presentacion.docx

una presentación de la materia de matemática de la universidad UPTAE

REPÚBLICA BOLIVARIANA DE
VENEZUELAMINISTERIO DEL PODER POPULAR
PARA LA EDUCACIÓN
UNIVERSITARIAUNIVERSIDAD POLITECNICA
TERRITORIAL ANDRES ELOY BLANCO
Presentación de matemáticas
Estudiante:
Gianfranco fazio duran
CD:
30917205
Carrera:
Informática
Definición de conjuntos:
En matemáticas, un conjunto es una colección de elementos considerada en sí misma como
un objeto. Los elementos de un conjunto, pueden ser las siguientes: personas, números,
colores, letras, figuras, etc. Se dice que un elemento (o miembro) pertenece al conjunto si
está definido como incluido de algún modo dentro de él.
Ejemplo: el conjunto de los colores del arcoíris es:
AI = {rojo, naranja, amarillo, verde, azul, añil, violeta}
Un conjunto suele definirse mediante una propiedad que todos sus elementos poseen. Por
ejemplo, para los números naturales, si se considera la propiedad de ser un número primo,
el conjunto de los números primos es:
P = {2, 3, 5, 7, 11, 13, …}
Un conjunto queda definido únicamente por sus miembros y por nada más. En particular,
un conjunto puede escribirse como una lista de elementos, pero cambiar el orden de dicha
lista o añadir elementos repetidos no define un conjunto nuevo. Por ejemplo:
S = {lunes, martes, miércoles, jueves, viernes} = {martes, viernes, jueves, lunes, miércoles}
AI = {rojo, naranja, amarillo, verde, azul, añil, violeta} = {amarillo, naranja, rojo, verde,
violeta, añil, azul}
Los conjuntos pueden ser finitos o infinitos. El conjunto de los números naturales es
infinito, pero el conjunto de los planetas del sistema solar es finito (tiene ocho elementos).
Además, los conjuntos pueden combinarse mediante operaciones, de manera similar a las
operaciones con números.
‒ Operaciones con conjuntos:
Las operaciones con conjuntos también conocidas como álgebra de conjuntos, nos permiten
realizar operaciones sobre los conjuntos para obtener otro conjunto. De las operaciones con
conjuntos veremos las siguientes unión, intersección, diferencia, diferencia simétrica y
complemento.
‒ Unión o reunión de conjuntos.
Es la operación que nos permite unir dos o más conjuntos para formar otro conjunto que
contendrá a todos los elementos que queremos unir pero sin que se repitan. Es decir dado
un conjunto A y un conjunto B, la unión de los conjuntos A y B será otro conjunto formado
por todos los elementos de A, con todos los elementos de B sin repetir ningún elemento. El
símbolo que se usa para indicar la operación de unión es el siguiente: ∪. Cuando usamos
diagramas de Venn, para representar la unió de conjuntos, se sombrean los conjuntos que se
unen o se forma uno nuevo. Luego se escribe por fuera la operación de unión.
Números reales:
En matemáticas, el conjunto de los números reales (denotado por {displaystyle mathbb
{R} }mathbb{R}) incluye tanto los números racionales (positivos, negativos y el cero)
como los números irracionales;1 y en otro enfoque, a los trascendentes y a los algebraicos.
Los irracionales y los trascendentes2 no se pueden expresar mediante una fracción de dos
enteros con denominador no nulo; tienen infinitas cifras decimales aperiódicas, tales como
