SlideShare une entreprise Scribd logo
1  sur  7
Télécharger pour lire hors ligne
Hannah	
  Shapero	
  
Research	
  Project	
  
Final	
  Document	
  
	
  
	
  
	
  
The	
  Effects	
  of	
  sut-­‐2	
  Mutation	
  on	
  Caenorhabditis	
  	
  
elegans	
  Expressing	
  Human	
  TDP-­‐43	
  
	
  
	
  
	
  
	
  
ABSTRACT	
  
Amyotrophic	
   Lateral	
   Sclerosis	
   (ALS)	
   is	
   a	
   debilitating	
   disease	
   characterized	
   by	
   the	
  
degeneration	
   of	
   motor	
   neurons	
   leading	
   to	
   a	
   complete	
   loss	
   of	
   voluntary	
   muscle	
   control.	
  
TDP-­‐43	
   has	
   been	
   identified	
   as	
   a	
   major	
   component	
   of	
   cellular,	
   protein	
   aggregates	
  
characteristically	
   found	
   in	
   the	
   cytoplasm	
   of	
   affected	
   neurons	
   in	
   a	
   variety	
   of	
  
neurodegenerative	
  diseases,	
  including	
  ALS.	
  TDP-­‐43	
  controls	
  the	
  structure	
  and	
  stability	
  of	
  
mRNA’s,	
  preventing	
  them	
  from	
  forming	
  double	
  stranded	
  RNA’s	
  (dsRNA).	
  In	
  the	
  absence	
  of	
  
nuclear	
   TDP-­‐43,	
   dsRNA	
   accumulates	
   and	
   aggregates.	
   In	
   recent	
   years,	
   researchers	
   have	
  
identified	
  two	
  genes,	
  sut-­‐1	
  and	
  sut-­‐2,	
  that	
  when	
  mutated	
  suppress	
  the	
  toxic	
  effects	
  of	
  tau	
  
expression,	
   causing	
   symptoms	
   of	
   Alzheimer’s	
   disease.	
   Both	
   Alzheimer’s	
   disease	
   and	
   ALS	
  
share	
  a	
  similar	
  pattern	
  of	
  protein	
  aggregation	
  within	
  neurons	
  leading	
  to	
  cell	
  death.	
  This	
  
similarity	
   suggests	
   that	
   a	
   single	
   mechanism	
   involving	
   failure	
   of	
   protein	
   degradation	
  
pathways	
  plays	
  a	
  role	
  in	
  both	
  diseases.	
  If	
  sut-­‐2	
  mutation	
  can	
  suppress	
  the	
  toxic	
  effects	
  of	
  
tau	
   containing	
   protein	
   aggregates,	
   it	
   may	
   also	
   suppress	
   the	
   toxic	
   affects	
   of	
   TDP-­‐43	
  
containing	
  protein	
  aggregates	
  in	
  ALS.	
  Transgenic	
  C.	
  elegans	
  worms	
  expressing	
  human	
  TDP-­‐
43	
   exhibit	
   an	
   uncoordinated	
   phenotype,	
   which	
   I	
   used	
   to	
   indicate	
   the	
   presence	
   of	
   motor	
  
neuron	
  degeneration.	
  I	
  created	
  a	
  C.	
  elegans	
  strain	
  expressing	
  both	
  transgenic,	
  human	
  TDP-­‐
43	
  and	
  non-­‐functional,	
  mutated	
  sut-­‐2;	
  in	
  doing	
  so,	
  I	
  found	
  that	
  this	
  single	
  point	
  mutation	
  
lead	
  to	
  a	
  partial	
  amelioration	
  of	
  the	
  uncoordinated	
  phenotype	
  seen	
  with	
  the	
  expression	
  of	
  
human	
  TDP-­‐43	
  alone.	
  	
  
	
  
	
  
	
  
BACKGROUND	
  
Amyotrophic	
  Lateral	
  Sclerosis	
  
Amyotrophic	
   Lateral	
   Sclerosis	
   (ALS)	
   is	
   a	
   progressive	
   adult-­‐onset	
   neurodegenerative	
  
disorder	
  causing	
  degeneration	
  of	
  upper	
  and	
  lower	
  motor	
  neurons.	
  In	
  almost	
  all	
  cases	
  of	
  
ALS,	
   affected	
   motor	
   neurons	
   show	
   ubiquitin-­‐positive,	
   tau-­‐negative	
   aggregates	
   in	
   the	
  
cytoplasm,	
  suggesting	
  that	
  ALS	
  is	
  a	
  protein	
  aggregate	
  disorder.	
  Motor	
  neurons	
  extend	
  from	
  
the	
   central	
   nervous	
   system	
   to	
   all	
   muscles	
   of	
   the	
   body,	
   controlling	
   their	
   voluntary	
  
movement.	
   When	
   these	
   neurons	
   die	
   a	
   person	
   loses	
   the	
   ability	
   to	
   control	
   their	
   muscles,	
  
leading	
   to	
   paralysis	
   and	
   loss	
   of	
   muscle	
   function.	
   Consequentially,	
   ALS	
   is	
   a	
   debilitating	
  
disease	
  causing	
  severe	
  disability	
  and	
  eventually	
  death.	
  
 
TDP-­‐43’s	
  role	
  in	
  ALS	
  
TDP-­‐43	
  has	
  been	
  identified	
  as	
  a	
  major	
  component	
  of	
  aggregates	
  characteristically	
  found	
  in	
  
the	
   cytoplasm	
   of	
   affected	
   neurons	
   in	
   a	
   variety	
   of	
   neurodegenerative	
   diseases,	
   including	
  
ALS,	
   Alzheimer’s	
   disease,	
   hippocampal	
   sclerosis,	
   Lewy	
   body	
   disease,	
   parkinsonism-­‐
dementia	
  complex	
  of	
  Guam,	
  corticobasal	
  degeneration,	
  Pick’s	
  disease,	
  Perry	
  syndrome	
  and	
  
frontotemporal	
  lobar	
  dementia	
  (FTLD).	
  The	
  normal	
  nuclear	
  localization	
  of	
  this	
  protein	
  is	
  
disrupted	
  and	
  TDP-­‐43	
  forms	
  large,	
  insoluble	
  aggregates	
  in	
  the	
  cytoplasm	
  along	
  with	
  other	
  
misfolded	
   proteins.	
   TDP-­‐43	
   within	
   these	
   aggregates	
   is	
   hyper-­‐phosphorylated,	
  
ubiquitinated	
  and	
  cleaved.	
  Phosphorylated	
  TDP-­‐43	
  is	
  not	
  seen	
  in	
  healthy	
  tissues	
  (Inukai	
  et	
  
al.,	
   2013).	
   TDP-­‐43	
   is	
   normally	
   localized	
   within	
   the	
   nucleus	
   of	
   the	
   cell,	
   and	
   cytoplasmic	
  
localization	
   is	
   concurrent	
   with	
   nuclear	
   clearance.	
   The	
   toxicity	
   caused	
   by	
   these	
   TDP-­‐43	
  
aggregates	
   is	
   likely	
   caused	
   by	
   both	
   the	
   cytoplasmic	
   aggregation	
   and	
   the	
   nuclear	
   loss	
   of	
  
function	
  (Tan	
  et	
  al.,	
  2015).	
  
	
  
RNA	
  processing	
  depends	
  of	
  TDP-­‐43	
  
TDP-­‐43	
  controls	
  the	
  structure	
  and	
  stability	
  of	
  RNA’s,	
  preventing	
  them	
  from	
  forming	
  double	
  
stranded	
  RNA’s	
  (dsRNA)	
  and	
  ensuring	
  proper	
  translation.	
  In	
  the	
  absence	
  of	
  nuclear	
  TDP-­‐
43,	
   dsRNA	
   accumulates	
   (Saldi	
   et	
   al.,2014).	
   	
