SlideShare une entreprise Scribd logo
1  sur  21
Télécharger pour lire hors ligne
 
 
SINTESIS POR ACTIVACIÓN QUÍMICA Y CARACTERIZACIÓN DE
CARBON ACTIVADO A PARTIR DE CÁSCARA DE SEMILLAS DE
EUCALIPTO PARA LA ADSORCIÓN DE FENOL EN SOLUCIÓN
ACUOSA
L. C. Mojica S1
, W. M. Ramirez G.1
, N.G. Rincón S1
, D. A. Blanco1
L. Giraldo2
, J. C.
Moreno P.3
1
Facultad de Ciencia y Tecnología, Departamento de Química, Universidad Pedagógica Nacional
2
Facultad de ciencias, Departamento de Química, Universidad Nacional de Colombia. 
3
Facultad de ciencias, Departamento de Química, Grupo de Investigación de los
sólidos porosos y calorimetría, Universidad de Los Andes, Bogotá, Colombia 
E-mail: l_carolina_18@hotmail.com1
, sara2716@hotmail.com1
, giovannyservo@hotmail.com1
,
lgiraldogu@bt.unal.edu.co2
, jumoreno@uniandes.edu.co3
 
 
Resumen 
 
Se sintetizó Carbón activado a partir de la cáscara de semillas de eucalipto (Eucalyptus globulusLabill) El
proceso consistió en la impregnación del precursor con H3PO4, a dos diferentes concentraciones 30% y 80%
seguido de un proceso de carbonización, a temperaturas de 600°C, durante 2 horas con un flujo continuo de
N2 de 100 cm3
min-1
y velocidad de calentamiento a 5ºCmin-1
. Posteriormente, las muestras fueron lavadas,
con abundante agua destilada y secadas a 110 ºC durante 24 horas. La química superficial de los carbones
activados se caracterizo por el método Boehm donde se demostró que estos carbones tienen pocos sitios
básicos, lo que se confirmó con la técnica de pHPCC con resultados de 5,66 y 6,10 y con las calorimetrías de
inmersión en ácido-base donde los resultados mostraron que para la muestra al 80%, hay mayor entalpía en
solución básica (122,27Jg-1
) causada por la naturaleza acida del carbón en comparación con la entalpía en
solución acida (88,29 Jg-1
). Lo mismo sucede con el carbón al 30% el cual muestra relación entre la entalpía
de inmersión básica (71,99Jg-1
) frente a la entalpia de inmersión en ácido la cual es menor (97, 65 Jg-1
). Las
muestras obtenidas de carbón activado, demuestran gran capacidad de adsorción de fenol, debido a la
naturaleza química encontrada y a sus grandes aéreas superficiales aparentes las cuales están en el orden de
1007 m2
g-1
y 1858 m2
g-1
para las muestras activadas a concentraciones de 80% y 30% respectivamente.
PALABRAS CLAVE:Carbón activado, Fenol, Adsorción, Método Bohem, pHpzc, entalpía de inmersión.
 
 
1. Introducción
La obtención de carbones activados a partir de material lignocelulósico es ampliamente
usada en la industria química debido al bajo costo y a la abundancia de este tipo de
materiales en la naturaleza. Este tipo de precursores son también muy importantes, pues
permiten la obtención de carbones activados con variedad de tamaños y distribuciones de
poro, variando las condiciones de preparación tales como temperaturas y tiempos de
activación (Marco J, 2005).
Las propiedades finales de un carbón activado están determinadas en gran medida por el
material precursor, debido a que es éste quien establece en forma esencial las características
estructurales del carbón resultante; cabe recordar que lo que se hace durante un proceso de
activación es básicamente abrir poros que se han podido tapar por depósito de alquitranes
pero respetando la estructura original del carbonizado del material de partida.
En este trabajo se obtuvieron muestras de carbón activado con diferentes grados de
activación, los cuales se caracterizaron por adsorción física de nitrógeno a 77 K, y se
caracterizaron químicamente en sus propiedades Químicas mediante método de titulación
de masas y método de valoración selectiva acido-base
1.1 Acerca del precursor
El Eucalipto Pertenece a la familia de las Mirtáceas y es originario de Australia y
Tasmania; es un grupo de rápido crecimiento en el que se cuentan actualmente cerca de 700
especies de Eucalipto. En Colombia fue introducida a finales del siglo XVIII, con las
primeras plantaciones de Eucalipto común en la Sábana de Bogotá, que fueron empleadas
como cerca viva, leña, especie ornamental y en el área de la construcción.
Más de 21 especies de Eucaliptos han sido estudiadas en el país, dando buenos resultados,
en términos de productividad y rendimientos a nivel industrial, específicamente para las
 
 
especies: Eucalyptus globulus, Eucalyptus grandis, Eucalyptus tereticornis y Eucalyptus
camaldulensis.
La semilla de Eucalipto empleada en este trabajo, pertenece a la especie Eucalyptus
globulus la cual es conocida como eucalipto común, es un árbol que puede alcanzar los 100
metros de altura y un diámetro de 2.5 metros, su corteza externa de color café oscuro es
escamosa, mientras que la interna es lisa y café clara. Es una especie propia de bosque
húmedo montano bajo y bosque seco montanosegúnSánchez y Noemí (2007).
1.2 Síntesis de carbón activado
Los carbones activados se sintetizan industrialmente a partir de precursores ricos en
carbono, fundamentalmente materiales lignocelulósicos (madera, hueso y cascara de fruta,
aserrín), turba, lignito, carbones sub-bituminosos, brea de petróleo, coque, entre otros.
Algunos de los criterios que suelen utilizarse para seleccionar el precursor son:
• Bajo contenido en componentes inorgánicos
• Disponibilidad y bajo coste
• No sufrir degradación durante el almacenamiento
• Facilidad de activación
• Que conduzca a buenos adsorbentes
Los materiales lignocelulósicos corresponden al 47% del total de precursores utilizados en
todo el mundo dato reportado segúnRodríguez Reinoso (2007), seguidos del carbón mineral
y turba.
Uno de los métodos industriales para producir carbón activado se denomina activación
química.
1.2.1 Activación química: El proceso de activación química suele realizarse con materias
primas de origen lignocelulósico o con turba. El material, finamente dividido, se mezcla
 
 
con una disolución relativamente concentrada de una agente químico deshidratante como
ácido fosfórico, ácido sulfúrico, cloruro de zinc, entre otros. La mezcla, una vez seca, se
somete a un proceso de carbonización a temperaturas entre 400 y 700°C, en el que el
material sufre la degradación térmica. El producto resultante es lavado con una disolución
diluida de un ácido o con agua para eliminar los restos de agente activante.
1.3 Sólidos Porosos y Carbón Activado
Los sólidos porosos poseen en su interior cavidades o túneles que reciben el nombre de
poros, estos constituyen la parte más importante en la estructura de un carbón activado, ya
que determinan sus propiedades texturales, las cuales se relacionan con la adsortividad y
determinan la superficie específica a lo largo del sistema poroso, facilitando la difusión y la
adsorcióncomo mencionanGiraldo, Garcia, y Moreno (2008).
El término “carbón activado” se aplica a un grupo de carbones porosos preparados
mediante la carbonización de materiales lignocelulósicos impregnados con agentes
químicos deshidratantes. Todos estos carbones, que estructuralmente son sólidos muy
desordenados constituidos fundamentalmente por carbono, presentan un elevado grado de
porosidad y una elevada área superficial interna que se aplican, fundamentalmente, en
procesos de adsorción y catálisis.
1.3.1Estructura: Todos los carbones activados, independientemente de la forma en que se
fabriquen, están constituidos por carbono, normalmente con una baja cantidad de
heteroátomos; fundamentalmente hidrógeno y oxígeno, y de componentes inorgánicos que
constituyen lo que se denomina cenizas. La estructura del carbón activado, que está basada
en capas de grafeno totalmente desordenados, se corresponde con la de un material no
grafitizable, es decir, un material que no ha pasado por un estado fluido durante el proceso
de carbonización.
 
 
La mayoría de autores consideran que la estructura del carbón activado puede representarse
como en la figura 1, que produce un plegamiento de láminas hexagonales dejando huecos
de muy diferente tamaño.
Figura 1 Representación esquemática de un carbón activado.
Tomada de “Adsorción Física de gases y vapores por carbones”. (Martínez, M, 1990:27)
De acuerdo a la clasificación de la IUPAC, como se muestra en la tabla 1, los poros se
clasifican en tres grupos principales: microporos, con dimensiones inferiores a 2 nm,
mesoporos, con dimensiones de entre 2 y 50 nm; y macroporos, con dimensiones superiores
a los 50 nm
Tabla 1. Clasificación de poros
POROS DIMENSIONES
MICROPOROS
Menores 2 nmESTRECHOS
0.7 nm
ANCHOS
0.7-2 nm
MESOPOROS Entre 2-50 nm
MACROPOROS Mayores 50 nm
 
 
1.3.2Química superficial: La presencia de oxígeno, hidrógeno y nitrógeno en forma de
grupos funcionales en la superficie del carbón ejercen un gran efecto en las propiedades
adsorbentes, especialmente en moléculas polares o polarizables.
La naturaleza química y la cantidad de grupos superficiales de oxígeno de un carbón dado
son una función del área superficial, tamaño de partícula, contenido en cenizas y las
condiciones experimentales utilizadas en su fabricación. Algunos autores resaltan la
variedad de grupos superficiales de oxígeno (Figura 2), que van desde grupos carbonilo a
carboxilo, fenol, éter, cromeno; lo que le confiere al carbón un carácter anfotérico.
Figura 2 Tipos de grupos superficiales oxigenados en carbón activado.
Tomada y adaptada de “Rodríguez Reinoso, Año 2007.
1.4 Fenómenos de superficie
1.4.1 Adsorción: Es un proceso de separación y concentración de uno o más componentes
de un sistema sobre una superficie sólida o líquida. Los distintos sistemas heterogéneos en
los que puede tener lugar la adsorción son: sólido-líquido, sólido-gas y líquido-gas. Como
en otros procesos de este tipo, los componentes se distribuyen selectivamente entre ambas
 
 
fases. El proceso de adsorción es espontáneo, y, por tanto, tiene lugar con una disminución
en la energía libre de adsorción. Las energías que contribuyen a la energía libre de
adsorción se pueden agrupar en no electrostáticas y electrostáticas.
1.4.2 Fisisorción: En este tipo de adsorción las fuerzas son de naturaleza física y la
adsorción es relativamente débil. Las fuerzas corresponden a las consideradas por J. H. Van
der Waals. Este tipo de adsorción se conoce como: adsorción física, fisisorción o adsorción
de Van der Waals. El calor que se desprende cuando un mol de gas experimenta fisisorción
en general es bajo, de menos de 20kJ mol-1
según Gutiérrez y Mejia(2006).
1.4.3 Quimisorción: La formación de enlaces durante la adsorción química hace que el
proceso sea más selectivo, es decir, que dependa marcadamente de la naturaleza de las
sustancias involucradas. El calor que se desprende por mol en este tipo de adsorción, en
general es comparable al que se desprende de un enlace químico, o sea de 100 a 500 kJ
mol-1
.
1.5 Caracterización del carbón activado
La caracterización del carbón activado debe cubrir propiedades adsorbentes, químicas,
físicas y mecánicas, entre otras. Por esta razón se han desarrollado gran número de métodos
de caracterización.
La primera etapa de caracterización es frecuentemente, la determinación del área
superficial, seguido de un análisis de la porosidad y la determinación de la aplicación a una
situación determinada.
1.5.1 Área superficial o superficie específica se determina mediante la adsorción de un
gas en condiciones isotérmicas. La isoterma de adsorción es analizada mediante la
aplicación de una ecuación dada para determinar el volumen de monocapa (el volumen
correspondiente a cubrir la superficie del sólido con una capa de moléculas adsorbidas), a
 