{displaystyle {sqrt {5}}}{sqrt {5}}, π, o el número real {displaystyle
log(2)}{displaystyle log(2)},
Los números reales pueden ser descritos y construidos de varias formas, algunas simples,
aunque carentes del rigor necesario para los propósitos formales de las matemáticas, y otras
más complejas, pero con el rigor necesario para el trabajo matemático formal.
Desigualdad:
Desigualdad matemática es una proposición de relación de orden existente entre dos
expresiones algebraicas conectadas a través de los signos: desigual que ≠, mayor que >,
menor que <, menor o igual que ≤, así como mayor o igual que ≥, resultando ambas
expresiones de valores distintos.
Por tanto, la relación de desigualdad establecida en una expresión de esta índole, se emplea
para denotar que dos objetos matemáticos expresan valores desiguales.
Algo a notar en las expresiones de desigualdad matemática es que, aquellas que emplean:
mayor que >
Menor que <
Menor o igual que ≤
Mayor o igual que ≥
Estas son desigualdades que nos revelan en qué sentido la una desigualdad no es igual
Definición de valor absoluto:
La noción de valor absoluto se utiliza en el terreno de las matemáticas para nombrar al
valor que tiene un número más allá de su signo. Esto quiere decir que el valor absoluto, que
también se conoce como módulo, es la magnitud numérica de la cifra sin importar si su
signo es positivo o negativo.
Tomemos el caso del valor absoluto 5. Este es el valor absoluto tanto de +5 (5 positivo)
como de -5 (5 negativo). El valor absoluto, en definitiva, es el mismo en el número positivo
y en el número negativo: en este caso, 5. Cabe destacar que el valor absoluto se escribe
entre dos barras verticales paralelas; por lo tanto, la notación correcta es |5|.
Desigualdades con valor absoluto:
Desigualdades de valor absoluto (<):
La desigualdad | x | < 4 significa que la distancia entre x y 0 es menor que 4.
Así, x > -4 Y x < 4. El conjunto solución es .
Cuando se resuelven desigualdes de valor absoluto, hay dos casos a considerar.
Caso 1: La expresión dentro de los símbolos de valor absoluto es positiva.
Caso 2: La expresión dentro de los símbolos de valor absoluto es negativa.
La solución es la intersección de las soluciones de estos dos casos.
En otras palabras, para cualesquiera numéros reales a y b , si | a | < b ,
entonces a < b Y a > - b .
Ejemplo 1 :
Resuelva y grafique.
| x – 7| < 3
Para resolver este tipo de desigualdad, necesitamos descomponerla en
una desigualdad compuesta .
x – 7 < 3 Y x – 7 > –3
–3 < x – 7 < 3
Sume 7 en cada expresión.
-3 + 7 < x - 7 + 7 < 3 + 7
4 < x <10
La gráfica se vería así:
Desigualdades de valor absoluto (>):
La desigualdad | x | > 4 significa que la distancia entre x y 0 es mayor que 4.
Así, x < -4 O x > 4. El conjunto solución es .
Cuando se resuelven desigualdes de valor absoluto, hay dos casos a considerar.
Caso 1: La expresión dentro de los símbolos de valor absoluto es positiva.
Caso 2: La expresión dentro de los símbolos de valor absoluto es negativa.
En otras palabras, para cualesquiera numéros reales a y b , si | a | > b ,
entonces a > b O a < - b .
Ejemplo 2 :
Resuelva y grafique.
Separe en dos desigualdades.
Reste 2 de cada lado en cada desigualdad.
La gráfica se vería así:
Resolver este ejercicio:

