).
Otro método justificado por el teorema de superposición es el de la
descomposición de una señal no sinusoidal en suma de señales sinusoidales
(ver descomposición en serie de Fourier). Se reemplaza una fuente de voltaje o de
corriente por un conjunto (tal vez infinito) de fuentes de voltaje en serie o de
fuentes de corriente en paralelo. Cada una de las fuentes corresponde a una de
las frecuencias de la descomposición. Por supuesto no se hará un cálculo
separado para cada una de las frecuencias, sino un cálculo único con la
frecuencia en forma literal. El resultado final será la suma de los resultados
obtenidos remplazando, en el cálculo único, la frecuencia por cada una de las
frecuencias de la serie de Fourier. El enorme interés de esto es el de poder utilizar
el cálculo con el formalismo de impedancias cuando las señales no son
sinusoidales.
Arriba: circuito original. En medio: circuito con la fuente de corriente
igualada a cero (circuito abierto). Abajo: circuito con la fuente de voltaje
igualada a cero (cortocircuito).
En el circuito de arriba, calculemos el voltaje en el punto A utilizando el teorema de
superposición. Como hay dos fuentes, hay que hacer dos cálculos intermedios. En
el primer cálculo, conservamos la fuente de voltaje de la izquierda y remplazamos
la fuente de corriente por un circuito abierto. El voltaje parcial obtenido es:
En el segundo cálculo, guardamos la fuente de corriente de derecha y/o
remplazamos la fuente de voltaje por un cortocircuito. El voltaje obtenido es:
El voltaje que buscamos es la suma de los dos voltajes parciales:
2.-Teoremas de Thévenin y Norton
El teorema de Norton para circuitos eléctricos es dual del teorema de
Thévenin. Se conoce así en honor al ingeniero Edward Lawry Norton, de
los Laboratorios Bell, que lo publicó en un informe interno en el año 1926.1 El
alemán Hans Ferdinand Mayer llegó a la misma conclusión de forma simultánea e
independiente.
Establece que cualquier circuito lineal se puede sustituir por una fuente
equivalente de intensidad en paralelo con una impedancia equivalente.
Al sustituir un generador de corriente por uno de tensión, el borne positivo del
generador de tensión deberá coincidir con el borne positivo del generador de
corriente y viceversa.
El circuito Norton equivalente consiste en una fuente de corriente INo en paralelo
con una resistencia RNo. Para calcularlo:
1. Se calcula la corriente de salida, IAB, cuando se cortocircuita la salida, es
decir, cuando se pone una carga (tensión) nula entre A y B. Al colocar un
cortocircuito entre A y B toda la intensidad INo circula por la rama AB, por lo
que ahora IAB es igual a INo.
2. Se calcula la tensión de salida, VAB, cuando no se conecta ninguna carga
externa, es decir, cuando se pone una resistencia infinita entre A y B.
RNo es ahora igual a VAB dividido entre INo porque toda la intensidad
INo ahora circula a través de RNo y las tensiones de ambas ramas tienen
que coincidir ( VAB = INoRNo ).
Para analizar la equivalencia entre un circuito Thévenin y un circuito Norton
pueden utilizarse las siguientes ecuaciones:
En el ejemplo, Itotal viene dado por:
Usando la regla del divisor, la intensidad de corriente eléctrica tiene que ser:
Y la resistencia Norton equivalente sería:
Por lo tanto, el circuito equivalente consiste en una fuente de intensidad de
3.75mA en paralelo con una resistencia de 2 kΩ
En la teoría de circuitos eléctricos, el teorema de Thévenin establece que
si una parte de un circuito eléctrico lineal está comprendida entre dos terminales A
y B, esta parte en cuestión puede sustituirse por un circuito equivalente que esté
constituido únicamente por un generador de tensión en serie con una resistencia,
de forma que al conectar un elemento entre los dos terminales A y B,
la tensión que cae en él y la intensidad que lo atraviesa son las mismas tanto en el
circuito real como en el equivalente.
El teorema de Thévenin fue enunciado por primera vez por el científico
alemán Hermann von Helmholtz en el año 1853,1pero fue redescubierto en 1883
por el ingeniero de telégrafos francés Léon Charles Thévenin (1857–1926), de
quien toma su nombre.2 3 El teorema de Thévenin es el dual del teorema de
Norton.
Para calcular la tensión de Thévenin, Vth, se desconecta la carga (es decir, la
resistencia de la carga) y se calcula VAB. Al desconectar la carga, la intensidad que
atraviesa Rth en el circuito equivalente es nula y por tanto la tensión de Rth también
es nula, por lo que ahora VAB = Vth por la segunda ley de Kirchhoff.
Debido a que la tensión de Thévenin se define como la tensión que aparece entre
los terminales de la carga cuando se desconecta la resistencia de la carga
también se puede denominar tensión en circuito abierto.
Para calcular la resistencia de Thévenin, se desconecta la resistencia de carga,
se cortocircuitan las fuentes de tensión y se abren las fuentes de corriente. Se
calcula la resistencia que se ve desde los terminales AB y esa resistencia RAB es
la resistencia de Thevenin buscada Rth = RAB
En primer lugar, calculamos la tensión de Thévenin entre los terminales A y B de
la carga; para ello, desconectamos RL del circuito (queda un circuito abierto entre
A y B). Una vez hecho esto, podemos observar que la resistencia de 10 Ω está en
circuito abierto y no circula corriente a través de ella, con lo que no produce
ninguna caída de tensión. En estos momentos, el circuito que necesitamos
estudiar para calcular la tensión de Thévenin está formado únicamente por la
fuente de tensión de 100 V en serie con dos resistencias de 20 Ω y 5 Ω. Como la
carga RL está en paralelo con la resistencia de 5 Ω (recordar que no circula
intensidad a través de la resistencia de 10 Ω), la diferencia de potencial entre los
terminales A y B es igual que la tensión que cae en la resistencia de 5 Ω (ver
también Divisor de tensión), con lo que la tensión de Thévenin resulta:
Para calcular la resistencia de Thévenin, desconectamos la carga RL del circuito
y anulamos la fuente de tensión sustituyéndola por un cortocircuito. Si
colocásemos una fuente de tensión (de cualquier valor) entre los terminales A y B,
veríamos que las tres resistencias soportarían una intensidad. Por lo tanto,
hallamos la equivalente a las tres: las resistencias de 20 Ω y 5 Ω están conectadas
en paralelo y estas están conectadas en serie con la resistencia de 10 Ω,
entonces:
3.-Máxima transferencia de potencia a una carga resistiva
En ingeniería eléctrica, electricidad y electrónica, el teorema de máxima
