SlideShare une entreprise Scribd logo
1  sur  6
Télécharger pour lire hors ligne
Acromag, Incorporated
30765 S Wixom Rd, Wixom, MI 48393 USA
Tel: 248-295-0880 • Fax: 248-624-9234 • www.acromag.com
Copyright © Acromag, Inc. June 2014 8501-021
White Paper: Electrical Ground Rules
Best Practices for Grounding Your Electrical Equipment
Examining the role of ground as a voltage stabilizer and transient limiter,
along with tips on improving safety and signal integrity (Part 3 of 3)
Tel: 248-295-0880  Fax: 248-624-1541  sales@acromag.com  www.acromag.com
2
This paper is part three of a three part series that takes a look at grounding and its role in protecting
personnel, protecting equipment, and ensuring the integrity of electrical signals. In this part, we will
examine ground and its role as a voltage stabilizer and transient limiter, as well as offer some tips on
what you can do to improve your connection to ground to realize benefits to safety and signal integrity.
In part one of this series (8500-993) we looked at the concept of grounding, the AC power system and its
use of ground, and gave three main reasons why we ground electrical equipment: for safety, to stabilize
electrical signals, and to limit transient voltages and current.
In part two of this series (8501-020) we examined the use of ground as a means of protection from
ground faults. We also looked at how ground fault circuit interrupter (GFCI) devices operate to protect
us from severe shock.
GROUND AS A VOLTAGE STABILIZER
Think of voltage as a force that causes current to flow in any conductor—a greater voltage results in
greater force that drives higher levels of current. High levels of current can drive errant circuit behavior,
possibly damage equipment, and may even lead to personal injury. We want to ground signals to
stabilize them and keep them from floating, and we do this to limit voltage magnitude and variation.
In practice, connecting to ground helps stabilize signals during normal
operation, acting like an anchor that limits the magnitude and variation
of voltage. On the other hand, like a boat without an anchor, an
ungrounded signal will “float”. Floating a signal will generally make it
more susceptible to common-mode noise interference. A common-
mode signal is a signal that appears “common” to a set of floating points.
Common-mode noise signals can be inductive or capacitive coupled from
external sources, or they may be driven by the circuits themselves. All
electronic circuits are limited in their ability to filter or reject common-
mode noise, especially if the potential of a measurement point is allowed
to float outside the limits of the circuitry. The end result is that common-
mode noise can drive spurious measurements or spurious output
behavior. One example of the importance of grounding is with respect to
differential mode measurements, such as that used for some types of
instruments, like thermocouple amplifiers. If you do not earth ground one lead and anchor it from
floating, you will likely note that the measurement appears noisier and more widely variant, and that is
assuming that a point of signal measurement doesn’t float outside of the common mode range of the
amplifier, at which point it cannot be measured or processed by the circuit properly. This is why you will
note that many connection diagrams for differential input pairs will show one lead (usually the minus
lead) making a connection to earth ground.
Most electrical equipment and industrial instruments utilize differential filters and transient suppression
devices at their wired connections to shunt potentially destructive energy from one lead to another and
to steer this energy to ground. This same energy ultimately seeks a path to earth ground where it
originated and can typically be dissipated more safely. Failure to apply ground to the circuit at the
designated connection will leave the circuit vulnerable to damage, as the circuitry must then absorb and
dissipate this transient energy in the absence of a clear path to ground. This connection to ground is
very important and will help to extend the life of your equipment—always be sure to identify these
Tel: 248-295-0880  Fax: 248-624-1541  sales@acromag.com  www.acromag.com
3
connections to earth ground and make sure that you provide a low impedance path to ground at these
points to protect your equipment from damage.
For electrical equipment, all connections to power are usually grounded at some point. The device may
be optionally DC powered, but a conversion from AC to DC still occurs and a path back to earth ground
usually exists. Isolated power sources usually ground their DC output power minus terminals. Inside
electrical equipment, the power connection is often isolated from other parts of the circuit, such as its
inputs, its outputs, its network connection, etc. Noise exists in each of these isolated circuits and takes
many forms. In many applications, the DC power supply to the circuit itself will provide a path to earth
ground at its DC minus terminal. Many instrument manufacturers recognize this and will often employ
isolation capacitors connected inside their own circuits between the various isolated reference planes
and the DC minus connection to the device, which is often indirectly earth grounded via the power
supply. These capacitors significantly reduce radiated emissions from the device by providing a path to
earth ground where transient energy on each of the isolated planes can be shunted through the
capacitor on its way to ground. In this way with these devices, the earth ground connection at the
power supply often serves as a kind of default path to ground for harmful energy, even if the other parts
of the circuit have not been properly grounded. Still, do not be tempted to float isolated portions of
your device and rely only on these isolation capacitors to provide protection, as they can never compete
with a direct, hard-wired connection to earth ground. It’s always best to refer to your connection
diagrams and wire ground connections as recommended.
GROUND AS A TRANSIENT LIMITER
Modern powered circuits are awash in transient energy from
many sources, coupled via many paths, as illustrated at left.
Thus, the potential for encountering unintended voltage rise in
electronic equipment is ever present via its connection to
power, its exposure to ESD, and even its proximity to other