   Wild-­‐type	
   TDP-­‐43	
   is	
   implicated	
   in	
   multiple	
  
steps	
   of	
   mRNA	
   processing,	
   including	
   the	
   binding	
   of	
   TDP-­‐43	
   to	
   the	
   3’	
   UTR	
   of	
   an	
   mRNA,	
  
influenced	
  mRNA	
  stability.	
  This	
  increases	
  the	
  abundance	
  of	
  certain	
  transcripts	
  and	
  reduces	
  
the	
   abundance	
   of	
   others	
   in	
   post-­‐transcriptional	
   regulation	
   (Saldi	
   et	
   al.,	
   2014).	
   TDP-­‐43	
  
maintains	
   proper	
   splicing	
   patterns	
   of	
   many	
   transcripts	
   by	
   exon	
   skipping	
   and	
   exon	
  
inclusions	
   (Hazelette	
   et	
   al.,	
   2012).	
   A	
   large	
   proportion	
   of	
   altered	
   transcripts	
   have	
   the	
  
potential	
   to	
   form	
   dsRNA.	
   This	
   suggests	
   that	
   TDP-­‐43	
   has	
   a	
   fundamental	
   function	
   in	
   the	
  
control	
   and	
   metabolism	
   of	
   dsRNA,	
   and	
   that	
   without	
   its	
   proper	
   functioning,	
   dsRNA’s	
  
accumulate	
  within	
  the	
  cell.	
  	
  
	
  
dsRNA	
  buildup	
  triggers	
  an	
  innate	
  immune	
  response	
  
It	
  is	
  common	
  in	
  proteinopathies	
  for	
  cells	
  to	
  aggregate	
  and	
  expel	
  extra	
  material	
  built	
  up	
  in	
  
the	
   cytoplasm;because	
   the	
   misfolded-­‐protein	
   response	
   is	
   overwhelmed	
   by	
   the	
   massive	
  
synthesis	
  of	
  misfolded	
  proteins	
  and	
  transcripts.	
  An	
  accumulation	
  of	
  faulty,	
  damaged	
  and	
  
misfolded	
  proteins	
  within	
  the	
  cell	
  leads	
  to	
  aggregation	
  of	
  these	
  proteins,	
  causing	
  inclusion	
  
body	
  formation	
  and	
  cell	
  death	
  (Brehm	
  and	
  Kruger,	
  2015).	
  Under	
  normal	
  circumstances,	
  a	
  
cell	
  responds	
  to	
  misfolded	
  proteins	
  with	
  degradation	
  by	
  autophagy.	
  When	
  the	
  production	
  
of	
   misfolded	
   proteins	
   outpaces	
   autophagy,	
   the	
   cell	
   begins	
   expelling	
   these	
   aggregated	
  
proteins,	
   allowing	
   them	
   to	
   activate	
   toll-­‐like	
   receptors	
   (TLR’s),	
   which	
   trigger	
   an	
   innate	
  
immune	
  response	
  (Murdock	
  et	
  al.,	
  2015).	
  	
  TLR3	
  (in	
  mammals)	
  can	
  facilitate	
  an	
  excessive	
  
and	
  unregulated	
  immune	
  response,	
  which	
  can	
  be	
  harmful	
  to	
  the	
  host	
  and	
  contribute	
  to	
  the	
  
disease	
   pathology	
   (Lester	
   and	
   Li,	
   2014).	
   Thus,	
   the	
   pathology	
   of	
   ALS	
   and	
   other	
  
neurodegenerative	
   diseases	
   may	
   not	
   be	
   based	
   on	
   the	
   nature	
   of	
   the	
   damage,	
   but	
   on	
   the	
  
body’s	
   reaction	
   to	
   the	
   damage,	
   specifically,	
   an	
   innate	
   immune	
   response	
   leading	
   to	
   cell	
  
death.	
  	
  
	
  
	
  
	
  
sut-­‐2	
  as	
  a	
  potential	
  modulator	
  of	
  proteinopathy	
  
In	
  200	
  7,	
  Kraemer	
  and	
  Schellenberg,	
  (2007)	
  preformed	
  forward	
  genetic	
  screens	
  for	
  
mutations	
  that	
  prevent	
  tau-­‐induced	
  pathology	
  (one	
  of	
  the	
  major	
  components	
  of	
  protein	
  
aggregates	
  involved	
  in	
  Alzheimer’s	
  disease).	
  They	
  discovered	
  that	
  a	
  recessive	
  mutation	
  in	
  a	
  
single,	
  well	
  conserved	
  gene,	
  which	
  the	
  named	
  suppresser	
  of	
  tau-­‐1	
  (sut-­‐1),	
  partially	
  
suppresses	
  the	
  Alzheimer’s	
  phenotype	
  of	
  tau	
  aggregation	
  and	
  neurodegenerative	
  changes	
  
caused	
  by	
  tau.	
  They	
  identified	
  the	
  sut-­‐1	
  gene	
  and	
  found	
  it	
  encodes	
  a	
  novel	
  protein.	
  Further	
  
study	
  lead	
  to	
  the	
  discovery	
  of	
  a	
  second	
  sut	
  protein	
  (sut-­‐2)	
  that	
  also	
  suppresses	
  the	
  tau	
  
pathology	
  when	
  mutated	
  (Guthrie	
  et	
  al.,	
  2009).	
  Both	
  Alzheimer’s	
  disease	
  and	
  ALS	
  share	
  a	
  
similar	
  pattern	
  of	
  protein	
  aggregation	
  within	
  neurons	
  leading	
  to	
  cell	
  death.	
  This	
  similarity	
  
suggests	
  that	
  a	
  single	
  mechanism	
  involving	
  failure	
  of	
  protein	
  degradation	
  pathways	
  plays	
  a	
  
role	
  in	
  both	
  diseases.	
  If	
  sut-­‐2	
  mutation	
  can	
  suppress	
  the	
  toxic	
  affects	
  of	
  tau	
  containing	
  
protein	
  aggregates,	
  it	
  may	
  also	
  suppress	
  the	
  toxic	
  affects	
  of	
  TDP-­‐43	
  containing	
  protein	
  
aggregates	
  in	
  ALS.	
  	
  
	
  
C.	
  elegans	
  as	
  a	
  model	
  for	
  ALS	
  
C.	
  elegans	
  is	
  a	
  small,	
  translucent,	
  round	
  worm	
  with	
  a	
  rapid	
  reproductive	
  cycle	
  and	
  a	
  short	
  
lifespan	
   (http://wormbook.org/).	
   These	
   features	
   make	
   C.	
   elegans	
   a	
   valuable	
   model	
  
organism.	
  Additionally,	
  human	
  transgenes	
  show	
  a	
  remarkable	
  ability	
  to	
  function	
  within	
  C.	
  
elegans	
  and	
  genetic	
  mutations	
  that	
  cause	
  dysfunction	
  and	
  disease	
  in	
  humans	
  often	
  exhibit	
  
similar	
   phenotypes	
   in	
   C.	
   elegans	
   (Wolozin	
   et	
   al.,	
   2011).	
   Transgenic	
   worms	
   expressing	
  
human	
  TDP-­‐43	
  exhibit	
  an	
  uncoordinated	
  phenotype,	
  which	
  can	
  be	
  measured	
  by	
  a	
  variety	
  of	
  
movement	
  assays.	
  Using	
  the	
  uncoordinated	
  phenotype	
  as	
  an	
  indicator	
  of	
  TDP-­‐43	
  induced	
  
neurotoxicity	
  has	
  allowed	
  researchers	
  to	
  investigate	
  the	
  wild	
  type	
  function	
  of	
  TDP-­‐43	
  and	
  
it’s	
   role	
   in	
   disease	
   pathology	
   (http://www.mayo.edu/research/labs/neurodegenerative-­‐
diseases/cell-­‐animal-­‐models-­‐tdp-­‐43-­‐proteinopathies#).	
  	
  
	
  
	
  
METHODS	
  
C.	
  elegans	
  maintenence	
  
Maintenance	
  and	
  growth	
  of	
  C.	
  elegans	
  were	
  performed	
  as	
  described	
  in	
  (Brenner,	
  1974)	
  and	
  
all	
  strains	
  were	
  raised	
  at	
  20°C.	
  The	
  two	
  transgenic	
  strains	
  used	
  in	
  this	
  study	
  were	
  created	
  
by	
  gonad	
  injection	
  and	
  integration	
  of	
  DNA	
  array.	
  	
  
	
  
Strains	
  
N2	
  –	
  wild	
  type	
  C.	
  elegans	
  strain	
  used	
  as	
  a	
  control	
  
TDP-­‐43	
   –	
   C.	
   elegans	
   strain	
   expressing	
   human	
   TDP-­‐43	
   and	
   marked	
   with	
   intestinal	
   GFP.	
  