Recommandé

Numeros reales par
Numeros realesNumeros reales
Numeros realesyariannyescobar
11 vues10 diapositives
Presentación de Matemáticas Nr 2 par
Presentación de Matemáticas Nr 2Presentación de Matemáticas Nr 2
Presentación de Matemáticas Nr 2DELEChan
31 vues10 diapositives
Conjuntos par
Conjuntos Conjuntos
Conjuntos KarolayUrbina
5 vues6 diapositives
presentación de matemáticas Nr 2 par
presentación de matemáticas Nr 2presentación de matemáticas Nr 2
presentación de matemáticas Nr 2BrayanVAsquez27
11 vues10 diapositives
Números Reales par
Números RealesNúmeros Reales
Números RealesTrapMusicFans
37 vues14 diapositives
DOC-20230216-WA0003..pptx par
DOC-20230216-WA0003..pptxDOC-20230216-WA0003..pptx
DOC-20230216-WA0003..pptxCarlosAlfredoRojasPe
28 vues22 diapositives

Contenu connexe

Similaire à presentacion.docx

Hoswald yanez 30266399 par
Hoswald yanez 30266399Hoswald yanez 30266399
Hoswald yanez 30266399HoswaldJYanezCh
14 vues4 diapositives
Presentacion par
Presentacion Presentacion
Presentacion MarishethDiaz
8 vues9 diapositives
matematicas.docx par
matematicas.docxmatematicas.docx
matematicas.docxNaiyerlis
3 vues11 diapositives
trabajo yoleida.ppt par
trabajo yoleida.ppttrabajo yoleida.ppt
trabajo yoleida.pptJoseMartinez598067
12 vues10 diapositives
Presentación Matematicas par
Presentación MatematicasPresentación Matematicas
Presentación Matematicasmariamorales53758
42 vues30 diapositives
matemáticas 2.pdf par
matemáticas 2.pdfmatemáticas 2.pdf
matemáticas 2.pdfFREDDYAGUERO4
4 vues10 diapositives

Similaire à presentacion.docx(20)

Conjuntos y Numeros Reales.pdf par Diosmar2
Conjuntos y Numeros Reales.pdfConjuntos y Numeros Reales.pdf
Conjuntos y Numeros Reales.pdf
Diosmar25 vues

Dernier

ESCUELA SABÁTICA MISIONERA | By Pr. Heyssen Cordero par
ESCUELA SABÁTICA MISIONERA | By Pr. Heyssen CorderoESCUELA SABÁTICA MISIONERA | By Pr. Heyssen Cordero
ESCUELA SABÁTICA MISIONERA | By Pr. Heyssen CorderoHeyssen J. Cordero Maraví
70 vues61 diapositives
S1_CPL.pdf par
S1_CPL.pdfS1_CPL.pdf
S1_CPL.pdfConecta13
55 vues80 diapositives
Semana de Gestion Escolar Final 2023 GE Ccesa007.pdf par
Semana de Gestion Escolar Final 2023  GE  Ccesa007.pdfSemana de Gestion Escolar Final 2023  GE  Ccesa007.pdf
Semana de Gestion Escolar Final 2023 GE Ccesa007.pdfDemetrio Ccesa Rayme
221 vues26 diapositives
Fase 4- Estudio de la geometría analítica.pptx par
Fase 4- Estudio de la geometría analítica.pptxFase 4- Estudio de la geometría analítica.pptx
Fase 4- Estudio de la geometría analítica.pptxblogdealgebraunad
33 vues15 diapositives
Misión en favor de los poderosos.pdf par
Misión en favor de los poderosos.pdfMisión en favor de los poderosos.pdf
Misión en favor de los poderosos.pdfAlejandrinoHalire
68 vues10 diapositives
receta.pdf par
receta.pdfreceta.pdf
receta.pdfcarmenhuallpa45
300 vues1 diapositive

Dernier(20)

