SlideShare une entreprise Scribd logo
1  sur  6
Télécharger pour lire hors ligne
Sample Essay Paper on 5G (FIFTH GENERATION)
globalcompose.com/technology-papers/sample-essay-paper-on-5g-fifth-generation/
Abstract
The evolution of cellular technology has also prompted fast increase in the use of data-heavy services and
applications, which continue to demand faster and reliable connections as advances in technology continue to
peak. It is this demand that has prompted many players in the cellular industry to go into the research and
development of the next generation mobile network, 5G. 5G technology embodies a fundamental transformation
in the development of device and network infrastructure technology. The very purpose of the new technology in
development is to address the surge in mobile data consumption. Through an advanced ultra-broadband
infrastructure, 5G technology will not only solve the data consumption problem, but also use the advanced
capabilities of current wireless devices through the combination of new complementary technologies with the
current technologies in existence. Players in different industries including SMEs, manufacturers, service
providers and operators see 5G as having the potential to bring new business ventures and revenue avenues,
and have therefore invested in the research, development and testing of the new technology. Different regions
have also developed visions for the development of the technology. Standardization is however still a problem,
given that all regions and communication equipment are using their own standards. The potential in critical
services, internet of things and faster internet connection, however, present reason for the development and
deployment of the new technology.
Introduction
Mobile internet technology is a fast growing industry as visible through the fast advancement in the mobile
internet technology. From the first instance of 1G that only offered mobility on mobile devices, the industry and
technology has grown to its current 4G/LTE technology that offers all internet protocol services, in addition to
faster broadband internet and lower latency [GSM Intelligence 2014, 5]. Thanks to the evolution in cellular
technology through 1G to the latest in 4G networks, users have been able to experience faster date speeds and
lower latency. The evolution of cellular technology has also prompted fast increase in the use of data-heavy
services and applications, which continue to demand faster and reliable connections as advances in technology
continue to peak [GSA 2015, 5]. It is this demand that has prompted many players in the cellular industry to go
into the research and development of the next generation mobile network, 5G. Although 4G is a relatively new
technology and there is a lot of potential that it still has, especially with many standard-compliant features
developed by vendors and deployed by operators in the improvement of LTE performance, there is still need to
develop a new technology. While the development of 5G comes at a time when most of the operators are
deploying the 4G network world wide, there is consensus that this deployment requires complementation with a
major change in the fundamentals of wireless networks and technology, as a way of ensuring that the industry
meets the demands for wireless services [GSA 2015, 5]. The rationale here is that apart from meeting the
demand, the new technology should be able to stimulate novel economic and social development.
This paper will therefore discuss the application and services for 5G, specifically the development,
implementation and validation of the new technology. Additionally, it will discuss business developing for 5G for
different markets, as well as the regional visions, requirements and development of the new technology across
different regions such as Europe, Asia and America. 5G’s novel enabling technologies and concepts will also be
part of the discussion, in addition to the different industry players’ view on 5G including SMEs, large
1/6
manufacturers, operators and service providers.
The advent of internet enabled devices especially smart phones, tablets netbooks and notebooks as well as the
demand wireless internet connectivity by the users of these devices have driven up the surge and demand for
internet connectivity. With an increase in wireless internet usage, many operators have had challenges meeting
the demand from these users. The answer to this has been the development of a new technology, 5G, to cater
for this upsurge in wireless internet use. According to Jamsa [2015, 44], 5G technology embodies a fundamental
transformation in the development of device and network infrastructure technology. The very purpose of the new
technology in development is to address the surge in mobile data consumption. Through an advanced ultra-
broadband infrastructure, 5G technology will not only solve the data consumption problem, but also use the
advanced capabilities of current wireless devices through the combination of new complementary technologies
with the current technologies in existence [Jamsa 2015, 44].
Most network equipment vendors (NEV) have shifted their focus on the development of 5G technology, even as
mobile network operators continue to deploy 4G and LTE-A (Long Term Evolution Advanced) on their networks
[Gruia 2016]. Mobile network operators such as Verizon Wireless have been doing field tests for the technology,
although most of the industry players are at the research stage for the development of the technology. Most of
the industry players see the deployment of the technology as some time in 2020 or beyond [Jamsa 2015, 45].
To accelerate the deployment of the technology, industry players have formed organizations and research bodies
tasked with working and coming up with feasible versions of the technology. Among the organizations and
research bodies involved in the development of the technology include Wireless World Research Forum
(WWRF), METIS, EU Horizon 2020, Virtuoso and the 5G Public-Private Partnership (5G PPP) [Jamsa 2015, 45].
These organizations will research, design, standardize and commercialize the new technology, hopefully in the
early 2020s [Jamsa 2015, 45]. As a worldwide consortium of wireless operators in the mobile industry, GSMA
“will play a significant role in shaping the strategic, commercial and regulatory development of the 5G
ecosystem. This will include areas such as the definition of roaming and interconnect in 5G, and the identification
and alignment of suitable spectrum bands. Once a stable definition of 5G is reached, the GSMA will work with its
members to identify and develop commercially viable 5G applications” [GSMA Intelligence 2014, 3].
While the development of the technology follows a consortium base of companies coming together to design,
develop and standardize the technology, its implementation will rely on the ability to design a robust wireless
network. The network in this case, should be capable of satisfying both human-centric and machine-centric