transferencia de potencia establece que, dada una fuente, con una resistencia
de fuente fijada de antemano, la resistencia de carga que maximiza la
transferencia de potencia es aquella con un valor óhmico igual a la resistencia de
fuente. También este ayuda a encontrar el teorema de Thevenin y Norton.
El teorema establece cómo escoger (para maximizar la transferencia de potencia)
la resistencia de carga, una vez que la resistencia de fuente ha sido fijada, no lo
contrario. No dice cómo escoger la resistencia de fuente, una vez que la
resistencia de carga ha sido fijada. Dada una cierta resistencia de carga, la
resistencia de fuente que maximiza la transferencia de potencia es siempre cero,
independientemente del valor de la resistencia de carga.
Se dice que Moritz von Jacobi fue el primero en descubrir este resultado, también
conocido como "Ley de Jacobi".
El teorema fue originalmente malinterpretado (notablemente por Joule) para
sugerir que un sistema que consiste de un motor eléctrico comandado por una
batería no podría superar el 50% de eficiencia pues, cuando las impedancias
estuviesen adaptadas, la potencia perdida como calor en la batería sería siempre
igual a la potencia entregada al motor. En 1880, Edison (o su colega Francis
Robbins Upton) muestra que esta suposición es falsa, al darse cuenta que la
máxima eficiencia no es lo mismo que transferencia de máxima potencia. Para
alcanzar la máxima eficiencia, la resistencia de la fuente (sea una batería o
un dínamo) debería hacerse lo más pequeña posible. Bajo la luz de este nuevo
concepto, obtuvieron una eficiencia cercana al 90% y probaron que el motor
eléctrico era una alternativa práctica al motor térmico.
En esas condiciones la potencia disipada en la carga es máxima y es igual a:
La condición de transferencia de máxima potencia no resulta
en eficiencia máxima. Si definimos la eficiencia n como la relación entre la
potencia disipada por la carga y la potencia generada por la fuente, se calcula
inmediatamente del circuito de arriba que
La eficiencia cuando hay adaptación es de solo 50%. Para tener eficiencia
máxima, la resistencia de la carga debe ser infinitamente más grande que la
resistencia del generador. Por supuesto en ese caso la potencia transferida tiende
a cero. Cuando la resistencia de la carga es muy pequeña comparada a la
resistencia del generador, tanto la eficiencia como la potencia transferida tienden a
cero. En la curva de la derecha hemos representado la potencia transferida
relativa a la máxima posible (cuando hay adaptación) con respecto al cociente
entre la resistencia de carga y la del generador. Se supone que las reactancias
están compensadas completamente. Nótese que el máximo de la curva no es
crítico. Cuando las dos resistencias están desadaptadas de un factor 2, la potencia
transferida es aún 89% del máximo posible.
Cuando la impedancia de la fuente es una resistencia pura (sin parte reactiva), la
adaptación se hace con una resistencia y es válida para todas las frecuencias. En
cambio, cuando la impedancia de la fuente tiene una parte reactiva, la adaptación
solo se puede hacer a una sola frecuencia.
4.- Reciprocidad y Compensación
Es un teorema muy usado en análisis de circuitos. El teorema de
reciprocidad cuenta con dos enunciados que en términos generales nos dice:
En cualquier red bilateral real pasiva, si la fuente de tensión
simple Vx en la rama x produce la respuesta en corriente Iy en la
rama y, entonces la eliminación de la fuente de tensión en la
rama x y su inserción en la rama y produciría la respuesta en
corriente Iy
Indica que si la excitación en la entrada de un circuito produce una corriente i a la
salida, la misma excitación aplicada en la salida producirá la misma corriente i a la
entrada del mismo circuito. Es decir el resultado es el mismo si se intercambia la
excitación y la respuesta en un circuito. Así:
La
intensidad i que circula por una rama de un circuito lineal y pasivo, cuando se
intercala una fuente de tensión en otra rama, es la misma que circularía por esta
última si la fuente de tensión se intercalase en la primera.
5.-Transformación estrella- delta y delta-estrella.
Una red eléctrica de impedancias con más de dos terminales no puede
reducirse a un circuito equivalente de una sola impedancia. Una red
de n terminales puede, como máximo, reducirse a n impedancias. Para una red de
tres terminales, las tres impedancias pueden expresarse como un red delta (Δ) de
tres nodos o una red estrella (Y) de cuatro nodos. Estas dos redes son
equivalentes y las transformaciones de cada una de ellas son expresadas más
abajo. Una red general con un número arbitrario de terminales no puede reducirse
al mínimo número de impedancias usando solamente combinaciones en serie o en
paralelo. En general, se deben usar las transformaciones Y-Δ y Δ-Y. Puede
demostrarse que esto bastará para encontrar la red más simplificada para
cualquier red arbitraria con aplicaciones sucesivas en serie, paralelo, Y-Δ y Δ-Y.
No se requieren transformaciones más complejas.
6.- Dualidad, circuitos duales.
En ingeniería eléctrica, los elementos eléctricos se asocian en pares
llamados duales. El dual de una relación se forma intercambiando tensión y
corriente en una expresión. La expresión dual generada es una de la misma
forma.
A continuación se cita una lista de dualidades eléctricas:
 Tensión → corriente
 circuito paralelo → circuito serie
 resistencia → conductancia
 impedancia → admitancia
 capacitancia → inductancia
 Reactancia → Susceptancia
 Cortocircuito → circuito abierto
 dos resistencias en serie → dos conductancias en paralelo;
 Ley de corrientes de Kirchhoff → Ley de tensiones de Kirchhoff.
 Teorema de Thévenin → Teorema de Norton
7.-Análisis de los teoremas de circuitos eléctricos
La utilidad de los teoremas de circuitos dentro del campo laboral es que permite
analizar circuitos equivalentes que dan una solución acertada con respecto a las
tensiones, intensidad y cargas dentro del mismo, a la hora de estimar esos
parámetros en una maquina eléctrica como los transformadores, motores
eléctricos e instalaciones eléctricas de mayor envergadura dando así resultados
confiables para su utilización
Bibliografía
 Robert L. Boylestad, Louis Nashelsky
 Fundamentos de de Electrónica
 Cuarta edición edit. Person Education.
 Donald L. Schilling, Charles Belove
 Circuitos Electrónicos
 Tercera edición edit. Mc Graw Hill http://es.wikipedia.org

