Publicité

Big Data Platform Industrialization

DataWorks Summit/Hadoop Summit
25 Apr 2016
Publicité

Contenu connexe

Présentations pour vous(20)

Similaire à Big Data Platform Industrialization (20)

Publicité

Plus de DataWorks Summit/Hadoop Summit(20)

Publicité

Big Data Platform Industrialization

  1. DIRECTION REDACTOR DATE BIG DATA PLATFORM INDUSTRIALIZATION
  2. BIG DATA INITIAVES @Renault 2014 Big Data Sandbox on old HPC Infrastructure. Site: Innovation LAB POC: Quality Data Exploration 2015 DataLab Implementation New HP Infrastructure Data Protection: NO 1st Level of Industrialization 2016 Big Data Platform Industrialization to host both Pocs and Projects in Production. Data Protection: YES
  3. 3 DIRECTION REDACTOR DATE Big Data Deployment Production Stakes • One Hadoop cluster with a 24/7 always-on visibility of data(instead of siloing them). • Many crossing Data possibilities • Simplify Operations • Design Simplicity • Charge Back Model • Scalability and Isolation • Isolate Experimental applications from Production
  4. 4 DIRECTION REDACTOR DATE Déploiement des projets Qualité sur DataLake Big Data Developpers Serveur Client (Clients Hadoop Installés) DMZ KNOX GATEWAY Search Node Edge Node Name Node DataStore Master DNDNDNDNDNDNDNDNDN DNDNDNDNDNDNDNDNDN Data Sources LoadBalancer Web Applications Web service Import Access GUI Search Node
  5. 5 DIRECTION REDACTOR DATE Quality Sales and Marketing Supply Chain Engineering Consumers Open Data Internet of Things Producers Batch (RDBMS, Files) Messages, Logs Streaming, Data Flow NFS Gateway, Sqoop, Spark SQL FLUME LOGSTASH KAFKA PRODUCERS Kafka Broker (Topics) Spark Streaming Elasticsearch HBASE HIVE HDFS Spark SQL Spark RDD Big Data Ecosystem @ Renault YARN + HDFS
  6. 6 DIRECTION REDACTOR DATE Data Ingestion Scenarios : RDBMS RDBMS Sqoop Spark SQL HIVE Flat Files HBase Basic data import based on column id (Integer) or timestamp Example: SOPHIA ELT Architecture: Extract Load and Transform Non standard Data Import, Specific schema Example: BLMS Support ETL Architecture : Extract Transfrom and Load Support Ingestion directly to Elasticsearch INSERT ONLY NOCTURNAL BATCH SQL QUERIES HIGH LATENCY INSERT ONLY NOCTURNAL BATCH DATA PROCESSING Files Format: CSV, PARQUET, AVRO INSERT AND UPDATE NOSQL DB (KEY-VALUE SCHEMA) LOW LATENCY FOR SCALING OUT RELATIONAL DB ON HADOOP INTERACTIVE ANALYTICS (SPOTFIRE) VERY LOW LATENCY (SSD DISKS) NEAR REAL TIME ANALITYCS (WATCHING ALERTS) TEXT SEARCH (LOG ANALYSIS) NESTED and PARENT/CHILD RELATIONSHIPS Elasticsearch
  7. 7 DIRECTION REDACTOR DATE Interactive SQL Data Analytics Main Objectives • Speeding up BI queries on Big Data Stores • Hide Complexity of Big Data Architecture to End-User and Provide Only one Data Connector for Spotfire • Provide Interactive User Experience • Data Virtualization (No need to import RDBMS systematically for Crossing Data)  Spark SQL (1.6) : The emerging solution for Interactive SQL Data Analytics with the Data Source API.
  8. 8 DIRECTION REDACTOR DATE Only One Data Connector Data Processing Applications Add In-Memory Capability Load/Insert Load/Insert Load/Insert Interactive SQL Data Analytics HBASEHIVE Elasticsearch Spark SQL Files Parquet DataSource API Load/Insert RDBMS Load/Insert
  9. 9 DIRECTION REDACTOR DATE Big Data In Action Multitenancy High Availability Security Data Governance Policy Continuous Delivery Data Protection Hadoop Organization
  10. POC# 0 POC# 1 POC# 2 POC# n Release Management PRODUCTION SLA & Monitoring Tenant 1 App 1 Tenant 2 App 1 App 2 Tenant n App 1 Managementand Monitoring DataLab, Open to Data Exploration Bi-modal Big Data Platform One physical Cost –effective platform