services within contiguous and wide spectrum bandwidths [5G PPP 2015, 11]. Additionally, the implementation of
the new technology will rely on flexible resource allocation and sharing schemes; malleable air interfaces;
innovative waveforms; robust techniques of access; radical multi-antenna beam-forming and beam-tracking
techniques [5G PPP 2015, 11].
Additionally, in its implementation, the new technology will support a diverse range of cohesive air interfaces.
This means that in its deployment, 5G will exist in both the low band (frequencies below 6GHz) on macro and
small cells, both of which are at the same legacy with 2,3 and 4G technologies, as well as the high band. The
high bands are ideally frequencies that are above and beyond 6GHz, and include WiFi and 3GPP technologies
[5G PPP 2015, 11].
While the implementation of the current technologies largely relies on hardware, 5G’s implementation will be
software-centric. Network function virtualization and software-defined networking will be among the software
technologies central to the implementation of 5G. The two offer the best possible choice as they allow tighter
integration and more flexibility with infrastructure layers [5G PPP 2015, 11]. Thus, while Network function
virtualization will leverage the current development in server virtualization and enterprise IT virtualization,
software-defined networking will be at the center of logical centralization of control functions relying on the recent
advances in server scale out and cloud technologies [5G PPP 2015, 11].
Although 5G technology is still in its research and development stages, researchers have performed simulations
for the validation of the technology. In a research of the coexistence of 4G and future 5G systems, the research
validated the fact that 5G will not only have 1000 time more capacity and less latency than 4G, but that it will also
2/6
support an infinite number of users and connected things while at the same time ensuring better energy
efficiency [Kaltenberger et al. 2015, 1]. From the results of the simulations, 5G provides better speeds and
supports a larger user base than the current 4G network. From the validation of 5G, it means that the new
technology “translate into higher spectral efficiency, the ability to support large and fragmented spectrum,
dynamic spectrum access (DSA), and short packet transmissions with loose synchronization requirements”
[Kaltenberger et al. 2015, 1].
Among the most interesting features of ICT, and communication in particular, is its contribution to the
economy. In Europe alone, the ICT sector is responsible for 5 percent of the continents GDP, having an annual
value of €660 billion [5G PPP 2015, 5]. Estimates show that further investment in ICT, the 5G technology being
one of them, has the potential of contributing to the rebirth of GDP growth in Europe by about 1.21 percent for
high-income countries and 1.38 percent for low to middle-income economies [5G PPP 2015, 5]. Although Europe
sees the feasibility of a working 5G network as possible only after 2020, given the need to come to consensus on
the architecture, spectrum utilization and standardization with other bodies in Asia and the Americas, Japan has
committed to having a commercial system ready for the 2020 Olympics that the country will be hosting [5G PPP
2015, 14].
Many businesses across different markets see 5G as a new frontier of new network and service
capabilities. Perhaps the most important feature of 5G for businesses is the surety of continuity in user
experience even in the most challenging of situations such as high mobility instances (travelling by train) as well
as in both densely and sparsely populated locations [5G PPP 2015, 14]. The gaming, streaming, e-commerce,
social media and internet-centric applications in mobile phones, tablets and PCs see great potential for 5G in
their respective markets. Through the fast and reliable connection, these industry players can easily innovate to
take advantage of the new connection technology. Mobile network operators can also introduce better services
for their customers, embedding these services with the current packages offered to the customers.
While current network capabilities do not allow effective connection in the challenging situations, among
things in addition to only allowing a dedicated network for mission critical services, the advent of 5G will bring
more effectiveness in connection and mission critical services. Current development, therefore, cuts through a
wide range of markets including transportation, health, security and internet of things [5G PPP 2015, 6]. The
developments in 5G will thus cover both old and new service markets in need of real time reactivity such as
vehicle-to-vehicle services, which will in essence, pave the way to self-driving vehicles, automation in factories in
addition to remote health services.
Across the board, businesses and consumers are looking forward to the research and final deployment of
the new technology. Each region, however, regardless of the number of consortiums formed to look into the
research and development of 5G, share the same vision for the deployment and use of the new 5G technology.
Europe’s 5G private-public partnership has a vision of the integration of telecom and IT in the development of a
common high capacity ubiquitous infrastructure [5G PPP 2015, 7].
Attached to Europe’s vision for 5G is the requirement that the new infrastructure should provide scalability
and flexibility through a virtualized network function. Additionally, the requirement for the deployment of 5G in
Europe is programmable and specific high performance hardware capable of offering resources for storage,
routing, transportation and execution [5G PPP 2015, 7]. Europe hopes to achieve this through the current
consortiums tasked with research and developing the new technology under the umbrella of Horizon 2020.
For the Americas, the International Telecommunications Union’s Radiocommunication group founded the
Working Party for the development of 5G technology in addition to finalizing an actionable timeline for the
deployment of 5G. The vision for the Working Group is to see a mobile broadband connected society. Known as
“beyond 2020,” the Working Group hopes to establish 5G communication in International Mobile
Telecommunication.
The Americas have support for many connected devices and supple air interfaces, as well as energy
efficiency and “always online” capabilities as some of the requirements for the 5G network. In setting these
requirements, the Working Group realizes that it may not be possible to acquire these features through simple
3/6
upgrades of the current 4G systems. It is for this reason that part of the requirement for the 5G includes new
protocols and access technologies. Additionally, robustness and resiliency mobility, seamless user experience
and context awareness of the network form part of the user-driven requirements list. For the network driven
requirements, security, coverage, network flexibility, cost efficiency and a unified system framework form part of