electronic devices (by conductive, inductive, capacitive, or
radiated noise coupling). Our connection to ground acts to
make our circuits safe and will help to stabilize our signals. This
ground connection also limits the potential voltage rise induced
on our circuit, typically via lightning, line surges, and even
during unintentional contact with higher-voltage.
To help filter the effects of unintended voltage signals, most
electronic equipment will utilize differential filters, capacitors,
and other transient suppression devices at their wired
connections. The purpose of these devices is to shunt
potentially destructive energy from one lead to another, usually in an attempt to squelch the imposed
voltage and steer the resultant destructive current or charge to earth ground where it can be dissipated
more safely. If you fail to connect ground to a designated wired terminal, you leave this energy with no
place to go except through your circuit where harmful voltage levels and high transient current levels
can wreak havoc and drive damage. So you should think of your connection to ground as an integral
part of your circuit’s transient protection. Without it, you leave your equipment unprotected and
exposed to potential destruction.
Tel: 248-295-0880  Fax: 248-624-1541  sales@acromag.com  www.acromag.com
4
For example, lightning occurs when atmospheric charge finds a path to earth. Any circuitry in this path,
or in the presence of this path to earth, can be easily destroyed by the high voltages that are developed.
Providing a low impedance path to earth for powered equipment will help to minimize the potential
destruction of a lightning strike by keeping the resultant voltage increase above earth to a lower
potential. Without a connection to ground, the energy will continue to develop its high voltage across a
circuit, possibly resulting in damaging levels of current that may ultimately destroy the circuit. A low
impedance connection to ground will instead help carry this energy into the earth before it destroys the
circuit it is otherwise distributed across in its transfer along a path to earth ground.
Earlier I mentioned that a side benefit of a connection to ground is that it offers EMC benefits by
lowering system noise and radiated emissions. It does this the same way that it works to squelch the
effects of unintended voltage signals sourced by lightning and other sources—by stabilizing voltages and
limiting voltage variations, and by providing a low impedance path to earth ground where transient
energy can be safely dissipated. Without a clear path to earth ground, this energy will be forced through
the circuit and drive signal error, erratic behavior, and potentially damage the circuit.
IMPROVING YOUR CONNECTION TO GROUND
At this point, you should recognize the importance of providing a good connection to ground—for
personal safety and protection from electrical shock, to stabilize signals and minimize fluctuations, and
to limit the magnitude of induced voltages and peak currents. As an engineer for a manufacturer of
industrial instruments, I am often called to task for lowering a product’s emissions or raising its EMC
immunity with respect to ESD, EFT, and other interference. I can honestly say that most of the time, the
solution to these problems lies in the correct application of earth ground. So how do you improve your
connection to ground to help realize these benefits in your applications?
To go about improving your connection to ground, you can start by calibrating the way you think about
ground. Specifically, you need to think of your connection to ground as a drain that you flush all the
unwanted energy in your electrical system down (ground faults, electromagnetic interference, ESD
strikes, fluctuations caused by nearby lightning, power line surges, transient noise, etc.). You want this
drain to quickly accept unwanted electrical charge from your circuit. Now you wouldn’t connect the
drain of your home through a straw, or unwanted waste would back up and contaminate your home.
Instead, you would want a wide-open pipe leading to your waste-water drain, and you would avoid
angles and changes in direction, keeping this pipe as short and straight as possible to help prevent
backup. It’s the same way with ground—you want a wide-open, short and direct drain to earth that
doesn’t back “charge” up into your circuit. And just like the drain from your home, you can improve
your connection to ground by making it short as possible and by increasing its diameter. Chiefly, with
your connection to ground, your goal should be to reduce its resistance and its inductance by using a
larger diameter or “thicker” conductor, and by keeping its path as short as possible. Because inductance
and resistance both restrict the flow of current (as current through inductance cannot change
instantaneously), you want to minimize both the resistance and inductance in your connection to
ground so that it can more quickly drain transient energy from your circuit and dissipate it into the
earth.
All conductors have resistance and voltage across the conductor acts as a force to drive current through
the conductor. When you push current through a conductor, you establish different potentials at
different points along that conductor related to the IR voltage drop through the conductor. Ideally, you
want your ground to deliver nearly the same potential across it (ideally an equipotential voltage of 0V),
such that any tie to ground will see the same ground potential. If you fail in this regard, you give rise to
Tel: 248-295-0880  Fax: 248-624-1541  sales@acromag.com  www.acromag.com
5
unwanted ground currents (ground loops) with possible negative side effects of increased noise and
interference in your system. In practice of course, an ideal ground is impossible to attain, but there are
still some things that you can do to approximate the ideal. Specifically, you need to pay close attention
to how you are making your connection to ground. For example, you can avoid having your circuit
grounds connect at different potentials by using a “star” grounding technique.
Star grounding is a concept where each ground connection (represented by each leg of a star) connects
outward from the same point (the center of the star). When you wire ground to your circuit, perhaps to