These	
  C.	
  elegans	
  exhibit	
  an	
  uncoordinated	
  phenotype	
  and	
  are	
  used	
  to	
  model	
  ALS.	
  
sut-­‐2(bk741)	
  –	
  C.	
  elegans	
  strain	
  with	
  sut-­‐2	
  knocked	
  down	
  by	
  point	
  mutation	
  bk741	
  
Cl6049;sut-­‐2(bk741)	
   –	
   C.	
   elegans	
   strain	
   expressing	
   human	
   TDP-­‐43	
   and	
   the	
   sut-­‐2	
   point	
  
mutation	
  bk741	
  
	
  
Crosses	
  
I	
  preformed	
  a	
  synchronized	
  egg	
  lay	
  on	
  sut-­‐2(bk741)	
  and	
  then	
  moved	
  L3	
  C.	
  elegans	
  to	
  34°	
  
for	
  8	
  hours	
  to	
  induce	
  the	
  generation	
  of	
  males.	
  These	
  males	
  were	
  then	
  placed	
  on	
  a	
  plate	
  with	
  
L3	
  TDP-­‐43	
  C.	
  elegans.	
  Progeny	
  from	
  these	
  plates	
  were	
  chosen	
  for	
  the	
  presence	
  of	
  intestinal	
  
GFP	
  indicating	
  that	
  they	
  carried	
  the	
  TDP-­‐43	
  transgene.	
  Each	
  of	
  these	
  C.	
  elegans	
  was	
  placed	
  
on	
   an	
   individual	
   plate	
   and	
   left	
   overnight	
   at	
   15°.	
   C.elegans	
   expressing	
   the	
   sut-­‐2	
   point	
  
mutation	
   bk741	
   do	
   not	
   lay	
   many	
   eggs	
   at	
   this	
   temperature,	
   so	
   those	
   without	
   eggs	
   were	
  
assumed	
   to	
   be	
   expressing	
   both	
   the	
   TDP-­‐43	
   trans	
   gene	
   and	
   the	
   sut-­‐2	
   mutation.	
   I	
   ran	
  
genotyped	
  these	
  C.	
  elegan	
  to	
  ensure	
  that	
  these	
  C.	
  elegans	
  did	
  indeed	
  carry	
  the	
  sut-­‐2	
  point	
  
mutation.	
  	
  
	
  
Motility	
  assay	
  
I	
  preformed	
  a	
  synchronized	
  egg	
  lay	
  and	
  let	
  C.	
  elegans	
  grow	
  up	
  for	
  3	
  days	
  at	
  20°.	
  I	
  washed	
  
the	
  C.	
  elegans	
  off	
  the	
  plates	
  using	
  S-­‐basal	
  solution	
  and	
  spun	
  them	
  down	
  in	
  a	
  centrifuge	
  for	
  1	
  
minute	
  at	
  13000rpm.	
  I	
  removed	
  the	
  supernatant,	
  containing	
  food	
  from	
  the	
  plates,	
  and	
  re-­‐
suspended	
  the	
  C.	
  elegans	
  in	
  S-­‐basal	
  solution.	
  	
  C.	
  elegans	
  were	
  placed	
  on	
  an	
  unspotted	
  plate	
  
and	
  allowed	
  to	
  sit	
  for	
  3	
  minutes.	
  I	
  then	
  used	
  the	
  ultrascope	
  to	
  take	
  a	
  2-­‐minute	
  video	
  of	
  each	
  
plate.	
  I	
  analyzed	
  the	
  videos	
  with	
  worm	
  tracker	
  for	
  imageJ	
  to	
  calculate	
  the	
  body-­‐lengths	
  per	
  
second	
  moved	
  by	
  each	
  worm	
  on	
  each	
  plate.	
  	
  
	
  
	
  
RESULTS	
  
I	
  used	
  body-­‐lengths-­‐per-­‐second	
  as	
  a	
  measure	
  of	
  coordination	
  in	
  each	
  of	
  the	
  four	
  C.	
  elegans	
  
strains.	
  This	
  measure	
  corrects	
  for	
  differences	
  in	
  average	
  C.	
  elegans	
  size	
  between	
  strains,	
  
which	
  is	
  not	
  taken	
  into	
  account	
  by	
  analyzing	
  speed	
  alone.	
  	
  
	
  
	
  
Table	
   1:	
   Average	
   Body-­‐Lengths-­‐per-­‐Second	
   of	
   C.	
   elegans	
   compared	
   between	
   three	
  
transgenic	
  strains	
  and	
  the	
  N2	
  wild	
  type	
  control	
  strain.	
  	
  
Strain	
  
Average	
  Body	
  
Lengths	
  per	
  Second	
   Standard	
  Error	
   Sample	
  Size	
  
N2	
   0.2520	
   0.0054	
   2333	
  
sut-­‐2(bk741)	
   0.2360	
   0.0033	
   3430	
  
TDP-­‐43	
   0.1290	
   0.0012	
   17986	
  
TDP-­‐43;sut-­‐2(bk741)	
   0.2002	
   0.0017	
   8689	
  
	
  
	
  
Table	
  2:	
  P-­‐Values	
  calculated	
  by	
  independent	
  T-­‐tests	
  on	
  average	
  Body-­‐Lengths-­‐per-­‐
Second	
  of	
  C.	
  elegans	
  compared	
  between	
  three	
  transgenic	
  strains	
  and	
  the	
  N2	
  wild	
  type	
  
control	
  strain.	
  
N2	
   N2	
  
	
   	
  sut-­‐2(bk741)	
   0.01179	
   sut-­‐2(bk741)	
  
	
  TDP-­‐43	
   9.19E-­‐182	
   1.171E-­‐1000	
   TDP-­‐43	
  
TDP-­‐43;sut-­‐2(bk741)	
   2.60E-­‐21	
   1.07E-­‐19	
   4.38E-­‐239	
  
	
  
	
  
Wild	
  type	
  C.	
  elegans	
  moved	
  an	
  average	
  of	
  0.2520(±0.0054)	
  body	
  lengths	
  per	
  second.	
  sut-­‐
2(bk741)	
  C.	
  elegans	
  moved	
  an	
  average	
  of	
  0.2360(±0.0033)	
  body	
  lengths	
  per	
  second.	
  	
  TDP-­‐
43	
   C.	
   elegans	
   moved	
   an	
   average	
   of	
   0.1290(±0.0012)	
   body	
   lengths	
   per	
   second.	
   sut-­‐
2(bk741);TDP-­‐43	
   C.	
   elegans	
   moved	
   an	
   average	
   of	
   0.2002(±0.0017)	
   body	
   lengths	
   per	
  
second.	
   A	
   multi-­‐way	
   ANOVA	
   showed	
   significance	
   and	
   a	
   Tukey-­‐Kramer	
   post-­‐hoc	
   analysis	
  
showed	
  significant	
  differences	
  between	
  all	
  four	
  strains.	
  
	
  
	
  
	
  
Figure	
   1:	
   Average	
   body-­‐lengths-­‐per-­‐second	
   moved	
   by	
   C.	
   elegans	
   as	
   a	
   measure	
   of	
  
coordination	
  compared	
  between	
  four	
  strains.	
  All	
  strain	
  comparisons	
  show	
  significance	
  at	
  
an	
  adjusted	
  alpha	
  of	
  0.0833,	
  n=32438.	
  
	
  
	
  
DISCUSSION	
  
The	
  data	
  show	
  that	
  C.	
  elegans	
  expressing	
  a	
  TDP-­‐43	
  phenotype	
  have	
  significantly	
  decreased	
  
motility	
  compared	
  to	
  both	
  the	
  wild-­‐type	
  strain	
  (N2)	
  (p=0.0118)	
  and	
  the	
  strain	
  expressing	
  
mutated	
   sut-­‐2	
   (sut-­‐2(bk741))	
   (p<0.001).	
   This	
   is	
   expected	
   because	
   these	
   worms	
   have	
  
dysfunctional	
  motor	
  neurons	
  as	
  part	
  of	
  an	
  ALS	
  phenotype.	
  What	
  is	
  not	
  expected	
  is	
  that	
  C.	
  
elegans	
   expressing	
   the	
   sut-­‐2	
   mutation	
   also	
   move	
   significantly	
   fewer	
   body-­‐lengths-­‐per-­‐
second	
  than	
  wild-­‐type	
  C.	
  elegans.	
  This	
  difference	
  is	
  much	
  smaller	
  than	
  between	
  the	
  wild	
  
type	
  strain	
  and	
  either	
  of	
  the	
  strains	
  expressing	
  TDP-­‐43;	
  both	
  of	
  which	
  movedramatically	
  
slower	
  than	
  either	
  the	
  N2	
  or	
  SUT-­‐2(BK741)	
  strains,	
  due	
  to	
  the	
  uncoordinated	
  phenotype	
  
induced	
  by	
  expression	
  of	
  human	
  TDP-­‐43.	
  