the list. Cost is specifically a requirement as the system must not only function properly, but its development,
deployment and maintenance must be cost effective on not only the operators and vendors, but the end user as
well.
The potential benefits that 5G brings to telecommunication are perhaps the reason for interest in its
development across different regions and industries. Although 4G networks have increased the speed of internet
connection especially in mobile devices, there are enabling technologies that have increased the interest in 5G
technology. Among these are beam-forming and MIMO antennas that have been in development. “Beam-
forming antennas, where the radio signal is focused to a narrow beam, help offset the effect of reduced
propagation of very high frequency carriers” [GSA 2015, 21]. MIMO antennas on the other hand, can potentially
increase the peak throughput per connection in addition to increasing coverage. The effectiveness of the MIMO
antennas have been demonstrated, while LTE-A features such as Coordinated Multipoint have proven effective
in addressing issues with the antenna’s signal interference [GSA 2015, 21].
Research is additionally underway in the use of frequency above 6GHz given the availability of more
spectrum than in lower frequencies [GSA 2015, 21]. By using the available spectrum within the stated
frequencies, it will be possible to deliver enhanced mobile broadband connection to more people.
With enabling technology such as beam-forming and MIMO antennas, 5G presents potential for novel concepts
and application. One of these concepts is augmented and virtual reality. Although virtual reality is potentially
useful in entertainment ventures such as gaming, it is also potentially useful in practical scenarios including
manufacturing and medicine, with an extension to wearable technology [GSMA Intelligence 2014, 9].automation
in factories as well as performance of remote surgery are among the potential novelties that can come with 5G
broadband connection. Such applications are speed and reliability dependent, consuming high bandwidth and
requiring low latency, both of which are currently not achievable through LTE [GSMA Intelligence 2014, 9].
Yet another concept that could become a reality is autonomous driving/connected cars. Current research into
driverless cars undertaken by Google involves the US of GP, cameras and other gadgets to measure proximity.
Such vehicles are however a potential hazard on the road in their current state given the lack of reliable
connectivity to a central system as well as the ability to communicate with other vehicles using the road
infrastructure. However, with 5G, there is a potential of enabling the vehicles to communicate with one another
as well as the outside world resulting inn safety and efficiency on the road [GSMA Intelligence 2014, 9]. Thus,
with connection to a network with a traffic management system, it will be possible for high-speed travel at closer
proximity with lower risk of accident, given the elimination of human error [GSMA Intelligence 2014, 9]. The high
bandwidth and fast command response time required for safe operation of the automated system will only be
possible with the 1 millisecond delay that 5G provides [GSMA Intelligence 2014, 9].
In looking at the views of different industry players, many see 5G technology as an enabler of business with the
potential of creating not only new business ventures, but also new income generating avenues. SMEs in
particular see 5G networks as a combination of fixed and wireless solutions run from the latest computing logic
across the world. For this reason, SMEs see themselves as best positioned as part of the ecosystem. By
becoming part of the ecosystem, SMEs see the potential for growth and expansion into new business models
and opportunities.
Big manufacturers on the other hand, see the advent of 5G as a potential for business. Automation and split
second response through the internet of thing will enable better automation and control in the factories, in
addition to increasing safety. Further, telecommunication equipment manufacturers see 5G as an opportunity for
securing contacts for upgrading mobile telecommunication systems [Scott 2016].
Operators and service providers on the other hand see 5G as an opportunity to bring more services to the end
users. Thus, they both see the new ultrafast connection as a way of getting more business and earning revenue
4/6
from consumers given the value added services that will come with faster connections [Scott 2016]. In their rush
to test and deploy the new technology, operators and service providers see 5G as the new frontier for business,
and are therefore not taking any chances with the technology. Many are sponsoring universities in millions of
dollars, as well as lobbying international standards organizations to promote their technology [Scott 2016].
In the race to create 5G technology, many operators, service providers and regions have initiated research and
development as well as tests for the next generation communication technology. 5G offers a lot of potential in
faster connection speeds, connecting things (internet of things) and reliability in connections. The different
development projects by each region, operator and service providers, however, may present a problem
especially in choosing a standard for the new technology. Although they are all building from the 4G technology,
the lack of a common standard may eventually present standardization problems, delaying the eventual rolling
out of the technology. In its implementation, 5G will use beam-forming technology to track the end user device.
Although this will deliver faster connections, it is an expensive technology to deploy on a large scale. MIMO,
which offers an option for increased bandwidth on the other hand, can create radio interference. This will then
require a different technology to solve, which is additionally expensive. The potential for 5G use is infinite.
However, there is need to address the teething problems of standardization, radio interference and beam-
forming, before full deployment of the technology.
Bibliography
“United States : Industry Leaders Focus on 5G Research, Development and Standardization Chief Technology
Officers Highlight Strategic Priorities for ITU Standardization.” 2015.MENA Report.
5GPPP. 2015. The 5G Infrastructure Public Private Partnership: The Next Generation of Communication
Networks and Services. 5G PPP
Gruia, Ronald. 2016. “Achieving a new wireless frontier with 5G.” Forbes.
GSA. 2015. The Road to 5G: Drivers, Applications, Requirements and Technical Development. GSA
GSM Intelligence. 2014. Understanding 5G: Perspectives on Future Technological Advancements in Mobile.
GSMA
Jämsä, Tommi. 2015. “Channel Models Key to 5G Development.” Microwave Journal 58 (3): 44-44,46,48,50.
Kaltenberger, Florian. 2015. Experimental Analysis and Simulative Validation of Dynamic Spectrum Access for
Coexistence of 4G and Future 5G Systems. Eurecom
Scott, Mark. 2016. “5G is a New Frontier for Mobile Carrierss and Tech Companies.” The New York Times.
5/6
6/6