Contenu connexe

Tendances

Teoremas de circuito eléctricos
Teoremas de circuito eléctricosTeoremas de circuito eléctricos
Teoremas de circuito eléctricosMariRizcala
 
Trabajo adonay ruiz
Trabajo adonay ruizTrabajo adonay ruiz
Trabajo adonay ruizdgffdf34
 
Clase 7 teorema de superposición
Clase 7 teorema de superposiciónClase 7 teorema de superposición
Clase 7 teorema de superposiciónTensor
 
Cap3
Cap3Cap3
Cap3CJAO
 
Clase 8 TThyN Analisis de Circuitos
Clase 8 TThyN Analisis de CircuitosClase 8 TThyN Analisis de Circuitos
Clase 8 TThyN Analisis de CircuitosTensor
 
Teorema de thevenin y norton
Teorema de thevenin y nortonTeorema de thevenin y norton
Teorema de thevenin y nortonchochopechocho
 
Circuitos Eléctricos (Universidad Nacional de Loja)
Circuitos Eléctricos (Universidad Nacional de Loja)Circuitos Eléctricos (Universidad Nacional de Loja)
Circuitos Eléctricos (Universidad Nacional de Loja)Universidad Nacional de Loja
 
Circuitos thevenin norton y mp
Circuitos   thevenin norton y mpCircuitos   thevenin norton y mp
Circuitos thevenin norton y mpDanny Anderson
 
Teoremas sustitución y reciprocidad
Teoremas sustitución y reciprocidadTeoremas sustitución y reciprocidad
Teoremas sustitución y reciprocidadVictor Manuel Aguirre
 
Tema 2 analisis cc
Tema 2  analisis ccTema 2  analisis cc
Tema 2 analisis ccDavid Lugo
 
Circuito electrico rl y rc , lrc todo en serie
Circuito electrico rl y rc , lrc todo en serieCircuito electrico rl y rc , lrc todo en serie
Circuito electrico rl y rc , lrc todo en seriejacson chipana castro
 
Clase 5 teorema de superposición
Clase 5 teorema de superposiciónClase 5 teorema de superposición
Clase 5 teorema de superposiciónTensor
 
Laboratorios de circuitos eléctricos n3 (1)
Laboratorios de circuitos eléctricos n3 (1)Laboratorios de circuitos eléctricos n3 (1)
Laboratorios de circuitos eléctricos n3 (1)Jose Lope
 
Tarea1 circuito2
Tarea1 circuito2Tarea1 circuito2
Tarea1 circuito2eliecerdfy
 

Tendances (20)

Teoría de circuitos 3/8
Teoría de circuitos 3/8Teoría de circuitos 3/8
Teoría de circuitos 3/8
 
Teoremas de circuito eléctricos
Teoremas de circuito eléctricosTeoremas de circuito eléctricos
Teoremas de circuito eléctricos
 
Trabajo adonay ruiz
Trabajo adonay ruizTrabajo adonay ruiz
Trabajo adonay ruiz
 
Clase 7 teorema de superposición
Clase 7 teorema de superposiciónClase 7 teorema de superposición
Clase 7 teorema de superposición
 
Cap3
Cap3Cap3
Cap3
 
Teoría de circuitos 2/8
Teoría de circuitos 2/8Teoría de circuitos 2/8
Teoría de circuitos 2/8
 
Clase 8 TThyN Analisis de Circuitos
Clase 8 TThyN Analisis de CircuitosClase 8 TThyN Analisis de Circuitos
Clase 8 TThyN Analisis de Circuitos
 
Teorema de thevenin y norton
Teorema de thevenin y nortonTeorema de thevenin y norton
Teorema de thevenin y norton
 
Andres 1
Andres 1Andres 1
Andres 1
 
Circuitos Eléctricos (Universidad Nacional de Loja)
Circuitos Eléctricos (Universidad Nacional de Loja)Circuitos Eléctricos (Universidad Nacional de Loja)
Circuitos Eléctricos (Universidad Nacional de Loja)
 
Circuitos thevenin norton y mp
Circuitos   thevenin norton y mpCircuitos   thevenin norton y mp
Circuitos thevenin norton y mp
 
