SlideShare une entreprise Scribd logo
1  sur  10
GENERACIÓN Y MEDICIÓN DE ALTAS
TENSIONES
TENSIONES ALTERNAS -RESUMEN
FELIPE IGNACIO GUARNIZO VARGAS
ESCUELA COLOMBIANA DE INGENIERÍA JULIO GARAVITO
Bogotá D.C.
19 DE ABRIL DE 2017
1 GENERACIÓN DE ALTA TENSIÓN ALTERNA
Cuando los requerimientos de las pruebas que requieren de altas tensiones no superan los 300 kV,
se puede emplear un único transformador para las pruebas. Generalmente las impedancias de estos
transformadores deben ser menores que el 5% y deben ser capaces de soportar las corrientes de
corto circuito por al menos un minuto o más dependiendo de los requerimientos.
Un transformador de pruebas consiste básicamente en dos devanados magnéticamente acoplados,
un devanado primario de baja tensión, un devanado secundario de alta tensión. En algunas
ocasiones el transformador posee un tercer devanado para mediciones.
Figura 1 Single unit testing transformers. (a) Diagram. (b & c) different construction units. (1) Iron core. (2) Primary l.v. or
exciting winding. (3) Secondary h.v. winding. (4) Field grading shield. (5) Grounded metal tank and base. (6) H.V. bushing.
(7) Insulating Shell or tank. (8) H.V. electrode.
Para tensiones de muy alta magnitud una sola unidad se vuelve in factible debido a que los
aislamientos requeridos son muy grandes, encareciendo el transformador. Por lo anterior para
aplicaciones de altas tensiones se emplean los transformadores similares conectados en serie o en
cascada.
1.1 TRANSFORMADORES EN CASCADA
La siguiente figura muestra el esquema de conexión en cascada para 3 transformadores iguales.
Figura 2 Esquema de conexión en cascada.
En esta forma de conexión cada transformador posee tres devanados. El devanado aa’ que
corresponde al devanado de BT, el devanado bb’ que corresponde al devanado de salida o de AT y
un devanado excitación cc´ que puede ser un tap del devanado de AT.
El primer transformador tiene su tanque metálico conectado a tierra, con una entrada de V1 se
obtiene una salida de alta tensión V2, la salida de AT del primer transformador se conecta al tanque
del segundo transformador que se mantiene sobre aisladores manteniendo la carcasa de la segunda
unidad a una tensión de V2, el devanado de excitación de la primera unidad se conecta al devanado
de BT de esta forma se obtiene una tensión de V2 en el lado de AT de la segunda unidad por tanto
la tensión de fase a tierra de salida de la segunda etapa será la tensión de AT de la segunda unidad
más la tensión del tanque a tierra de la segunda unidad produciendo una salida de 2V2. De esta
forma se incrementa el potencial de salida por cada etapa, siguiendo la misma filosofía se pueden
emplear N etapas para obtener una tensión de salida de NV2. El número de etapas puede ir desde
2 hasta 4, pero la configuración más usual suele ser de 3.
Existe una variante de esta configuración en la que se emplean transformadores de aislamiento para
la excitación de cada etapa y requiere de divisores de tensión capacitivos después de cada etapa.
Esta configuración presenta ventajas sobre la conexión normal en cascada tales como, refrigeración
natural para los transformadores, en transformadores de más de 10 MVA pata tensiones de hasta
2.25 MV están disponibles para el uso interior y exterior.
Figura 3 Esquema de conexión en cascada con transformadores de aislamiento para la excitación
1.2 TRANSFORMADORES RESONANTES
Es un transformador de AT en el cual el secundario cuenta con un circuito LC sincronizado a la
frecuencia de la red donde la capacitancia se da entre la terminal de salida y el objeto de la prueba.
El transformador resonante se basa en el principio de resonancia (Xc = XL), donde la tensión de
salida se incrementa cuando el circuito del secundario entra en resonancia.
Como se puede observar en la ecuación anterior cuando se alcanza la condición de resonancia,
Xc=XL, la corriente que circula por la capacitancia está limitada únicamente por la resistencia del
circuito R.
Figura 4 Transformador resonante y su circuito equivalente.
Ventajas:
 tensión de salida de onda seno pura.
 Los requerimientos de potencia son menores(5 a 10% de la potencia aparente total
requerida)
 No ocurren arcos y fuertes sobrecorrientes si el objeto de prueba falla, ya que la resonancia
cesa durante la falla.
 Existe la posibilidad de conexión en cascada para tensiones muy altas.
 Montaje simple y compacto.
 No se presenta flameo repetido en caso de fallas parciales y recuperación del aislamiento.
Desventajas:
 Requiere de bobinas adicionales que deben ser capaces de soportar las tensiones y las
corrientes de la prueba.
1.3 GENERACIÓN DE ALTAS TENSIONES A.C DE ALTA FRECUENCIA (BOBINAS TESLA)
Las altas tensiones de alta frecuencia se requieren para las fuentes D.C. rectificadas, así como para
pruebas de tensiones de switcheo.