Contenu connexe

Tendances

Brief introduction-about-5 g-mobile-technologies
Brief introduction-about-5 g-mobile-technologiesBrief introduction-about-5 g-mobile-technologies
Brief introduction-about-5 g-mobile-technologies
ritusara
 
Lgs4Glteplaybookv2-short
Lgs4Glteplaybookv2-shortLgs4Glteplaybookv2-short
Lgs4Glteplaybookv2-short
LGS Innovations
 
5G Certification, A New Chapter in Human Development
5G Certification, A New Chapter in Human Development5G Certification, A New Chapter in Human Development
5G Certification, A New Chapter in Human Development
Tonex
 
McKinsey Global Institute Connected World-discussion-paper_february-2020
McKinsey Global Institute Connected World-discussion-paper_february-2020McKinsey Global Institute Connected World-discussion-paper_february-2020
McKinsey Global Institute Connected World-discussion-paper_february-2020
DESMOND YUEN
 

Tendances (20)

Brief introduction-about-5 g-mobile-technologies
Brief introduction-about-5 g-mobile-technologiesBrief introduction-about-5 g-mobile-technologies
Brief introduction-about-5 g-mobile-technologies
 
6G Business Digital Inclusion
6G Business Digital Inclusion6G Business Digital Inclusion
6G Business Digital Inclusion
 
4G (SUD)
4G (SUD)4G (SUD)
4G (SUD)
 
What is next for Telecom (Broadband and Cell) - November 2021
What is next for Telecom (Broadband and Cell) - November 2021 What is next for Telecom (Broadband and Cell) - November 2021
What is next for Telecom (Broadband and Cell) - November 2021
 
Lgs4Glteplaybookv2-short
Lgs4Glteplaybookv2-shortLgs4Glteplaybookv2-short
Lgs4Glteplaybookv2-short
 
5G Certification, A New Chapter in Human Development
5G Certification, A New Chapter in Human Development5G Certification, A New Chapter in Human Development
5G Certification, A New Chapter in Human Development
 
LGS 4G LTE Playbook
LGS 4G LTE Playbook LGS 4G LTE Playbook
LGS 4G LTE Playbook
 
4GLTEPlaybook_Preview
4GLTEPlaybook_Preview4GLTEPlaybook_Preview
4GLTEPlaybook_Preview
 
5g technologies
5g technologies5g technologies
5g technologies
 
ICT Insights Issue 17 (03/2016)
ICT Insights Issue 17 (03/2016) ICT Insights Issue 17 (03/2016)
ICT Insights Issue 17 (03/2016)
 
Best Practices for 5G Transformation - Key Findings from the Nokia 5G Maturit...
Best Practices for 5G Transformation - Key Findings from the Nokia 5G Maturit...Best Practices for 5G Transformation - Key Findings from the Nokia 5G Maturit...
Best Practices for 5G Transformation - Key Findings from the Nokia 5G Maturit...
 
Jisc's Vision for 5G - Digital Catapult Future of 5G Summit
Jisc's Vision for 5G - Digital Catapult Future of 5G SummitJisc's Vision for 5G - Digital Catapult Future of 5G Summit
Jisc's Vision for 5G - Digital Catapult Future of 5G Summit
 
McKinsey Global Institute Connected World-discussion-paper_february-2020
McKinsey Global Institute Connected World-discussion-paper_february-2020McKinsey Global Institute Connected World-discussion-paper_february-2020
McKinsey Global Institute Connected World-discussion-paper_february-2020
 
Activating 5G Research in Indonesia
Activating 5G Research in IndonesiaActivating 5G Research in Indonesia
Activating 5G Research in Indonesia
 
4G Wireless Technology
4G Wireless Technology4G Wireless Technology
4G Wireless Technology
 
5G and G5 in Smart Cities
5G and G5 in Smart Cities5G and G5 in Smart Cities
5G and G5 in Smart Cities
 