  11. 11 DIRECTION REDACTOR DATE Hadoop Global Data Life Cycle Data Sources Load or archive batch data Stream real time data Mask Sensitive data with Automated Process Renault Big Data Platform Refine, curate, process, query data Big Data Web Services INGESTION Scheduled and Monitored by AITS in PROD Policies pre-defined by Security Officer ADA ARCA subscription request to datasets Data Access AITS: Groups Management DIRx Data Owner Validation Sync Users Defined in Ranger and Protegrity Defined in Falcon
  12. 12 DIRECTION REDACTOR DATE Active / Active Hadoop Platform Rack Salle 1 C2 Rack Salle 2 C2 Data Nodes for Bloc Storage HDFS PROD HDFS POC High Availability Architecture
  13. 13 DIRECTION REDACTOR DATE Hadoop Security Levels OS Security Authorization Perimeter Level Security Protected Zone Data Protection Selected Solution : Tokenization (Protegrity)
  14. 14 DIRECTION REDACTOR DATE Tokenization Definition Selected solution: Tokenization • Tokenization is a form of data protection that converts sensitive data into fake data. • The real data can be retrieved by authorized users. • Protegrity: The only Available Solution for Hadoop (supports also traditional Data Systems) Data Protection Key Requirements: • Ability to de-identify Personally Identifiable Data • Restrict data access (financial data, Data residency obligations, …) • Provide central management and control of all data security operations
  15. 15 DIRECTION REDACTOR DATE Identifier Clear Protected Authorized Role 1 * Can see most data in the clear Authorized Role 2 * Can see limited data in the clear Name Joe Smith csu wusoj Joe Smith Joe Smith Address 100 Main Street, Pleasantville, CA 476 srta coetse, cysieondusbak, HA 100 Main Street, Pleasantville, CA “No Access” Date of Birth 12/25/1966 01/02/1966 12/25/1966 01/02/1966 VIN VF1112C0000724284 AB9875R8467364752 VF1112C0000724284 “No Access” Credit Card Number 3678 2289 3907 3378 3846 2290 3371 3890 xxxx xxxx xxxx 3378 3846 2290 3371 3890 E-mail Address joe.smith@surferdude.org eoe.nwuer@beusorpdqo.aku joe.smith@surferdude.org joe.smith@surferdude.org Telephone Number 760-278-3389 998-389-2289 760-278-3389 998-389-2289 DATA PROTECTION Example 1 Fine Grained Protection
  16. 16 DIRECTION REDACTOR DATE DATA PROTECTION Example 2 Data Residency
  17. 17 DIRECTION REDACTOR DATE The Next Step: HDFS FEDERATION Name Service 1 /store1/ Name Service 2 /store2/ Name Node 1 Name Node 2 Name Node 3 Name Node 4 Data Node 1 Data Node 2 Data Node 3 Data Node 4 Data Node 5 Data Node 6 Data Node 7 Data Node 8 Federation Scale-out Data Nodes Resources usage orchestrated by YARN HA HA • see only access /store2 • cannot access to /store1 • cannot access to Name Node 1 and 2 • see only access /store1 • cannot access to /store2 • cannot access to Name Node 3 and 4 PHYSICALISOLATION Privileged Users can access /store1 and /store2 for Crossing Data Bloc Storage Unreadable Data Data Node 9
  18. 18 DIRECTION REDACTOR DATE BIG DATA PROJECT PROCESS Business Use Case DIRx POC PROD Project Data Exploration AT Data Sources Ingestion Security Policies Data Processing development User Access Authorization CPT DIA - Innovation Front End deployment Admin @BICC architecture development MEP Implementation Deployment management DAT
  19. 19 DIRECTION REDACTOR DATE DATA CHANGE MANAGEMENT • Publish real time dashboard of all data flows. • For each data source the producer and the consumers will be displayed: • Producer: the DIRx generating the Data • Consumers: all the Big Data applications using this Data source • If the Producer decides to change the data source schema, He has to send notification from the dashboard to all consumers. • By monitoring in real time the logs of data ingestion jobs, the failure detection is more reactive and efficient.
  20. 20 DIRECTION REDACTOR DATE COLLECT LOGS FOR (NRT) CARTO Sqoop Metastore Storing Jobs Hive Metastore Storing SQL Schema Oozie Metastore Storing Workflows Oozie Logs Yarn Job History Logs Storing Projects Hue Database Elasticsearch J D B C P L U G I N L O G S T A S H Kibana
  21. 21 DIRECTION REDACTOR DATE Dynamic Relationship Portal
Publicité