Teoría de circuitos 4/8
Teoría de circuitos 4/8Teoría de circuitos 4/8
Teoría de circuitos 4/8
 
Teoremas sustitución y reciprocidad
Teoremas sustitución y reciprocidadTeoremas sustitución y reciprocidad
Teoremas sustitución y reciprocidad
 
Tema 2 analisis cc
Tema 2  analisis ccTema 2  analisis cc
Tema 2 analisis cc
 
Teoría de circuitos 1/8
Teoría de circuitos 1/8Teoría de circuitos 1/8
Teoría de circuitos 1/8
 
Circuito electrico rl y rc , lrc todo en serie
Circuito electrico rl y rc , lrc todo en serieCircuito electrico rl y rc , lrc todo en serie
Circuito electrico rl y rc , lrc todo en serie
 
Clase 5 teorema de superposición
Clase 5 teorema de superposiciónClase 5 teorema de superposición
Clase 5 teorema de superposición
 
Laboratorios de circuitos eléctricos n3 (1)
Laboratorios de circuitos eléctricos n3 (1)Laboratorios de circuitos eléctricos n3 (1)
Laboratorios de circuitos eléctricos n3 (1)
 
Tarea1 circuito2
Tarea1 circuito2Tarea1 circuito2
Tarea1 circuito2
 
Circuitos de corriente alterna2233
Circuitos de corriente alterna2233Circuitos de corriente alterna2233
Circuitos de corriente alterna2233
 

En vedette

Unidad 2 teoria de la informacion 1 copia
Unidad 2 teoria de la informacion 1   copiaUnidad 2 teoria de la informacion 1   copia
Unidad 2 teoria de la informacion 1 copiaMary Romero
 
2015 Upload Campaigns Calendar - SlideShare
2015 Upload Campaigns Calendar - SlideShare2015 Upload Campaigns Calendar - SlideShare
2015 Upload Campaigns Calendar - SlideShareSlideShare
 
What to Upload to SlideShare
What to Upload to SlideShareWhat to Upload to SlideShare
What to Upload to SlideShareSlideShare
 
How to Make Awesome SlideShares: Tips & Tricks
How to Make Awesome SlideShares: Tips & TricksHow to Make Awesome SlideShares: Tips & Tricks
How to Make Awesome SlideShares: Tips & TricksSlideShare
 
Getting Started With SlideShare
Getting Started With SlideShareGetting Started With SlideShare
Getting Started With SlideShareSlideShare
 

En vedette (9)

Ejercicios de circuito
Ejercicios de circuitoEjercicios de circuito
Ejercicios de circuito
 
Unidad 2 teoria de la informacion 1 copia
Unidad 2 teoria de la informacion 1   copiaUnidad 2 teoria de la informacion 1   copia
Unidad 2 teoria de la informacion 1 copia
 
Circuitos electricos 2
Circuitos electricos 2Circuitos electricos 2
Circuitos electricos 2
 
Circuitos electricos 1
Circuitos electricos 1Circuitos electricos 1
Circuitos electricos 1
 
Fuentes singulares
Fuentes singularesFuentes singulares
Fuentes singulares
 
2015 Upload Campaigns Calendar - SlideShare
2015 Upload Campaigns Calendar - SlideShare2015 Upload Campaigns Calendar - SlideShare
2015 Upload Campaigns Calendar - SlideShare
 
What to Upload to SlideShare
What to Upload to SlideShareWhat to Upload to SlideShare
What to Upload to SlideShare
 
How to Make Awesome SlideShares: Tips & Tricks
How to Make Awesome SlideShares: Tips & TricksHow to Make Awesome SlideShares: Tips & Tricks
How to Make Awesome SlideShares: Tips & Tricks
 
Getting Started With SlideShare
Getting Started With SlideShareGetting Started With SlideShare
Getting Started With SlideShare
 

Similaire à Erwin rincon teoremas de circuitos electricos

Unidad v analisis de circuitos en corriente alterna
Unidad v analisis de circuitos en corriente alternaUnidad v analisis de circuitos en corriente alterna
Unidad v analisis de circuitos en corriente alternaMónica centeno
 
Cap3
Cap3Cap3
Cap3CJAO
 
Alexander miranda
Alexander mirandaAlexander miranda
Alexander mirandadgffdf346
 
Teorema de Thevenin y Norton..pdf
Teorema de Thevenin y Norton..pdfTeorema de Thevenin y Norton..pdf
Teorema de Thevenin y Norton..pdfOmar_Ustoa
 
Edixon parra
Edixon parraEdixon parra
Edixon parra2334sdf
 
teorema de Thevenin y Zbarra
teorema de Thevenin y Zbarrateorema de Thevenin y Zbarra
teorema de Thevenin y Zbarranorenelson
 
Teoremas de thevenin y norton
Teoremas de thevenin y norton Teoremas de thevenin y norton
Teoremas de thevenin y norton Szol
 
Ensayo de ricardo sanchez
Ensayo de ricardo sanchezEnsayo de ricardo sanchez
Ensayo de ricardo sanchezdgffdf34
 
ELT-2410 circuitos unoknsdlknfnokrno-LAB-1.doc
ELT-2410 circuitos unoknsdlknfnokrno-LAB-1.docELT-2410 circuitos unoknsdlknfnokrno-LAB-1.doc
ELT-2410 circuitos unoknsdlknfnokrno-LAB-1.docGONZALOCALIZAYAGUTIR
 
Fundamentos de Corriente Alterna Monofásica
Fundamentos de Corriente Alterna MonofásicaFundamentos de Corriente Alterna Monofásica
Fundamentos de Corriente Alterna MonofásicaMario Fagúndez Silva
 