each isolated part of your circuit (like input, output, power, etc.), you strive to bring these connections
together via separate ground returns to one point (this is the center of your star ground), using short
and thick cables to minimize path resistance and inductance effects. The center of your star is usually
chosen as the ground return of the power supply to the circuit. It is sometimes chosen as the common
chassis connection where a conductive chassis makes its single connection to earth ground.
SOME BASIC GROUND RULES FOR WIRED EQUIPMENT
Consideration of ground can be very complex and application specific. But in many of these
applications, when we make wired connections to ground and to electrical equipment, there are a few
rules of thumb that are helpful:
 For isolated power applications where a connection to earth ground is not apparent, ground
should be chosen as the common return path from power supply (DC minus). It may be
necessary to hard-wire earth ground to this point if an earth ground connection is not already
made by the power supply.
 Do not ground a signal at more than one point. Typically a signal is grounded at its source
(including its shield).
 In general, as stated above, we try to never ground a cable at both ends. But one possible
exception to this rule is when we are grounding cable shields in small signal applications. For
most applications where only small differences in potential exist between grounds at each end
of the cable, our equipment will work better when its shield is grounded at each end of the
cable (at a minimum, ground it at the end closest to the noise source). Another exception is
where your equipment connects to power, as DC powered equipment will often connect earth
ground at the power supply minus terminal, but you should additionally include a connection to
ground local to the instrument. This is done not only to stabilize applied voltages, but also
because internal suppression devices in the instrument need a local, low resistance, low
inductance path to shunt potentially destructive energy.
 For EMC purposes, a wired signal between devices should have earth ground applied at the end
of the cable nearest the noise source of the signal, or nearest the noisiest device. Failure to
provide a path to ground at the “origin” of the noise may result in the cable and/or its shield
becoming an antenna for this noise, increasing its power and spread into other areas of the
circuit, as well as potentially increasing system emissions.
 Do not use the chassis of the device as the ground conductor (i.e. make only one ground
connection to the chassis). Note that many devices are required by code to have a safety
ground connection to their metallic chassis or enclosure, but the chassis should never be used as
a return path for load current to the device (for “safety” ground, it is sometimes used only as a
return path for fault current). Note that the chassis connection to earth ground is sometimes
used as the center of a star grounding scheme for the enclosed circuit.
Tel: 248-295-0880  Fax: 248-624-1541  sales@acromag.com  www.acromag.com
6
 Many instruments are housed in plastic enclosures and may not make a connection to earth
ground via their chassis. These instruments usually rely on direct-wired connections to earth
ground at their terminals, as directed in their connection diagrams. In general, signal
connections to these devices should be earth grounded at the end of the I/O cable nearest the
instrument. This is because the instrument needs a low-impedance/low-inductance path to
earth ground locally, to allow its various filters, capacitors, and transient suppression devices to
shunt potentially destructive energy to earth ground without being impeded by high levels of
inductance and resistance in the path to earth.
 Do not bundle noisy or high-energy signals or power with low level signals. Route all AC power
wires away from sensitive signals and signal paths.
 Do not duplicate ground connections to the main power line at different points—try to connect
all AC powered devices to the same power outlet when possible and safe. Similarly, use a star-
grounding concept when making ground connections to your circuit.
 Do not combine or bundle isolated signals in the same shield or conduit.
 Do not allow conductive material to float unattached to any ground (it should connect to ground
at one point).
 Do not leave unused shielded conductors in a bundled cable disconnected from ground. Ground
unused conductors of a bundle at the load. In general, ground the cable shield at the signal
source (or at both ends).
 Minimize the length and loop area of the wires that break-out from a bundled or shielded cable,
just before the wires make their connection to the equipment.
CONCLUSION
By now, you should have a heightened awareness of the importance of ground to the safety of
personnel and the operation of your equipment. Never float signals or neglect to make ground
connections as shown in the connection diagrams for your device, or you increase your risk of electrical
shock and may even damage your equipment. Grounding signals will help to stabilize them and help
limit induced transient voltages and current. Many electrical problems can trace their generation to a
poor, improper, or a missing connection to earth ground. Don’t neglect this important connection to
realize benefits of increased safety and signal integrity for your wired equipment.
ABOUT ACROMAG
Acromag has designed and manufactured measurement and control products for more than 50 years.
They are an AS9100 and ISO 9001-certified international corporation with a world headquarters near
Detroit, Michigan and a global network of sales representatives and distributors. Acromag offers a
complete line of industrial I/O products including a variety of process instruments, signal conditioners,
and distributed fieldbus I/O modules that are available with a 2-year warranty. Industries served include
chemical processing, manufacturing, defense, energy, and water services.
For more information about Acromag products, call the Inside Sales Department at (248) 295-0880, FAX
(248) 624-9234. E-mail sales@acromag.com or write Acromag at 30765 South Wixom Road, Wixom, MI
48393 USA. The web site is www.acromag.com.
Electrical Grounding Rules Part 1 and Part 2 is available for download:
www.acromag.com/page/white-paper-electrical-ground-rules