 
partir de la cual se calcula el área específica aparente del carbón si se conoce el área
ocupada por cada molécula. La ecuación más utilizada para calcular la superficie específica
es la B.E.T., pese a que es un modelo que no se adapta con exactitud a la porosidad típica
de los carbones activados, fundamentalmente constituida por microporos.
1.5.2 Porosidad: La adsorción de gases y vapores es la técnica más convencional,
generalmente N2 a 77 K, aunque existe otras técnicas recientemente estudiadas como la
calorimetría de adsorción y la microscopía electrónica.
1.5.3 Química superficial: La caracterización química de los adsorbentes puede ser
obtenida mediante una adecuada complementación de varias técnicas. Muchas de esas
técnicas, tales como análisis químico, espectroscopia infrarroja (FTIR), difracción de rayos-
X (DRX), desorción (descomposición) térmica programada (DTP), determinación del punto
de carga cero (PCC) y valoración selectiva (Método Boehm), son comunes para los
diferentes adsorbentes, Gutiérrez y Mejia (2006).
1.5.3.1 Determinación del punto de carga cero: Es una técnica que se fundamenta en la
neutralización de los sitios ácidos y básicos presentes en el carbón activado, con una
solución que no interfiera con las cargas de la superficie del carbón como lo es el cloruro de
sodio. En la experimentación se espera obtener un pH constante a diferentes masas de
carbón activado, al cual se le denomina punto de carga cero pHpcc, como el trabajo
realizado por Garcíay Casallas (2005).
1.5.3.2 Valoración ácido-base, Método Boehm: Este método está basado en la hidrólisis
que los grupos funcionales sufren en agua, caracterizada por su pKa. Por lo tanto,
seleccionando bases de distinta fuerza y pKa adecuado, es posible determinar el contenido
de dichos grupos por valoración selectiva. Las bases más utilizadas son NaHCO3
(pKa=6.37), Na2CO3 (pKa=10.25), NaOH (pKa=15.74) y NaOC2H5 (pKa=20.58). Los
grupos carboxílicos, sólo son valorados por NaHCO3, la diferencia entre la acidez valorada
por NaHCO3 y Na2CO3 se corresponde con el contenido en lactonas, y los grupos fenólicos
 
 
y los grupos carbonílicos se obtienen de la diferencia entre la acidez registrada con NaOH y
Na2CO3 y entre NaOC2H5 y NaOH, respectivamente, Rodríguez Reinoso (2007).
1.5.4 Calorimetría de inmersión: En este método se determina la entalpia liberada cuando
un sólido desgasificado es introducido en un líquido con el que no reacciona. Dado que se
pueden utilizar líquidos con diferentes dimensiones moleculares, es posible obtener una
distribución de tamaño de poros con una relativa sencillez experimental.
2. Experimental
El diseño experimental se realiza bajo la siguiente secuencia.
Figura 3 Esquema general del diseño experimental
2.1 Síntesis de carbón activado
Se utilizó como precursor material lignocelulósico proveniente de la cáscara de semilla de
eucalipto (Eucalyptus globulus labill),debido a que ésta puede producir efectos
desfavorables al medio ambiente como se mencionó anteriormente y además cumple con
los criterios para la síntesis del carbón activado.
Inicialmente el precursor se partió y tamizó al tamaño de 4 mm (figura 4) ya que éste es el
tamaño apropiado para sintetizar carbón activado granular.
DISEÑO EXPERIMENTAL
Síntesis del carbón activado
Caracterización del carbón activado obtenido
Aplicación: Adsorción de Fenol en fase acuosa.
 
El sigu
2.1.1A
utiliza
•
•
Fig
uiente esque
Figura
Activación q
ando las sigu
Concentrac
Relación d
gura 4 Casc
ema muestra
a 5Esquema
química: En
uientes condi
ción del acid
de impregnac
Fu
ara de semil
la metodolo
a de la síntes
n la activació
iciones expe
do: 30 y 80 %
ción del acid
uente: Autores
lla de Eucali
ogía aplicada
is de las mu
ón química
erimentales:
% v/v.
do y la muest
pto partida y
a:
estras deCar
el precursor
tra: 200 mL
y tamizada.
rbón Activad
r se impregn
de acido/10
do.
nó con H3PO
00 g Muestra
 
O4,
a.
 
 
Posteriormente fueron carbonizadas a las siguientes condiciones experimentales:
• Flujo de N2: 100 cm3
min-1
• Velocidad del calentamiento: 5°C min-1
• Tiempo de residencia: 2 horas
• Temperatura final: 600°C
A los carbones resultantes se les asignarón la siguiente nomenclatura CAE30 para el carbón
activado a concentración de ácido 30 % v/v, y CAE80 para el carbón activado a
concentración de acido 80 % v/v, los carbones activados se lavaron con agua destilada
hasta pH constante y posteriormente secados durante aproximadamente 12 horas en una
estufa luego, finalmente fueron almacenados en recipientes plásticos en atmosfera inerte
para evitar la oxidación de la superficie.
Posterior a estos procesos de activación se realizó la caracterización del carbón activado.
2.2 Caracterización del carbón activado
2.2.1 Área superficial y Volumen de Microporo: La porosidad de los carbones se evalúan
por adsorción física de nitrógeno a 77 K en un equipo convencional volumétrico, Autosorb
3B, Quantachrome. El volumen de microporos se calcula utilizando la ecuación de
Dubinin-Radushkevich, y el área superficial aparente, apartir de la aplicación del método de
B.E.T
2.2.2 Titulación Boehm: La acidez y basicidad total se determinan mediante el método
Boehm. Se pesan aproximadamente 1 g de carbón activado y se ponen en contacto con 50
mL de NaOH, y HCl 0,1 M, en recipientes herméticos durante cinco días, y posteriormente
se titulan alícuotas de 10 mL de las soluciones con ácido o con base previamente
estandarizadas.
2.2.3Punto de carga cero:Para determinar el punto de carga cero, se pesan 0,1000 g de
carbón activado y se ponen en contacto con 10 mL de solución de NaCl 0,1M durante 48
horas en baño termostatado a 25 ºC mediante agitación constante.
 
 
2.2.4Calorimetría de inmersión: Para determinar los calores de inmersión se usa un
calorímetro de conducción de calor con una celda calorimétrica en acero inoxidable. Se
colocan en la cela 10 mL de liquido de inmersión, se pesa una muestra de carbón activado
del orden de 0,1 g y se colocan dentro de la celda calorimétrica en una ampolleta de vidrio,
se ensambla en calorímetro, cuando el equipo alcanza el equilibrio térmico, la ampolleta se
rompe, el solido se moja por el liquido, y el calor generado se registra en función del
tiempo. Finalmente se calibra eléctricamente mediante el suministro de un trabajo eléctrico
conocido a la celda calorimétrica a través de una resistencia eléctrica de calibración de 100
ohmios y un cuarto de watio.
2.3 Isotermas de adsorción de fenol
Para determinar las isotermas de adsorción se colocan 0,4 g de carbón activado en
frascosámbar y 40 mL de las respectivas soluciones de fenol a diferentes concentraciones
(desde 50 mgL-1
hasta 2000 mgL-1
). Las muestras se agitan mecánicamente y se mantienen
a una temperatura de 298 K por un periodo de 72 horas. La concentración en equilibrio de
Fenol en las soluciones después de la adsorción se determina, respecto a una curva de
calibración previamente desarrollada en un equipo espectrofotométrico UV – Vis Milton
Roy Co, Spectronic Genesys SN.
3. Resultados y Discusión
Tabla 2. Muestras y nombres de carbón obtenido.
TIPO DE ACTIVACIÓN CARBÓN ACTIVADO NOMBRE
ACTIVACIÓN QUÍMICA
Muestra 1 CAE30
Muestra 2 CAE80
Figura 6. Estructura y apariencia de las muestras de carbón granular obtenido.
 
 
3.1 Caracterización de las muestras de carbón obtenidas.
3.1.1 Área superficial aparente
En la tabla 3 aparecen los resultados obtenidos a partir de las isotermas de N2 que se
realizaron sobre a las muestras de carbón obtenidas, se presenta el área superficial SB.E.T. en
m2
g-1
y mediante el modelo de Dubinin-Radushkevich se calcula el volumen de microporo Vo.
Tabla 3. Sitios ácidos y básicos totales de las muestras de carbón
Muestra SB.E.T(m2
g-1
) Vo DR (cm3
g-1
)
CAE30 1858 0,63
CAE80 1007 0,35
Las muestras de carbón activado que se estudian presentan valores de área superficial del
orden de 1007 a 1858 m2
g-1
, que son muy valores lo cual se ve reflejado directamente en la
capacidad de adsorción, la muestra con mayor desarrollo de área superficial y volumen de
microporo es la CAE30 con valores de 1858 m2
g-1
y 0.63 respectivamente, en comparación
con la muestra CAE80 con 1007 m2
g-1
con un volumen de 0,35cm3
g-1
por supuesto esto se
verá reflejado en la capacidad de adsorción de los materiales.
3.1.2Química superficial
3.1.2.1 Titulación Boehm y pH en el punto de carga cero
En la tabla 4 se presentan los resultados obtenidos en la determinación de los sitios ácidos,
básicos totales y el pH de carga cero para las dos muestras carbonosas.
Tabla 4. Sitios ácidos y básicos totales de las muestras de carbón
Muestra Basicidad Total (meq g-1
) Acidez Total (meq g-1
) pHPCC
CAE30 0,052 0,135 5,66
CAE80 0,022 0,122 6,10
Los carbones sumergidos en HCl, determinan la cantidad de sitios básicos totales,
encontrando que para este tipo de carbones hay muy poca concentración de dichos sitios.
 