Figura 5 Esquema de la bobina Tesla.
Ventajas:
 la ausencia de núcleo de hierro trae consigo un ahorro en costo y tamaño.
 Salida de onda seno pura.
 Acumulación lenta de tensión durante algunos ciclos y por lo tanto no se presentan daños
durante sobretensiones de switcheo.
En la bobina tesla el primario es alimentado por el condensador C1, un par de electrodos se dispara
para una tensión determinada V1 lo cual produce una alta auto excitación en el secundario. La
tensión de salida es una función de las inductancias L1 y L2 y de las capacitancias C1 y C2.
Figura 6 Esquema de una bobina tesla
Las tanto el primario como el secundario se sintonizan para frecuencias de entre 10 y 100 kHz. Una
bobina con tensión primaria de 10 kV puede producir una salida de 500 kV a 1000 kV.
2 MEDICIÓN DE ALTAS TENSIONES A.C
2.1 VOLTÍMETROS DE IMPEDANCIA EN SERIE
Para mediciones a frecuencia industrial, la impedancia serie puede ser puramente resistiva o una
impedancia.
Unidades de muy altas resistencias poseen capacitancias parasitas, por lo cual no es posible
determinar la magnitud de la impedancia con exactitud, además las resistencias sufren variaciones
debido a las altas temperaturas haciéndolo menos fiables.
Figura 7 Esquema de un Voltímetro de resistencia serie, se contemplan las capacitancias parasitas.
Debido al anterior fenómeno es preferible utilizar voltímetros con capacitancia serie ya que la
capacitancia no sufre de variaciones provocadas por las variaciones en la temperatura.
Figura 8 Voltímetro con capacitancia serie.
La corriente que circula a través del amperímetro es empleada en la siguiente ecuación para realizar
el cálculo de la tensión. El amperímetro se protege con un explosor.
Este tipo de voltímetros se emplea con transformadores en cascada para medir valores rms de hasta
1000 kV.
El capacitor consiste entre un par de placas entre el electrodo de AT y una placa de tierra.
2.2 DIVISORES DE POTENCIAL CAPACITIVOS Y TRANSFORMADORES DE TENSIÓN CAPACITIVOS
Los errores ocasionados por los armónicos pueden ser eliminados empleando un divisor capacitivo
y un voltímetro electrostático.
Figura 9 Divisor de tensión capacitivo.
La medición de la tensión se hace en el condensador de BT (C2), y por medio de la siguiente ecuación
se calcula la tensión en el condensador de AT:
Donde:
 C1: es la capacitancia del condensador de AT.
 C2: es la capacitancia del condensador de BT.
 Cm: es la capacitancia del medidor y del cable de conexión.
 V1: tensión del condensador C1.
 V2: tensión del condensador C2.
La medición es Vt = V1 + V2.
Transformadores de voltaje capacitivos (CVT)
Figura 10 Transformador de tensión capacitivo.
La relación de transformación corresponde:
Las ventajas de los CVT´s:
 Diseño simple y fácil instalación.
 Pueden usarse tanto para medición como para relés.
 Proporciona aislamiento entre la terminal de AT y la terminal de BT de medición.
Las desventajas de los CVT´s son:
 La relación de tensión es susceptible a variaciones de temperatura.
 Problemas de ferro-resonancia en los sistemas de potencia.
2.3 TRANSFORMADORES DE POTENCIAL (TIPO MAGNÉTICO)
Estos son los dispositivos más comunes para la medición, su construcción es simple, para altas
tensiones puede emplearse la conexión en cascada. Las relaciones de transformación es:
2.4 VOLTÍMETROS ELECTROSTÁTICOS
El principio de funcionamiento del voltímetro electrostático consiste en emplear la fuerza de
atracción producida por un campo eléctrico para desplazar una placa móvil, este desplazamiento se
traduce en una tensión.
Figura 11 Voltímetro electrostático.
2.5 VOLTÍMETROS A.C. DE LECTURA PICO
Es una variante del voltímetro de capacitancia serie, el cual cuenta con un diodo en serie con el
amperímetro D.C el cual solo permite la medición de una parte de la onda.
Figura 12 Voltímetro pico.
La medición está gobernada por la siguiente ecuación:
Este método presenta problemas como:
 Corrientes inversas debido a rectificadores defectuosos.
 No sirve para ondas no simétricas.
 Pueden haber desviaciones por la frecuencia.
2.6 ELECTRODOS PARA LA MEDICIÓN DE ALTA TENSIÓN A.C (TENSIÓN PICO)
Se emplea una esfera de electrodos para realizar la medición. En la cual para una determinada
configuración de electrodos se emplean las curvas de ruptura dieléctrica del aire. El aire es
mantenido en la esfera a 760 torr y se pueden hacer mediciones dependiendo la temperatura del
aire.
La medición se realiza cambiando la separación de los electrodos, hasta que se produzca una
descarga. Cuando se produce una descarga se detiene el desplazamiento de los electrodos y se
busca en una tabla o grafica la tensión de ruptura de acuerdo con las temperaturas del aire.
Figura 13 Esfera de electrodos.
3 BIBLIOGRAFÍA
 High Voltage Engineering (McGraw Hill) – MS Naidú; V Kamaraju.
 High Voltage Engineering Fundamentals – E.Kuffel; W.S. Zaengl.