Contenu connexe

En vedette

Maratoniano perfecto
Maratoniano perfectoMaratoniano perfecto
Maratoniano perfectoerquimicoloco
 
Vehicle Light Weighting - A Greener, Composite Solution (for Class A Body Pan...
Vehicle Light Weighting - A Greener, Composite Solution (for Class A Body Pan...Vehicle Light Weighting - A Greener, Composite Solution (for Class A Body Pan...
Vehicle Light Weighting - A Greener, Composite Solution (for Class A Body Pan...OC_Composites
 
Walmley Wilf Inset
Walmley Wilf InsetWalmley Wilf Inset
Walmley Wilf Insetpablo01
 
Remanufacturing lecture Bologna
Remanufacturing lecture BolognaRemanufacturing lecture Bologna
Remanufacturing lecture BolognaMarcel Bovy
 
Los espacios naturales protegidos en España
Los espacios naturales protegidos en EspañaLos espacios naturales protegidos en España
Los espacios naturales protegidos en Españaerquimicoloco
 

En vedette (6)

Maratoniano perfecto
Maratoniano perfectoMaratoniano perfecto
Maratoniano perfecto
 
Vehicle Light Weighting - A Greener, Composite Solution (for Class A Body Pan...
Vehicle Light Weighting - A Greener, Composite Solution (for Class A Body Pan...Vehicle Light Weighting - A Greener, Composite Solution (for Class A Body Pan...
Vehicle Light Weighting - A Greener, Composite Solution (for Class A Body Pan...
 
Walmley Wilf Inset
Walmley Wilf InsetWalmley Wilf Inset
Walmley Wilf Inset
 
Remanufacturing lecture Bologna
Remanufacturing lecture BolognaRemanufacturing lecture Bologna
Remanufacturing lecture Bologna
 
Los espacios naturales protegidos en España
Los espacios naturales protegidos en EspañaLos espacios naturales protegidos en España
Los espacios naturales protegidos en España
 
8 nerve
8 nerve8 nerve
8 nerve
 

Plus de Flow-Tech, Inc.

Bently Nevada 3500 System Datasheet
Bently Nevada 3500 System DatasheetBently Nevada 3500 System Datasheet
Bently Nevada 3500 System DatasheetFlow-Tech, Inc.
 
Brooks Instrument Series GF40 Installation and Operation Manual
Brooks Instrument Series GF40 Installation and Operation ManualBrooks Instrument Series GF40 Installation and Operation Manual
Brooks Instrument Series GF40 Installation and Operation ManualFlow-Tech, Inc.
 
Solving Critical Process Applications for the Water and Wastewater Industry
Solving Critical Process Applications for the Water and Wastewater IndustrySolving Critical Process Applications for the Water and Wastewater Industry
Solving Critical Process Applications for the Water and Wastewater IndustryFlow-Tech, Inc.
 
Campus & District BTU Energy Metering
Campus & District BTU Energy MeteringCampus & District BTU Energy Metering
Campus & District BTU Energy MeteringFlow-Tech, Inc.
 
Fired Heater and Combustion eBook
Fired Heater and Combustion eBookFired Heater and Combustion eBook
Fired Heater and Combustion eBookFlow-Tech, Inc.
 
New Class of MFCs with Embedded Flow Diagnostics
New Class of MFCs with Embedded Flow DiagnosticsNew Class of MFCs with Embedded Flow Diagnostics
New Class of MFCs with Embedded Flow DiagnosticsFlow-Tech, Inc.
 
Drager PointGard 2000 Series Gas Detection System
Drager PointGard 2000 Series Gas Detection SystemDrager PointGard 2000 Series Gas Detection System
Drager PointGard 2000 Series Gas Detection SystemFlow-Tech, Inc.
 
GE Advanced Modular Calibrator for Process Measurement Instruments
GE Advanced Modular Calibrator for Process Measurement InstrumentsGE Advanced Modular Calibrator for Process Measurement Instruments
GE Advanced Modular Calibrator for Process Measurement InstrumentsFlow-Tech, Inc.
 
Thermal dispersion switch for flow, level, interface, or temperature
Thermal dispersion switch for flow, level, interface, or temperatureThermal dispersion switch for flow, level, interface, or temperature
Thermal dispersion switch for flow, level, interface, or temperatureFlow-Tech, Inc.
 
Turbine flow meters for gas service from Hoffer
Turbine flow meters for gas service from HofferTurbine flow meters for gas service from Hoffer
Turbine flow meters for gas service from HofferFlow-Tech, Inc.
 
Measuring Compressed Air Flow
Measuring Compressed Air FlowMeasuring Compressed Air Flow
Measuring Compressed Air FlowFlow-Tech, Inc.
 
Improve Process Control Security Using Annunciators as Watchers
Improve Process Control Security Using Annunciators as WatchersImprove Process Control Security Using Annunciators as Watchers
Improve Process Control Security Using Annunciators as WatchersFlow-Tech, Inc.
 
The Wafer Cone Flowmeter
The Wafer Cone FlowmeterThe Wafer Cone Flowmeter
The Wafer Cone FlowmeterFlow-Tech, Inc.
 
Reduce Unplanned Outages and Improve Profitability with Asset Condition Monit...
Reduce Unplanned Outages and Improve Profitability with Asset Condition Monit...Reduce Unplanned Outages and Improve Profitability with Asset Condition Monit...
Reduce Unplanned Outages and Improve Profitability with Asset Condition Monit...Flow-Tech, Inc.
 