 
Por otro lado, los carbones sumergidos en NaOH, permiten determinar la concentración de
sitios ácidos totales, encontrandoque el CAGE30 contenía la mayor concentración de sitios
ácidos totales con un valor de0,135 meq g-1
lo cual esta directamente relacionado con el
método de activación utilizado.
Así por ejemplo, el carbón CAE30 se observa que la acidez es 3 veces mayor respecto a su
basicidad, por lo tanto este carbón es de carácter ácido correspondiente conel pH de punto
de carga cero el cual es de 5,66.
3.1.3 Calorimetrías de inmersión
En la Figura 7 se muestra un Potenciograma típico obtenido con un calorímetro de
conducción de calor tipo Tian como el usado para este trabajo, en donde se muestra la
gráfica de potencial en función de tiempo. El primer pico corresponde al calor generado por
la inmersión del sólido poroso en el respectivo líquido de inmersión, el segundo
corresponde al pico de calibración eléctrica aplicando un trabajo eléctrico conocido durante
un tiempo exactamente medido. Por una relación entre las áreas bajo los picos es posible
determinar el valor de la entalpía de inmersión del sólido.
Figura 7 Potenciograma obtenido en la determinación de la entalpia de inmersión.
El carbón activado se caracterizó calorimétricamente al determinar las entalpias de
inmersión en soluciones de HCl y NaOH 0,1 N, cuyos valores se pueden relacionar con las
0
0,00002
0,00004
0,00006
0,00008
0,0001
0 500 1000 1500 2000 2500 3000
E (mv)
Tiempo (s)
 
 
propiedades químicas del carbón, ya que estas afectan las interacciones energéticas entre
los sólidos y los diferentes líquidos de inmersión.
En la tabla 5 se muestra el comportamiento que siguen las entalpías en solución básica y
ácida; de las muestras activadas químicamente. Para la muestra CAE80, hay mayor entalpía
en solución básica (122,27Jg-1
) causada por la naturaleza ácida del carbón en comparación
con la entalpía en solución ácida (88,29 Jg-1
). 
 
En lo referente al punto de carga cero, (pHPCC = 6,10) el cual es ácido, de tal forma que si el
carbón se ponen en contacto con soluciones cuyo pH sea mayor que el pHPCC, la carga de
su superficie será en promedio negativa, lo cual quiere decir que existe una disociación de
los grupos ácidos en la superficie del carbón (0,122 meqg-1
) (Navarrete, Giraldo, y Moreno,
2006)
Por otra parte el carbón CAE30no muestra relación entre la entalpía de inmersión básica
(71,99Jg-1
) respecto al comportamiento ácido del carbón ya que la entalpía de inmersión en
ácido es mayor (97,65 Jg-1
), y tampoco se evidencia una correlación con el valor del punto
de carga cero, (pHPCC = 5,66). Tal vez esto se debe a la naturaleza química compleja del
carbón activado que afecta las interacciones que se dan entre él y el adsorbato.
Tabla 5. Entalpias de inmersión de los carbones activados químicamente.
3.2 Adsorción de fenol
3.2.1 Barrido espectral y determinación de la curva de calibración.
A partir del barrido espectral de las soluciones de fenol (2 a 100 ppm), se determinó la
longitud de onda en la que la absorbancia es mayor. Esta fue de 271 nm.
Muestras Activadas Químicamente
Muestra
Acidez total
(meqg-1
)
ΔHinm
NaOH (Jg-1
)
Basicidad Total
(meqg-1
)
ΔHinm
HCl (Jg-1
)
CAE30 0,135 71,99 0,052 97,65
CAE80 0,122 122,27 0,022 88,29
 
La cur
en los
entre l
Se util
de line
curva
corres
A la c
grafica
corres
Roy C
valida
rva de Ringb
cuales se cu
la absorbanc
lizaron conc
ealidad del m
de trabajo.
ponden a un
curva de trab
a y = 0.014
ponde a 0,0
Co, Spectro
ación.
bom (figura
umple la Le
cia y la conce
centraciones
método está
Para los dat
n promedio d
bajo se le ap
44x + 0.016
144, la cual
onic Genesy
8) se utiliza
ey de Beer, e
entración de
Figura 8C
comprendid
entre 10 y 6
tos obtenido
de esas lectur
plico regres
68 R2
= 0.
l indica la se
ys SN, que
a, para deter
es decir en d
el analito.
Curva de Rin
das entre 2 y
60 mg L-1
. D
os se realizo
ras.
ión lineal p
998, (Figura
ensibilidad d
se emplea
rminar el int
donde hay un
ngbom
y 100 mg L-1
De esta mane
o doble lectu
ara obtener
a 9) donde
del espectrof
para realiz
tervalo de co
na proporcio
. Se encontr
era se proced
ura y los da
la ecuación
el valor de
fotómetro UV
zar los pará
oncentracion
onalidad line
ró que el ran
de a realizar
atos reportad
n general de
e la pendien
V – vis Milt
ámetros de
 
nes
eal
ngo
r la
dos
la
nte
ton
la
 
3.2.2 L
El lím
respec
3.2.3 I
En la
capaci
carbón
Límite de d
mite de de
ctivamente.
Isotermas d
figura 10 se
idades de ad
n activado de
detección y c
etección y
de adsorción
e muestran l
dsorción de
e las muestra
Figura 9Cu
cuantificació
cuantificaci
n de fenol
las isoterma
Fenol (Qe) e
as activadas
urva de Calib
ón
ión en abs
s de adsorci
expresado e
químicamen
bración
sorbancia e
ión que repr
n mg de fen
nte:
es de 0.03
resentan la r
nol retenido
33 y 0.07
relación de l
por gramo
 
19
las
de
 
F
En la f
el rang
químic
ha alca
Los da
Freund
Tab
Adsor
CAE
CAE
Figura 10Iso
figura 10 se
go de concen
camente, son
anzado su lím
atos experim
dlich y Lang
bla 6. Datos e
rbato
Qmá
(mg/
E80 146,6
E30 138,5
otermas de a
aprecia que
ntraciones c
n en su total
mite máximo
mentales de
gmuir, los cu
experimenta
Lan
áx
/g)
K
(L/mg
628 0,029
504 0,029
adsorción de
el comporta
omprendido
lidad ascend
o de adsorci
las isoterma
uales se mue
ales de las iso
Freundl
ngmuir
)
R2
0,984
0,990
fenol para l
amiento de l
o entre 50 a 1
dentes, esto q
ión.
as de adsorc
stran en la ta
otermas de a
lich y Langm
%Des 1
0,87
2,93
as muestras
las isotermas
1500 mgL-1
quiere decir
ción se ajus
abla 6.
adsorción aju
muir
kf (mg1-
1/n
L1/n
*g-1
)
6,347 0
6,580 0
activadas co
s de adsorció
para los car
que el carbó
taron con lo
ustados a los
Freundlich
1/n
0,624 0,9
0,578 0,9
on H3PO4
ón de Fenol
rbones tratad
ón activado
os modelos
s modelos de
h
R2
%D
910 5,77
968 1,662
 
en
dos
no
de
e
Desv
8
2
 
 
En el modelo de Freundlich, se analiza el valor de kf que se relaciona con la capacidad de
adsorción, se observa que esta es mayor para la muestra CAE30, seguido CAE80, con
valores que oscilan desde 6,58 a 6,35 mg1-1/n
L1/n
g-1
. El valor de 1/n es una medida de la
heterogeneidad de la superficie. Un valor cercano a 0 indica una superficie heterogénea.
Cuando el valor de 1/n es menor que 1 se dice que el proceso de adsorción es favorable,
nuevamente se encuentra el mismo orden mencionado.
Cuando se aplica el modelo de Langmuir, se observa que el valor de Qmax es mayor para la
muestra CAE80, seguido de la muestra CAE30, con valores de138, 504 a 146,63 mg g-1
lo
que confirma que las muestras actividades químicamente tienen mayor capacidad de
adsorción. Finalmente los datos obtenidos se ajustan mejor al modelo de langmuir
confirmando que el proceso de adsorción se da por la formación de monocapa del
adsorbato.
De acuerdo con los resultados obtenidos las muestras activadas por método químico
presentan las mejores propiedades texturales y químicas, por lo tanto este material es
óptimo para aplicarlo en procesos de adsorción en fase acuosa, además se infiere que el
proceso de activación químico es el mejor método de preparación de carbones activados a
partir de material lignocelulósicos.
4. Conclusiones
Se sintetizaron carbones activados, en los cuales las muestras activadas químicamente
presentan grandes áreas superficiales aparentes del orden de 1858 m2
g-1
para CAE30 y del
orden de 1007 m2
g-1
para CAE80 y volumen de microporos, de 0,63 y 0,35
respectivamente, lo cual se refleja en la gran capacidad de adsorción de Fenol.
Se encontró que los carbones activados químicamente contienen alta concentración de
grupos ácidos, hecho que se ve reflejado en el método de activación utilizado y el pHpcc.
A partir de las entalpías de inmersión es posible establecer similitudes entre las
interacciones de los carbones en solución, y el efecto de los grupos superficiales en el
comportamiento ácido - base del carbón.
 
 
Las semillas de Eucalipto (Eucalyptus globulus labill), son apropiadas para la obtención de
carbones activados, con adecuadas propiedades texturales en muestras activadas
químicamente.
De acuerdo con los resultados obtenidos las muestras activadas químicamente presentaron
mejores propiedades texturales y químicas, por lo tanto este material es óptimo para
aplicarlo en procesos de adsorción en fase acuosa, además se infiere que el proceso de
activación químico es el mejor método de preparación de carbones activados a partir de
material lignocelulósicos.
Agradecimientos
Este trabajo se realizó gracias al convenio marco entre la Universidad Pedagógica
Nacional, la Universidad de los Andes y la Universidad Nacional de Colombia.
Referencias
Garcia, V., y Casallas, J. (2005). Modificación de carbones activados con ácidos fuertes
para retener iones metálicos en aguas contaminadas y el diseño de una unidad didáctica
para su enseñanza. Bogotá: Universidad Pedagógica Nacional. Tesis de pregrado no
publicada.
Giraldo, L., Garcia, V., y Moreno, J. C. (2008). Caracterización superficial en fase gas y
líquida de carbones activados. Revista de Ingenieria, Univerisidad de los Andes, 7-16.
Gutierrez, L., y Mejia, A. (2006). Remoción de fenol en solución acuosa por carbón
activado,modificadoy diseño de una ayuda multimedial para el aprendizaje de conceptos
implicados en la adsorción. Bogotá: Universidad Pedagógica Nacional. Tesis de grado no
publicada.
Leyva Ramos, R., Velázquez Vargas, L., Mendoza Barrón, J., y Guerreo Coronado, R.
(2002). Adsorción de salicilato de sodio en solucón acuosa sobre carbón activado. Revista
de la Sociedad Química de México, 159-166.
 
 
Martín Martínez, J. M. (1990). Generalidades sobre adsorción física de gases y vapores en
carbones. En J. M. Martín Martínez, Adsorción Física de Gases y Vapores por Carbones
(págs. 5-40). Alicante, España: Secretariado de Publicaciones de la Universidad de
Alicante.
Moreno, J., Navarrete, L., Giraldo, L., y García, V. (2007). Adsorción de Fenol y 3-Cloro
Fenol sobre Carbones Activados mediante Calorimetría de Inmersión. Información
Tecnológica, 71-80.
Rodriguez Reinoso, F. (2007). El Carbón Activado como Adsorbente Universal. En J.
Moreno Pirajan, Sólidos Porosos: preparación, Caracterización y Aplicaciones (págs. 1-43).
Colombia, Bogotá: Ediciones Uniandes.
Rodriguez Reinoso, F. (2011). Universidad de Alicante. Recuperado el 11 de Septiembre de
2010, de Universidad de Alicante:
http://www.ua.es/grupo/lma/web%20cyted/publicaciones/libro%20managua.pdf
Sánchez, C., y Noemí, R. (2007). El Eucalipto: Una Opción de Alta Rentabilidad. M y M
El mueble y la Madera.