Ericsson Mobility Report June 2019
Ericsson Mobility Report June 2019Ericsson Mobility Report June 2019
Ericsson Mobility Report June 2019
 
5 g enterprise market
5 g enterprise market5 g enterprise market
5 g enterprise market
 
Newtec SATCOM HUB NAB 2019 - Riikka Koponen (IABM)
Newtec SATCOM HUB NAB 2019 - Riikka Koponen (IABM) Newtec SATCOM HUB NAB 2019 - Riikka Koponen (IABM)
Newtec SATCOM HUB NAB 2019 - Riikka Koponen (IABM)
 
A Study on Next Generation Mobile Communication
A Study on Next Generation Mobile CommunicationA Study on Next Generation Mobile Communication
A Study on Next Generation Mobile Communication
 

Similaire à Globalcompose.com sample essay paper on 5 g fifth generation

5g-a-network-transformation-imperative
5g-a-network-transformation-imperative5g-a-network-transformation-imperative
5g-a-network-transformation-imperative
Amar Ravi
 
India_has_made_massive_growth_in_the_global[1][1].pptx
India_has_made_massive_growth_in_the_global[1][1].pptxIndia_has_made_massive_growth_in_the_global[1][1].pptx
India_has_made_massive_growth_in_the_global[1][1].pptx
ajaygreat321
 
5G Network Architecture, Planning and Design
5G Network Architecture, Planning and Design5G Network Architecture, Planning and Design
5G Network Architecture, Planning and Design
Tonex
 
4G Technology and Its Application – An Overview
4G Technology and Its Application – An Overview4G Technology and Its Application – An Overview
4G Technology and Its Application – An Overview
paperpublications3
 

Similaire à Globalcompose.com sample essay paper on 5 g fifth generation (20)

5G - Vision for the next generation of connectivity
5G - Vision for the next generation of connectivity5G - Vision for the next generation of connectivity
5G - Vision for the next generation of connectivity
 
Report on 4 g
Report on 4 gReport on 4 g
Report on 4 g
 
5G vision-brochure-v1
5G vision-brochure-v15G vision-brochure-v1
5G vision-brochure-v1
 
5g cellular communication
5g cellular communication5g cellular communication
5g cellular communication
 
5G Technology
5G Technology5G Technology
5G Technology
 
5g-a-network-transformation-imperative
5g-a-network-transformation-imperative5g-a-network-transformation-imperative
5g-a-network-transformation-imperative
 
5g, creating everything connection architecture - C&T RF Antennas Inc
5g, creating everything connection architecture - C&T RF Antennas Inc5g, creating everything connection architecture - C&T RF Antennas Inc
5g, creating everything connection architecture - C&T RF Antennas Inc
 
5 g rationales and strategic insights
5 g rationales and strategic insights5 g rationales and strategic insights
5 g rationales and strategic insights
 
Presentation.pptx
Presentation.pptxPresentation.pptx
Presentation.pptx
 
India_has_made_massive_growth_in_the_global[1][1].pptx
India_has_made_massive_growth_in_the_global[1][1].pptxIndia_has_made_massive_growth_in_the_global[1][1].pptx
India_has_made_massive_growth_in_the_global[1][1].pptx
 
5G Network Architecture, Planning and Design
5G Network Architecture, Planning and Design5G Network Architecture, Planning and Design
5G Network Architecture, Planning and Design
 
4G Technology and Its Application – An Overview
4G Technology and Its Application – An Overview4G Technology and Its Application – An Overview
4G Technology and Its Application – An Overview
 
Understanding the Concepts of 5G
Understanding the Concepts of 5G Understanding the Concepts of 5G
Understanding the Concepts of 5G
 
Introduction to 5 g
Introduction to 5 gIntroduction to 5 g
Introduction to 5 g
 
5G Technology
5G Technology5G Technology
5G Technology
 
5 g racing over research
5 g racing over research5 g racing over research
5 g racing over research
 
Cor review2018-a
Cor review2018-aCor review2018-a
Cor review2018-a
 
Quick Quote App Portfolio
Quick Quote App PortfolioQuick Quote App Portfolio
Quick Quote App Portfolio
 
5G Technology.docx
5G Technology.docx5G Technology.docx
5G Technology.docx
 
Fifth genration technology
Fifth genration technologyFifth genration technology
Fifth genration technology
 

Dernier

Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
KarakKing
 

Dernier (20)

Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 

Globalcompose.com sample essay paper on 5 g fifth generation

  • 1. Sample Essay Paper on 5G (FIFTH GENERATION) globalcompose.com/technology-papers/sample-essay-paper-on-5g-fifth-generation/ Abstract The evolution of cellular technology has also prompted fast increase in the use of data-heavy services and applications, which continue to demand faster and reliable connections as advances in technology continue to peak. It is this demand that has prompted many players in the cellular industry to go into the research and development of the next generation mobile network, 5G. 5G technology embodies a fundamental transformation in the development of device and network infrastructure technology. The very purpose of the new technology in development is to address the surge in mobile data consumption. Through an advanced ultra-broadband infrastructure, 5G technology will not only solve the data consumption problem, but also use the advanced capabilities of current wireless devices through the combination of new complementary technologies with the current technologies in existence. Players in different industries including SMEs, manufacturers, service providers and operators see 5G as having the potential to bring new business ventures and revenue avenues, and have therefore invested in the research, development and testing of the new technology. Different regions have also developed visions for the development of the technology. Standardization is however still a problem, given that all regions and communication equipment are using their own standards. The potential in critical services, internet of things and faster internet connection, however, present reason for the development and deployment of the new technology. Introduction Mobile internet technology is a fast growing industry as visible through the fast advancement in the mobile internet technology. From the first instance of 1G that only offered mobility on mobile devices, the industry and technology has grown to its current 4G/LTE technology that offers all internet protocol services, in addition to faster broadband internet and lower latency [GSM Intelligence 2014, 5]. Thanks to the evolution in cellular technology through 1G to the latest in 4G networks, users have been able to experience faster date speeds and lower latency. The evolution of cellular technology has also prompted fast increase in the use of data-heavy services and applications, which continue to demand faster and reliable connections as advances in technology continue to peak [GSA 2015, 5]. It is this demand that has prompted many players in the cellular industry to go into the research and development of the next generation mobile network, 5G. Although 4G is a relatively new technology and there is a lot of potential that it still has, especially with many standard-compliant features developed by vendors and deployed by operators in the improvement of LTE performance, there is still need to develop a new technology. While the development of 5G comes at a time when most of the operators are deploying the 4G network world wide, there is consensus that this deployment requires complementation with a major change in the fundamentals of wireless networks and technology, as a way of ensuring that the industry meets the demands for wireless services [GSA 2015, 5]. The rationale here is that apart from meeting the demand, the new technology should be able to stimulate novel economic and social development. This paper will therefore discuss the application and services for 5G, specifically the development, implementation and validation of the new technology. Additionally, it will discuss business developing for 5G for different markets, as well as the regional visions, requirements and development of the new technology across different regions such as Europe, Asia and America. 5G’s novel enabling technologies and concepts will also be part of the discussion, in addition to the different industry players’ view on 5G including SMEs, large 1/6
  • 2. manufacturers, operators and service providers. The advent of internet enabled devices especially smart phones, tablets netbooks and notebooks as well as the demand wireless internet connectivity by the users of these devices have driven up the surge and demand for internet connectivity. With an increase in wireless internet usage, many operators have had challenges meeting the demand from these users. The answer to this has been the development of a new technology, 5G, to cater for this upsurge in wireless internet use. According to Jamsa [2015, 44], 5G technology embodies a fundamental transformation in the development of device and network infrastructure technology. The very purpose of the new technology in development is to address the surge in mobile data consumption. Through an advanced ultra- broadband infrastructure, 5G technology will not only solve the data consumption problem, but also use the advanced capabilities of current wireless devices through the combination of new complementary technologies with the current technologies in existence [Jamsa 2015, 44]. Most network equipment vendors (NEV) have shifted their focus on the development of 5G technology, even as mobile network operators continue to deploy 4G and LTE-A (Long Term Evolution Advanced) on their networks [Gruia 2016]. Mobile network operators such as Verizon Wireless have been doing field tests for the technology, although most of the industry players are at the research stage for the development of the technology. Most of the industry players see the deployment of the technology as some time in 2020 or beyond [Jamsa 2015, 45]. To accelerate the deployment of the technology, industry players have formed organizations and research bodies tasked with working and coming up with feasible versions of the technology. Among the organizations and research bodies involved in the development of the technology include Wireless World Research Forum (WWRF), METIS, EU Horizon 2020, Virtuoso and the 5G Public-Private Partnership (5G PPP) [Jamsa 2015, 45]. These organizations will research, design, standardize and commercialize the new technology, hopefully in the early 2020s [Jamsa 2015, 45]. As a worldwide consortium of wireless operators in the mobile industry, GSMA “will play a significant role in shaping the strategic, commercial and regulatory development of the 5G ecosystem. This will include areas such as the definition of roaming and interconnect in 5G, and the identification and alignment of suitable spectrum bands. Once a stable definition of 5G is reached, the GSMA will work with its members to identify and develop commercially viable 5G applications” [GSMA Intelligence 2014, 3]. While the development of the technology follows a consortium base of companies coming together to design, develop and standardize the technology, its implementation will rely on the ability to design a robust wireless network. The network in this case, should be capable of satisfying both human-centric and machine-centric services within contiguous