List of Detectable Gasses and Vapors by CAS-Number 2015
List of Detectable Gasses and Vapors by CAS-Number 2015List of Detectable Gasses and Vapors by CAS-Number 2015
List of Detectable Gasses and Vapors by CAS-Number 2015Flow-Tech, Inc.
 
McCrometer V Cone Flowmeter Installation, Operations, Maintenace
McCrometer V Cone Flowmeter Installation, Operations, MaintenaceMcCrometer V Cone Flowmeter Installation, Operations, Maintenace
McCrometer V Cone Flowmeter Installation, Operations, MaintenaceFlow-Tech, Inc.
 
Multivariable Transmitter for Mass Flow Measurement
Multivariable Transmitter for Mass Flow MeasurementMultivariable Transmitter for Mass Flow Measurement
Multivariable Transmitter for Mass Flow MeasurementFlow-Tech, Inc.
 
Liquid Vaporizer Systems
Liquid Vaporizer SystemsLiquid Vaporizer Systems
Liquid Vaporizer SystemsFlow-Tech, Inc.
 
Arc Flash as it Relates to AC Drives
Arc Flash as it Relates to AC DrivesArc Flash as it Relates to AC Drives
Arc Flash as it Relates to AC DrivesFlow-Tech, Inc.
 

Plus de Flow-Tech, Inc. (19)

Bently Nevada 3500 System Datasheet
Bently Nevada 3500 System DatasheetBently Nevada 3500 System Datasheet
Bently Nevada 3500 System Datasheet
 
Brooks Instrument Series GF40 Installation and Operation Manual
Brooks Instrument Series GF40 Installation and Operation ManualBrooks Instrument Series GF40 Installation and Operation Manual
Brooks Instrument Series GF40 Installation and Operation Manual
 
Solving Critical Process Applications for the Water and Wastewater Industry
Solving Critical Process Applications for the Water and Wastewater IndustrySolving Critical Process Applications for the Water and Wastewater Industry
Solving Critical Process Applications for the Water and Wastewater Industry
 
Campus & District BTU Energy Metering
Campus & District BTU Energy MeteringCampus & District BTU Energy Metering
Campus & District BTU Energy Metering
 
Fired Heater and Combustion eBook
Fired Heater and Combustion eBookFired Heater and Combustion eBook
Fired Heater and Combustion eBook
 
New Class of MFCs with Embedded Flow Diagnostics
New Class of MFCs with Embedded Flow DiagnosticsNew Class of MFCs with Embedded Flow Diagnostics
New Class of MFCs with Embedded Flow Diagnostics
 
Drager PointGard 2000 Series Gas Detection System
Drager PointGard 2000 Series Gas Detection SystemDrager PointGard 2000 Series Gas Detection System
Drager PointGard 2000 Series Gas Detection System
 
GE Advanced Modular Calibrator for Process Measurement Instruments
GE Advanced Modular Calibrator for Process Measurement InstrumentsGE Advanced Modular Calibrator for Process Measurement Instruments
GE Advanced Modular Calibrator for Process Measurement Instruments
 
Thermal dispersion switch for flow, level, interface, or temperature
Thermal dispersion switch for flow, level, interface, or temperatureThermal dispersion switch for flow, level, interface, or temperature
Thermal dispersion switch for flow, level, interface, or temperature
 
Turbine flow meters for gas service from Hoffer
Turbine flow meters for gas service from HofferTurbine flow meters for gas service from Hoffer
Turbine flow meters for gas service from Hoffer
 
Measuring Compressed Air Flow
Measuring Compressed Air FlowMeasuring Compressed Air Flow
Measuring Compressed Air Flow
 
Improve Process Control Security Using Annunciators as Watchers
Improve Process Control Security Using Annunciators as WatchersImprove Process Control Security Using Annunciators as Watchers
Improve Process Control Security Using Annunciators as Watchers
 
The Wafer Cone Flowmeter
The Wafer Cone FlowmeterThe Wafer Cone Flowmeter
The Wafer Cone Flowmeter
 
Reduce Unplanned Outages and Improve Profitability with Asset Condition Monit...
Reduce Unplanned Outages and Improve Profitability with Asset Condition Monit...Reduce Unplanned Outages and Improve Profitability with Asset Condition Monit...
Reduce Unplanned Outages and Improve Profitability with Asset Condition Monit...
 
List of Detectable Gasses and Vapors by CAS-Number 2015
List of Detectable Gasses and Vapors by CAS-Number 2015List of Detectable Gasses and Vapors by CAS-Number 2015
List of Detectable Gasses and Vapors by CAS-Number 2015
 
McCrometer V Cone Flowmeter Installation, Operations, Maintenace
McCrometer V Cone Flowmeter Installation, Operations, MaintenaceMcCrometer V Cone Flowmeter Installation, Operations, Maintenace
McCrometer V Cone Flowmeter Installation, Operations, Maintenace
 
Multivariable Transmitter for Mass Flow Measurement
Multivariable Transmitter for Mass Flow MeasurementMultivariable Transmitter for Mass Flow Measurement
Multivariable Transmitter for Mass Flow Measurement
 
Liquid Vaporizer Systems
Liquid Vaporizer SystemsLiquid Vaporizer Systems
Liquid Vaporizer Systems
 