Contenu connexe

Tendances

Generator Protection Relay Setting Calculations
Generator Protection Relay Setting CalculationsGenerator Protection Relay Setting Calculations
Generator Protection Relay Setting CalculationsPower System Operation
 
CURSO DE PRUEBA SIEMENS
CURSO DE PRUEBA SIEMENSCURSO DE PRUEBA SIEMENS
CURSO DE PRUEBA SIEMENStoribio2015
 
Embobinado de transformadores
Embobinado de transformadoresEmbobinado de transformadores
Embobinado de transformadoresRafaél Malave
 
Calculo de Corriente de cortocircuito
Calculo de Corriente de cortocircuitoCalculo de Corriente de cortocircuito
Calculo de Corriente de cortocircuitoJesús Castrillón
 
CALCULO DE LINEAS Y REDES ELECTRICAS - VAF
CALCULO DE LINEAS Y REDES ELECTRICAS - VAFCALCULO DE LINEAS Y REDES ELECTRICAS - VAF
CALCULO DE LINEAS Y REDES ELECTRICAS - VAFFranz Vallejos
 
Substation Training presentation
Substation Training presentationSubstation Training presentation
Substation Training presentationKamal Mittal
 
Calculo de tierras para líneas por medio de varillas
Calculo de tierras para líneas por medio de varillas Calculo de tierras para líneas por medio de varillas
Calculo de tierras para líneas por medio de varillas Marco Antonio Recinos Ramos
 
Transformer introduction
Transformer   introductionTransformer   introduction
Transformer introductionW3Edify
 
Transformer differential protection
Transformer differential protection Transformer differential protection
Transformer differential protection michaeljmack
 

Tendances (20)

Clase1
Clase1Clase1
Clase1
 
Generator Protection Relay Setting Calculations
Generator Protection Relay Setting CalculationsGenerator Protection Relay Setting Calculations
Generator Protection Relay Setting Calculations
 
CURSO DE PRUEBA SIEMENS
CURSO DE PRUEBA SIEMENSCURSO DE PRUEBA SIEMENS
CURSO DE PRUEBA SIEMENS
 
My ppt
My pptMy ppt
My ppt
 
Cable centelsa
Cable centelsaCable centelsa
Cable centelsa
 
Embobinado de transformadores
Embobinado de transformadoresEmbobinado de transformadores
Embobinado de transformadores
 
Calculo de Corriente de cortocircuito
Calculo de Corriente de cortocircuitoCalculo de Corriente de cortocircuito
Calculo de Corriente de cortocircuito
 
Transformadores trifásicos y autotransformadores
Transformadores trifásicos y autotransformadoresTransformadores trifásicos y autotransformadores
Transformadores trifásicos y autotransformadores
 
CALCULO DE LINEAS Y REDES ELECTRICAS - VAF
CALCULO DE LINEAS Y REDES ELECTRICAS - VAFCALCULO DE LINEAS Y REDES ELECTRICAS - VAF
CALCULO DE LINEAS Y REDES ELECTRICAS - VAF
 
Substation Training presentation
Substation Training presentationSubstation Training presentation
Substation Training presentation
 
Proteccion de distancia
Proteccion de distanciaProteccion de distancia
Proteccion de distancia
 
Chapter 02- Breakdown in Gases (part-2)
Chapter 02- Breakdown in Gases (part-2)Chapter 02- Breakdown in Gases (part-2)
Chapter 02- Breakdown in Gases (part-2)
 
MARX Generator.pptx
MARX Generator.pptxMARX Generator.pptx
MARX Generator.pptx
 
Calculo de tierras para líneas por medio de varillas
Calculo de tierras para líneas por medio de varillas Calculo de tierras para líneas por medio de varillas
Calculo de tierras para líneas por medio de varillas
 
Transformer introduction
Transformer   introductionTransformer   introduction
Transformer introduction
 
Bobinado de motores
Bobinado de motoresBobinado de motores
Bobinado de motores
 
Ps ppt by saran
Ps  ppt by saranPs  ppt by saran
Ps ppt by saran
 
Diac
DiacDiac
Diac
 
Transformer differential protection
Transformer differential protection Transformer differential protection
Transformer differential protection
 
Curva característica de un diodo... diodo
Curva característica de un diodo... diodoCurva característica de un diodo... diodo
Curva característica de un diodo... diodo
 

Similaire à Resumen generacion y medicion en at

Ejemplo 1 laboratorio de-maquinas-electricas
Ejemplo 1 laboratorio de-maquinas-electricasEjemplo 1 laboratorio de-maquinas-electricas
Ejemplo 1 laboratorio de-maquinas-electricasfernandomedina183
 
Pf soldador punto a puntooooooooooo
Pf  soldador punto a puntoooooooooooPf  soldador punto a puntooooooooooo
Pf soldador punto a puntoooooooooooIvan Pino Figueroa
 
Fuente de alimentación
Fuente de alimentaciónFuente de alimentación
Fuente de alimentaciónkeydak11
 
Fundamentos de electricidad
Fundamentos de electricidadFundamentos de electricidad
Fundamentos de electricidadnidiau
 
Presentación de EA (potencia de disipación en encendido de BJT).ppt
Presentación de EA (potencia de disipación en encendido de BJT).pptPresentación de EA (potencia de disipación en encendido de BJT).ppt
Presentación de EA (potencia de disipación en encendido de BJT).pptADRINPELAYOGARCA1
 
Fundamentos de electricidad[1]
Fundamentos de electricidad[1]Fundamentos de electricidad[1]
Fundamentos de electricidad[1]SPDUQUE
 
Diapositivas electricidad2
Diapositivas electricidad2Diapositivas electricidad2
Diapositivas electricidad2nidiau
 
Diapositivas electricidad2
Diapositivas electricidad2Diapositivas electricidad2
Diapositivas electricidad2nidiau
 