Teorema thevenin y norton
Teorema thevenin y nortonTeorema thevenin y norton
Teorema thevenin y nortonjfsoftcorp
 
Clase 8 teorema de norton y thevenin
Clase 8 teorema de norton y theveninClase 8 teorema de norton y thevenin
Clase 8 teorema de norton y theveninTensor
 

Similaire à Erwin rincon teoremas de circuitos electricos (20)

Unidad v analisis de circuitos en corriente alterna
Unidad v analisis de circuitos en corriente alternaUnidad v analisis de circuitos en corriente alterna
Unidad v analisis de circuitos en corriente alterna
 
Yixonsmith
YixonsmithYixonsmith
Yixonsmith
 
Practica 5 gen
Practica 5 genPractica 5 gen
Practica 5 gen
 
Cap3
Cap3Cap3
Cap3
 
Alexander miranda
Alexander mirandaAlexander miranda
Alexander miranda
 
Teorema de Thevenin y Norton..pdf
Teorema de Thevenin y Norton..pdfTeorema de Thevenin y Norton..pdf
Teorema de Thevenin y Norton..pdf
 
Edixon parra
Edixon parraEdixon parra
Edixon parra
 
Circuitoselctricoprevio
CircuitoselctricoprevioCircuitoselctricoprevio
Circuitoselctricoprevio
 
teorema de Thevenin y Zbarra
teorema de Thevenin y Zbarrateorema de Thevenin y Zbarra
teorema de Thevenin y Zbarra
 
Teoremas de thevenin y norton
Teoremas de thevenin y norton Teoremas de thevenin y norton
Teoremas de thevenin y norton
 
Ensayo de ricardo sanchez
Ensayo de ricardo sanchezEnsayo de ricardo sanchez
Ensayo de ricardo sanchez
 
Experimento de ciencias.pptx
Experimento de ciencias.pptxExperimento de ciencias.pptx
Experimento de ciencias.pptx
 
Laboratorio de cktos
Laboratorio de cktosLaboratorio de cktos
Laboratorio de cktos
 
República bolivariana de venezuela
República bolivariana de venezuelaRepública bolivariana de venezuela
República bolivariana de venezuela
 
República bolivariana de venezuela
República bolivariana de venezuelaRepública bolivariana de venezuela
República bolivariana de venezuela
 
ELT-2410 circuitos unoknsdlknfnokrno-LAB-1.doc
ELT-2410 circuitos unoknsdlknfnokrno-LAB-1.docELT-2410 circuitos unoknsdlknfnokrno-LAB-1.doc
ELT-2410 circuitos unoknsdlknfnokrno-LAB-1.doc
 
circuitos
circuitoscircuitos
circuitos
 
Fundamentos de Corriente Alterna Monofásica
Fundamentos de Corriente Alterna MonofásicaFundamentos de Corriente Alterna Monofásica
Fundamentos de Corriente Alterna Monofásica
 
Teorema thevenin y norton
Teorema thevenin y nortonTeorema thevenin y norton
Teorema thevenin y norton
 
Clase 8 teorema de norton y thevenin
Clase 8 teorema de norton y theveninClase 8 teorema de norton y thevenin
Clase 8 teorema de norton y thevenin
 

Dernier

5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONALMiNeyi1
 
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxSEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxYadi Campos
 
Qué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativaQué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativaDecaunlz
 
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdfFeliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdfMercedes Gonzalez
 
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLAACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLAJAVIER SOLIS NOYOLA
 
Abril 2024 - Maestra Jardinera Ediba.pdf
Abril 2024 -  Maestra Jardinera Ediba.pdfAbril 2024 -  Maestra Jardinera Ediba.pdf
Abril 2024 - Maestra Jardinera Ediba.pdfValeriaCorrea29
 
Dinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dDinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dstEphaniiie
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAEl Fortí
 
PLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxPLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxlupitavic
 
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...Katherine Concepcion Gonzalez
 
LA LITERATURA DEL BARROCO 2023-2024pptx.pptx
LA LITERATURA DEL BARROCO 2023-2024pptx.pptxLA LITERATURA DEL BARROCO 2023-2024pptx.pptx
LA LITERATURA DEL BARROCO 2023-2024pptx.pptxlclcarmen
 
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docxPLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docxiemerc2024
 
Proyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdfProyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdfpatriciaines1993
 
Tema 17. Biología de los microorganismos 2024
Tema 17. Biología de los microorganismos 2024Tema 17. Biología de los microorganismos 2024
Tema 17. Biología de los microorganismos 2024IES Vicent Andres Estelles
 
INSTRUCCION PREPARATORIA DE TIRO .pptx
INSTRUCCION PREPARATORIA DE TIRO   .pptxINSTRUCCION PREPARATORIA DE TIRO   .pptx
INSTRUCCION PREPARATORIA DE TIRO .pptxdeimerhdz21
 
Estrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónEstrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónLourdes Feria
 
Infografía EE con pie del 2023 (3)-1.pdf
Infografía EE con pie del 2023 (3)-1.pdfInfografía EE con pie del 2023 (3)-1.pdf
Infografía EE con pie del 2023 (3)-1.pdfAlfaresbilingual
 

Dernier (20)

5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
 
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxSEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
 
Qué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativaQué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativa
 
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdfFeliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
 
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLAACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
 
Abril 2024 - Maestra Jardinera Ediba.pdf
Abril 2024 -  Maestra Jardinera Ediba.pdfAbril 2024 -  Maestra Jardinera Ediba.pdf
Abril 2024 - Maestra Jardinera Ediba.pdf
 
Dinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dDinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes d
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
 
PLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxPLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docx
 