Arc Flash as it Relates to AC Drives
Arc Flash as it Relates to AC DrivesArc Flash as it Relates to AC Drives
Arc Flash as it Relates to AC Drives
 

Dernier

NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...Amil baba
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptxJIT KUMAR GUPTA
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxSCMS School of Architecture
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network DevicesChandrakantDivate1
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdfAldoGarca30
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationBhangaleSonal
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Arindam Chakraborty, Ph.D., P.E. (CA, TX)
 
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLEGEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLEselvakumar948
 
Verification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptxVerification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptxchumtiyababu
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTbhaskargani46
 
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxOrlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxMuhammadAsimMuhammad6
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startQuintin Balsdon
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VDineshKumar4165
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapRishantSharmaFr
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxJuliansyahHarahap1
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.Kamal Acharya
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"mphochane1998
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesMayuraD1
 

Dernier (20)

NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLEGEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
 
Verification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptxVerification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptx
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxOrlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
 

Electrical Ground Rules - Part 3

  • 1. Acromag, Incorporated 30765 S Wixom Rd, Wixom, MI 48393 USA Tel: 248-295-0880 • Fax: 248-624-9234 • www.acromag.com Copyright © Acromag, Inc. June 2014 8501-021 White Paper: Electrical Ground Rules Best Practices for Grounding Your Electrical Equipment Examining the role of ground as a voltage stabilizer and transient limiter, along with tips on improving safety and signal integrity (Part 3 of 3)
  • 2. Tel: 248-295-0880  Fax: 248-624-1541  sales@acromag.com  www.acromag.com 2 This paper is part three of a three part series that takes a look at grounding and its role in protecting personnel, protecting equipment, and ensuring the integrity of electrical signals. In this part, we will examine ground and its role as a voltage stabilizer and transient limiter, as well as offer some tips on what you can do to improve your connection to ground to realize benefits to safety and signal integrity. In part one of this series (8500-993) we looked at the concept of grounding, the AC power system and its use of ground, and gave three main reasons why we ground electrical equipment: for safety, to stabilize electrical signals, and to limit transient voltages and current. In part two of this series (8501-020) we examined the use of ground as a means of protection from ground faults. We also looked at how ground fault circuit interrupter (GFCI) devices operate to protect us from severe shock. GROUND AS A VOLTAGE STABILIZER Think of voltage as a force that causes current to flow in any conductor—a greater voltage results in greater force that drives higher levels of current. High levels of current can drive errant circuit behavior, possibly damage equipment, and may even lead to personal injury. We want to ground signals to stabilize them and keep them from floating, and we do this to limit voltage magnitude and variation. In practice, connecting to ground helps stabilize signals during normal operation, acting like an anchor that limits the magnitude and variation of voltage. On the other hand, like a boat without an anchor, an ungrounded signal will “float”. Floating a signal will generally make it more susceptible to common-mode noise interference. A common- mode signal is a signal that appears “common” to a set of floating points. Common-mode noise signals can be inductive or capacitive coupled from external sources, or they may be driven by the circuits themselves. All electronic circuits are limited in their ability to filter or reject common- mode noise, especially if the potential of a measurement point is allowed to float outside the limits of the circuitry. The end result is that common- mode noise can drive spurious measurements or spurious output behavior. One example of the importance of grounding is with respect to differential mode measurements, such as that used for some types of instruments, like thermocouple amplifiers. If you do not earth ground one lead and anchor it from floating, you will likely note that the measurement appears noisier and more widely variant, and that is assuming that a point of signal measurement doesn’t float outside of the common mode range of the amplifier, at which point it cannot be measured or processed by the circuit properly. This is why you will note that many connection diagrams for differential input pairs will show one lead (usually the minus lead) making a connection to earth ground. Most electrical equipment and industrial instruments utilize differential filters and transient suppression devices at their wired connections to shunt potentially destructive energy from one lead to another and to steer this energy to ground. This same energy ultimately seeks a path to earth ground where it originated and can typically be dissipated more safely. Failure to apply ground to the circuit at the designated connection will leave the circuit vulnerable to damage, as the circuitry must then absorb and dissipate this transient energy in the absence of a clear path to ground. This connection to ground is very important and will help to extend the life of your equipment—always be sure to identify these