Andres iza, javier jimenez, ricardo enriquez
Andres iza, javier jimenez, ricardo enriquezAndres iza, javier jimenez, ricardo enriquez
Andres iza, javier jimenez, ricardo enriquezSantiago Reinoso
 
CIRCUITOS ELECTRICOS II.docx
CIRCUITOS ELECTRICOS II.docxCIRCUITOS ELECTRICOS II.docx
CIRCUITOS ELECTRICOS II.docxStivenCalle
 
Interruptores automáticos bt técnicas de corte
Interruptores automáticos bt técnicas de corteInterruptores automáticos bt técnicas de corte
Interruptores automáticos bt técnicas de corteArturo Iglesias Castro
 
Cap6 transformadores 1_ maquinas electricas unfv
Cap6 transformadores 1_ maquinas electricas unfvCap6 transformadores 1_ maquinas electricas unfv
Cap6 transformadores 1_ maquinas electricas unfvJose Bondia
 
Electricidad guia 2
Electricidad guia 2Electricidad guia 2
Electricidad guia 2SPDUQUE
 
Diapositivas electricidad2
Diapositivas electricidad2Diapositivas electricidad2
Diapositivas electricidad2nidiau
 

Similaire à Resumen generacion y medicion en at (20)

Primer proyecto
Primer proyectoPrimer proyecto
Primer proyecto
 
Ejemplo 1 laboratorio de-maquinas-electricas
Ejemplo 1 laboratorio de-maquinas-electricasEjemplo 1 laboratorio de-maquinas-electricas
Ejemplo 1 laboratorio de-maquinas-electricas
 
Pf soldador punto a puntooooooooooo
Pf  soldador punto a puntoooooooooooPf  soldador punto a puntooooooooooo
Pf soldador punto a puntooooooooooo
 
Transformadores de medida
Transformadores de medidaTransformadores de medida
Transformadores de medida
 
Electronica de potencia
Electronica de potenciaElectronica de potencia
Electronica de potencia
 
FUENTE REGULABLE
FUENTE REGULABLE FUENTE REGULABLE
FUENTE REGULABLE
 
Fuente de alimentación
Fuente de alimentaciónFuente de alimentación
Fuente de alimentación
 
Fundamentos de electricidad
Fundamentos de electricidadFundamentos de electricidad
Fundamentos de electricidad
 
Presentación de EA (potencia de disipación en encendido de BJT).ppt
Presentación de EA (potencia de disipación en encendido de BJT).pptPresentación de EA (potencia de disipación en encendido de BJT).ppt
Presentación de EA (potencia de disipación en encendido de BJT).ppt
 
Fundamentos de electricidad[1]
Fundamentos de electricidad[1]Fundamentos de electricidad[1]
Fundamentos de electricidad[1]
 
Diapositivas electricidad2
Diapositivas electricidad2Diapositivas electricidad2
Diapositivas electricidad2
 
Diapositivas electricidad2
Diapositivas electricidad2Diapositivas electricidad2
Diapositivas electricidad2
 
Andres iza, javier jimenez, ricardo enriquez
Andres iza, javier jimenez, ricardo enriquezAndres iza, javier jimenez, ricardo enriquez
Andres iza, javier jimenez, ricardo enriquez
 
CIRCUITOS ELECTRICOS II.docx
CIRCUITOS ELECTRICOS II.docxCIRCUITOS ELECTRICOS II.docx
CIRCUITOS ELECTRICOS II.docx
 
Interruptores automáticos bt técnicas de corte
Interruptores automáticos bt técnicas de corteInterruptores automáticos bt técnicas de corte
Interruptores automáticos bt técnicas de corte
 
Trasformador
Trasformador
Trasformador
Trasformador
 
Cap6 transformadores 1_ maquinas electricas unfv
Cap6 transformadores 1_ maquinas electricas unfvCap6 transformadores 1_ maquinas electricas unfv
Cap6 transformadores 1_ maquinas electricas unfv
 
Electricidad guia 2
Electricidad guia 2Electricidad guia 2
Electricidad guia 2
 
Diapositivas electricidad2
Diapositivas electricidad2Diapositivas electricidad2
Diapositivas electricidad2
 
Ota13600 (1)
Ota13600 (1)Ota13600 (1)
Ota13600 (1)
 

Dernier

TRABAJO N°2 GERENCIA DE PROYECTOS (4).pdf
TRABAJO N°2 GERENCIA DE PROYECTOS (4).pdfTRABAJO N°2 GERENCIA DE PROYECTOS (4).pdf
TRABAJO N°2 GERENCIA DE PROYECTOS (4).pdfVladimirWashingtonOl
 
SESION 11 SUPERVISOR SSOMA SEGURIDAD Y SALUD OCUPACIONAL
SESION 11 SUPERVISOR SSOMA SEGURIDAD Y SALUD OCUPACIONALSESION 11 SUPERVISOR SSOMA SEGURIDAD Y SALUD OCUPACIONAL
SESION 11 SUPERVISOR SSOMA SEGURIDAD Y SALUD OCUPACIONALEdwinC23
 
Arquitecto cambio de uso de suelo Limache
Arquitecto cambio de uso de suelo LimacheArquitecto cambio de uso de suelo Limache
Arquitecto cambio de uso de suelo LimacheJuan Luis Menares
 