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
 
LA LITERATURA DEL BARROCO 2023-2024pptx.pptx
LA LITERATURA DEL BARROCO 2023-2024pptx.pptxLA LITERATURA DEL BARROCO 2023-2024pptx.pptx
LA LITERATURA DEL BARROCO 2023-2024pptx.pptx
 
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docxPLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
 
Supuestos_prácticos_funciones.docx
Supuestos_prácticos_funciones.docxSupuestos_prácticos_funciones.docx
Supuestos_prácticos_funciones.docx
 
Proyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdfProyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdf
 
Medición del Movimiento Online 2024.pptx
Medición del Movimiento Online 2024.pptxMedición del Movimiento Online 2024.pptx
Medición del Movimiento Online 2024.pptx
 
Tema 11. Dinámica de la hidrosfera 2024
Tema 11.  Dinámica de la hidrosfera 2024Tema 11.  Dinámica de la hidrosfera 2024
Tema 11. Dinámica de la hidrosfera 2024
 
Tema 17. Biología de los microorganismos 2024
Tema 17. Biología de los microorganismos 2024Tema 17. Biología de los microorganismos 2024
Tema 17. Biología de los microorganismos 2024
 
INSTRUCCION PREPARATORIA DE TIRO .pptx
INSTRUCCION PREPARATORIA DE TIRO   .pptxINSTRUCCION PREPARATORIA DE TIRO   .pptx
INSTRUCCION PREPARATORIA DE TIRO .pptx
 
Estrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónEstrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcción
 
Infografía EE con pie del 2023 (3)-1.pdf
Infografía EE con pie del 2023 (3)-1.pdfInfografía EE con pie del 2023 (3)-1.pdf
Infografía EE con pie del 2023 (3)-1.pdf
 