  • 3. Tel: 248-295-0880  Fax: 248-624-1541  sales@acromag.com  www.acromag.com 3 connections to earth ground and make sure that you provide a low impedance path to ground at these points to protect your equipment from damage. For electrical equipment, all connections to power are usually grounded at some point. The device may be optionally DC powered, but a conversion from AC to DC still occurs and a path back to earth ground usually exists. Isolated power sources usually ground their DC output power minus terminals. Inside electrical equipment, the power connection is often isolated from other parts of the circuit, such as its inputs, its outputs, its network connection, etc. Noise exists in each of these isolated circuits and takes many forms. In many applications, the DC power supply to the circuit itself will provide a path to earth ground at its DC minus terminal. Many instrument manufacturers recognize this and will often employ isolation capacitors connected inside their own circuits between the various isolated reference planes and the DC minus connection to the device, which is often indirectly earth grounded via the power supply. These capacitors significantly reduce radiated emissions from the device by providing a path to earth ground where transient energy on each of the isolated planes can be shunted through the capacitor on its way to ground. In this way with these devices, the earth ground connection at the power supply often serves as a kind of default path to ground for harmful energy, even if the other parts of the circuit have not been properly grounded. Still, do not be tempted to float isolated portions of your device and rely only on these isolation capacitors to provide protection, as they can never compete with a direct, hard-wired connection to earth ground. It’s always best to refer to your connection diagrams and wire ground connections as recommended. GROUND AS A TRANSIENT LIMITER Modern powered circuits are awash in transient energy from many sources, coupled via many paths, as illustrated at left. Thus, the potential for encountering unintended voltage rise in electronic equipment is ever present via its connection to power, its exposure to ESD, and even its proximity to other electronic devices (by conductive, inductive, capacitive, or radiated noise coupling). Our connection to ground acts to make our circuits safe and will help to stabilize our signals. This ground connection also limits the potential voltage rise induced on our circuit, typically via lightning, line surges, and even during unintentional contact with higher-voltage. To help filter the effects of unintended voltage signals, most electronic equipment will utilize differential filters, capacitors, and other transient suppression devices at their wired connections. The purpose of these devices is to shunt potentially destructive energy from one lead to another, usually in an attempt to squelch the imposed voltage and steer the resultant destructive current or charge to earth ground where it can be dissipated more safely. If you fail to connect ground to a designated wired terminal, you leave this energy with no place to go except through your circuit where harmful voltage levels and high transient current levels can wreak havoc and drive damage. So you should think of your connection to ground as an integral part of your circuit’s transient protection. Without it, you leave your equipment unprotected and exposed to potential destruction.
  • 4. Tel: 248-295-0880  Fax: 248-624-1541  sales@acromag.com  www.acromag.com 4 For example, lightning occurs when atmospheric charge finds a path to earth. Any circuitry in this path, or in the presence of this path to earth, can be easily destroyed by the high voltages that are developed. Providing a low impedance path to earth for powered equipment will help to minimize the potential destruction of a lightning strike by keeping the resultant voltage increase above earth to a lower potential. Without a connection to ground, the energy will continue to develop its high voltage across a circuit, possibly resulting in damaging levels of current that may ultimately destroy the circuit. A low impedance connection to ground will instead help carry this energy into the earth before it destroys the circuit it is otherwise distributed across in its transfer along a path to earth ground. Earlier I mentioned that a side benefit of a connection to ground is that it offers EMC benefits by lowering system noise and radiated emissions. It does this the same way that it works to squelch the effects of unintended voltage signals sourced by lightning and other sources—by stabilizing voltages and limiting voltage variations, and by providing a low impedance path to earth ground where transient energy can be safely dissipated. Without a clear path to earth ground, this energy will be forced through the circuit and drive signal error, erratic behavior, and potentially damage the circuit. IMPROVING YOUR CONNECTION TO GROUND At this point, you should recognize the importance of providing a good connection to ground—for personal safety and protection from electrical shock, to stabilize signals and minimize fluctuations, and to limit the magnitude of induced voltages and peak currents. As an engineer for a manufacturer of industrial instruments, I am often called to task for lowering a product’s emissions or raising its EMC immunity with respect to ESD, EFT, and other interference. I can honestly say that most of the time, the solution to these problems lies in the correct application of earth ground. So how do you improve your connection to ground to help realize these benefits in your applications? To go about improving your connection to ground, you can start by calibrating the way you think about ground. Specifically, you need to think of your connection to ground as a drain that you flush all the unwanted energy in your electrical system down (ground faults, electromagnetic interference, ESD strikes, fluctuations caused by nearby lightning, power line surges, transient noise, etc.). You want this drain to quickly accept unwanted electrical charge from your circuit. Now you wouldn’t connect the drain of your home through a straw, or unwanted waste would back up and contaminate your home. Instead, you would want a wide-open pipe leading to your waste-water drain, and you would avoid angles and changes in direction, keeping this pipe as short and straight as possible to help prevent backup. It’s the same way with ground—you want a wide-open, short and direct drain to earth that doesn’t back “charge” up into your circuit. And just like the drain from your home, you can improve your connection to ground by making it short as possible and by increasing its diameter. Chiefly, with your connection to ground, your goal should be to reduce its resistance and its inductance by using a larger diameter or “thicker” conductor, and by keeping its path as short as possible. Because inductance and resistance both restrict the flow of current (as current through inductance cannot change instantaneously), you want to minimize both the resistance and inductance in your connection to ground so that it can more quickly drain transient energy from your circuit and dissipate it into the earth. All conductors have resistance and voltage across the conductor acts as a force to drive current through the conductor. When you push current through a conductor, you establish different potentials at different points along that conductor related to the IR voltage drop through the conductor. Ideally, you want your ground to deliver nearly the same potential across it (ideally an equipotential voltage of 0V), such that any tie to ground will see the same ground potential. If you fail in this regard, you give rise to