NTC 3883 análisis sensorial. metodología. prueba duo-trio.pdf
NTC 3883 análisis sensorial. metodología. prueba duo-trio.pdfNTC 3883 análisis sensorial. metodología. prueba duo-trio.pdf
NTC 3883 análisis sensorial. metodología. prueba duo-trio.pdfELIZABETHCRUZVALENCI
 
ELASTICIDAD PRECIO DE LA DEMaaanANDA.ppt
ELASTICIDAD PRECIO DE LA DEMaaanANDA.pptELASTICIDAD PRECIO DE LA DEMaaanANDA.ppt
ELASTICIDAD PRECIO DE LA DEMaaanANDA.pptRobertoCastao8
 
Manual deresolucion de ecuaciones por fracciones parciales.pdf
Manual deresolucion de ecuaciones por fracciones parciales.pdfManual deresolucion de ecuaciones por fracciones parciales.pdf
Manual deresolucion de ecuaciones por fracciones parciales.pdfgonzalo195211
 
INSUMOS QUIMICOS Y BIENES FISCALIZADOS POR LA SUNAT
INSUMOS QUIMICOS Y BIENES FISCALIZADOS POR LA SUNATINSUMOS QUIMICOS Y BIENES FISCALIZADOS POR LA SUNAT
INSUMOS QUIMICOS Y BIENES FISCALIZADOS POR LA SUNATevercoyla
 
3.6.2 Lab - Implement VLANs and Trunking - ILM.pdf
3.6.2 Lab - Implement VLANs and Trunking - ILM.pdf3.6.2 Lab - Implement VLANs and Trunking - ILM.pdf
3.6.2 Lab - Implement VLANs and Trunking - ILM.pdfGustavoAdolfoDiaz3
 
Six Sigma Process and the dmaic metodo process
Six Sigma Process and the dmaic metodo processSix Sigma Process and the dmaic metodo process
Six Sigma Process and the dmaic metodo processbarom
 
docsity-manzaneo-y-lotizacion para habilitacopm urbana
docsity-manzaneo-y-lotizacion para habilitacopm urbanadocsity-manzaneo-y-lotizacion para habilitacopm urbana
docsity-manzaneo-y-lotizacion para habilitacopm urbanaArnolVillalobos
 
Análisis de Costos y Presupuestos CAPECO
Análisis de Costos y Presupuestos CAPECOAnálisis de Costos y Presupuestos CAPECO
Análisis de Costos y Presupuestos CAPECOFernando Bravo
 
Tippens fisica 7eDIAPOSITIVAS TIPENS Tippens_fisica_7e_diapositivas_33.ppt
Tippens fisica 7eDIAPOSITIVAS TIPENS Tippens_fisica_7e_diapositivas_33.pptTippens fisica 7eDIAPOSITIVAS TIPENS Tippens_fisica_7e_diapositivas_33.ppt
Tippens fisica 7eDIAPOSITIVAS TIPENS Tippens_fisica_7e_diapositivas_33.pptNombre Apellidos
 
Video sustentación GA2- 240201528-AA3-EV01.pptx
Video sustentación GA2- 240201528-AA3-EV01.pptxVideo sustentación GA2- 240201528-AA3-EV01.pptx
Video sustentación GA2- 240201528-AA3-EV01.pptxcarlosEspaaGarcia
 
entropia y neguentropia en la teoria general de sistemas
entropia y neguentropia en la teoria general de sistemasentropia y neguentropia en la teoria general de sistemas
entropia y neguentropia en la teoria general de sistemasDerlyValeriaRodrigue
 
CAPACITACIÓN EN AGUA Y SANEAMIENTO EN ZONAS RURALES
CAPACITACIÓN EN AGUA Y SANEAMIENTO EN ZONAS RURALESCAPACITACIÓN EN AGUA Y SANEAMIENTO EN ZONAS RURALES
CAPACITACIÓN EN AGUA Y SANEAMIENTO EN ZONAS RURALESJHONJAIROVENTURASAUC
 
ESPECIFICACIONES TECNICAS COMPLEJO DEPORTIVO
ESPECIFICACIONES TECNICAS COMPLEJO DEPORTIVOESPECIFICACIONES TECNICAS COMPLEJO DEPORTIVO
ESPECIFICACIONES TECNICAS COMPLEJO DEPORTIVOeldermishti
 
GUIA DE SEGURIDAD PARA VENTILACION DE MINAS-POSITIVA.pdf
GUIA DE SEGURIDAD PARA VENTILACION DE MINAS-POSITIVA.pdfGUIA DE SEGURIDAD PARA VENTILACION DE MINAS-POSITIVA.pdf
GUIA DE SEGURIDAD PARA VENTILACION DE MINAS-POSITIVA.pdfWILLIAMSTAYPELLOCCLL1
 
S3-OXIDOS-HIDROXIDOS-CARBONATOS (mineralogia)
S3-OXIDOS-HIDROXIDOS-CARBONATOS (mineralogia)S3-OXIDOS-HIDROXIDOS-CARBONATOS (mineralogia)
S3-OXIDOS-HIDROXIDOS-CARBONATOS (mineralogia)samuelsan933
 
2. Cristaloquimica. ingenieria geologica
2. Cristaloquimica. ingenieria geologica2. Cristaloquimica. ingenieria geologica
2. Cristaloquimica. ingenieria geologicaJUDITHYEMELINHUARIPA
 

Dernier (20)