Contenu connexe

Tendances

Presentación anoxicos
Presentación anoxicosPresentación anoxicos
Presentación anoxicos
KAREN DIAZ
 
Tratamientos de lixiviados en vertederos de residuos sólidos urbanos
Tratamientos de lixiviados en vertederos de residuos sólidos urbanosTratamientos de lixiviados en vertederos de residuos sólidos urbanos
Tratamientos de lixiviados en vertederos de residuos sólidos urbanos
OnWaste
 
Tratamiento lixiviados
Tratamiento lixiviadosTratamiento lixiviados
Tratamiento lixiviados
tato14
 
Procesos Anaerobios de Cultivos en Suspensión y Cultivos Fijos
Procesos Anaerobios de Cultivos en Suspensión y Cultivos FijosProcesos Anaerobios de Cultivos en Suspensión y Cultivos Fijos
Procesos Anaerobios de Cultivos en Suspensión y Cultivos Fijos
gjra1982
 
Procesos biológicos en cultivo fijo y cultivo en suspensión
Procesos biológicos en cultivo fijo y cultivo en suspensiónProcesos biológicos en cultivo fijo y cultivo en suspensión
Procesos biológicos en cultivo fijo y cultivo en suspensión
gjra1982
 
Ppt msabp julio elias arequipa septiembre 2011[1]
Ppt msabp julio elias arequipa septiembre 2011[1]Ppt msabp julio elias arequipa septiembre 2011[1]
Ppt msabp julio elias arequipa septiembre 2011[1]
Karla Castillo
 
Planta de tratamiento por lodos activados concepcion
Planta de tratamiento por lodos activados concepcionPlanta de tratamiento por lodos activados concepcion
Planta de tratamiento por lodos activados concepcion
CODISSAC
 

Tendances (20)

Presentación anoxicos
Presentación anoxicosPresentación anoxicos
Presentación anoxicos
 
Tratamientos de lixiviados en vertederos de residuos sólidos urbanos
Tratamientos de lixiviados en vertederos de residuos sólidos urbanosTratamientos de lixiviados en vertederos de residuos sólidos urbanos
Tratamientos de lixiviados en vertederos de residuos sólidos urbanos
 
Manejo De Lodos
Manejo De LodosManejo De Lodos
Manejo De Lodos
 
Metodos baratos de purificacion
Metodos baratos de purificacionMetodos baratos de purificacion
Metodos baratos de purificacion
 
Exposiciones alumnos2
Exposiciones alumnos2Exposiciones alumnos2
Exposiciones alumnos2
 
3. objetivos
3. objetivos3. objetivos
3. objetivos
 
Gabinetes de carbon ctivado mcat®
Gabinetes de carbon ctivado mcat®Gabinetes de carbon ctivado mcat®
Gabinetes de carbon ctivado mcat®
 
Tratamiento de Aguas residuales - lodos activados
Tratamiento de Aguas residuales - lodos activadosTratamiento de Aguas residuales - lodos activados
Tratamiento de Aguas residuales - lodos activados
 
Reactores anaerobicos
Reactores anaerobicosReactores anaerobicos
Reactores anaerobicos
 
Tratamiento lixiviados
Tratamiento lixiviadosTratamiento lixiviados
Tratamiento lixiviados
 
Digestion anaerobia
Digestion anaerobiaDigestion anaerobia
Digestion anaerobia
 
Oxidación de materia
Oxidación de materiaOxidación de materia
Oxidación de materia
 
Procesos Anaerobios de Cultivos en Suspensión y Cultivos Fijos
Procesos Anaerobios de Cultivos en Suspensión y Cultivos FijosProcesos Anaerobios de Cultivos en Suspensión y Cultivos Fijos
Procesos Anaerobios de Cultivos en Suspensión y Cultivos Fijos
 
Procesos biológicos en cultivo fijo y cultivo en suspensión
Procesos biológicos en cultivo fijo y cultivo en suspensiónProcesos biológicos en cultivo fijo y cultivo en suspensión
Procesos biológicos en cultivo fijo y cultivo en suspensión
 
Ppt msabp julio elias arequipa septiembre 2011[1]
Ppt msabp julio elias arequipa septiembre 2011[1]Ppt msabp julio elias arequipa septiembre 2011[1]
Ppt msabp julio elias arequipa septiembre 2011[1]
 
Planta de tratamiento por lodos activados concepcion
Planta de tratamiento por lodos activados concepcionPlanta de tratamiento por lodos activados concepcion
Planta de tratamiento por lodos activados concepcion
 
Biodiscos
BiodiscosBiodiscos
Biodiscos
 
Lagunas de estabilización
Lagunas de estabilizaciónLagunas de estabilización
Lagunas de estabilización
 
Lagunas de estabilizacion
Lagunas de estabilizacionLagunas de estabilizacion
Lagunas de estabilizacion
 
Universidad nacional-de-huancavelica-3-lodos-activados (1)
Universidad nacional-de-huancavelica-3-lodos-activados (1)Universidad nacional-de-huancavelica-3-lodos-activados (1)
Universidad nacional-de-huancavelica-3-lodos-activados (1)
 

En vedette

Uso de semillas de eucalipto para descontaminar aguas residuales
Uso de semillas de eucalipto para descontaminar aguas residualesUso de semillas de eucalipto para descontaminar aguas residuales
Uso de semillas de eucalipto para descontaminar aguas residuales
Nelson Giovanny Rincon S
 
Equilibrium, kinetics and thermodynamics study of phenols
Equilibrium, kinetics and thermodynamics study of phenolsEquilibrium, kinetics and thermodynamics study of phenols
Equilibrium, kinetics and thermodynamics study of phenols
Nelson Giovanny Rincon S
 
23)Romero Pérez Isaí
23)Romero Pérez Isaí23)Romero Pérez Isaí
23)Romero Pérez Isaí
marconuneze
 

En vedette (20)

Carbon6 (1)
Carbon6 (1)Carbon6 (1)
Carbon6 (1)
 
Thermodynamic Study of Adsorption of Phenol, 4-Chlorophenol, and 4-Nitropheno...
Thermodynamic Study of Adsorption of Phenol, 4-Chlorophenol, and 4-Nitropheno...Thermodynamic Study of Adsorption of Phenol, 4-Chlorophenol, and 4-Nitropheno...
Thermodynamic Study of Adsorption of Phenol, 4-Chlorophenol, and 4-Nitropheno...
 
Síntesis de carbón activado proveniente de semillas de Eucalipto por activaci...
Síntesis de carbón activado proveniente de semillas de Eucalipto por activaci...Síntesis de carbón activado proveniente de semillas de Eucalipto por activaci...
Síntesis de carbón activado proveniente de semillas de Eucalipto por activaci...
 
Envenenamiento por mordedura de serpiente: Impacto general en Colombia y el M...
Envenenamiento por mordedura de serpiente: Impacto general en Colombia y el M...Envenenamiento por mordedura de serpiente: Impacto general en Colombia y el M...
Envenenamiento por mordedura de serpiente: Impacto general en Colombia y el M...
 
Uso de semillas de eucalipto para descontaminar aguas residuales
Uso de semillas de eucalipto para descontaminar aguas residualesUso de semillas de eucalipto para descontaminar aguas residuales
Uso de semillas de eucalipto para descontaminar aguas residuales
 
Equilibrium, kinetics and thermodynamics study of phenols
Equilibrium, kinetics and thermodynamics study of phenolsEquilibrium, kinetics and thermodynamics study of phenols
Equilibrium, kinetics and thermodynamics study of phenols
 
Fito Repiratorias
Fito RepiratoriasFito Repiratorias
Fito Repiratorias
 
Capitulo3
Capitulo3Capitulo3
Capitulo3
 
Carbon activado y reactivacion acidaCarbon activado y lavado acido
Carbon activado y reactivacion acidaCarbon activado y lavado acidoCarbon activado y reactivacion acidaCarbon activado y lavado acido
Carbon activado y reactivacion acidaCarbon activado y lavado acido
 
El agua útil en las decisiones agronómicas. Las tres etapas - parte 2
El agua útil en las decisiones agronómicas. Las tres etapas - parte 2El agua útil en las decisiones agronómicas. Las tres etapas - parte 2
El agua útil en las decisiones agronómicas. Las tres etapas - parte 2
 
16) 2012 1 fierro borbon arely
16) 2012 1 fierro borbon arely16) 2012 1 fierro borbon arely
16) 2012 1 fierro borbon arely
 
Resumen cinetica 1
Resumen cinetica 1Resumen cinetica 1
Resumen cinetica 1
 
23)Romero Pérez Isaí
23)Romero Pérez Isaí23)Romero Pérez Isaí
23)Romero Pérez Isaí
 
18) rincon garcia daniel andres
18) rincon garcia daniel andres18) rincon garcia daniel andres
18) rincon garcia daniel andres
 
Carbon activado
Carbon activadoCarbon activado
Carbon activado
 
38)2015-2_Verdugo Ríos_Gisela
38)2015-2_Verdugo Ríos_Gisela38)2015-2_Verdugo Ríos_Gisela
38)2015-2_Verdugo Ríos_Gisela
 
Acido sulfhidrico
Acido sulfhidricoAcido sulfhidrico
Acido sulfhidrico
 
Ventilacion de-minas
Ventilacion de-minasVentilacion de-minas
Ventilacion de-minas
 
Natural products in pharmaceutical chemistry Nelson giovanny rincon silva
Natural products in pharmaceutical chemistry Nelson giovanny rincon silvaNatural products in pharmaceutical chemistry Nelson giovanny rincon silva
Natural products in pharmaceutical chemistry Nelson giovanny rincon silva
 
Adsorcion
AdsorcionAdsorcion
Adsorcion
 

Similaire à Síntesis por activación química y caracterización de carbón activado a partir de cascara de semillas de eucalipto para la adsorción de fenol en solución acuosa

geologia y control de calidad del carbon
geologia y control de calidad del carbongeologia y control de calidad del carbon
geologia y control de calidad del carbon
Rodrigo Andres
 
Cómo aprovechar los recursos energéticosi
Cómo aprovechar los recursos energéticosiCómo aprovechar los recursos energéticosi
Cómo aprovechar los recursos energéticosi
inmagtzb
 
CUANTIFICACION MO.doc
CUANTIFICACION MO.docCUANTIFICACION MO.doc
CUANTIFICACION MO.doc
TheJoker70
 