Erwin rincon teoremas de circuitos electricos

  • 1. REPÚBLICA BOLIVARIANA DE VENEZUELA INSTITUTO UNIVERSITARIO POLITÉCNICO “SANTIAGO MARIÑO” ESCUELA DE INGENERIA INDUSTRIAL AMPLIACION MARACAIBO TEOREMAS DE CIRCUITOS REALIZADO POR: RINCON CABALLERO ERWIN JOSE C.I.N°: 20.371.783 MARACAIBO, MARZO DE 2017
  • 2. CONTENIDO 1. Superposición. 2. Teoremas de Thévenin y Norton. 3. Máxima transferencia de potencia a una carga resistiva. 4. Reciprocidad y Compensación. 5. Transformación estrella- delta y delta-estrella. 6. Dualidad, circuitos duales. 7. Análisis de los teorema de circuitos eléctricos
  • 3. 1.- Superposición El teorema de superposición sólo se puede utilizar en el caso de circuitos eléctricos lineales, es decir circuitos formados únicamente por componentes lineales (en los cuales la amplitud de la corriente que los atraviesa es proporcional a la amplitud de voltaje a sus extremidades). El teorema de superposición ayuda a encontrar:  Valores de voltaje, en una posición de un circuito, que tiene más de una fuente independiente.  Valores de corriente, en un circuito con más de una fuente independiente. Este teorema establece que el efecto que dos o más fuentes tienen sobre una impedancia es igual, a la suma de cada uno de los efectos de cada fuente tomados por separado, sustituyendo todas las fuentes de voltaje restantes por un corto circuito, y todas las fuentes de corriente restantes por un circuito abierto. Suponga que en un circuito hay una cantidad n de fuentes independientes E (tanto de voltaje como de corriente). En el caso de un voltaje específico, la respuesta sería dada por la suma de las contribuciones de cada fuente; dicho de otro modo: La corriente, al igual que el voltaje, estaría dada por la suma de las contribuciones de cada fuente independiente. En principio, el teorema de superposición puede utilizarse para calcular circuitos haciendo cálculos parciales, como hemos hecho en el ejemplo precedente. Pero eso no presenta ningún interés práctico porque la aplicación del teorema alarga los cálculos en lugar de simplificarlos. Otros métodos de cálculo son mucho más útiles, en especial a la hora de tratar con circuitos que poseen muchas fuentes y muchos elementos. El verdadero interés del teorema de superposición es teórico. El teorema justifica métodos de trabajo con circuitos que simplifican verdaderamente los cálculos. Por
  • 4. ejemplo, justifica que se hagan separadamente los cálculos de corriente continua y los cálculos de señales (corriente alterna) en circuitos con Componentes activos (transistores, amplificadores operacionales, etc.). Otro método justificado por el teorema de superposición es el de la descomposición de una señal no sinusoidal en suma de señales sinusoidales (ver descomposición en serie de Fourier). Se reemplaza una fuente de voltaje o de corriente por un conjunto (tal vez infinito) de fuentes de voltaje en serie o de fuentes de corriente en paralelo. Cada una de las fuentes corresponde a una de las frecuencias de la descomposición. Por supuesto no se hará un cálculo separado para cada una de las frecuencias, sino un cálculo único con la frecuencia en forma literal. El resultado final será la suma de los resultados obtenidos remplazando, en el cálculo único, la frecuencia por cada una de las frecuencias de la serie de Fourier. El enorme interés de esto es el de poder utilizar el cálculo con el formalismo de impedancias cuando las señales no son sinusoidales. Arriba: circuito original. En medio: circuito con la fuente de corriente igualada a cero (circuito abierto). Abajo: circuito con la fuente de voltaje igualada a cero (cortocircuito).
  • 5. En el circuito de arriba, calculemos el voltaje en el punto A utilizando el teorema de superposición. Como hay dos fuentes, hay que hacer dos cálculos intermedios. En el primer cálculo, conservamos la fuente de voltaje de la izquierda y remplazamos la fuente de corriente por un circuito abierto. El voltaje parcial obtenido es: En el segundo cálculo, guardamos la fuente de corriente de derecha y/o remplazamos la fuente de voltaje por un cortocircuito. El voltaje obtenido es: El voltaje que buscamos es la suma de los dos voltajes parciales: 2.-Teoremas de Thévenin y Norton El teorema de Norton para circuitos eléctricos es dual del teorema de Thévenin. Se conoce así en honor al ingeniero Edward Lawry Norton, de los Laboratorios Bell, que lo publicó en un informe interno en el año 1926.1 El alemán Hans Ferdinand Mayer llegó a la misma conclusión de forma simultánea e independiente. Establece que cualquier circuito lineal se puede sustituir por una fuente equivalente de intensidad en paralelo con una impedancia equivalente. Al sustituir un generador de corriente por uno de tensión, el borne positivo del generador de tensión deberá coincidir con el borne positivo del generador de corriente y viceversa.
  • 6. El circuito Norton equivalente consiste en una fuente de corriente INo en paralelo con una resistencia RNo. Para calcularlo: 1. Se calcula la corriente de salida, IAB, cuando se cortocircuita la salida, es decir, cuando se pone una carga (tensión) nula entre A y B. Al colocar un cortocircuito entre A y B toda la intensidad INo circula por la rama AB, por lo que ahora IAB es igual a INo. 2. Se calcula la tensión de salida, VAB, cuando no se conecta ninguna carga externa, es decir, cuando se pone una resistencia infinita entre A y B. RNo es ahora igual a VAB dividido entre INo porque toda la intensidad INo ahora circula a través de RNo y las tensiones de ambas ramas tienen que coincidir ( VAB = INoRNo ). Para analizar la equivalencia entre un circuito Thévenin y un circuito Norton pueden utilizarse las siguientes ecuaciones:
  • 7. En el ejemplo, Itotal viene dado por: Usando la regla del divisor, la intensidad de corriente eléctrica tiene que ser: Y la resistencia Norton equivalente sería: Por lo tanto, el circuito equivalente consiste en una fuente de intensidad de 3.75mA en paralelo con una resistencia de 2 kΩ
  • 8. En la teoría de circuitos eléctricos, el teorema de Thévenin establece que si una parte de un circuito eléctrico lineal está comprendida entre dos terminales A y B, esta parte en cuestión puede sustituirse por un circuito equivalente que esté constituido únicamente por un generador de tensión en serie con una resistencia, de forma que al conectar un elemento entre los dos terminales A y B, la tensión que cae en él y la intensidad que lo atraviesa son las mismas tanto en el circuito real como en el equivalente. El teorema de Thévenin fue enunciado por primera vez por el científico alemán Hermann von Helmholtz en el año 1853,1pero fue redescubierto en 1883 por el ingeniero de telégrafos francés Léon Charles Thévenin (1857–1926), de quien toma su nombre.2 3 El teorema de Thévenin es el dual del teorema de Norton. Para calcular la tensión de Thévenin, Vth, se desconecta la carga (es decir, la resistencia de la carga) y se calcula VAB. Al desconectar la carga, la intensidad que atraviesa Rth en el circuito equivalente es nula y por tanto la tensión de Rth también es nula, por lo que ahora VAB = Vth por la segunda ley de Kirchhoff. Debido a que la tensión de Thévenin se define como la tensión que aparece entre los terminales de la carga cuando se desconecta la resistencia de la carga también se puede denominar tensión en circuito abierto. Para calcular la resistencia de Thévenin, se desconecta la resistencia de carga, se cortocircuitan las fuentes de tensión y se abren las fuentes de corriente. Se calcula la resistencia que se ve desde los terminales AB y esa resistencia RAB es la resistencia de Thevenin buscada Rth = RAB
