SlideShare utilise les cookies pour améliorer les fonctionnalités et les performances, et également pour vous montrer des publicités pertinentes. Si vous continuez à naviguer sur ce site, vous acceptez l’utilisation de cookies. Consultez nos Conditions d’utilisation et notre Politique de confidentialité.
SlideShare utilise les cookies pour améliorer les fonctionnalités et les performances, et également pour vous montrer des publicités pertinentes. Si vous continuez à naviguer sur ce site, vous acceptez l’utilisation de cookies. Consultez notre Politique de confidentialité et nos Conditions d’utilisation pour en savoir plus.
Genomics is mapping complex data about human biology and promises major medical advances. In particular, genomics is enabling precision medicine, the use of a patient's genome and physiological state to improve therapeutic efficacy and outcome. However, routine use of genomics data in medical research is in its infancy, due mainly to the challenges of working with "Big data". These data are so complex and large that typical researchers are not able to cope with them. Collectively, these data require an understanding of many aspects of experimental biology and medicine to correctly process and interpret. Data size is also an issue, as individual researchers may need to handle tens of terabytes (genomes from a few hundred patients), which is challenging to download and store on typical workstations. To effectively support precision medicine, scientists from a wide range of disciplines, including computer science, must develop algorithms to improve precision medicine (e.g. diagnostics and prognostics), genome interpretation, raw data processing and secure high performance computing.
Il semblerait que vous ayez déjà ajouté cette diapositive à .
Identifiez-vous pour voir les commentaires