	
  
sut-­‐2(bk741);TDP-­‐43	
  C.	
  elegans	
  display	
  a	
  movement	
  phenotype	
  closer	
  to	
  that	
  of	
  the	
  wild-­‐
type	
  than	
  the	
  uncoordinated	
  TDP-­‐43.	
  This	
  demonstrates	
  a	
  partial	
  rescue	
  of	
  the	
  pathogenic	
  
phenotype	
  by	
  inhibiting	
  sut-­‐2	
  function.	
  Further	
  exploration	
  of	
  the	
  relationship	
  between	
  the	
  
sut-­‐2	
  protein	
  and	
  TDP-­‐43	
  will	
  provide	
  useful	
  clues	
  as	
  to	
  the	
  role	
  of	
  TDP-­‐43	
  in	
  ALS.	
  sut-­‐2	
  
likely	
  plays	
  a	
  critical	
  role	
  in	
  the	
  mechanism	
  by	
  which	
  the	
  cell	
  responds	
  to	
  the	
  abundance	
  of	
  
0.0000	
  
0.0500	
  
0.1000	
  
0.1500	
  
0.2000	
  
0.2500	
  
0.3000	
  
Average	
  body-­‐lengths	
  per	
  second	
  
dsRNA	
  which	
  accumulate	
  in	
  the	
  absence	
  of	
  nuclear	
  TDP-­‐43.	
  Further	
  exploration	
  of	
  these	
  
findings	
  may	
  lead	
  to	
  a	
  better	
  understanding	
  of	
  what	
  causes	
  neurodegeneration	
  and	
  provide	
  
possible	
   new	
   neuroprotective	
   strategies	
   for	
   the	
   treatment	
   of	
   ALS	
   and	
   other	
  
neurodegenerative	
  diseases.	
  	
   	
  
REFERENCES	
  
Brenner,	
  S.	
  "The	
  Genetics	
  of	
  Caenorhabditis	
  Elegans."	
  Genetics	
  77	
  (1974):	
  71-­‐94.	
  Print.	
  
Carty,	
  Michael,	
  Line	
  Reinert,	
  Søren	
  R.	
  Paludan,	
  and	
  Andrew	
  G.	
  Bowie.	
  "Innate	
  Antiviral	
  
Signalling	
  in	
  the	
  Central	
  Nervous	
  System."	
  Trends	
  in	
  Immunology	
  35.2	
  (2014):	
  79-­‐
87.	
  Print.	
  
Chou,	
  Ching-­‐Chieh,	
  Olga	
  M.	
  Alexeeva,	
  Shizuka	
  Yamada,	
  Amy	
  Pribadi,	
  Yi	
  Zhang,	
  Bi	
  Mo,	
  
Kathryn	
  C.	
  Zarnescu,	
  and	
  Wilfried	
  Rossoll.	
  "PABPN1	
  Supresses	
  TDP-­‐43	
  Toxicity	
  in	
  
ALS	
  Disease	
  Models."	
  PABPN1	
  Suppresses	
  TDP-­‐43	
  Toxicity	
  in	
  ALS	
  Disease	
  Models.	
  
Oxford	
  University	
  Press,	
  30	
  June	
  2015.	
  Web.	
  4	
  Oct.	
  2015.	
  
Guthrie,	
  C.	
  R.,	
  G.	
  D.	
  Schellenberg,	
  and	
  B.	
  C.	
  Kraemer.	
  "SUT-­‐2	
  Potentiates	
  Tau-­‐induced	
  
Neurotoxicity	
  in	
  Caenorhabditis	
  Elegans."	
  Human	
  Molecular	
  Genetics	
  18.10	
  (2009):	
  
1825-­‐838.	
  Print.	
  
Hazelett,	
  D.	
  J.,	
  J.-­‐C.	
  Chang,	
  D.	
  L.	
  Lakeland,	
  and	
  D.	
  B.	
  Morton.	
  "Comparison	
  of	
  Parallel	
  High-­‐
Throughput	
  RNA	
  Sequencing	
  Between	
  Knockout	
  of	
  TDP-­‐43	
  and	
  Its	
  Overexpression	
  
Reveals	
  Primarily	
  Nonreciprocal	
  and	
  Nonoverlapping	
  Gene	
  Expression	
  Changes	
  in	
  
the	
  Central	
  Nervous	
  System	
  of	
  Drosophila."	
  G3&#58;	
  Genes|Genomes|Genetics	
  2.7	
  
(2012):	
  789-­‐802.	
  Print.	
  
Inukai,	
  S.,	
  and	
  F.	
  Slack.	
  "MicroRNAs	
  and	
  the	
  Genetic	
  Network	
  in	
  Aging	
  Authors."	
  Journal	
  of	
  
Molecular	
  Biology	
  425.19	
  (2013):	
  3601-­‐608.	
  Print.	
  
Kraemer,	
  B.	
  C.,	
  and	
  G.	
  D.	
  Schellenberg.	
  "SUT-­‐1	
  Enables	
  Tau-­‐induced	
  Neurotoxicity	
  in	
  C.	
  
Elegans."	
  Human	
  Molecular	
  Genetics	
  16.16	
  (2007):	
  1959-­‐971.	
  Print.	
  
Lester,	
  Sandra	
  N.,	
  and	
  Kui	
  Li.	
  "Toll-­‐Like	
  Receptors	
  in	
  Antiviral	
  Innate	
  Immunity."	
  Journal	
  of	
  
Molecular	
  Biology	
  426.6	
  (2014):	
  1246-­‐264.	
  Print.	
  
Murdock,	
  Benjamin	
  J.,	
  Diane	
  E.	
  Bender,	
  Benjamin	
  M.	
  Segal,	
  and	
  Eva	
  L.	
  Feldman.	
  "The	
  Dual	
  
Roles	
  of	
  Immunity	
  in	
  ALS:	
  Injury	
  Overrides	
  Protection."	
  Neurobiology	
  of	
  Disease	
  77	
  
(2015):	
  1-­‐12.	
  Print.	
  
Petrucelli,	
  Leondar.	
  "Neurodegenerative	
  Diseases:	
  Leonard	
  Petrucelli."	
  Cell	
  and	
  Animal	
  
Models	
  of	
  TDP-­‐43	
  Proteinopathies.	
  Mayo	
  Foundation	
  for	
  Medical	
  Education	
  and	
  
Research,	
  n.d.	
  Web.	
  10	
  Jan.	
  2016.	
  
Saldi,	
  T.	
  K.,	
  P.	
  E.	
  Ash,	
  G.	
  Wilson,	
  P.	
  Gonzales,	
  A.	
  Garrido-­‐Lecca,	
  C.	
  M.	
  Roberts,	
  V.	
  Dostal,	
  T.	
  F.	
  
Gendron,	
  L.	
  D.	
  Stein,	
  T.	
  Blumenthal,	
  L.	
  Petrucelli,	
  and	
  C.	
  D.	
  Link.	
  "TDP-­‐1,	
  the	
  
Caenorhabditis	
  Elegans	
  Ortholog	
  of	
  TDP-­‐43,	
  Limits	
  the	
  Accumulation	
  of	
  Double-­‐
stranded	
  RNA."	
  The	
  EMBO	
  Journal	
  33.24	
  (2014):	
  2947-­‐966.	
  Print.	
  
Schmidt,	
  Marion,	
  and	
  Daniel	
  Finley.	
  "Regulation	
  of	
  Proteasome	
  Activity	
  in	
  Health	
  and	
  
Disease."	
  Biochimica	
  Et	
  Biophysica	
  Acta	
  1843	
  (2014):	
  13-­‐25.	
  Print.	
  
Tan,	
  Rachel	
  H.,	
  Jillian	
  J.	
  Kril,	
  Manaal	
  Fatima,	
  Andrew	
  Mcgeachie,	
  Heather	
  Mccann,	
  Claire	
  
Shepherd,	
  Shelley	
  L.	
  Forrest,	
  Andrew	
  Affleck,	
  John	
  B.	
  J.	
  Kwok,	
  John	
  R.	
  Hodges,	
  
Matthew	
  C.	
  Kiernan,	
  and	
  Glenda	
  M.	
  Halliday.	
  "TDP-­‐43	
  Proteinopathies:	
  Pathological	
  
Identification	
  of	
  Brain	
  Regions	
  Differentiating	
  Clinical	
  Phenotypes."	
  Brain	
  138.10	
  
(2015):	
  3110-­‐122.	
  Print.	
  