  • 5. Tel: 248-295-0880  Fax: 248-624-1541  sales@acromag.com  www.acromag.com 5 unwanted ground currents (ground loops) with possible negative side effects of increased noise and interference in your system. In practice of course, an ideal ground is impossible to attain, but there are still some things that you can do to approximate the ideal. Specifically, you need to pay close attention to how you are making your connection to ground. For example, you can avoid having your circuit grounds connect at different potentials by using a “star” grounding technique. Star grounding is a concept where each ground connection (represented by each leg of a star) connects outward from the same point (the center of the star). When you wire ground to your circuit, perhaps to each isolated part of your circuit (like input, output, power, etc.), you strive to bring these connections together via separate ground returns to one point (this is the center of your star ground), using short and thick cables to minimize path resistance and inductance effects. The center of your star is usually chosen as the ground return of the power supply to the circuit. It is sometimes chosen as the common chassis connection where a conductive chassis makes its single connection to earth ground. SOME BASIC GROUND RULES FOR WIRED EQUIPMENT Consideration of ground can be very complex and application specific. But in many of these applications, when we make wired connections to ground and to electrical equipment, there are a few rules of thumb that are helpful:  For isolated power applications where a connection to earth ground is not apparent, ground should be chosen as the common return path from power supply (DC minus). It may be necessary to hard-wire earth ground to this point if an earth ground connection is not already made by the power supply.  Do not ground a signal at more than one point. Typically a signal is grounded at its source (including its shield).  In general, as stated above, we try to never ground a cable at both ends. But one possible exception to this rule is when we are grounding cable shields in small signal applications. For most applications where only small differences in potential exist between grounds at each end of the cable, our equipment will work better when its shield is grounded at each end of the cable (at a minimum, ground it at the end closest to the noise source). Another exception is where your equipment connects to power, as DC powered equipment will often connect earth ground at the power supply minus terminal, but you should additionally include a connection to ground local to the instrument. This is done not only to stabilize applied voltages, but also because internal suppression devices in the instrument need a local, low resistance, low inductance path to shunt potentially destructive energy.  For EMC purposes, a wired signal between devices should have earth ground applied at the end of the cable nearest the noise source of the signal, or nearest the noisiest device. Failure to provide a path to ground at the “origin” of the noise may result in the cable and/or its shield becoming an antenna for this noise, increasing its power and spread into other areas of the circuit, as well as potentially increasing system emissions.  Do not use the chassis of the device as the ground conductor (i.e. make only one ground connection to the chassis). Note that many devices are required by code to have a safety ground connection to their metallic chassis or enclosure, but the chassis should never be used as a return path for load current to the device (for “safety” ground, it is sometimes used only as a return path for fault current). Note that the chassis connection to earth ground is sometimes used as the center of a star grounding scheme for the enclosed circuit.
  • 6. Tel: 248-295-0880  Fax: 248-624-1541  sales@acromag.com  www.acromag.com 6  Many instruments are housed in plastic enclosures and may not make a connection to earth ground via their chassis. These instruments usually rely on direct-wired connections to earth ground at their terminals, as directed in their connection diagrams. In general, signal connections to these devices should be earth grounded at the end of the I/O cable nearest the instrument. This is because the instrument needs a low-impedance/low-inductance path to earth ground locally, to allow its various filters, capacitors, and transient suppression devices to shunt potentially destructive energy to earth ground without being impeded by high levels of inductance and resistance in the path to earth.  Do not bundle noisy or high-energy signals or power with low level signals. Route all AC power wires away from sensitive signals and signal paths.  Do not duplicate ground connections to the main power line at different points—try to connect all AC powered devices to the same power outlet when possible and safe. Similarly, use a star- grounding concept when making ground connections to your circuit.  Do not combine or bundle isolated signals in the same shield or conduit.  Do not allow conductive material to float unattached to any ground (it should connect to ground at one point).  Do not leave unused shielded conductors in a bundled cable disconnected from ground. Ground unused conductors of a bundle at the load. In general, ground the cable shield at the signal source (or at both ends).  Minimize the length and loop area of the wires that break-out from a bundled or shielded cable, just before the wires make their connection to the equipment. CONCLUSION By now, you should have a heightened awareness of the importance of ground to the safety of personnel and the operation of your equipment. Never float signals or neglect to make ground connections as shown in the connection diagrams for your device, or you increase your risk of electrical shock and may even damage your equipment. Grounding signals will help to stabilize them and help limit induced transient voltages and current. Many electrical problems can trace their generation to a poor, improper, or a missing connection to earth ground. Don’t neglect this important connection to realize benefits of increased safety and signal integrity for your wired equipment. ABOUT ACROMAG Acromag has designed and manufactured measurement and control products for more than 50 years. They are an AS9100 and ISO 9001-certified international corporation with a world headquarters near Detroit, Michigan and a global network of sales representatives and distributors. Acromag offers a complete line of industrial I/O products including a variety of process instruments, signal conditioners, and distributed fieldbus I/O modules that are available with a 2-year warranty. Industries served include chemical processing, manufacturing, defense, energy, and water services. For more information about Acromag products, call the Inside Sales Department at (248) 295-0880, FAX (248) 624-9234. E-mail sales@acromag.com or write Acromag at 30765 South Wixom Road, Wixom, MI 48393 USA. The web site is www.acromag.com. Electrical Grounding Rules Part 1 and Part 2 is available for download: www.acromag.com/page/white-paper-electrical-ground-rules