OBTENCIÓN DE CARBÓN ACTIVADO A PARTIR DE CASCARA DE SEMILLA DE EUCALIPTO (glo...
OBTENCIÓN DE CARBÓN ACTIVADO A PARTIR DE CASCARA DE SEMILLA DE EUCALIPTO (glo...OBTENCIÓN DE CARBÓN ACTIVADO A PARTIR DE CASCARA DE SEMILLA DE EUCALIPTO (glo...
OBTENCIÓN DE CARBÓN ACTIVADO A PARTIR DE CASCARA DE SEMILLA DE EUCALIPTO (glo...
Nelson Giovanny Rincon S
 
Unidad n 7 primera parte -procesos quimicos
Unidad n 7  primera parte -procesos quimicosUnidad n 7  primera parte -procesos quimicos
Unidad n 7 primera parte -procesos quimicos
Ma Delgado
 
12 energias no_renovables
12 energias no_renovables12 energias no_renovables
12 energias no_renovables
Yuler Eug
 

Similaire à Síntesis por activación química y caracterización de carbón activado a partir de cascara de semillas de eucalipto para la adsorción de fenol en solución acuosa (20)

Proyecto final
Proyecto finalProyecto final
Proyecto final
 
geologia y control de calidad del carbon
geologia y control de calidad del carbongeologia y control de calidad del carbon
geologia y control de calidad del carbon
 
El carbon tec.ii (1)
El carbon tec.ii (1)El carbon tec.ii (1)
El carbon tec.ii (1)
 
Carbon
CarbonCarbon
Carbon
 
Cómo aprovechar los recursos energéticosi
Cómo aprovechar los recursos energéticosiCómo aprovechar los recursos energéticosi
Cómo aprovechar los recursos energéticosi
 
CUANTIFICACION MO.doc
CUANTIFICACION MO.docCUANTIFICACION MO.doc
CUANTIFICACION MO.doc
 
Fundamentos de aguas residuales - ABSORCIÓN
Fundamentos de aguas residuales - ABSORCIÓNFundamentos de aguas residuales - ABSORCIÓN
Fundamentos de aguas residuales - ABSORCIÓN
 
Biorremediación aguas,suelo
Biorremediación aguas,sueloBiorremediación aguas,suelo
Biorremediación aguas,suelo
 
OBTENCIÓN DE CARBÓN ACTIVADO A PARTIR DE CASCARA DE SEMILLA DE EUCALIPTO (glo...
OBTENCIÓN DE CARBÓN ACTIVADO A PARTIR DE CASCARA DE SEMILLA DE EUCALIPTO (glo...OBTENCIÓN DE CARBÓN ACTIVADO A PARTIR DE CASCARA DE SEMILLA DE EUCALIPTO (glo...
OBTENCIÓN DE CARBÓN ACTIVADO A PARTIR DE CASCARA DE SEMILLA DE EUCALIPTO (glo...
 
22)2018-1_Reyes Briseño_Diego
22)2018-1_Reyes Briseño_Diego22)2018-1_Reyes Briseño_Diego
22)2018-1_Reyes Briseño_Diego
 
Unidad n 7 primera parte -procesos quimicos
Unidad n 7  primera parte -procesos quimicosUnidad n 7  primera parte -procesos quimicos
Unidad n 7 primera parte -procesos quimicos
 
1337601 634650989865967500 (1)
1337601 634650989865967500 (1)1337601 634650989865967500 (1)
1337601 634650989865967500 (1)
 
CARTILLA_CARBONES_Y_COQUES.pdf
CARTILLA_CARBONES_Y_COQUES.pdfCARTILLA_CARBONES_Y_COQUES.pdf
CARTILLA_CARBONES_Y_COQUES.pdf
 
Capitulo3
Capitulo3Capitulo3
Capitulo3
 
11)2019-1_Pérez Garcia_Irvin Alexis
11)2019-1_Pérez Garcia_Irvin Alexis11)2019-1_Pérez Garcia_Irvin Alexis
11)2019-1_Pérez Garcia_Irvin Alexis
 
Donalbain · SlidesCarnival.pptx
Donalbain · SlidesCarnival.pptxDonalbain · SlidesCarnival.pptx
Donalbain · SlidesCarnival.pptx
 
El biocarbon
El biocarbonEl biocarbon
El biocarbon
 
12 energias no_renovables
12 energias no_renovables12 energias no_renovables
12 energias no_renovables
 
GUIA TEÓRICA CARBÓN-COMBUSTIÓN
GUIA TEÓRICA CARBÓN-COMBUSTIÓNGUIA TEÓRICA CARBÓN-COMBUSTIÓN
GUIA TEÓRICA CARBÓN-COMBUSTIÓN
 
Eubacterias quimiolitotrofas
Eubacterias quimiolitotrofasEubacterias quimiolitotrofas
Eubacterias quimiolitotrofas
 

Dernier

ELABORACIÓN DEL CHUÑO Existen dos tipos de chuño Negro y blanco.
ELABORACIÓN DEL CHUÑO Existen dos tipos de chuño Negro y blanco.ELABORACIÓN DEL CHUÑO Existen dos tipos de chuño Negro y blanco.
ELABORACIÓN DEL CHUÑO Existen dos tipos de chuño Negro y blanco.
JhonnyTiconaMagne
 
RECEPTORES SENSORIALES DEL CUERPO HUMANO
RECEPTORES SENSORIALES DEL CUERPO HUMANORECEPTORES SENSORIALES DEL CUERPO HUMANO
RECEPTORES SENSORIALES DEL CUERPO HUMANO
katherineparra34
 
DESCONEXIONES UN GYE 29 de abril 2024pdf.pdf
DESCONEXIONES UN GYE 29 de abril 2024pdf.pdfDESCONEXIONES UN GYE 29 de abril 2024pdf.pdf
DESCONEXIONES UN GYE 29 de abril 2024pdf.pdf
alvaradoliguagabriel
 
BIVALENTE MODERNA vacuna bivalente COVID 29
BIVALENTE MODERNA vacuna bivalente COVID 29BIVALENTE MODERNA vacuna bivalente COVID 29
BIVALENTE MODERNA vacuna bivalente COVID 29
DreamerAnimes
 

Dernier (20)

LCE - RLCE -2024 - PeruCsdddddddddddddddddddompras.pdf
LCE - RLCE -2024 - PeruCsdddddddddddddddddddompras.pdfLCE - RLCE -2024 - PeruCsdddddddddddddddddddompras.pdf
LCE - RLCE -2024 - PeruCsdddddddddddddddddddompras.pdf
 
Libro-Rojo-de-Peces-Marinos-de-Colombia.pdf
Libro-Rojo-de-Peces-Marinos-de-Colombia.pdfLibro-Rojo-de-Peces-Marinos-de-Colombia.pdf
Libro-Rojo-de-Peces-Marinos-de-Colombia.pdf
 
ELABORACIÓN DEL CHUÑO Existen dos tipos de chuño Negro y blanco.
ELABORACIÓN DEL CHUÑO Existen dos tipos de chuño Negro y blanco.ELABORACIÓN DEL CHUÑO Existen dos tipos de chuño Negro y blanco.
ELABORACIÓN DEL CHUÑO Existen dos tipos de chuño Negro y blanco.
 
2. Revolución Verde Medio ambiente y Sociedad.pptx
2. Revolución Verde Medio ambiente y Sociedad.pptx2. Revolución Verde Medio ambiente y Sociedad.pptx
2. Revolución Verde Medio ambiente y Sociedad.pptx
 
buenas practicas ganaderas tipos de silos
buenas practicas ganaderas tipos de silosbuenas practicas ganaderas tipos de silos
buenas practicas ganaderas tipos de silos
 
Cloración y Desinfección de sistemas de agua potable para consumo humano.pptx
Cloración y Desinfección de sistemas de agua potable para consumo humano.pptxCloración y Desinfección de sistemas de agua potable para consumo humano.pptx
Cloración y Desinfección de sistemas de agua potable para consumo humano.pptx
 
MECÁNICA DE FLUIDOS y su aplicación física
MECÁNICA DE FLUIDOS y su aplicación físicaMECÁNICA DE FLUIDOS y su aplicación física
MECÁNICA DE FLUIDOS y su aplicación física
 
2. citologia vegetal, botanica agricolas
2. citologia vegetal, botanica agricolas2. citologia vegetal, botanica agricolas
2. citologia vegetal, botanica agricolas
 
RECEPTORES SENSORIALES DEL CUERPO HUMANO
RECEPTORES SENSORIALES DEL CUERPO HUMANORECEPTORES SENSORIALES DEL CUERPO HUMANO
RECEPTORES SENSORIALES DEL CUERPO HUMANO
 
DESCONEXIONES UN GYE 29 de abril 2024pdf.pdf
DESCONEXIONES UN GYE 29 de abril 2024pdf.pdfDESCONEXIONES UN GYE 29 de abril 2024pdf.pdf
DESCONEXIONES UN GYE 29 de abril 2024pdf.pdf
 
Ciclo del Azufre de forma natural y quimica.pptx
Ciclo del Azufre de forma natural y quimica.pptxCiclo del Azufre de forma natural y quimica.pptx
Ciclo del Azufre de forma natural y quimica.pptx
 
BIVALENTE MODERNA vacuna bivalente COVID 29
BIVALENTE MODERNA vacuna bivalente COVID 29BIVALENTE MODERNA vacuna bivalente COVID 29
BIVALENTE MODERNA vacuna bivalente COVID 29
 
Introduccion-a-la-Orquidea-Epidendrum.pdf
Introduccion-a-la-Orquidea-Epidendrum.pdfIntroduccion-a-la-Orquidea-Epidendrum.pdf
Introduccion-a-la-Orquidea-Epidendrum.pdf
 
PRODUCCION LIMPIA .pptx espero les sirva para sus trabajos
PRODUCCION LIMPIA .pptx espero les sirva para sus trabajosPRODUCCION LIMPIA .pptx espero les sirva para sus trabajos
PRODUCCION LIMPIA .pptx espero les sirva para sus trabajos
 
TEMA Combustibles-fosiles como fuentes de energia.pdf
TEMA Combustibles-fosiles como fuentes de energia.pdfTEMA Combustibles-fosiles como fuentes de energia.pdf
TEMA Combustibles-fosiles como fuentes de energia.pdf
 
domesticación de plantas y evolución genetica
domesticación de plantas y evolución geneticadomesticación de plantas y evolución genetica
domesticación de plantas y evolución genetica
 
Archipielago Gulag, 1918-56 (Aleksandr Solzhenitsyn). 2002.pdf
Archipielago Gulag, 1918-56 (Aleksandr Solzhenitsyn). 2002.pdfArchipielago Gulag, 1918-56 (Aleksandr Solzhenitsyn). 2002.pdf
Archipielago Gulag, 1918-56 (Aleksandr Solzhenitsyn). 2002.pdf
 