TRABAJO N°2 GERENCIA DE PROYECTOS (4).pdf
TRABAJO N°2 GERENCIA DE PROYECTOS (4).pdfTRABAJO N°2 GERENCIA DE PROYECTOS (4).pdf
TRABAJO N°2 GERENCIA DE PROYECTOS (4).pdf
 
SESION 11 SUPERVISOR SSOMA SEGURIDAD Y SALUD OCUPACIONAL
SESION 11 SUPERVISOR SSOMA SEGURIDAD Y SALUD OCUPACIONALSESION 11 SUPERVISOR SSOMA SEGURIDAD Y SALUD OCUPACIONAL
SESION 11 SUPERVISOR SSOMA SEGURIDAD Y SALUD OCUPACIONAL
 
422382393-Curso-de-Tableros-Electricos.pptx
422382393-Curso-de-Tableros-Electricos.pptx422382393-Curso-de-Tableros-Electricos.pptx
422382393-Curso-de-Tableros-Electricos.pptx
 
Arquitecto cambio de uso de suelo Limache
Arquitecto cambio de uso de suelo LimacheArquitecto cambio de uso de suelo Limache
Arquitecto cambio de uso de suelo Limache
 
NTC 3883 análisis sensorial. metodología. prueba duo-trio.pdf
NTC 3883 análisis sensorial. metodología. prueba duo-trio.pdfNTC 3883 análisis sensorial. metodología. prueba duo-trio.pdf
NTC 3883 análisis sensorial. metodología. prueba duo-trio.pdf
 
ELASTICIDAD PRECIO DE LA DEMaaanANDA.ppt
ELASTICIDAD PRECIO DE LA DEMaaanANDA.pptELASTICIDAD PRECIO DE LA DEMaaanANDA.ppt
ELASTICIDAD PRECIO DE LA DEMaaanANDA.ppt
 
Manual deresolucion de ecuaciones por fracciones parciales.pdf
Manual deresolucion de ecuaciones por fracciones parciales.pdfManual deresolucion de ecuaciones por fracciones parciales.pdf
Manual deresolucion de ecuaciones por fracciones parciales.pdf
 
INSUMOS QUIMICOS Y BIENES FISCALIZADOS POR LA SUNAT
INSUMOS QUIMICOS Y BIENES FISCALIZADOS POR LA SUNATINSUMOS QUIMICOS Y BIENES FISCALIZADOS POR LA SUNAT
INSUMOS QUIMICOS Y BIENES FISCALIZADOS POR LA SUNAT
 
3.6.2 Lab - Implement VLANs and Trunking - ILM.pdf
3.6.2 Lab - Implement VLANs and Trunking - ILM.pdf3.6.2 Lab - Implement VLANs and Trunking - ILM.pdf
3.6.2 Lab - Implement VLANs and Trunking - ILM.pdf
 
Six Sigma Process and the dmaic metodo process
Six Sigma Process and the dmaic metodo processSix Sigma Process and the dmaic metodo process
Six Sigma Process and the dmaic metodo process
 
docsity-manzaneo-y-lotizacion para habilitacopm urbana
docsity-manzaneo-y-lotizacion para habilitacopm urbanadocsity-manzaneo-y-lotizacion para habilitacopm urbana
docsity-manzaneo-y-lotizacion para habilitacopm urbana
 
Análisis de Costos y Presupuestos CAPECO
Análisis de Costos y Presupuestos CAPECOAnálisis de Costos y Presupuestos CAPECO
Análisis de Costos y Presupuestos CAPECO
 
Tippens fisica 7eDIAPOSITIVAS TIPENS Tippens_fisica_7e_diapositivas_33.ppt
Tippens fisica 7eDIAPOSITIVAS TIPENS Tippens_fisica_7e_diapositivas_33.pptTippens fisica 7eDIAPOSITIVAS TIPENS Tippens_fisica_7e_diapositivas_33.ppt
Tippens fisica 7eDIAPOSITIVAS TIPENS Tippens_fisica_7e_diapositivas_33.ppt
 
Video sustentación GA2- 240201528-AA3-EV01.pptx
Video sustentación GA2- 240201528-AA3-EV01.pptxVideo sustentación GA2- 240201528-AA3-EV01.pptx
Video sustentación GA2- 240201528-AA3-EV01.pptx
 
entropia y neguentropia en la teoria general de sistemas
entropia y neguentropia en la teoria general de sistemasentropia y neguentropia en la teoria general de sistemas
entropia y neguentropia en la teoria general de sistemas
 
CAPACITACIÓN EN AGUA Y SANEAMIENTO EN ZONAS RURALES
CAPACITACIÓN EN AGUA Y SANEAMIENTO EN ZONAS RURALESCAPACITACIÓN EN AGUA Y SANEAMIENTO EN ZONAS RURALES
CAPACITACIÓN EN AGUA Y SANEAMIENTO EN ZONAS RURALES
 
ESPECIFICACIONES TECNICAS COMPLEJO DEPORTIVO
ESPECIFICACIONES TECNICAS COMPLEJO DEPORTIVOESPECIFICACIONES TECNICAS COMPLEJO DEPORTIVO
ESPECIFICACIONES TECNICAS COMPLEJO DEPORTIVO
 
GUIA DE SEGURIDAD PARA VENTILACION DE MINAS-POSITIVA.pdf
GUIA DE SEGURIDAD PARA VENTILACION DE MINAS-POSITIVA.pdfGUIA DE SEGURIDAD PARA VENTILACION DE MINAS-POSITIVA.pdf
GUIA DE SEGURIDAD PARA VENTILACION DE MINAS-POSITIVA.pdf
 