and wide spectrum bandwidths [5G PPP 2015, 11]. Additionally, the implementation of the new technology will rely on flexible resource allocation and sharing schemes; malleable air interfaces; innovative waveforms; robust techniques of access; radical multi-antenna beam-forming and beam-tracking techniques [5G PPP 2015, 11]. Additionally, in its implementation, the new technology will support a diverse range of cohesive air interfaces. This means that in its deployment, 5G will exist in both the low band (frequencies below 6GHz) on macro and small cells, both of which are at the same legacy with 2,3 and 4G technologies, as well as the high band. The high bands are ideally frequencies that are above and beyond 6GHz, and include WiFi and 3GPP technologies [5G PPP 2015, 11]. While the implementation of the current technologies largely relies on hardware, 5G’s implementation will be software-centric. Network function virtualization and software-defined networking will be among the software technologies central to the implementation of 5G. The two offer the best possible choice as they allow tighter integration and more flexibility with infrastructure layers [5G PPP 2015, 11]. Thus, while Network function virtualization will leverage the current development in server virtualization and enterprise IT virtualization, software-defined networking will be at the center of logical centralization of control functions relying on the recent advances in server scale out and cloud technologies [5G PPP 2015, 11]. Although 5G technology is still in its research and development stages, researchers have performed simulations for the validation of the technology. In a research of the coexistence of 4G and future 5G systems, the research validated the fact that 5G will not only have 1000 time more capacity and less latency than 4G, but that it will also 2/6
  • 3. support an infinite number of users and connected things while at the same time ensuring better energy efficiency [Kaltenberger et al. 2015, 1]. From the results of the simulations, 5G provides better speeds and supports a larger user base than the current 4G network. From the validation of 5G, it means that the new technology “translate into higher spectral efficiency, the ability to support large and fragmented spectrum, dynamic spectrum access (DSA), and short packet transmissions with loose synchronization requirements” [Kaltenberger et al. 2015, 1]. Among the most interesting features of ICT, and communication in particular, is its contribution to the economy. In Europe alone, the ICT sector is responsible for 5 percent of the continents GDP, having an annual value of €660 billion [5G PPP 2015, 5]. Estimates show that further investment in ICT, the 5G technology being one of them, has the potential of contributing to the rebirth of GDP growth in Europe by about 1.21 percent for high-income countries and 1.38 percent for low to middle-income economies [5G PPP 2015, 5]. Although Europe sees the feasibility of a working 5G network as possible only after 2020, given the need to come to consensus on the architecture, spectrum utilization and standardization with other bodies in Asia and the Americas, Japan has committed to having a commercial system ready for the 2020 Olympics that the country will be hosting [5G PPP 2015, 14]. Many businesses across different markets see 5G as a new frontier of new network and service capabilities. Perhaps the most important feature of 5G for businesses is the surety of continuity in user experience even in the most challenging of situations such as high mobility instances (travelling by train) as well as in both densely and sparsely populated locations [5G PPP 2015, 14]. The gaming, streaming, e-commerce, social media and internet-centric applications in mobile phones, tablets and PCs see great potential for 5G in their respective markets. Through the fast and reliable connection, these industry players can easily innovate to take advantage of the new connection technology. Mobile network operators can also introduce better services for their customers, embedding these services with the current packages offered to the customers. While current network capabilities do not allow effective connection in the challenging situations, among things in addition to only allowing a dedicated network for mission critical services, the advent of 5G will bring more effectiveness in connection and mission critical services. Current development, therefore, cuts through a wide range of markets including transportation, health, security and internet of things [5G PPP 2015, 6]. The developments in 5G will thus cover both old and new service markets in need of real time reactivity such as vehicle-to-vehicle services, which will in essence, pave the way to self-driving vehicles, automation in factories in addition to remote health services. Across the board, businesses and consumers are looking forward to the research and final deployment of the new technology. Each region, however, regardless of the number of consortiums formed to look into the research and development of 5G, share the same vision for the deployment and use of the new 5G technology. Europe’s 5G private-public partnership has a vision of the integration of telecom and IT in the development of a common high capacity ubiquitous infrastructure [5G PPP 2015, 7]. Attached to Europe’s vision for 5G is the requirement that the new infrastructure should provide scalability and flexibility through a virtualized network function. Additionally, the requirement for the deployment of 5G in Europe is programmable and specific high performance hardware capable of offering resources for storage, routing, transportation and execution [5G PPP 2015, 7]. Europe hopes to achieve this through the current consortiums tasked with research and developing the new technology under the umbrella of Horizon 2020. For the Americas, the International Telecommunications Union’s Radiocommunication group founded the Working Party for the development of 5G technology in addition to finalizing an actionable timeline for the deployment of 5G. The vision for the Working Group is to see a mobile broadband connected society. Known as “beyond 2020,” the Working Group hopes to establish 5G communication in International Mobile Telecommunication. The Americas have support for many connected devices and supple air interfaces, as well as energy efficiency and “always online” capabilities as some of the requirements for the 5G network. In setting these requirements, the Working Group realizes that it may not be possible to acquire these features through simple 3/6