Manual-de-Buenas-Practicas-Ganaderas_2019_ResCA-Guatemala.pdf
Manual-de-Buenas-Practicas-Ganaderas_2019_ResCA-Guatemala.pdfManual-de-Buenas-Practicas-Ganaderas_2019_ResCA-Guatemala.pdf
Manual-de-Buenas-Practicas-Ganaderas_2019_ResCA-Guatemala.pdf
 
Recursos Naturales del Perú estudios generales
Recursos Naturales del Perú estudios generalesRecursos Naturales del Perú estudios generales
Recursos Naturales del Perú estudios generales
 
Contaminacion Rio Mantaro y propuesta de soluciones
Contaminacion Rio Mantaro y propuesta de solucionesContaminacion Rio Mantaro y propuesta de soluciones
Contaminacion Rio Mantaro y propuesta de soluciones
 

Síntesis por activación química y caracterización de carbón activado a partir de cascara de semillas de eucalipto para la adsorción de fenol en solución acuosa

  • 1.     SINTESIS POR ACTIVACIÓN QUÍMICA Y CARACTERIZACIÓN DE CARBON ACTIVADO A PARTIR DE CÁSCARA DE SEMILLAS DE EUCALIPTO PARA LA ADSORCIÓN DE FENOL EN SOLUCIÓN ACUOSA L. C. Mojica S1 , W. M. Ramirez G.1 , N.G. Rincón S1 , D. A. Blanco1 L. Giraldo2 , J. C. Moreno P.3 1 Facultad de Ciencia y Tecnología, Departamento de Química, Universidad Pedagógica Nacional 2 Facultad de ciencias, Departamento de Química, Universidad Nacional de Colombia.  3 Facultad de ciencias, Departamento de Química, Grupo de Investigación de los sólidos porosos y calorimetría, Universidad de Los Andes, Bogotá, Colombia  E-mail: l_carolina_18@hotmail.com1 , sara2716@hotmail.com1 , giovannyservo@hotmail.com1 , lgiraldogu@bt.unal.edu.co2 , jumoreno@uniandes.edu.co3     Resumen    Se sintetizó Carbón activado a partir de la cáscara de semillas de eucalipto (Eucalyptus globulusLabill) El proceso consistió en la impregnación del precursor con H3PO4, a dos diferentes concentraciones 30% y 80% seguido de un proceso de carbonización, a temperaturas de 600°C, durante 2 horas con un flujo continuo de N2 de 100 cm3 min-1 y velocidad de calentamiento a 5ºCmin-1 . Posteriormente, las muestras fueron lavadas, con abundante agua destilada y secadas a 110 ºC durante 24 horas. La química superficial de los carbones activados se caracterizo por el método Boehm donde se demostró que estos carbones tienen pocos sitios básicos, lo que se confirmó con la técnica de pHPCC con resultados de 5,66 y 6,10 y con las calorimetrías de inmersión en ácido-base donde los resultados mostraron que para la muestra al 80%, hay mayor entalpía en solución básica (122,27Jg-1 ) causada por la naturaleza acida del carbón en comparación con la entalpía en solución acida (88,29 Jg-1 ). Lo mismo sucede con el carbón al 30% el cual muestra relación entre la entalpía de inmersión básica (71,99Jg-1 ) frente a la entalpia de inmersión en ácido la cual es menor (97, 65 Jg-1 ). Las muestras obtenidas de carbón activado, demuestran gran capacidad de adsorción de fenol, debido a la naturaleza química encontrada y a sus grandes aéreas superficiales aparentes las cuales están en el orden de 1007 m2 g-1 y 1858 m2 g-1 para las muestras activadas a concentraciones de 80% y 30% respectivamente. PALABRAS CLAVE:Carbón activado, Fenol, Adsorción, Método Bohem, pHpzc, entalpía de inmersión.
  • 2.     1. Introducción La obtención de carbones activados a partir de material lignocelulósico es ampliamente usada en la industria química debido al bajo costo y a la abundancia de este tipo de materiales en la naturaleza. Este tipo de precursores son también muy importantes, pues permiten la obtención de carbones activados con variedad de tamaños y distribuciones de poro, variando las condiciones de preparación tales como temperaturas y tiempos de activación (Marco J, 2005). Las propiedades finales de un carbón activado están determinadas en gran medida por el material precursor, debido a que es éste quien establece en forma esencial las características estructurales del carbón resultante; cabe recordar que lo que se hace durante un proceso de activación es básicamente abrir poros que se han podido tapar por depósito de alquitranes pero respetando la estructura original del carbonizado del material de partida. En este trabajo se obtuvieron muestras de carbón activado con diferentes grados de activación, los cuales se caracterizaron por adsorción física de nitrógeno a 77 K, y se caracterizaron químicamente en sus propiedades Químicas mediante método de titulación de masas y método de valoración selectiva acido-base 1.1 Acerca del precursor El Eucalipto Pertenece a la familia de las Mirtáceas y es originario de Australia y Tasmania; es un grupo de rápido crecimiento en el que se cuentan actualmente cerca de 700 especies de Eucalipto. En Colombia fue introducida a finales del siglo XVIII, con las primeras plantaciones de Eucalipto común en la Sábana de Bogotá, que fueron empleadas como cerca viva, leña, especie ornamental y en el área de la construcción. Más de 21 especies de Eucaliptos han sido estudiadas en el país, dando buenos resultados, en términos de productividad y rendimientos a nivel industrial, específicamente para las
  • 3.     especies: Eucalyptus globulus, Eucalyptus grandis, Eucalyptus tereticornis y Eucalyptus camaldulensis. La semilla de Eucalipto empleada en este trabajo, pertenece a la especie Eucalyptus globulus la cual es conocida como eucalipto común, es un árbol que puede alcanzar los 100 metros de altura y un diámetro de 2.5 metros, su corteza externa de color café oscuro es escamosa, mientras que la interna es lisa y café clara. Es una especie propia de bosque húmedo montano bajo y bosque seco montanosegúnSánchez y Noemí (2007). 1.2 Síntesis de carbón activado Los carbones activados se sintetizan industrialmente a partir de precursores ricos en carbono, fundamentalmente materiales lignocelulósicos (madera, hueso y cascara de fruta, aserrín), turba, lignito, carbones sub-bituminosos, brea de petróleo, coque, entre otros. Algunos de los criterios que suelen utilizarse para seleccionar el precursor son: • Bajo contenido en componentes inorgánicos • Disponibilidad y bajo coste • No sufrir degradación durante el almacenamiento • Facilidad de activación • Que conduzca a buenos adsorbentes Los materiales lignocelulósicos corresponden al 47% del total de precursores utilizados en todo el mundo dato reportado segúnRodríguez Reinoso (2007), seguidos del carbón mineral y turba. Uno de los métodos industriales para producir carbón activado se denomina activación química. 1.2.1 Activación química: El proceso de activación química suele realizarse con materias primas de origen lignocelulósico o con turba. El material, finamente dividido, se mezcla
  • 4.     con una disolución relativamente concentrada de una agente químico deshidratante como ácido fosfórico, ácido sulfúrico, cloruro de zinc, entre otros. La mezcla, una vez seca, se somete a un proceso de carbonización a temperaturas entre 400 y 700°C, en el que el material sufre la degradación térmica. El producto resultante es lavado con una disolución diluida de un ácido o con agua para eliminar los restos de agente activante. 1.3 Sólidos Porosos y Carbón Activado Los sólidos porosos poseen en su interior cavidades o túneles que reciben el nombre de poros, estos constituyen la parte más importante en la estructura de un carbón activado, ya que determinan sus propiedades texturales, las cuales se relacionan con la adsortividad y determinan la superficie específica a lo largo del sistema poroso, facilitando la difusión y la adsorcióncomo mencionanGiraldo, Garcia, y Moreno (2008). El término “carbón activado” se aplica a un grupo de carbones porosos preparados mediante la carbonización de materiales lignocelulósicos impregnados con agentes químicos deshidratantes. Todos estos carbones, que estructuralmente son sólidos muy desordenados constituidos fundamentalmente por carbono, presentan un elevado grado de porosidad y una elevada área superficial interna que se aplican, fundamentalmente, en procesos de adsorción y catálisis. 1.3.1Estructura: Todos los carbones activados, independientemente de la forma en que se fabriquen, están constituidos por carbono, normalmente con una baja cantidad de heteroátomos; fundamentalmente hidrógeno y oxígeno, y de componentes inorgánicos que constituyen lo que se denomina cenizas. La estructura del carbón activado, que está basada en capas de grafeno totalmente desordenados, se corresponde con la de un material no grafitizable, es decir, un material que no ha pasado por un estado fluido durante el proceso de carbonización.
  • 5.     La mayoría de autores consideran que la estructura del carbón activado puede representarse como en la figura 1, que produce un plegamiento de láminas hexagonales dejando huecos de muy diferente tamaño. Figura 1 Representación esquemática de un carbón activado. Tomada de “Adsorción Física de gases y vapores por carbones”. (Martínez, M, 1990:27) De acuerdo a la clasificación de la IUPAC, como se muestra en la tabla 1, los poros se clasifican en tres grupos principales: microporos, con dimensiones inferiores a 2 nm, mesoporos, con dimensiones de entre 2 y 50 nm; y macroporos, con dimensiones superiores a los 50 nm Tabla 1. Clasificación de poros POROS DIMENSIONES MICROPOROS Menores 2 nmESTRECHOS 0.7 nm ANCHOS 0.7-2 nm MESOPOROS Entre 2-50 nm MACROPOROS Mayores 50 nm
  • 6.     1.3.2Química superficial: La presencia de oxígeno, hidrógeno y nitrógeno en forma de grupos funcionales en la superficie del carbón ejercen un gran efecto en las propiedades adsorbentes, especialmente en moléculas polares o polarizables. La naturaleza química y la cantidad de grupos superficiales de oxígeno de un carbón dado son una función del área superficial, tamaño de partícula, contenido en cenizas y las condiciones experimentales utilizadas en su fabricación. Algunos autores resaltan la variedad de grupos superficiales de oxígeno (Figura 2), que van desde grupos carbonilo a carboxilo, fenol, éter, cromeno; lo que le confiere al carbón un carácter anfotérico. Figura 2 Tipos de grupos superficiales oxigenados en carbón activado. Tomada y adaptada de “Rodríguez Reinoso, Año 2007. 1.4 Fenómenos de superficie 1.4.1 Adsorción: Es un proceso de separación y concentración de uno o más componentes de un sistema sobre una superficie sólida o líquida. Los distintos sistemas heterogéneos en los que puede tener lugar la adsorción son: sólido-líquido, sólido-gas y líquido-gas. Como en otros procesos de este tipo, los componentes se distribuyen selectivamente entre ambas