S3-OXIDOS-HIDROXIDOS-CARBONATOS (mineralogia)
S3-OXIDOS-HIDROXIDOS-CARBONATOS (mineralogia)S3-OXIDOS-HIDROXIDOS-CARBONATOS (mineralogia)
S3-OXIDOS-HIDROXIDOS-CARBONATOS (mineralogia)
 
2. Cristaloquimica. ingenieria geologica
2. Cristaloquimica. ingenieria geologica2. Cristaloquimica. ingenieria geologica
2. Cristaloquimica. ingenieria geologica
 

Resumen generacion y medicion en at

  • 1. GENERACIÓN Y MEDICIÓN DE ALTAS TENSIONES TENSIONES ALTERNAS -RESUMEN FELIPE IGNACIO GUARNIZO VARGAS ESCUELA COLOMBIANA DE INGENIERÍA JULIO GARAVITO Bogotá D.C. 19 DE ABRIL DE 2017
  • 2. 1 GENERACIÓN DE ALTA TENSIÓN ALTERNA Cuando los requerimientos de las pruebas que requieren de altas tensiones no superan los 300 kV, se puede emplear un único transformador para las pruebas. Generalmente las impedancias de estos transformadores deben ser menores que el 5% y deben ser capaces de soportar las corrientes de corto circuito por al menos un minuto o más dependiendo de los requerimientos. Un transformador de pruebas consiste básicamente en dos devanados magnéticamente acoplados, un devanado primario de baja tensión, un devanado secundario de alta tensión. En algunas ocasiones el transformador posee un tercer devanado para mediciones. Figura 1 Single unit testing transformers. (a) Diagram. (b & c) different construction units. (1) Iron core. (2) Primary l.v. or exciting winding. (3) Secondary h.v. winding. (4) Field grading shield. (5) Grounded metal tank and base. (6) H.V. bushing. (7) Insulating Shell or tank. (8) H.V. electrode. Para tensiones de muy alta magnitud una sola unidad se vuelve in factible debido a que los aislamientos requeridos son muy grandes, encareciendo el transformador. Por lo anterior para aplicaciones de altas tensiones se emplean los transformadores similares conectados en serie o en cascada.
  • 3. 1.1 TRANSFORMADORES EN CASCADA La siguiente figura muestra el esquema de conexión en cascada para 3 transformadores iguales. Figura 2 Esquema de conexión en cascada. En esta forma de conexión cada transformador posee tres devanados. El devanado aa’ que corresponde al devanado de BT, el devanado bb’ que corresponde al devanado de salida o de AT y un devanado excitación cc´ que puede ser un tap del devanado de AT. El primer transformador tiene su tanque metálico conectado a tierra, con una entrada de V1 se obtiene una salida de alta tensión V2, la salida de AT del primer transformador se conecta al tanque del segundo transformador que se mantiene sobre aisladores manteniendo la carcasa de la segunda unidad a una tensión de V2, el devanado de excitación de la primera unidad se conecta al devanado de BT de esta forma se obtiene una tensión de V2 en el lado de AT de la segunda unidad por tanto la tensión de fase a tierra de salida de la segunda etapa será la tensión de AT de la segunda unidad más la tensión del tanque a tierra de la segunda unidad produciendo una salida de 2V2. De esta forma se incrementa el potencial de salida por cada etapa, siguiendo la misma filosofía se pueden emplear N etapas para obtener una tensión de salida de NV2. El número de etapas puede ir desde 2 hasta 4, pero la configuración más usual suele ser de 3. Existe una variante de esta configuración en la que se emplean transformadores de aislamiento para la excitación de cada etapa y requiere de divisores de tensión capacitivos después de cada etapa. Esta configuración presenta ventajas sobre la conexión normal en cascada tales como, refrigeración natural para los transformadores, en transformadores de más de 10 MVA pata tensiones de hasta 2.25 MV están disponibles para el uso interior y exterior.
  • 4. Figura 3 Esquema de conexión en cascada con transformadores de aislamiento para la excitación 1.2 TRANSFORMADORES RESONANTES Es un transformador de AT en el cual el secundario cuenta con un circuito LC sincronizado a la frecuencia de la red donde la capacitancia se da entre la terminal de salida y el objeto de la prueba. El transformador resonante se basa en el principio de resonancia (Xc = XL), donde la tensión de salida se incrementa cuando el circuito del secundario entra en resonancia. Como se puede observar en la ecuación anterior cuando se alcanza la condición de resonancia, Xc=XL, la corriente que circula por la capacitancia está limitada únicamente por la resistencia del circuito R. Figura 4 Transformador resonante y su circuito equivalente.