Wolozin,	
  Benjamin,	
  Christopher	
  Gabel,	
  Andrew	
  Ferree,	
  Maria	
  Guillily,	
  and	
  Atsushi	
  Ebata.	
  
"Watching	
  Worms	
  Whither:	
  Modeling	
  Neurodegeneration	
  in	
  C.	
  Elegans."	
  Progress	
  in	
  
Molecular	
  Biology	
  and	
  Translational	
  Science	
  Animal	
  Models	
  of	
  Human	
  Disease	
  100	
  
(2011):	
  499-­‐514.	
  Print.	
  
	
  

Contenu connexe

Tendances

Oakes et al 2017 TBK1 - a new player in ALS linking autophagy and neuroinflam...
Oakes et al 2017 TBK1 - a new player in ALS linking autophagy and neuroinflam...Oakes et al 2017 TBK1 - a new player in ALS linking autophagy and neuroinflam...
Oakes et al 2017 TBK1 - a new player in ALS linking autophagy and neuroinflam...
Maria Davies
 
maranickel_UROproposal
maranickel_UROproposalmaranickel_UROproposal
maranickel_UROproposal
Mara Nickel
 
hinckley poster5 (2)
hinckley poster5 (2)hinckley poster5 (2)
hinckley poster5 (2)
Sj Afshari
 
Endothelial Cell Mediated Delay of Blood Brain Barrier Recovery Following Tra...
Endothelial Cell Mediated Delay of Blood Brain Barrier Recovery Following Tra...Endothelial Cell Mediated Delay of Blood Brain Barrier Recovery Following Tra...
Endothelial Cell Mediated Delay of Blood Brain Barrier Recovery Following Tra...
Arthur Stem
 
MSRF.finalpaper.pketch.abstractedit
MSRF.finalpaper.pketch.abstracteditMSRF.finalpaper.pketch.abstractedit
MSRF.finalpaper.pketch.abstractedit
Peter Ketch
 
Sejal Mistry IAB poster
Sejal Mistry IAB posterSejal Mistry IAB poster
Sejal Mistry IAB poster
Sejal Mistry
 
Neurodegeneration 2013
Neurodegeneration 2013Neurodegeneration 2013
Neurodegeneration 2013
Elsa von Licy
 

Tendances (20)

Oakes et al 2017 TBK1 - a new player in ALS linking autophagy and neuroinflam...
Oakes et al 2017 TBK1 - a new player in ALS linking autophagy and neuroinflam...Oakes et al 2017 TBK1 - a new player in ALS linking autophagy and neuroinflam...
Oakes et al 2017 TBK1 - a new player in ALS linking autophagy and neuroinflam...
 
Escrt proteins in physiology and diseases
Escrt proteins in physiology and diseasesEscrt proteins in physiology and diseases
Escrt proteins in physiology and diseases
 
maranickel_UROproposal
maranickel_UROproposalmaranickel_UROproposal
maranickel_UROproposal
 
hinckley poster5 (2)
hinckley poster5 (2)hinckley poster5 (2)
hinckley poster5 (2)
 
Endothelial Cell Mediated Delay of Blood Brain Barrier Recovery Following Tra...
Endothelial Cell Mediated Delay of Blood Brain Barrier Recovery Following Tra...Endothelial Cell Mediated Delay of Blood Brain Barrier Recovery Following Tra...
Endothelial Cell Mediated Delay of Blood Brain Barrier Recovery Following Tra...
 
BIOL3200 PROPOSAL
BIOL3200 PROPOSALBIOL3200 PROPOSAL
BIOL3200 PROPOSAL
 
jbc1998
jbc1998jbc1998
jbc1998
 
Genetic regulation of human brain aging
Genetic regulation of human brain agingGenetic regulation of human brain aging
Genetic regulation of human brain aging
 
MSRF.finalpaper.pketch.abstractedit
MSRF.finalpaper.pketch.abstracteditMSRF.finalpaper.pketch.abstractedit
MSRF.finalpaper.pketch.abstractedit
 
Bio341.Final.new
Bio341.Final.newBio341.Final.new
Bio341.Final.new
 
Sejal Mistry IAB poster
Sejal Mistry IAB posterSejal Mistry IAB poster
Sejal Mistry IAB poster
 
Edgardo Arroyo CV
Edgardo Arroyo CVEdgardo Arroyo CV
Edgardo Arroyo CV
 
Alzheimer’s disease
Alzheimer’s disease Alzheimer’s disease
Alzheimer’s disease
 
Signal Transduction and Second Messengers
Signal Transduction and Second MessengersSignal Transduction and Second Messengers
Signal Transduction and Second Messengers
 
Neurodegeneration 2013
Neurodegeneration 2013Neurodegeneration 2013
Neurodegeneration 2013
 
4 Real Role
4 Real Role4 Real Role
4 Real Role
 
bbrc aghdam 2013
bbrc aghdam 2013bbrc aghdam 2013
bbrc aghdam 2013
 
Rowitch, David
Rowitch, DavidRowitch, David
Rowitch, David
 
Dharmendra
DharmendraDharmendra
Dharmendra
 
Telomere length a 21st century biomarker
Telomere length  a 21st century biomarkerTelomere length  a 21st century biomarker
Telomere length a 21st century biomarker
 

Similaire à Shapero.ResearchProject.FinalDocument

Als Paper &amp; Prion Protein Gene Expression
Als Paper &amp; Prion Protein Gene ExpressionAls Paper &amp; Prion Protein Gene Expression
Als Paper &amp; Prion Protein Gene Expression
josephmdphysics
 
Luisetto m et al amyotropyc lateral sclerosis and endogenous -esogenous toxic...
Luisetto m et al amyotropyc lateral sclerosis and endogenous -esogenous toxic...Luisetto m et al amyotropyc lateral sclerosis and endogenous -esogenous toxic...
Luisetto m et al amyotropyc lateral sclerosis and endogenous -esogenous toxic...
M. Luisetto Pharm.D.Spec. Pharmacology
 
2011 dystroglycan Development Berti-4025-37
2011 dystroglycan Development Berti-4025-372011 dystroglycan Development Berti-4025-37
2011 dystroglycan Development Berti-4025-37
Monica Ghidinelli
 
Book role of plants, environmental toxins and physical neurotoxicological fac...
Book role of plants, environmental toxins and physical neurotoxicological fac...Book role of plants, environmental toxins and physical neurotoxicological fac...
Book role of plants, environmental toxins and physical neurotoxicological fac...
M. Luisetto Pharm.D.Spec. Pharmacology
 
Jpcr mauro luisetto et al amyotrophic lateral sclerosis and endogenous esoge...
Jpcr mauro luisetto  et al amyotrophic lateral sclerosis and endogenous esoge...Jpcr mauro luisetto  et al amyotrophic lateral sclerosis and endogenous esoge...
Jpcr mauro luisetto et al amyotrophic lateral sclerosis and endogenous esoge...
M. Luisetto Pharm.D.Spec. Pharmacology
 
Final Dissertation
Final DissertationFinal Dissertation
Final Dissertation
Rachel Li
 
motorneurondisease-121214151511-phpapp01.pptx
motorneurondisease-121214151511-phpapp01.pptxmotorneurondisease-121214151511-phpapp01.pptx
motorneurondisease-121214151511-phpapp01.pptx
ftygyhj
 

Similaire à Shapero.ResearchProject.FinalDocument (20)

Discussion on ALS and FTD
Discussion on ALS and FTDDiscussion on ALS and FTD
Discussion on ALS and FTD
 
Amyotrophic lateral sclerosis &amp; frontotemporal lobar degeneration summary...
Amyotrophic lateral sclerosis &amp; frontotemporal lobar degeneration summary...Amyotrophic lateral sclerosis &amp; frontotemporal lobar degeneration summary...
Amyotrophic lateral sclerosis &amp; frontotemporal lobar degeneration summary...
 