Fase 4- Estudio de la geometría analítica.pptx par blogdealgebraunad
Fase 4- Estudio de la geometría analítica.pptxFase 4- Estudio de la geometría analítica.pptx
Fase 4- Estudio de la geometría analítica.pptx
FORTI-DICIEMBRE.2023.pdf par El Fortí
FORTI-DICIEMBRE.2023.pdfFORTI-DICIEMBRE.2023.pdf
FORTI-DICIEMBRE.2023.pdf
El Fortí177 vues
Perennials, Bulbs, Grasses and Ferns of Poland, Spain and Portugal.pptx par e-twinning
Perennials, Bulbs, Grasses and Ferns of Poland, Spain and Portugal.pptxPerennials, Bulbs, Grasses and Ferns of Poland, Spain and Portugal.pptx
Perennials, Bulbs, Grasses and Ferns of Poland, Spain and Portugal.pptx
e-twinning42 vues
Presentación de Proyecto Creativo Doodle Azul.pdf par LauraJuarez87
Presentación de Proyecto Creativo Doodle Azul.pdfPresentación de Proyecto Creativo Doodle Azul.pdf
Presentación de Proyecto Creativo Doodle Azul.pdf
LauraJuarez8764 vues
Muestra Anual de Literatura Clásica y Latín.pptx par María Roxana
Muestra Anual de Literatura Clásica y Latín.pptxMuestra Anual de Literatura Clásica y Latín.pptx
Muestra Anual de Literatura Clásica y Latín.pptx
María Roxana117 vues
PPT TECNOLOGIAS PARA LA ENSEÑANZA VIRTUAL.pptx par CarlaFuentesMuoz
PPT TECNOLOGIAS PARA LA ENSEÑANZA VIRTUAL.pptxPPT TECNOLOGIAS PARA LA ENSEÑANZA VIRTUAL.pptx
PPT TECNOLOGIAS PARA LA ENSEÑANZA VIRTUAL.pptx
Intranet y extranet cuadro comparativo.pdf par UPTVT
Intranet y extranet cuadro comparativo.pdfIntranet y extranet cuadro comparativo.pdf
Intranet y extranet cuadro comparativo.pdf
UPTVT30 vues