  • 5. Ventajas:  tensión de salida de onda seno pura.  Los requerimientos de potencia son menores(5 a 10% de la potencia aparente total requerida)  No ocurren arcos y fuertes sobrecorrientes si el objeto de prueba falla, ya que la resonancia cesa durante la falla.  Existe la posibilidad de conexión en cascada para tensiones muy altas.  Montaje simple y compacto.  No se presenta flameo repetido en caso de fallas parciales y recuperación del aislamiento. Desventajas:  Requiere de bobinas adicionales que deben ser capaces de soportar las tensiones y las corrientes de la prueba. 1.3 GENERACIÓN DE ALTAS TENSIONES A.C DE ALTA FRECUENCIA (BOBINAS TESLA) Las altas tensiones de alta frecuencia se requieren para las fuentes D.C. rectificadas, así como para pruebas de tensiones de switcheo. Figura 5 Esquema de la bobina Tesla. Ventajas:  la ausencia de núcleo de hierro trae consigo un ahorro en costo y tamaño.  Salida de onda seno pura.  Acumulación lenta de tensión durante algunos ciclos y por lo tanto no se presentan daños durante sobretensiones de switcheo. En la bobina tesla el primario es alimentado por el condensador C1, un par de electrodos se dispara para una tensión determinada V1 lo cual produce una alta auto excitación en el secundario. La tensión de salida es una función de las inductancias L1 y L2 y de las capacitancias C1 y C2.
  • 6. Figura 6 Esquema de una bobina tesla Las tanto el primario como el secundario se sintonizan para frecuencias de entre 10 y 100 kHz. Una bobina con tensión primaria de 10 kV puede producir una salida de 500 kV a 1000 kV. 2 MEDICIÓN DE ALTAS TENSIONES A.C 2.1 VOLTÍMETROS DE IMPEDANCIA EN SERIE Para mediciones a frecuencia industrial, la impedancia serie puede ser puramente resistiva o una impedancia. Unidades de muy altas resistencias poseen capacitancias parasitas, por lo cual no es posible determinar la magnitud de la impedancia con exactitud, además las resistencias sufren variaciones debido a las altas temperaturas haciéndolo menos fiables. Figura 7 Esquema de un Voltímetro de resistencia serie, se contemplan las capacitancias parasitas. Debido al anterior fenómeno es preferible utilizar voltímetros con capacitancia serie ya que la capacitancia no sufre de variaciones provocadas por las variaciones en la temperatura.
  • 7. Figura 8 Voltímetro con capacitancia serie. La corriente que circula a través del amperímetro es empleada en la siguiente ecuación para realizar el cálculo de la tensión. El amperímetro se protege con un explosor. Este tipo de voltímetros se emplea con transformadores en cascada para medir valores rms de hasta 1000 kV. El capacitor consiste entre un par de placas entre el electrodo de AT y una placa de tierra. 2.2 DIVISORES DE POTENCIAL CAPACITIVOS Y TRANSFORMADORES DE TENSIÓN CAPACITIVOS Los errores ocasionados por los armónicos pueden ser eliminados empleando un divisor capacitivo y un voltímetro electrostático. Figura 9 Divisor de tensión capacitivo. La medición de la tensión se hace en el condensador de BT (C2), y por medio de la siguiente ecuación se calcula la tensión en el condensador de AT:
  • 8. Donde:  C1: es la capacitancia del condensador de AT.  C2: es la capacitancia del condensador de BT.  Cm: es la capacitancia del medidor y del cable de conexión.  V1: tensión del condensador C1.  V2: tensión del condensador C2. La medición es Vt = V1 + V2. Transformadores de voltaje capacitivos (CVT) Figura 10 Transformador de tensión capacitivo. La relación de transformación corresponde: Las ventajas de los CVT´s:  Diseño simple y fácil instalación.  Pueden usarse tanto para medición como para relés.  Proporciona aislamiento entre la terminal de AT y la terminal de BT de medición. Las desventajas de los CVT´s son:  La relación de tensión es susceptible a variaciones de temperatura.  Problemas de ferro-resonancia en los sistemas de potencia. 2.3 TRANSFORMADORES DE POTENCIAL (TIPO MAGNÉTICO) Estos son los dispositivos más comunes para la medición, su construcción es simple, para altas tensiones puede emplearse la conexión en cascada. Las relaciones de transformación es:
  • 9. 2.4 VOLTÍMETROS ELECTROSTÁTICOS El principio de funcionamiento del voltímetro electrostático consiste en emplear la fuerza de atracción producida por un campo eléctrico para desplazar una placa móvil, este desplazamiento se traduce en una tensión. Figura 11 Voltímetro electrostático. 2.5 VOLTÍMETROS A.C. DE LECTURA PICO Es una variante del voltímetro de capacitancia serie, el cual cuenta con un diodo en serie con el amperímetro D.C el cual solo permite la medición de una parte de la onda. Figura 12 Voltímetro pico. La medición está gobernada por la siguiente ecuación:
  • 10. Este método presenta problemas como:  Corrientes inversas debido a rectificadores defectuosos.  No sirve para ondas no simétricas.  Pueden haber desviaciones por la frecuencia. 2.6 ELECTRODOS PARA LA MEDICIÓN DE ALTA TENSIÓN A.C (TENSIÓN PICO) Se emplea una esfera de electrodos para realizar la medición. En la cual para una determinada configuración de electrodos se emplean las curvas de ruptura dieléctrica del aire. El aire es mantenido en la esfera a 760 torr y se pueden hacer mediciones dependiendo la temperatura del aire. La medición se realiza cambiando la separación de los electrodos, hasta que se produzca una descarga. Cuando se produce una descarga se detiene el desplazamiento de los electrodos y se busca en una tabla o grafica la tensión de ruptura de acuerdo con las temperaturas del aire. Figura 13 Esfera de electrodos. 3 BIBLIOGRAFÍA  High Voltage Engineering (McGraw Hill) – MS Naidú; V Kamaraju.  High Voltage Engineering Fundamentals – E.Kuffel; W.S. Zaengl.