  • 7.     fases. El proceso de adsorción es espontáneo, y, por tanto, tiene lugar con una disminución en la energía libre de adsorción. Las energías que contribuyen a la energía libre de adsorción se pueden agrupar en no electrostáticas y electrostáticas. 1.4.2 Fisisorción: En este tipo de adsorción las fuerzas son de naturaleza física y la adsorción es relativamente débil. Las fuerzas corresponden a las consideradas por J. H. Van der Waals. Este tipo de adsorción se conoce como: adsorción física, fisisorción o adsorción de Van der Waals. El calor que se desprende cuando un mol de gas experimenta fisisorción en general es bajo, de menos de 20kJ mol-1 según Gutiérrez y Mejia(2006). 1.4.3 Quimisorción: La formación de enlaces durante la adsorción química hace que el proceso sea más selectivo, es decir, que dependa marcadamente de la naturaleza de las sustancias involucradas. El calor que se desprende por mol en este tipo de adsorción, en general es comparable al que se desprende de un enlace químico, o sea de 100 a 500 kJ mol-1 . 1.5 Caracterización del carbón activado La caracterización del carbón activado debe cubrir propiedades adsorbentes, químicas, físicas y mecánicas, entre otras. Por esta razón se han desarrollado gran número de métodos de caracterización. La primera etapa de caracterización es frecuentemente, la determinación del área superficial, seguido de un análisis de la porosidad y la determinación de la aplicación a una situación determinada. 1.5.1 Área superficial o superficie específica se determina mediante la adsorción de un gas en condiciones isotérmicas. La isoterma de adsorción es analizada mediante la aplicación de una ecuación dada para determinar el volumen de monocapa (el volumen correspondiente a cubrir la superficie del sólido con una capa de moléculas adsorbidas), a
  • 8.     partir de la cual se calcula el área específica aparente del carbón si se conoce el área ocupada por cada molécula. La ecuación más utilizada para calcular la superficie específica es la B.E.T., pese a que es un modelo que no se adapta con exactitud a la porosidad típica de los carbones activados, fundamentalmente constituida por microporos. 1.5.2 Porosidad: La adsorción de gases y vapores es la técnica más convencional, generalmente N2 a 77 K, aunque existe otras técnicas recientemente estudiadas como la calorimetría de adsorción y la microscopía electrónica. 1.5.3 Química superficial: La caracterización química de los adsorbentes puede ser obtenida mediante una adecuada complementación de varias técnicas. Muchas de esas técnicas, tales como análisis químico, espectroscopia infrarroja (FTIR), difracción de rayos- X (DRX), desorción (descomposición) térmica programada (DTP), determinación del punto de carga cero (PCC) y valoración selectiva (Método Boehm), son comunes para los diferentes adsorbentes, Gutiérrez y Mejia (2006). 1.5.3.1 Determinación del punto de carga cero: Es una técnica que se fundamenta en la neutralización de los sitios ácidos y básicos presentes en el carbón activado, con una solución que no interfiera con las cargas de la superficie del carbón como lo es el cloruro de sodio. En la experimentación se espera obtener un pH constante a diferentes masas de carbón activado, al cual se le denomina punto de carga cero pHpcc, como el trabajo realizado por Garcíay Casallas (2005). 1.5.3.2 Valoración ácido-base, Método Boehm: Este método está basado en la hidrólisis que los grupos funcionales sufren en agua, caracterizada por su pKa. Por lo tanto, seleccionando bases de distinta fuerza y pKa adecuado, es posible determinar el contenido de dichos grupos por valoración selectiva. Las bases más utilizadas son NaHCO3 (pKa=6.37), Na2CO3 (pKa=10.25), NaOH (pKa=15.74) y NaOC2H5 (pKa=20.58). Los grupos carboxílicos, sólo son valorados por NaHCO3, la diferencia entre la acidez valorada por NaHCO3 y Na2CO3 se corresponde con el contenido en lactonas, y los grupos fenólicos
  • 9.     y los grupos carbonílicos se obtienen de la diferencia entre la acidez registrada con NaOH y Na2CO3 y entre NaOC2H5 y NaOH, respectivamente, Rodríguez Reinoso (2007). 1.5.4 Calorimetría de inmersión: En este método se determina la entalpia liberada cuando un sólido desgasificado es introducido en un líquido con el que no reacciona. Dado que se pueden utilizar líquidos con diferentes dimensiones moleculares, es posible obtener una distribución de tamaño de poros con una relativa sencillez experimental. 2. Experimental El diseño experimental se realiza bajo la siguiente secuencia. Figura 3 Esquema general del diseño experimental 2.1 Síntesis de carbón activado Se utilizó como precursor material lignocelulósico proveniente de la cáscara de semilla de eucalipto (Eucalyptus globulus labill),debido a que ésta puede producir efectos desfavorables al medio ambiente como se mencionó anteriormente y además cumple con los criterios para la síntesis del carbón activado. Inicialmente el precursor se partió y tamizó al tamaño de 4 mm (figura 4) ya que éste es el tamaño apropiado para sintetizar carbón activado granular. DISEÑO EXPERIMENTAL Síntesis del carbón activado Caracterización del carbón activado obtenido Aplicación: Adsorción de Fenol en fase acuosa.
  • 10.   El sigu 2.1.1A utiliza • • Fig uiente esque Figura Activación q ando las sigu Concentrac Relación d gura 4 Casc ema muestra a 5Esquema química: En uientes condi ción del acid de impregnac Fu ara de semil la metodolo a de la síntes n la activació iciones expe do: 30 y 80 % ción del acid uente: Autores lla de Eucali ogía aplicada is de las mu ón química erimentales: % v/v. do y la muest pto partida y a: estras deCar el precursor tra: 200 mL y tamizada. rbón Activad r se impregn de acido/10 do. nó con H3PO 00 g Muestra   O4, a.
  • 11.     Posteriormente fueron carbonizadas a las siguientes condiciones experimentales: • Flujo de N2: 100 cm3 min-1 • Velocidad del calentamiento: 5°C min-1 • Tiempo de residencia: 2 horas • Temperatura final: 600°C A los carbones resultantes se les asignarón la siguiente nomenclatura CAE30 para el carbón activado a concentración de ácido 30 % v/v, y CAE80 para el carbón activado a concentración de acido 80 % v/v, los carbones activados se lavaron con agua destilada hasta pH constante y posteriormente secados durante aproximadamente 12 horas en una estufa luego, finalmente fueron almacenados en recipientes plásticos en atmosfera inerte para evitar la oxidación de la superficie. Posterior a estos procesos de activación se realizó la caracterización del carbón activado. 2.2 Caracterización del carbón activado 2.2.1 Área superficial y Volumen de Microporo: La porosidad de los carbones se evalúan por adsorción física de nitrógeno a 77 K en un equipo convencional volumétrico, Autosorb 3B, Quantachrome. El volumen de microporos se calcula utilizando la ecuación de Dubinin-Radushkevich, y el área superficial aparente, apartir de la aplicación del método de B.E.T 2.2.2 Titulación Boehm: La acidez y basicidad total se determinan mediante el método Boehm. Se pesan aproximadamente 1 g de carbón activado y se ponen en contacto con 50 mL de NaOH, y HCl 0,1 M, en recipientes herméticos durante cinco días, y posteriormente se titulan alícuotas de 10 mL de las soluciones con ácido o con base previamente estandarizadas. 2.2.3Punto de carga cero:Para determinar el punto de carga cero, se pesan 0,1000 g de carbón activado y se ponen en contacto con 10 mL de solución de NaCl 0,1M durante 48 horas en baño termostatado a 25 ºC mediante agitación constante.
  • 12.     2.2.4Calorimetría de inmersión: Para determinar los calores de inmersión se usa un calorímetro de conducción de calor con una celda calorimétrica en acero inoxidable. Se colocan en la cela 10 mL de liquido de inmersión, se pesa una muestra de carbón activado del orden de 0,1 g y se colocan dentro de la celda calorimétrica en una ampolleta de vidrio, se ensambla en calorímetro, cuando el equipo alcanza el equilibrio térmico, la ampolleta se rompe, el solido se moja por el liquido, y el calor generado se registra en función del tiempo. Finalmente se calibra eléctricamente mediante el suministro de un trabajo eléctrico conocido a la celda calorimétrica a través de una resistencia eléctrica de calibración de 100 ohmios y un cuarto de watio. 2.3 Isotermas de adsorción de fenol Para determinar las isotermas de adsorción se colocan 0,4 g de carbón activado en frascosámbar y 40 mL de las respectivas soluciones de fenol a diferentes concentraciones (desde 50 mgL-1 hasta 2000 mgL-1 ). Las muestras se agitan mecánicamente y se mantienen a una temperatura de 298 K por un periodo de 72 horas. La concentración en equilibrio de Fenol en las soluciones después de la adsorción se determina, respecto a una curva de calibración previamente desarrollada en un equipo espectrofotométrico UV – Vis Milton Roy Co, Spectronic Genesys SN. 3. Resultados y Discusión Tabla 2. Muestras y nombres de carbón obtenido. TIPO DE ACTIVACIÓN CARBÓN ACTIVADO NOMBRE ACTIVACIÓN QUÍMICA Muestra 1 CAE30 Muestra 2 CAE80 Figura 6. Estructura y apariencia de las muestras de carbón granular obtenido.
  • 13.     3.1 Caracterización de las muestras de carbón obtenidas. 3.1.1 Área superficial aparente En la tabla 3 aparecen los resultados obtenidos a partir de las isotermas de N2 que se realizaron sobre a las muestras de carbón obtenidas, se presenta el área superficial SB.E.T. en m2 g-1 y mediante el modelo de Dubinin-Radushkevich se calcula el volumen de microporo Vo. Tabla 3. Sitios ácidos y básicos totales de las muestras de carbón Muestra SB.E.T(m2 g-1 ) Vo DR (cm3 g-1 ) CAE30 1858 0,63 CAE80 1007 0,35 Las muestras de carbón activado que se estudian presentan valores de área superficial del orden de 1007 a 1858 m2 g-1 , que son muy valores lo cual se ve reflejado directamente en la capacidad de adsorción, la muestra con mayor desarrollo de área superficial y volumen de microporo es la CAE30 con valores de 1858 m2 g-1 y 0.63 respectivamente, en comparación con la muestra CAE80 con 1007 m2 g-1 con un volumen de 0,35cm3 g-1 por supuesto esto se verá reflejado en la capacidad de adsorción de los materiales. 3.1.2Química superficial 3.1.2.1 Titulación Boehm y pH en el punto de carga cero En la tabla 4 se presentan los resultados obtenidos en la determinación de los sitios ácidos, básicos totales y el pH de carga cero para las dos muestras carbonosas. Tabla 4. Sitios ácidos y básicos totales de las muestras de carbón Muestra Basicidad Total (meq g-1 ) Acidez Total (meq g-1 ) pHPCC CAE30 0,052 0,135 5,66 CAE80 0,022 0,122 6,10 Los carbones sumergidos en HCl, determinan la cantidad de sitios básicos totales, encontrando que para este tipo de carbones hay muy poca concentración de dichos sitios.