  • 9. En primer lugar, calculamos la tensión de Thévenin entre los terminales A y B de la carga; para ello, desconectamos RL del circuito (queda un circuito abierto entre A y B). Una vez hecho esto, podemos observar que la resistencia de 10 Ω está en circuito abierto y no circula corriente a través de ella, con lo que no produce ninguna caída de tensión. En estos momentos, el circuito que necesitamos estudiar para calcular la tensión de Thévenin está formado únicamente por la fuente de tensión de 100 V en serie con dos resistencias de 20 Ω y 5 Ω. Como la carga RL está en paralelo con la resistencia de 5 Ω (recordar que no circula intensidad a través de la resistencia de 10 Ω), la diferencia de potencial entre los terminales A y B es igual que la tensión que cae en la resistencia de 5 Ω (ver también Divisor de tensión), con lo que la tensión de Thévenin resulta: Para calcular la resistencia de Thévenin, desconectamos la carga RL del circuito y anulamos la fuente de tensión sustituyéndola por un cortocircuito. Si colocásemos una fuente de tensión (de cualquier valor) entre los terminales A y B, veríamos que las tres resistencias soportarían una intensidad. Por lo tanto, hallamos la equivalente a las tres: las resistencias de 20 Ω y 5 Ω están conectadas en paralelo y estas están conectadas en serie con la resistencia de 10 Ω, entonces:
  • 10. 3.-Máxima transferencia de potencia a una carga resistiva En ingeniería eléctrica, electricidad y electrónica, el teorema de máxima transferencia de potencia establece que, dada una fuente, con una resistencia de fuente fijada de antemano, la resistencia de carga que maximiza la transferencia de potencia es aquella con un valor óhmico igual a la resistencia de fuente. También este ayuda a encontrar el teorema de Thevenin y Norton. El teorema establece cómo escoger (para maximizar la transferencia de potencia) la resistencia de carga, una vez que la resistencia de fuente ha sido fijada, no lo contrario. No dice cómo escoger la resistencia de fuente, una vez que la resistencia de carga ha sido fijada. Dada una cierta resistencia de carga, la resistencia de fuente que maximiza la transferencia de potencia es siempre cero, independientemente del valor de la resistencia de carga. Se dice que Moritz von Jacobi fue el primero en descubrir este resultado, también conocido como "Ley de Jacobi". El teorema fue originalmente malinterpretado (notablemente por Joule) para sugerir que un sistema que consiste de un motor eléctrico comandado por una batería no podría superar el 50% de eficiencia pues, cuando las impedancias estuviesen adaptadas, la potencia perdida como calor en la batería sería siempre igual a la potencia entregada al motor. En 1880, Edison (o su colega Francis Robbins Upton) muestra que esta suposición es falsa, al darse cuenta que la máxima eficiencia no es lo mismo que transferencia de máxima potencia. Para alcanzar la máxima eficiencia, la resistencia de la fuente (sea una batería o un dínamo) debería hacerse lo más pequeña posible. Bajo la luz de este nuevo concepto, obtuvieron una eficiencia cercana al 90% y probaron que el motor eléctrico era una alternativa práctica al motor térmico. En esas condiciones la potencia disipada en la carga es máxima y es igual a:
  • 11. La condición de transferencia de máxima potencia no resulta en eficiencia máxima. Si definimos la eficiencia n como la relación entre la potencia disipada por la carga y la potencia generada por la fuente, se calcula inmediatamente del circuito de arriba que La eficiencia cuando hay adaptación es de solo 50%. Para tener eficiencia máxima, la resistencia de la carga debe ser infinitamente más grande que la resistencia del generador. Por supuesto en ese caso la potencia transferida tiende a cero. Cuando la resistencia de la carga es muy pequeña comparada a la resistencia del generador, tanto la eficiencia como la potencia transferida tienden a cero. En la curva de la derecha hemos representado la potencia transferida relativa a la máxima posible (cuando hay adaptación) con respecto al cociente entre la resistencia de carga y la del generador. Se supone que las reactancias están compensadas completamente. Nótese que el máximo de la curva no es crítico. Cuando las dos resistencias están desadaptadas de un factor 2, la potencia transferida es aún 89% del máximo posible. Cuando la impedancia de la fuente es una resistencia pura (sin parte reactiva), la adaptación se hace con una resistencia y es válida para todas las frecuencias. En cambio, cuando la impedancia de la fuente tiene una parte reactiva, la adaptación solo se puede hacer a una sola frecuencia.
  • 12. 4.- Reciprocidad y Compensación Es un teorema muy usado en análisis de circuitos. El teorema de reciprocidad cuenta con dos enunciados que en términos generales nos dice: En cualquier red bilateral real pasiva, si la fuente de tensión simple Vx en la rama x produce la respuesta en corriente Iy en la rama y, entonces la eliminación de la fuente de tensión en la rama x y su inserción en la rama y produciría la respuesta en corriente Iy Indica que si la excitación en la entrada de un circuito produce una corriente i a la salida, la misma excitación aplicada en la salida producirá la misma corriente i a la entrada del mismo circuito. Es decir el resultado es el mismo si se intercambia la excitación y la respuesta en un circuito. Así: La intensidad i que circula por una rama de un circuito lineal y pasivo, cuando se intercala una fuente de tensión en otra rama, es la misma que circularía por esta última si la fuente de tensión se intercalase en la primera.
  • 13. 5.-Transformación estrella- delta y delta-estrella. Una red eléctrica de impedancias con más de dos terminales no puede reducirse a un circuito equivalente de una sola impedancia. Una red de n terminales puede, como máximo, reducirse a n impedancias. Para una red de tres terminales, las tres impedancias pueden expresarse como un red delta (Δ) de tres nodos o una red estrella (Y) de cuatro nodos. Estas dos redes son equivalentes y las transformaciones de cada una de ellas son expresadas más abajo. Una red general con un número arbitrario de terminales no puede reducirse al mínimo número de impedancias usando solamente combinaciones en serie o en paralelo. En general, se deben usar las transformaciones Y-Δ y Δ-Y. Puede demostrarse que esto bastará para encontrar la red más simplificada para cualquier red arbitraria con aplicaciones sucesivas en serie, paralelo, Y-Δ y Δ-Y. No se requieren transformaciones más complejas.
  • 14. 6.- Dualidad, circuitos duales. En ingeniería eléctrica, los elementos eléctricos se asocian en pares llamados duales. El dual de una relación se forma intercambiando tensión y corriente en una expresión. La expresión dual generada es una de la misma forma. A continuación se cita una lista de dualidades eléctricas:  Tensión → corriente  circuito paralelo → circuito serie  resistencia → conductancia  impedancia → admitancia  capacitancia → inductancia  Reactancia → Susceptancia  Cortocircuito → circuito abierto  dos resistencias en serie → dos conductancias en paralelo;  Ley de corrientes de Kirchhoff → Ley de tensiones de Kirchhoff.  Teorema de Thévenin → Teorema de Norton
  • 15. 7.-Análisis de los teoremas de circuitos eléctricos La utilidad de los teoremas de circuitos dentro del campo laboral es que permite analizar circuitos equivalentes que dan una solución acertada con respecto a las tensiones, intensidad y cargas dentro del mismo, a la hora de estimar esos parámetros en una maquina eléctrica como los transformadores, motores
  • 16. eléctricos e instalaciones eléctricas de mayor envergadura dando así resultados confiables para su utilización
  • 17. Bibliografía  Robert L. Boylestad, Louis Nashelsky  Fundamentos de de Electrónica  Cuarta edición edit. Person Education.  Donald L. Schilling, Charles Belove  Circuitos Electrónicos  Tercera edición edit. Mc Graw Hill http://es.wikipedia.org