  • 4. upgrades of the current 4G systems. It is for this reason that part of the requirement for the 5G includes new protocols and access technologies. Additionally, robustness and resiliency mobility, seamless user experience and context awareness of the network form part of the user-driven requirements list. For the network driven requirements, security, coverage, network flexibility, cost efficiency and a unified system framework form part of the list. Cost is specifically a requirement as the system must not only function properly, but its development, deployment and maintenance must be cost effective on not only the operators and vendors, but the end user as well. The potential benefits that 5G brings to telecommunication are perhaps the reason for interest in its development across different regions and industries. Although 4G networks have increased the speed of internet connection especially in mobile devices, there are enabling technologies that have increased the interest in 5G technology. Among these are beam-forming and MIMO antennas that have been in development. “Beam- forming antennas, where the radio signal is focused to a narrow beam, help offset the effect of reduced propagation of very high frequency carriers” [GSA 2015, 21]. MIMO antennas on the other hand, can potentially increase the peak throughput per connection in addition to increasing coverage. The effectiveness of the MIMO antennas have been demonstrated, while LTE-A features such as Coordinated Multipoint have proven effective in addressing issues with the antenna’s signal interference [GSA 2015, 21]. Research is additionally underway in the use of frequency above 6GHz given the availability of more spectrum than in lower frequencies [GSA 2015, 21]. By using the available spectrum within the stated frequencies, it will be possible to deliver enhanced mobile broadband connection to more people. With enabling technology such as beam-forming and MIMO antennas, 5G presents potential for novel concepts and application. One of these concepts is augmented and virtual reality. Although virtual reality is potentially useful in entertainment ventures such as gaming, it is also potentially useful in practical scenarios including manufacturing and medicine, with an extension to wearable technology [GSMA Intelligence 2014, 9].automation in factories as well as performance of remote surgery are among the potential novelties that can come with 5G broadband connection. Such applications are speed and reliability dependent, consuming high bandwidth and requiring low latency, both of which are currently not achievable through LTE [GSMA Intelligence 2014, 9]. Yet another concept that could become a reality is autonomous driving/connected cars. Current research into driverless cars undertaken by Google involves the US of GP, cameras and other gadgets to measure proximity. Such vehicles are however a potential hazard on the road in their current state given the lack of reliable connectivity to a central system as well as the ability to communicate with other vehicles using the road infrastructure. However, with 5G, there is a potential of enabling the vehicles to communicate with one another as well as the outside world resulting inn safety and efficiency on the road [GSMA Intelligence 2014, 9]. Thus, with connection to a network with a traffic management system, it will be possible for high-speed travel at closer proximity with lower risk of accident, given the elimination of human error [GSMA Intelligence 2014, 9]. The high bandwidth and fast command response time required for safe operation of the automated system will only be possible with the 1 millisecond delay that 5G provides [GSMA Intelligence 2014, 9]. In looking at the views of different industry players, many see 5G technology as an enabler of business with the potential of creating not only new business ventures, but also new income generating avenues. SMEs in particular see 5G networks as a combination of fixed and wireless solutions run from the latest computing logic across the world. For this reason, SMEs see themselves as best positioned as part of the ecosystem. By becoming part of the ecosystem, SMEs see the potential for growth and expansion into new business models and opportunities. Big manufacturers on the other hand, see the advent of 5G as a potential for business. Automation and split second response through the internet of thing will enable better automation and control in the factories, in addition to increasing safety. Further, telecommunication equipment manufacturers see 5G as an opportunity for securing contacts for upgrading mobile telecommunication systems [Scott 2016]. Operators and service providers on the other hand see 5G as an opportunity to bring more services to the end users. Thus, they both see the new ultrafast connection as a way of getting more business and earning revenue 4/6
  • 5. from consumers given the value added services that will come with faster connections [Scott 2016]. In their rush to test and deploy the new technology, operators and service providers see 5G as the new frontier for business, and are therefore not taking any chances with the technology. Many are sponsoring universities in millions of dollars, as well as lobbying international standards organizations to promote their technology [Scott 2016]. In the race to create 5G technology, many operators, service providers and regions have initiated research and development as well as tests for the next generation communication technology. 5G offers a lot of potential in faster connection speeds, connecting things (internet of things) and reliability in connections. The different development projects by each region, operator and service providers, however, may present a problem especially in choosing a standard for the new technology. Although they are all building from the 4G technology, the lack of a common standard may eventually present standardization problems, delaying the eventual rolling out of the technology. In its implementation, 5G will use beam-forming technology to track the end user device. Although this will deliver faster connections, it is an expensive technology to deploy on a large scale. MIMO, which offers an option for increased bandwidth on the other hand, can create radio interference. This will then require a different technology to solve, which is additionally expensive. The potential for 5G use is infinite. However, there is need to address the teething problems of standardization, radio interference and beam- forming, before full deployment of the technology. Bibliography “United States : Industry Leaders Focus on 5G Research, Development and Standardization Chief Technology Officers Highlight Strategic Priorities for ITU Standardization.” 2015.MENA Report. 5GPPP. 2015. The 5G Infrastructure Public Private Partnership: The Next Generation of Communication Networks and Services. 5G PPP Gruia, Ronald. 2016. “Achieving a new wireless frontier with 5G.” Forbes. GSA. 2015. The Road to 5G: Drivers, Applications, Requirements and Technical Development. GSA GSM Intelligence. 2014. Understanding 5G: Perspectives on Future Technological Advancements in Mobile. GSMA Jämsä, Tommi. 2015. “Channel Models Key to 5G Development.” Microwave Journal 58 (3): 44-44,46,48,50. Kaltenberger, Florian. 2015. Experimental Analysis and Simulative Validation of Dynamic Spectrum Access for Coexistence of 4G and Future 5G Systems. Eurecom Scott, Mark. 2016. “5G is a New Frontier for Mobile Carrierss and Tech Companies.” The New York Times. 5/6
  • 6. 6/6