  • 14.     Por otro lado, los carbones sumergidos en NaOH, permiten determinar la concentración de sitios ácidos totales, encontrandoque el CAGE30 contenía la mayor concentración de sitios ácidos totales con un valor de0,135 meq g-1 lo cual esta directamente relacionado con el método de activación utilizado. Así por ejemplo, el carbón CAE30 se observa que la acidez es 3 veces mayor respecto a su basicidad, por lo tanto este carbón es de carácter ácido correspondiente conel pH de punto de carga cero el cual es de 5,66. 3.1.3 Calorimetrías de inmersión En la Figura 7 se muestra un Potenciograma típico obtenido con un calorímetro de conducción de calor tipo Tian como el usado para este trabajo, en donde se muestra la gráfica de potencial en función de tiempo. El primer pico corresponde al calor generado por la inmersión del sólido poroso en el respectivo líquido de inmersión, el segundo corresponde al pico de calibración eléctrica aplicando un trabajo eléctrico conocido durante un tiempo exactamente medido. Por una relación entre las áreas bajo los picos es posible determinar el valor de la entalpía de inmersión del sólido. Figura 7 Potenciograma obtenido en la determinación de la entalpia de inmersión. El carbón activado se caracterizó calorimétricamente al determinar las entalpias de inmersión en soluciones de HCl y NaOH 0,1 N, cuyos valores se pueden relacionar con las 0 0,00002 0,00004 0,00006 0,00008 0,0001 0 500 1000 1500 2000 2500 3000 E (mv) Tiempo (s)
  • 15.     propiedades químicas del carbón, ya que estas afectan las interacciones energéticas entre los sólidos y los diferentes líquidos de inmersión. En la tabla 5 se muestra el comportamiento que siguen las entalpías en solución básica y ácida; de las muestras activadas químicamente. Para la muestra CAE80, hay mayor entalpía en solución básica (122,27Jg-1 ) causada por la naturaleza ácida del carbón en comparación con la entalpía en solución ácida (88,29 Jg-1 ).    En lo referente al punto de carga cero, (pHPCC = 6,10) el cual es ácido, de tal forma que si el carbón se ponen en contacto con soluciones cuyo pH sea mayor que el pHPCC, la carga de su superficie será en promedio negativa, lo cual quiere decir que existe una disociación de los grupos ácidos en la superficie del carbón (0,122 meqg-1 ) (Navarrete, Giraldo, y Moreno, 2006) Por otra parte el carbón CAE30no muestra relación entre la entalpía de inmersión básica (71,99Jg-1 ) respecto al comportamiento ácido del carbón ya que la entalpía de inmersión en ácido es mayor (97,65 Jg-1 ), y tampoco se evidencia una correlación con el valor del punto de carga cero, (pHPCC = 5,66). Tal vez esto se debe a la naturaleza química compleja del carbón activado que afecta las interacciones que se dan entre él y el adsorbato. Tabla 5. Entalpias de inmersión de los carbones activados químicamente. 3.2 Adsorción de fenol 3.2.1 Barrido espectral y determinación de la curva de calibración. A partir del barrido espectral de las soluciones de fenol (2 a 100 ppm), se determinó la longitud de onda en la que la absorbancia es mayor. Esta fue de 271 nm. Muestras Activadas Químicamente Muestra Acidez total (meqg-1 ) ΔHinm NaOH (Jg-1 ) Basicidad Total (meqg-1 ) ΔHinm HCl (Jg-1 ) CAE30 0,135 71,99 0,052 97,65 CAE80 0,122 122,27 0,022 88,29
  • 16.   La cur en los entre l Se util de line curva corres A la c grafica corres Roy C valida rva de Ringb cuales se cu la absorbanc lizaron conc ealidad del m de trabajo. ponden a un curva de trab a y = 0.014 ponde a 0,0 Co, Spectro ación. bom (figura umple la Le cia y la conce centraciones método está Para los dat n promedio d bajo se le ap 44x + 0.016 144, la cual onic Genesy 8) se utiliza ey de Beer, e entración de Figura 8C comprendid entre 10 y 6 tos obtenido de esas lectur plico regres 68 R2 = 0. l indica la se ys SN, que a, para deter es decir en d el analito. Curva de Rin das entre 2 y 60 mg L-1 . D os se realizo ras. ión lineal p 998, (Figura ensibilidad d se emplea rminar el int donde hay un ngbom y 100 mg L-1 De esta mane o doble lectu ara obtener a 9) donde del espectrof para realiz tervalo de co na proporcio . Se encontr era se proced ura y los da la ecuación el valor de fotómetro UV zar los pará oncentracion onalidad line ró que el ran de a realizar atos reportad n general de e la pendien V – vis Milt ámetros de   nes eal ngo r la dos la nte ton la
  • 17.   3.2.2 L El lím respec 3.2.3 I En la capaci carbón Límite de d mite de de ctivamente. Isotermas d figura 10 se idades de ad n activado de detección y c etección y de adsorción e muestran l dsorción de e las muestra Figura 9Cu cuantificació cuantificaci n de fenol las isoterma Fenol (Qe) e as activadas urva de Calib ón ión en abs s de adsorci expresado e químicamen bración sorbancia e ión que repr n mg de fen nte: es de 0.03 resentan la r nol retenido 33 y 0.07 relación de l por gramo   19 las de
  • 18.   F En la f el rang químic ha alca Los da Freund Tab Adsor CAE CAE Figura 10Iso figura 10 se go de concen camente, son anzado su lím atos experim dlich y Lang bla 6. Datos e rbato Qmá (mg/ E80 146,6 E30 138,5 otermas de a aprecia que ntraciones c n en su total mite máximo mentales de gmuir, los cu experimenta Lan áx /g) K (L/mg 628 0,029 504 0,029 adsorción de el comporta omprendido lidad ascend o de adsorci las isoterma uales se mue ales de las iso Freundl ngmuir ) R2 0,984 0,990 fenol para l amiento de l o entre 50 a 1 dentes, esto q ión. as de adsorc stran en la ta otermas de a lich y Langm %Des 1 0,87 2,93 as muestras las isotermas 1500 mgL-1 quiere decir ción se ajus abla 6. adsorción aju muir kf (mg1- 1/n L1/n *g-1 ) 6,347 0 6,580 0 activadas co s de adsorció para los car que el carbó taron con lo ustados a los Freundlich 1/n 0,624 0,9 0,578 0,9 on H3PO4 ón de Fenol rbones tratad ón activado os modelos s modelos de h R2 %D 910 5,77 968 1,662   en dos no de e Desv 8 2
  • 19.     En el modelo de Freundlich, se analiza el valor de kf que se relaciona con la capacidad de adsorción, se observa que esta es mayor para la muestra CAE30, seguido CAE80, con valores que oscilan desde 6,58 a 6,35 mg1-1/n L1/n g-1 . El valor de 1/n es una medida de la heterogeneidad de la superficie. Un valor cercano a 0 indica una superficie heterogénea. Cuando el valor de 1/n es menor que 1 se dice que el proceso de adsorción es favorable, nuevamente se encuentra el mismo orden mencionado. Cuando se aplica el modelo de Langmuir, se observa que el valor de Qmax es mayor para la muestra CAE80, seguido de la muestra CAE30, con valores de138, 504 a 146,63 mg g-1 lo que confirma que las muestras actividades químicamente tienen mayor capacidad de adsorción. Finalmente los datos obtenidos se ajustan mejor al modelo de langmuir confirmando que el proceso de adsorción se da por la formación de monocapa del adsorbato. De acuerdo con los resultados obtenidos las muestras activadas por método químico presentan las mejores propiedades texturales y químicas, por lo tanto este material es óptimo para aplicarlo en procesos de adsorción en fase acuosa, además se infiere que el proceso de activación químico es el mejor método de preparación de carbones activados a partir de material lignocelulósicos. 4. Conclusiones Se sintetizaron carbones activados, en los cuales las muestras activadas químicamente presentan grandes áreas superficiales aparentes del orden de 1858 m2 g-1 para CAE30 y del orden de 1007 m2 g-1 para CAE80 y volumen de microporos, de 0,63 y 0,35 respectivamente, lo cual se refleja en la gran capacidad de adsorción de Fenol. Se encontró que los carbones activados químicamente contienen alta concentración de grupos ácidos, hecho que se ve reflejado en el método de activación utilizado y el pHpcc. A partir de las entalpías de inmersión es posible establecer similitudes entre las interacciones de los carbones en solución, y el efecto de los grupos superficiales en el comportamiento ácido - base del carbón.
  • 20.     Las semillas de Eucalipto (Eucalyptus globulus labill), son apropiadas para la obtención de carbones activados, con adecuadas propiedades texturales en muestras activadas químicamente. De acuerdo con los resultados obtenidos las muestras activadas químicamente presentaron mejores propiedades texturales y químicas, por lo tanto este material es óptimo para aplicarlo en procesos de adsorción en fase acuosa, además se infiere que el proceso de activación químico es el mejor método de preparación de carbones activados a partir de material lignocelulósicos. Agradecimientos Este trabajo se realizó gracias al convenio marco entre la Universidad Pedagógica Nacional, la Universidad de los Andes y la Universidad Nacional de Colombia. Referencias Garcia, V., y Casallas, J. (2005). Modificación de carbones activados con ácidos fuertes para retener iones metálicos en aguas contaminadas y el diseño de una unidad didáctica para su enseñanza. Bogotá: Universidad Pedagógica Nacional. Tesis de pregrado no publicada. Giraldo, L., Garcia, V., y Moreno, J. C. (2008). Caracterización superficial en fase gas y líquida de carbones activados. Revista de Ingenieria, Univerisidad de los Andes, 7-16. Gutierrez, L., y Mejia, A. (2006). Remoción de fenol en solución acuosa por carbón activado,modificadoy diseño de una ayuda multimedial para el aprendizaje de conceptos implicados en la adsorción. Bogotá: Universidad Pedagógica Nacional. Tesis de grado no publicada. Leyva Ramos, R., Velázquez Vargas, L., Mendoza Barrón, J., y Guerreo Coronado, R. (2002). Adsorción de salicilato de sodio en solucón acuosa sobre carbón activado. Revista de la Sociedad Química de México, 159-166.
  • 21.     Martín Martínez, J. M. (1990). Generalidades sobre adsorción física de gases y vapores en carbones. En J. M. Martín Martínez, Adsorción Física de Gases y Vapores por Carbones (págs. 5-40). Alicante, España: Secretariado de Publicaciones de la Universidad de Alicante. Moreno, J., Navarrete, L., Giraldo, L., y García, V. (2007). Adsorción de Fenol y 3-Cloro Fenol sobre Carbones Activados mediante Calorimetría de Inmersión. Información Tecnológica, 71-80. Rodriguez Reinoso, F. (2007). El Carbón Activado como Adsorbente Universal. En J. Moreno Pirajan, Sólidos Porosos: preparación, Caracterización y Aplicaciones (págs. 1-43). Colombia, Bogotá: Ediciones Uniandes. Rodriguez Reinoso, F. (2011). Universidad de Alicante. Recuperado el 11 de Septiembre de 2010, de Universidad de Alicante: http://www.ua.es/grupo/lma/web%20cyted/publicaciones/libro%20managua.pdf Sánchez, C., y Noemí, R. (2007). El Eucalipto: Una Opción de Alta Rentabilidad. M y M El mueble y la Madera.