TDP-43
TDP-43TDP-43
TDP-43
 
Als Paper &amp; Prion Protein Gene Expression
Als Paper &amp; Prion Protein Gene ExpressionAls Paper &amp; Prion Protein Gene Expression
Als Paper &amp; Prion Protein Gene Expression
 
TDP-43 shapeshifts to encipher FTD severity
TDP-43 shapeshifts to encipher FTD severityTDP-43 shapeshifts to encipher FTD severity
TDP-43 shapeshifts to encipher FTD severity
 
Genetics in dementia
Genetics in dementiaGenetics in dementia
Genetics in dementia
 
SPLICING
SPLICING SPLICING
SPLICING
 
Teloomerase Research Paper
Teloomerase Research PaperTeloomerase Research Paper
Teloomerase Research Paper
 
Luisetto m et al amyotropyc lateral sclerosis and endogenous -esogenous toxic...
Luisetto m et al amyotropyc lateral sclerosis and endogenous -esogenous toxic...Luisetto m et al amyotropyc lateral sclerosis and endogenous -esogenous toxic...
Luisetto m et al amyotropyc lateral sclerosis and endogenous -esogenous toxic...
 
2011 dystroglycan Development Berti-4025-37
2011 dystroglycan Development Berti-4025-372011 dystroglycan Development Berti-4025-37
2011 dystroglycan Development Berti-4025-37
 
Thesis section: Role of Oxidative Stress in the pathogenesis of neurodegenera...
Thesis section: Role of Oxidative Stress in the pathogenesis of neurodegenera...Thesis section: Role of Oxidative Stress in the pathogenesis of neurodegenera...
Thesis section: Role of Oxidative Stress in the pathogenesis of neurodegenera...
 
Book role of plants, environmental toxins and physical neurotoxicological fac...
Book role of plants, environmental toxins and physical neurotoxicological fac...Book role of plants, environmental toxins and physical neurotoxicological fac...
Book role of plants, environmental toxins and physical neurotoxicological fac...
 
Jpcr mauro luisetto et al amyotrophic lateral sclerosis and endogenous esoge...
Jpcr mauro luisetto  et al amyotrophic lateral sclerosis and endogenous esoge...Jpcr mauro luisetto  et al amyotrophic lateral sclerosis and endogenous esoge...
Jpcr mauro luisetto et al amyotrophic lateral sclerosis and endogenous esoge...
 
Final Dissertation
Final DissertationFinal Dissertation
Final Dissertation
 
Amyotrophic Lateral Sclerosis
Amyotrophic Lateral SclerosisAmyotrophic Lateral Sclerosis
Amyotrophic Lateral Sclerosis
 
An analysis of Parkinson’s disease (PD) on Physical and Mental Health
An analysis of Parkinson’s disease (PD) on Physical and Mental HealthAn analysis of Parkinson’s disease (PD) on Physical and Mental Health
An analysis of Parkinson’s disease (PD) on Physical and Mental Health
 
Aymotropic lateral sclerosis & Cell signaling
Aymotropic lateral sclerosis & Cell signaling Aymotropic lateral sclerosis & Cell signaling
Aymotropic lateral sclerosis & Cell signaling
 
motorneurondisease-121214151511-phpapp01.pptx
motorneurondisease-121214151511-phpapp01.pptxmotorneurondisease-121214151511-phpapp01.pptx
motorneurondisease-121214151511-phpapp01.pptx
 
Learning Objectives Block2 1
Learning Objectives Block2 1Learning Objectives Block2 1
Learning Objectives Block2 1
 
Alzheimers disease
Alzheimers diseaseAlzheimers disease
Alzheimers disease
 

Shapero.ResearchProject.FinalDocument

  • 1. Hannah  Shapero   Research  Project   Final  Document         The  Effects  of  sut-­‐2  Mutation  on  Caenorhabditis     elegans  Expressing  Human  TDP-­‐43           ABSTRACT   Amyotrophic   Lateral   Sclerosis   (ALS)   is   a   debilitating   disease   characterized   by   the   degeneration   of   motor   neurons   leading   to   a   complete   loss   of   voluntary   muscle   control.   TDP-­‐43   has   been   identified   as   a   major   component   of   cellular,   protein   aggregates   characteristically   found   in   the   cytoplasm   of   affected   neurons   in   a   variety   of   neurodegenerative  diseases,  including  ALS.  TDP-­‐43  controls  the  structure  and  stability  of   mRNA’s,  preventing  them  from  forming  double  stranded  RNA’s  (dsRNA).  In  the  absence  of   nuclear   TDP-­‐43,   dsRNA   accumulates   and   aggregates.   In   recent   years,   researchers   have   identified  two  genes,  sut-­‐1  and  sut-­‐2,  that  when  mutated  suppress  the  toxic  effects  of  tau   expression,   causing   symptoms   of   Alzheimer’s   disease.   Both   Alzheimer’s   disease   and   ALS   share  a  similar  pattern  of  protein  aggregation  within  neurons  leading  to  cell  death.  This   similarity   suggests   that   a   single   mechanism   involving   failure   of   protein   degradation   pathways  plays  a  role  in  both  diseases.  If  sut-­‐2  mutation  can  suppress  the  toxic  effects  of   tau   containing   protein   aggregates,   it   may   also   suppress   the   toxic   affects   of   TDP-­‐43   containing  protein  aggregates  in  ALS.  Transgenic  C.  elegans  worms  expressing  human  TDP-­‐ 43   exhibit   an   uncoordinated   phenotype,   which   I   used   to   indicate   the   presence   of   motor   neuron  degeneration.  I  created  a  C.  elegans  strain  expressing  both  transgenic,  human  TDP-­‐ 43  and  non-­‐functional,  mutated  sut-­‐2;  in  doing  so,  I  found  that  this  single  point  mutation   lead  to  a  partial  amelioration  of  the  uncoordinated  phenotype  seen  with  the  expression  of   human  TDP-­‐43  alone.           BACKGROUND   Amyotrophic  Lateral  Sclerosis   Amyotrophic   Lateral   Sclerosis   (ALS)   is   a   progressive   adult-­‐onset   neurodegenerative   disorder  causing  degeneration  of  upper  and  lower  motor  neurons.  In  almost  all  cases  of   ALS,   affected   motor   neurons   show   ubiquitin-­‐positive,   tau-­‐negative   aggregates   in   the   cytoplasm,  suggesting  that  ALS  is  a  protein  aggregate  disorder.  Motor  neurons  extend  from   the   central   nervous   system   to   all   muscles   of   the   body,   controlling   their   voluntary   movement.   When   these   neurons   die   a   person   loses   the   ability   to   control   their   muscles,   leading   to   paralysis   and   loss   of   muscle   function.   Consequentially,   ALS   is   a   debilitating   disease  causing  severe  disability  and  eventually  death.  
  • 2.   TDP-­‐43’s  role  in  ALS   TDP-­‐43  has  been  identified  as  a  major  component  of  aggregates  characteristically  found  in   the   cytoplasm   of   affected   neurons   in   a   variety   of   neurodegenerative   diseases,   including   ALS,   Alzheimer’s   disease,   hippocampal   sclerosis,   Lewy   body   disease,   parkinsonism-­‐ dementia  complex  of  Guam,  corticobasal  degeneration,  Pick’s  disease,  Perry  syndrome  and   frontotemporal  lobar  dementia  (FTLD).  The  normal  nuclear  localization  of  this  protein  is   disrupted  and  TDP-­‐43  forms  large,  insoluble  aggregates  in  the  cytoplasm  along  with  other   misfolded   proteins.   TDP-­‐43   within   these   aggregates   is   hyper-­‐phosphorylated,   ubiquitinated  and  cleaved.  Phosphorylated  TDP-­‐43  is  not  seen  in  healthy  tissues  (Inukai  et   al.,   2013).   TDP-­‐43   is   normally   localized   within   the   nucleus   of   the   cell,   and   cytoplasmic   localization   is   concurrent   with   nuclear   clearance.   The   toxicity   caused   by   these   TDP-­‐43   aggregates   is   likely   caused   by   both   the   cytoplasmic   aggregation   and   the   nuclear   loss   of   function  (Tan  et  al.,  2015).     RNA  processing  depends  of  TDP-­‐43   TDP-­‐43  controls  the  structure  and  stability  of  RNA’s,  preventing  them  from  forming  double   stranded  RNA’s  (dsRNA)  and  ensuring  proper  translation.  In  the  absence  of  nuclear  TDP-­‐ 43,   dsRNA   accumulates   (Saldi   et   al.,2014).     Wild-­‐type   TDP-­‐43   is   implicated   in   multiple   steps   of   mRNA   processing,   including   the   binding   of   TDP-­‐43   to   the   3’   UTR   of   an   mRNA,   influenced  mRNA  stability.  This  increases  the  abundance  of  certain  transcripts  and  reduces   the   abundance   of   others   in   post-­‐transcriptional   regulation   (Saldi   et   al.,   2014).   TDP-­‐43   maintains   proper   splicing   patterns   of   many   transcripts   by   exon   skipping   and   exon   inclusions   (Hazelette   et   al.,   2012).   A   large   proportion   of   altered   transcripts   have   the   potential   to   form   dsRNA.   This   suggests   that   TDP-­‐43   has   a   fundamental   function   in   the   control   and   metabolism   of   dsRNA,   and   that   without   its   proper   functioning,   dsRNA’s   accumulate  within  the  cell.       dsRNA  buildup  triggers  an  innate  immune  response   It  is  common  in  proteinopathies  for  cells  to  aggregate  and  expel  extra  material  built  up  in   the   cytoplasm;because   the   misfolded-­‐protein   response   is   overwhelmed   by   the   massive   synthesis  of  misfolded  proteins  and  transcripts.  An  accumulation  of  faulty,  damaged  and   misfolded  proteins  within  the  cell  leads  to  aggregation  of  these  proteins,  causing  inclusion   body  formation  and  cell  death  (Brehm  and  Kruger,  2015).  Under  normal  circumstances,  a   cell  responds  to  misfolded  proteins  with  degradation  by  autophagy.  When  the  production   of   misfolded   proteins   outpaces   autophagy,   the   cell   begins   expelling   these   aggregated   proteins,   allowing   them   to   activate   toll-­‐like   receptors   (TLR’s),   which   trigger   an   innate   immune  response  (Murdock  et  al.,  2015).    TLR3  (in  mammals)  can  facilitate  an  excessive   and  unregulated  immune  response,  which  can  be  harmful  to  the  host  and  contribute  to  the   disease   pathology   (Lester   and   Li,   2014).   Thus,   the   pathology   of   ALS   and   other   neurodegenerative   diseases   may   not   be   based   on   the   nature   of   the   damage,   but   on   the   body’s   reaction   to   the   damage,   specifically,   an   innate   immune   response   leading   to   cell   death.          
  • 3. sut-­‐2  as  a  potential  modulator  of  proteinopathy   In  200  7,  Kraemer  and  Schellenberg,  (2007)  preformed  forward  genetic  screens  for   mutations  that  prevent  tau-­‐induced  pathology  (one  of  the  major  components  of  protein   aggregates  involved  in  Alzheimer’s  disease).  They  discovered  that  a  recessive  mutation  in  a   single,  well  conserved  gene,  which  the  named  suppresser  of  tau-­‐1  (sut-­‐1),  partially   suppresses  the  Alzheimer’s  phenotype  of  tau  aggregation  and  neurodegenerative  changes   caused  by  tau.  They  identified  the  sut-­‐1  gene  and  found  it  encodes  a  novel  protein.  Further   study  lead  to  the  discovery  of  a  second  sut  protein  (sut-­‐2)  that  also  suppresses  the  tau   pathology  when  mutated  (Guthrie  et  al.,  2009).  Both  Alzheimer’s  disease  and  ALS  share  a   similar  pattern  of  protein  aggregation  within  neurons  leading  to  cell  death.  This  similarity   suggests  that  a  single  mechanism  involving  failure  of  protein  degradation  pathways  plays  a   role  in  both  diseases.  If  sut-­‐2  mutation  can  suppress  the  toxic  affects  of  tau  containing   protein  aggregates,  it  may  also  suppress  the  toxic  affects  of  TDP-­‐43  containing  protein   aggregates  in  ALS.       C.  elegans  as  a  model  for  ALS   C.  elegans  is  a  small,  translucent,  round  worm  with  a  rapid  reproductive  cycle  and  a  short   lifespan   (http://wormbook.org/).   These   features   make   C.   elegans   a   valuable   model   organism.  Additionally,  human  transgenes  show  a  remarkable  ability  to  function  within  C.   elegans  and  genetic  mutations  that  cause  dysfunction  and  disease  in  humans  often  exhibit   similar   phenotypes   in   C.   elegans   (Wolozin   et   al.,   2011).   Transgenic   worms   expressing   human  TDP-­‐43  exhibit  an  uncoordinated  phenotype,  which  can  be  measured  by  a  variety  of   movement  assays.  Using  the  uncoordinated  phenotype  as  an  indicator  of  TDP-­‐43  induced   neurotoxicity  has  allowed  researchers  to  investigate  the  wild  type  function  of  TDP-­‐43  and   it’s   role   in   disease   pathology   (http://www.mayo.edu/research/labs/neurodegenerative-­‐ diseases/cell-­‐animal-­‐models-­‐tdp-­‐43-­‐proteinopathies#).         METHODS   C.  elegans  maintenence   Maintenance  and  growth  of  C.  elegans  were  performed  as  described  in  (Brenner,  1974)  and   all  strains  were  raised  at  20°C.  The  two  transgenic  strains  used  in  this  study  were  created   by  gonad  injection  and  integration  of  DNA  array.       Strains   N2  –  wild  type  C.  elegans  strain  used  as  a  control   TDP-­‐43   –   C.   elegans   strain   expressing   human   TDP-­‐43   and   marked   with   intestinal   GFP.   These  C.  elegans  exhibit  an  uncoordinated  phenotype  and  are  used  to  model  ALS.   sut-­‐2(bk741)  –  C.  elegans  strain  with  sut-­‐2  knocked  down  by  point  mutation  bk741   Cl6049;sut-­‐2(bk741)   –   C.   elegans   strain   expressing   human   TDP-­‐43   and   the   sut-­‐2   point   mutation  bk741     Crosses   I  preformed  a  synchronized  egg  lay  on  sut-­‐2(bk741)  and  then  moved  L3  C.  elegans  to  34°   for  8  hours  to  induce  the  generation  of  males.  These  males  were  then  placed  on  a  plate  with   L3  TDP-­‐43  C.  elegans.  Progeny  from  these  plates  were  chosen  for  the  presence  of  intestinal  
  • 4. GFP  indicating  that  they  carried  the  TDP-­‐43  transgene.  Each  of  these  C.  elegans  was  placed   on   an   individual   plate   and   left   overnight   at   15°.   C.elegans   expressing   the   sut-­‐2   point   mutation   bk741   do   not   lay   many   eggs   at   this   temperature,   so   those   without   eggs   were   assumed   to   be   expressing   both   the   TDP-­‐43   trans   gene   and   the   sut-­‐2   mutation.   I   ran   genotyped  these  C.  elegan  to  ensure  that  these  C.  elegans  did  indeed  carry  the  sut-­‐2  point   mutation.       Motility  assay   I  preformed  a  synchronized  egg  lay  and  let  C.  elegans  grow  up  for  3  days  at  20°.  I  washed   the  C.  elegans  off  the  plates  using  S-­‐basal  solution  and  spun  them  down  in  a  centrifuge  for  1   minute  at  13000rpm.  I  removed  the  supernatant,  containing  food  from  the  plates,  and  re-­‐ suspended  the  C.  elegans  in  S-­‐basal  solution.    C.  elegans  were  placed  on  an  unspotted  plate   and  allowed  to  sit  for  3  minutes.  I  then  used  the  ultrascope  to  take  a  2-­‐minute  video  of  each   plate.  I  analyzed  the  videos  with  worm  tracker  for  imageJ  to  calculate  the  body-­‐lengths  per   second  moved  by  each  worm  on  each  plate.         RESULTS   I  used  body-­‐lengths-­‐per-­‐second  as  a  measure  of  coordination  in  each  of  the  four  C.  elegans   strains.  This  measure  corrects  for  differences  in  average  C.  elegans  size  between  strains,   which  is  not  taken  into  account  by  analyzing  speed  alone.         Table   1:   Average   Body-­‐Lengths-­‐per-­‐Second   of   C.   elegans   compared   between   three   transgenic  strains  and  the  N2  wild  type  control  strain.     Strain   Average  Body   Lengths  per  Second   Standard  Error   Sample  Size   N2   0.2520   0.0054   2333   sut-­‐2(bk741)   0.2360   0.0033   3430   TDP-­‐43   0.1290   0.0012   17986   TDP-­‐43;sut-­‐2(bk741)   0.2002   0.0017   8689       Table  2:  P-­‐Values  calculated  by  independent  T-­‐tests  on  average  Body-­‐Lengths-­‐per-­‐ Second  of  C.  elegans  compared  between  three  transgenic  strains  and  the  N2  wild  type   control  strain.   N2   N2      sut-­‐2(bk741)   0.01179   sut-­‐2(bk741)    TDP-­‐43   9.19E-­‐182   1.171E-­‐1000   TDP-­‐43   TDP-­‐43;sut-­‐2(bk741)   2.60E-­‐21   1.07E-­‐19   4.38E-­‐239       Wild  type  C.  elegans  moved  an  average  of  0.2520(±0.0054)  body  lengths  per  second.  sut-­‐ 2(bk741)  C.  elegans  moved  an  average  of  0.2360(±0.0033)  body  lengths  per  second.    TDP-­‐
  • 5. 43   C.   elegans   moved   an   average   of   0.1290(±0.0012)   body   lengths   per   second.   sut-­‐ 2(bk741);TDP-­‐43   C.   elegans   moved   an   average   of   0.2002(±0.0017)   body   lengths   per   second.   A   multi-­‐way   ANOVA   showed   significance   and   a   Tukey-­‐Kramer   post-­‐hoc   analysis   showed  significant  differences  between  all  four  strains.         Figure   1:   Average   body-­‐lengths-­‐per-­‐second   moved   by   C.   elegans   as   a   measure   of   coordination  compared  between  four  strains.  All  strain  comparisons  show  significance  at   an  adjusted  alpha  of  0.0833,  n=32438.       DISCUSSION   The  data  show  that  C.  elegans  expressing  a  TDP-­‐43  phenotype  have  significantly  decreased   motility  compared  to  both  the  wild-­‐type  strain  (N2)  (p=0.0118)  and  the  strain  expressing   mutated   sut-­‐2   (sut-­‐2(bk741))   (p<0.001).   This   is   expected   because   these   worms   have   dysfunctional  motor  neurons  as  part  of  an  ALS  phenotype.  What  is  not  expected  is  that  C.   elegans   expressing   the   sut-­‐2   mutation   also   move   significantly   fewer   body-­‐lengths-­‐per-­‐ second  than  wild-­‐type  C.  elegans.  This  difference  is  much  smaller  than  between  the  wild   type  strain  and  either  of  the  strains  expressing  TDP-­‐43;  both  of  which  movedramatically   slower  than  either  the  N2  or  SUT-­‐2(BK741)  strains,  due  to  the  uncoordinated  phenotype   induced  by  expression  of  human  TDP-­‐43.     sut-­‐2(bk741);TDP-­‐43  C.  elegans  display  a  movement  phenotype  closer  to  that  of  the  wild-­‐ type  than  the  uncoordinated  TDP-­‐43.  This  demonstrates  a  partial  rescue  of  the  pathogenic   phenotype  by  inhibiting  sut-­‐2  function.  Further  exploration  of  the  relationship  between  the   sut-­‐2  protein  and  TDP-­‐43  will  provide  useful  clues  as  to  the  role  of  TDP-­‐43  in  ALS.  sut-­‐2   likely  plays  a  critical  role  in  the  mechanism  by  which  the  cell  responds  to  the  abundance  of   0.0000   0.0500   0.1000   0.1500   0.2000   0.2500   0.3000   Average  body-­‐lengths  per  second  
  • 6. dsRNA  which  accumulate  in  the  absence  of  nuclear  TDP-­‐43.  Further  exploration  of  these   findings  may  lead  to  a  better  understanding  of  what  causes  neurodegeneration  and  provide   possible   new   neuroprotective   strategies   for   the   treatment   of   ALS   and   other   neurodegenerative  diseases.      
  • 7. REFERENCES   Brenner,  S.  "The  Genetics  of  Caenorhabditis  Elegans."  Genetics  77  (1974):  71-­‐94.  Print.   Carty,  Michael,  Line  Reinert,  Søren  R.  Paludan,  and  Andrew  G.  Bowie.  "Innate  Antiviral   Signalling  in  the  Central  Nervous  System."  Trends  in  Immunology  35.2  (2014):  79-­‐ 87.  Print.   Chou,  Ching-­‐Chieh,  Olga  M.  Alexeeva,  Shizuka  Yamada,  Amy  Pribadi,  Yi  Zhang,  Bi  Mo,   Kathryn  C.  Zarnescu,  and  Wilfried  Rossoll.  "PABPN1  Supresses  TDP-­‐43  Toxicity  in   ALS  Disease  Models."  PABPN1  Suppresses  TDP-­‐43  Toxicity  in  ALS  Disease  Models.   Oxford  University  Press,  30  June  2015.  Web.  4  Oct.  2015.   Guthrie,  C.  R.,  G.  D.  Schellenberg,  and  B.  C.  Kraemer.  "SUT-­‐2  Potentiates  Tau-­‐induced   Neurotoxicity  in  Caenorhabditis  Elegans."  Human  Molecular  Genetics  18.10  (2009):   1825-­‐838.  Print.   Hazelett,  D.  J.,  J.-­‐C.  Chang,  D.  L.  Lakeland,  and  D.  B.  Morton.  "Comparison  of  Parallel  High-­‐ Throughput  RNA  Sequencing  Between  Knockout  of  TDP-­‐43  and  Its  Overexpression   Reveals  Primarily  Nonreciprocal  and  Nonoverlapping  Gene  Expression  Changes  in   the  Central  Nervous  System  of  Drosophila."  G3&#58;  Genes|Genomes|Genetics  2.7   (2012):  789-­‐802.  Print.   Inukai,  S.,  and  F.  Slack.  "MicroRNAs  and  the  Genetic  Network  in  Aging  Authors."  Journal  of   Molecular  Biology  425.19  (2013):  3601-­‐608.  Print.   Kraemer,  B.  C.,  and  G.  D.  Schellenberg.  "SUT-­‐1  Enables  Tau-­‐induced  Neurotoxicity  in  C.   Elegans."  Human  Molecular  Genetics  16.16  (2007):  1959-­‐971.  Print.   Lester,  Sandra  N.,  and  Kui  Li.  "Toll-­‐Like  Receptors  in  Antiviral  Innate  Immunity."  Journal  of   Molecular  Biology  426.6  (2014):  1246-­‐264.  Print.   Murdock,  Benjamin  J.,  Diane  E.  Bender,  Benjamin  M.  Segal,  and  Eva  L.  Feldman.  "The  Dual   Roles  of  Immunity  in  ALS:  Injury  Overrides  Protection."  Neurobiology  of  Disease  77   (2015):  1-­‐12.  Print.   Petrucelli,  Leondar.  "Neurodegenerative  Diseases:  Leonard  Petrucelli."  Cell  and  Animal   Models  of  TDP-­‐43  Proteinopathies.  Mayo  Foundation  for  Medical  Education  and   Research,  n.d.  Web.  10  Jan.  2016.   Saldi,  T.  K.,  P.  E.  Ash,  G.  Wilson,  P.  Gonzales,  A.  Garrido-­‐Lecca,  C.  M.  Roberts,  V.  Dostal,  T.  F.   Gendron,  L.  D.  Stein,  T.  Blumenthal,  L.  Petrucelli,  and  C.  D.  Link.  "TDP-­‐1,  the   Caenorhabditis  Elegans  Ortholog  of  TDP-­‐43,  Limits  the  Accumulation  of  Double-­‐ stranded  RNA."  The  EMBO  Journal  33.24  (2014):  2947-­‐966.  Print.   Schmidt,  Marion,  and  Daniel  Finley.  "Regulation  of  Proteasome  Activity  in  Health  and   Disease."  Biochimica  Et  Biophysica  Acta  1843  (2014):  13-­‐25.  Print.   Tan,  Rachel  H.,  Jillian  J.  Kril,  Manaal  Fatima,  Andrew  Mcgeachie,  Heather  Mccann,  Claire   Shepherd,  Shelley  L.  Forrest,  Andrew  Affleck,  John  B.  J.  Kwok,  John  R.  Hodges,   Matthew  C.  Kiernan,  and  Glenda  M.  Halliday.  "TDP-­‐43  Proteinopathies:  Pathological   Identification  of  Brain  Regions  Differentiating  Clinical  Phenotypes."  Brain  138.10   (2015):  3110-­‐122.  Print.   Wolozin,  Benjamin,  Christopher  Gabel,  Andrew  Ferree,  Maria  Guillily,  and  Atsushi  Ebata.   "Watching  Worms  Whither:  Modeling  Neurodegeneration  in  C.  Elegans."  Progress  in   Molecular  Biology  and  Translational  Science  Animal  Models  of  Human  Disease  100   (2011):  499-­‐514.  Print.