presentacion.docx

  • 1. REPÚBLICA BOLIVARIANA DE VENEZUELAMINISTERIO DEL PODER POPULAR PARA LA EDUCACIÓN UNIVERSITARIAUNIVERSIDAD POLITECNICA TERRITORIAL ANDRES ELOY BLANCO Presentación de matemáticas Estudiante: Gianfranco fazio duran CD: 30917205 Carrera: Informática
  • 2. Definición de conjuntos: En matemáticas, un conjunto es una colección de elementos considerada en sí misma como un objeto. Los elementos de un conjunto, pueden ser las siguientes: personas, números, colores, letras, figuras, etc. Se dice que un elemento (o miembro) pertenece al conjunto si está definido como incluido de algún modo dentro de él. Ejemplo: el conjunto de los colores del arcoíris es: AI = {rojo, naranja, amarillo, verde, azul, añil, violeta} Un conjunto suele definirse mediante una propiedad que todos sus elementos poseen. Por ejemplo, para los números naturales, si se considera la propiedad de ser un número primo, el conjunto de los números primos es: P = {2, 3, 5, 7, 11, 13, …} Un conjunto queda definido únicamente por sus miembros y por nada más. En particular, un conjunto puede escribirse como una lista de elementos, pero cambiar el orden de dicha lista o añadir elementos repetidos no define un conjunto nuevo. Por ejemplo: S = {lunes, martes, miércoles, jueves, viernes} = {martes, viernes, jueves, lunes, miércoles} AI = {rojo, naranja, amarillo, verde, azul, añil, violeta} = {amarillo, naranja, rojo, verde, violeta, añil, azul} Los conjuntos pueden ser finitos o infinitos. El conjunto de los números naturales es infinito, pero el conjunto de los planetas del sistema solar es finito (tiene ocho elementos). Además, los conjuntos pueden combinarse mediante operaciones, de manera similar a las operaciones con números. ‒ Operaciones con conjuntos: Las operaciones con conjuntos también conocidas como álgebra de conjuntos, nos permiten realizar operaciones sobre los conjuntos para obtener otro conjunto. De las operaciones con conjuntos veremos las siguientes unión, intersección, diferencia, diferencia simétrica y complemento. ‒ Unión o reunión de conjuntos. Es la operación que nos permite unir dos o más conjuntos para formar otro conjunto que contendrá a todos los elementos que queremos unir pero sin que se repitan. Es decir dado un conjunto A y un conjunto B, la unión de los conjuntos A y B será otro conjunto formado por todos los elementos de A, con todos los elementos de B sin repetir ningún elemento. El símbolo que se usa para indicar la operación de unión es el siguiente: ∪. Cuando usamos diagramas de Venn, para representar la unió de conjuntos, se sombrean los conjuntos que se unen o se forma uno nuevo. Luego se escribe por fuera la operación de unión.
  • 3. Números reales: En matemáticas, el conjunto de los números reales (denotado por {displaystyle mathbb {R} }mathbb{R}) incluye tanto los números racionales (positivos, negativos y el cero) como los números irracionales;1 y en otro enfoque, a los trascendentes y a los algebraicos. Los irracionales y los trascendentes2 no se pueden expresar mediante una fracción de dos enteros con denominador no nulo; tienen infinitas cifras decimales aperiódicas, tales como {displaystyle {sqrt {5}}}{sqrt {5}}, π, o el número real {displaystyle log(2)}{displaystyle log(2)}, Los números reales pueden ser descritos y construidos de varias formas, algunas simples, aunque carentes del rigor necesario para los propósitos formales de las matemáticas, y otras más complejas, pero con el rigor necesario para el trabajo matemático formal. Desigualdad: Desigualdad matemática es una proposición de relación de orden existente entre dos expresiones algebraicas conectadas a través de los signos: desigual que ≠, mayor que >, menor que <, menor o igual que ≤, así como mayor o igual que ≥, resultando ambas expresiones de valores distintos. Por tanto, la relación de desigualdad establecida en una expresión de esta índole, se emplea para denotar que dos objetos matemáticos expresan valores desiguales. Algo a notar en las expresiones de desigualdad matemática es que, aquellas que emplean: mayor que > Menor que < Menor o igual que ≤ Mayor o igual que ≥ Estas son desigualdades que nos revelan en qué sentido la una desigualdad no es igual Definición de valor absoluto: La noción de valor absoluto se utiliza en el terreno de las matemáticas para nombrar al valor que tiene un número más allá de su signo. Esto quiere decir que el valor absoluto, que también se conoce como módulo, es la magnitud numérica de la cifra sin importar si su signo es positivo o negativo.
  • 4. Tomemos el caso del valor absoluto 5. Este es el valor absoluto tanto de +5 (5 positivo) como de -5 (5 negativo). El valor absoluto, en definitiva, es el mismo en el número positivo y en el número negativo: en este caso, 5. Cabe destacar que el valor absoluto se escribe entre dos barras verticales paralelas; por lo tanto, la notación correcta es |5|. Desigualdades con valor absoluto: Desigualdades de valor absoluto (<): La desigualdad | x | < 4 significa que la distancia entre x y 0 es menor que 4. Así, x > -4 Y x < 4. El conjunto solución es . Cuando se resuelven desigualdes de valor absoluto, hay dos casos a considerar. Caso 1: La expresión dentro de los símbolos de valor absoluto es positiva. Caso 2: La expresión dentro de los símbolos de valor absoluto es negativa. La solución es la intersección de las soluciones de estos dos casos. En otras palabras, para cualesquiera numéros reales a y b , si | a | < b , entonces a < b Y a > - b . Ejemplo 1 : Resuelva y grafique. | x – 7| < 3 Para resolver este tipo de desigualdad, necesitamos descomponerla en una desigualdad compuesta . x – 7 < 3 Y x – 7 > –3 –3 < x – 7 < 3 Sume 7 en cada expresión.
  • 5. -3 + 7 < x - 7 + 7 < 3 + 7 4 < x <10 La gráfica se vería así: Desigualdades de valor absoluto (>): La desigualdad | x | > 4 significa que la distancia entre x y 0 es mayor que 4. Así, x < -4 O x > 4. El conjunto solución es . Cuando se resuelven desigualdes de valor absoluto, hay dos casos a considerar. Caso 1: La expresión dentro de los símbolos de valor absoluto es positiva. Caso 2: La expresión dentro de los símbolos de valor absoluto es negativa. En otras palabras, para cualesquiera numéros reales a y b , si | a | > b , entonces a > b O a < - b . Ejemplo 2 : Resuelva y grafique. Separe en dos desigualdades. Reste 2 de cada lado en cada desigualdad. La gráfica se vería así: