SlideShare une entreprise Scribd logo
1  sur  28
Télécharger pour lire hors ligne
ì	
  
Learning	
  To	
  Rank:	
  From	
  Pairwise	
  
Approach	
  to	
  Listwise	
  Approach	
  
Zhe	
  Cao,	
  Tao	
  Qin,	
  Tie-­‐Yan	
  Liu,	
  Ming-­‐Feng	
  Tsai,	
  and	
  Hang	
  Li	
  
Hasan	
  Hüseyin	
  Topcu	
  
Learning	
  To	
  Rank	
  
Outline	
  
ì  Related	
  Work	
  
ì  Learning	
  System	
  
ì  Learning	
  to	
  Rank	
  
ì  Pairwise	
  vs.	
  Listwise	
  Approach	
  
ì  Experiments	
  
ì  Conclusion	
  
Related	
  Work	
  
ì  Pairwise	
  Approach	
  :	
  Learning	
  task	
  is	
  formalized	
  as	
  classificaNon	
  
of	
  object	
  pairs	
  into	
  two	
  categories	
  (	
  correctly	
  ranked	
  and	
  
incorrectly	
  ranked)	
  
ì  The	
  methods	
  of	
  classificaNon:	
  
ì  Ranking	
  SVM	
  (Herbrich	
  et	
  al.,	
  1999)	
  and	
  Joachims(2002)	
  applied	
  
RankingSVM	
  to	
  InformaNon	
  Retrieval	
  
ì  RankBoost	
  (	
  Freund	
  et	
  al.	
  1998)	
  
ì  RankNet	
  (Burges	
  et	
  al.	
  2005):	
  	
  
Learning	
  System	
  
Learning	
  System	
  
Training	
  Data,	
  Data	
  Preprocessing,	
  …	
  
How	
  objects	
  are	
  idenNfied?	
  
How	
  instances	
  are	
  modeled?	
  
SVM,	
  ANN,	
  BoosNng	
  
Evaluate	
  with	
  test	
  data	
  
Adapted	
  from	
  Paaern	
  Classificaton(Duda,	
  Hart,	
  Stork)	
  	
  
Ranking	
  
Learning	
  to	
  Rank	
  
Learning	
  to	
  Rank	
  
ì  A	
  number	
  of	
  queries	
  are	
  provided	
  
ì  Each	
  query	
  is	
  associated	
  with	
  perfect	
  ranking	
  list	
  of	
  documents	
  
(Ground-­‐Truth)	
  
ì  A	
  Ranking	
  funcNon	
  is	
  created	
  using	
  the	
  training	
  data	
  such	
  that	
  
the	
  model	
  can	
  precisely	
  predict	
  the	
  ranking	
  list.	
  
ì  Try	
  to	
  opNmize	
  a	
  Loss	
  funcNon	
  for	
  learning.	
  Note	
  that	
  the	
  loss	
  
funcNon	
  for	
  ranking	
  is	
  slightly	
  different	
  in	
  the	
  sense	
  that	
  it	
  
makes	
  use	
  of	
  sorNng.	
  
Training	
  Process	
  
Data	
  Labeling	
  
ì  Explicit	
  Human	
  Judgment	
  (Perfect,	
  Excellent,	
  Good,	
  Fair,	
  Bad)	
  
ì  Implicit	
  Relevance	
  Judgment	
  :	
  Derived	
  from	
  click	
  data	
  (Search	
  
log	
  data)	
  
ì  Ordered	
  Pairs	
  between	
  documents	
  (A	
  >	
  B)	
  
ì  List	
  of	
  judgments(scores)	
  
Features	
  
Pairwise	
  Approach	
  
ì  Training	
  data	
  instances	
  are	
  document	
  pairs	
  in	
  learning	
  
Pairwise	
  Approach	
  
ì  Collects	
  document	
  pairs	
  from	
  the	
  ranking	
  list	
  and	
  for	
  each	
  
document	
  pairs	
  it	
  assigns	
  a	
  label.	
  
ì  	
  Data	
  labels	
  +1	
  if	
  score	
  of	
  A	
  >	
  B	
  and	
  -­‐1	
  if	
  A	
  <	
  B	
  	
  
ì  Formalizes	
  the	
  problem	
  of	
  learning	
  to	
  rank	
  as	
  binary	
  
classificaNon	
  
ì  RankingSVM,	
  RankBoost	
  and	
  RankNet	
  
Pairwise	
  Approach	
  Drawbacks	
  
ì  ObjecNve	
  of	
  learning	
  is	
  formalized	
  as	
  minimizing	
  errors	
  in	
  
classificaNon	
  of	
  document	
  pairs	
  rather	
  than	
  minimizing	
  errors	
  in	
  
ranking	
  of	
  documents.	
  
ì  Training	
  process	
  is	
  computaNonally	
  costly,	
  as	
  the	
  documents	
  of	
  
pairs	
  is	
  very	
  large.	
  
Pairwise	
  Approach	
  Drawbacks	
  
ì  Equally	
  treats	
  document	
  pairs	
  across	
  different	
  
grades	
  (labels)	
  (Ex.1)	
  
ì  The	
  number	
  of	
  generated	
  document	
  pairs	
  varies	
  
largely	
  from	
  query	
  to	
  query,	
  which	
  will	
  result	
  in	
  
training	
  a	
  model	
  biased	
  toward	
  queries	
  with	
  more	
  
document	
  pairs.	
  (Ex.2)	
  
Listwise	
  Approach	
  
ì  Training	
  data	
  instances	
  are	
  document	
  list	
  
ì  The	
  objecNve	
  of	
  learning	
  is	
  formalized	
  as	
  minimizaNon	
  of	
  the	
  
total	
  loses	
  with	
  respect	
  to	
  the	
  training	
  data.	
  
ì  Listwise	
  Loss	
  FuncNon	
  uses	
  probability	
  models:	
  Permuta(on	
  
Probability	
  and	
  Top	
  One	
  Probability	
  
ments d(i0
)
are given, we construct feature vectors x(i0
)
from
them and use the trained ranking function to assign scores
to the documents d(i0
)
. Finally we rank the documents d(i0
)
in descending order of the scores. We call the learning
problem described above as the listwise approach to learn-
ing to rank.
By contrast, in the pairwise approach, a new training data
set T 0
is created from T , in which each feature vector pair
x(i)
j and x(i)
k forms a new instance where j , k, and +1 is
assigned to the pair if y(i)
j is larger than y(i)
k otherwise 1.
It turns out that the training data T 0
is a data set of bi-
nary classification. A classification model like SVM can
be created. As explained in Section 1, although the pair-
of scores s is defined
Ps(⇡
where s⇡( j) is the scor
⇡.
Let us consider an ex
ing scores s = (s1, s
tions ⇡ = h1, 2, 3i an
lows:
Ps(⇡) =
(
(s1) + (
ments d(i0
)
are given, we construct feature vectors x(i0
)
from
them and use the trained ranking function to assign scores
to the documents d(i0
)
. Finally we rank the documents d(i0
)
in descending order of the scores. We call the learning
problem described above as the listwise approach to learn-
ing to rank.
By contrast, in the pairwise approach, a new training data
set T 0
is created from T , in which each feature vector pair
x(i)
j and x(i)
k forms a new instance where j , k, and +1 is
assigned to the pair if y(i)
j is larger than y(i)
k otherwise 1.
It turns out that the training data T 0
is a data set of bi-
nary classification. A classification model like SVM can
be created. As explained in Section 1, although the pair-
of scores s is defined
Ps(⇡
where s⇡( j) is the scor
⇡.
Let us consider an ex
ing scores s = (s1, s
tions ⇡ = h1, 2, 3i an
lows:
Ps(⇡) =
(
(s1) + (
ments d(i0
)
are given, we construct feature vectors x(i0
)
from
them and use the trained ranking function to assign scores
to the documents d(i0
)
. Finally we rank the documents d(i0
)
in descending order of the scores. We call the learning
problem described above as the listwise approach to learn-
ing to rank.
By contrast, in the pairwise approach, a new training data
set T 0
is created from T , in which each feature vector pair
x(i)
j and x(i)
k forms a new instance where j , k, and +1 is
assigned to the pair if y(i)
j is larger than y(i)
k otherwise 1.
It turns out that the training data T 0
is a data set of bi-
nary classification. A classification model like SVM can
be created. As explained in Section 1, although the pair-
of scores s is defined
Ps(⇡
where s⇡( j) is the scor
⇡.
Let us consider an ex
ing scores s = (s1, s
tions ⇡ = h1, 2, 3i an
lows:
Ps(⇡) =
(
(s1) + (
Permutation	
  Probability	
  
ì  Objects	
  :	
  {A,B,C}	
  and	
  PermutaNons:	
  ABC,	
  ACB,	
  BAC,	
  BCA,	
  CAB,	
  CBA	
  
ì  Suppose	
  Ranking	
  funcNon	
  that	
  assigns	
  scores	
  to	
  objects	
  sA,	
  sB	
  and	
  sC	
  
ì  Permuta5on	
  Probabilty:	
  Likelihood	
  of	
  a	
  permutaNon	
  
ì  P(ABC)	
  >	
  P(CBA)	
  	
  if	
  	
  	
  sA	
  >	
  sB	
  >	
  sC	
  
Top	
  One	
  Probability	
  
ì  Objects	
  :	
  {A,B,C}	
  and	
  PermutaNons:	
  ABC,	
  ACB,	
  BAC,	
  BCA,	
  CAB,	
  CBA	
  
ì  Suppose	
  Ranking	
  funcNon	
  that	
  assigns	
  scores	
  to	
  objects	
  sA,	
  sB	
  and	
  sC	
  
ì  Top	
  one	
  probability	
  of	
  an	
  object	
  represents	
  the	
  probability	
  of	
  its	
  
being	
  ranked	
  on	
  the	
  top,	
  given	
  the	
  scores	
  of	
  all	
  the	
  objects	
  
ì  P(A)	
  =	
  P(ABC)	
  +	
  P(ACB)	
  
ì  NoNce	
  that	
  in	
  order	
  to	
  calculate	
  n	
  top	
  one	
  probabiliNes,	
  we	
  sNll	
  need	
  
to	
  calculate	
  n!	
  permutaNon	
  probabiliNes.	
  
ì  P(A)	
  =	
  P(ABC)	
  +	
  P(ACB)	
  
ì  P(B)	
  =	
  P(BAC)	
  +	
  P(BCA)	
  
ì  P(C)	
  =	
  P(CBA)	
  +	
  P(CAB)	
  
Listwise	
  Loss	
  Function	
  
ì  With	
  the	
  use	
  of	
  top	
  one	
  probability,	
  given	
  two	
  lists	
  of	
  scores	
  we	
  
can	
  use	
  any	
  metric	
  to	
  represent	
  the	
  distance	
  between	
  two	
  
score	
  lists.	
  
ì  For	
  example	
  when	
  we	
  use	
  Cross	
  Entropy	
  as	
  metric,	
  the	
  listwise	
  
loss	
  funcNon	
  becomes	
  
ì  Ground	
  Truth:	
  ABCD	
  	
  	
  vs.	
  	
  	
  Ranking	
  Output:	
  ACBD	
  or	
  ABDC	
  	
  
ListNet	
  
ì  Learning	
  Method:	
  ListNet	
  
ì  OpNmize	
  Listwise	
  Loss	
  funcNon	
  based	
  on	
  top	
  one	
  probability	
  
with	
  Neural	
  Network	
  and	
  Gradient	
  Descent	
  as	
  opNmizaNon	
  
algorithm.	
  
ì  Linear	
  Network	
  Model	
  is	
  used	
  for	
  simplicity:	
  y	
  =	
  wTx	
  +	
  b	
  
ListNet	
  
Ranking	
  Accuracy	
  
ì  ListNet	
  	
  	
  	
  	
  	
  	
  vs.	
  	
  	
  	
  	
  	
  RankNet,	
  RankingSVM,	
  RankBoost	
  
ì  3	
  Datasets:	
  TREC	
  2003,	
  OHSUMED	
  and	
  CSearch	
  
ì  TREC	
  2003:	
  Relevance	
  Judgments	
  (Relevant	
  and	
  Irrelevant),	
  20	
  features	
  
extracted	
  
ì  OHSUMED:	
  Relevance	
  Judgments	
  (Definitely	
  Relevant,	
  PosiNvely	
  
Relevant	
  	
  and	
  Irrelevant),	
  30	
  features	
  
ì  CSearch:	
  Relevance	
  Judgments	
  from	
  4(‘Perfect	
  Match’)	
  to	
  0	
  (‘Bad	
  
Match’),	
  600	
  features	
  
ì  EvaluaNon	
  Measures:	
  Normalized	
  Discounted	
  CumulaNve	
  Gain	
  
(NDCG)	
  and	
  Mean	
  Average	
  Precision(MAP)	
  
	
  
	
  
Experiments	
  
ì  NDCG@n	
  on	
  TREC	
  
	
  
Experiments	
  
ì  NDCG@n	
  on	
  OHSUMED	
  
	
  
Experiments	
  
ì  NDCG@n	
  on	
  CSearch	
  
	
  
Conclusion	
  
ì  Discussed	
  
ì  Learning	
  to	
  Rank	
  
ì  Pairwise	
  approach	
  and	
  its	
  drawbacks	
  
ì  Listwise	
  Approach	
  outperforms	
  the	
  exisNng	
  Pairwise	
  Approaches	
  
ì  EvaluaNon	
  of	
  the	
  Paper	
  
ì  Linear	
  Neural	
  Network	
  model	
  is	
  used.	
  What	
  about	
  Non-­‐Linear	
  
model?	
  
ì  Listwise	
  Loss	
  FuncNon	
  is	
  the	
  key	
  issue.(Probability	
  models)	
  
References	
  
ì  Zhe	
  Cao,	
  Tao	
  Qin,	
  Tie-­‐Yan	
  Liu,	
  Ming-­‐Feng	
  Tsai,	
  and	
  Hang	
  Li.	
  2007.	
  
Learning	
  to	
  rank:	
  from	
  pairwise	
  approach	
  to	
  listwise	
  approach.	
  
In	
  Proceedings	
  of	
  the	
  24th	
  interna(onal	
  conference	
  on	
  Machine	
  
learning	
  (ICML	
  '07),	
  Zoubin	
  Ghahramani	
  (Ed.).	
  ACM,	
  New	
  York,	
  
NY,	
  USA,	
  129-­‐136.	
  DOI=10.1145/1273496.1273513	
  hap://
doi.acm.org/10.1145/1273496.1273513	
  
ì  Hang	
  Li:	
  A	
  Short	
  Introduc5on	
  to	
  Learning	
  to	
  Rank.	
  
IEICE	
  TransacNons	
  94-­‐D(10):	
  1854-­‐1862	
  (2011)	
  
ì  Learning	
  to	
  Rank.	
  Hang	
  Li.	
  Microsow	
  Research	
  Asia.	
  ACL-­‐IJCNLP	
  
2009	
  Tutorial.	
  Aug.	
  2,	
  2009.	
  Singapore	
  
Learning to Rank - From pairwise approach to listwise

Contenu connexe

Tendances

Discovering User's Topics of Interest in Recommender Systems
Discovering User's Topics of Interest in Recommender SystemsDiscovering User's Topics of Interest in Recommender Systems
Discovering User's Topics of Interest in Recommender Systems
Gabriel Moreira
 
Chapter 1. Introduction
Chapter 1. IntroductionChapter 1. Introduction
Chapter 1. Introduction
butest
 

Tendances (20)

Apache HBase™
Apache HBase™Apache HBase™
Apache HBase™
 
Information Retrieval
Information RetrievalInformation Retrieval
Information Retrieval
 
Learning to Rank: An Introduction to LambdaMART
Learning to Rank: An Introduction to LambdaMARTLearning to Rank: An Introduction to LambdaMART
Learning to Rank: An Introduction to LambdaMART
 
[211] HBase 기반 검색 데이터 저장소 (공개용)
[211] HBase 기반 검색 데이터 저장소 (공개용)[211] HBase 기반 검색 데이터 저장소 (공개용)
[211] HBase 기반 검색 데이터 저장소 (공개용)
 
Data Source API in Spark
Data Source API in SparkData Source API in Spark
Data Source API in Spark
 
Hive User Meeting August 2009 Facebook
Hive User Meeting August 2009 FacebookHive User Meeting August 2009 Facebook
Hive User Meeting August 2009 Facebook
 
Streaming Data Lakes using Kafka Connect + Apache Hudi | Vinoth Chandar, Apac...
Streaming Data Lakes using Kafka Connect + Apache Hudi | Vinoth Chandar, Apac...Streaming Data Lakes using Kafka Connect + Apache Hudi | Vinoth Chandar, Apac...
Streaming Data Lakes using Kafka Connect + Apache Hudi | Vinoth Chandar, Apac...
 
Thanos - Prometheus on Scale
Thanos - Prometheus on ScaleThanos - Prometheus on Scale
Thanos - Prometheus on Scale
 
Association rule Mining
Association rule MiningAssociation rule Mining
Association rule Mining
 
Building Large-scale Real-world Recommender Systems - Recsys2012 tutorial
Building Large-scale Real-world Recommender Systems - Recsys2012 tutorialBuilding Large-scale Real-world Recommender Systems - Recsys2012 tutorial
Building Large-scale Real-world Recommender Systems - Recsys2012 tutorial
 
Deep Learning for Recommender Systems RecSys2017 Tutorial
Deep Learning for Recommender Systems RecSys2017 Tutorial Deep Learning for Recommender Systems RecSys2017 Tutorial
Deep Learning for Recommender Systems RecSys2017 Tutorial
 
Link Analysis for Web Information Retrieval
Link Analysis for Web Information RetrievalLink Analysis for Web Information Retrieval
Link Analysis for Web Information Retrieval
 
Netflix talk at ML Platform meetup Sep 2019
Netflix talk at ML Platform meetup Sep 2019Netflix talk at ML Platform meetup Sep 2019
Netflix talk at ML Platform meetup Sep 2019
 
A Thorough Comparison of Delta Lake, Iceberg and Hudi
A Thorough Comparison of Delta Lake, Iceberg and HudiA Thorough Comparison of Delta Lake, Iceberg and Hudi
A Thorough Comparison of Delta Lake, Iceberg and Hudi
 
Optimizing Hive Queries
Optimizing Hive QueriesOptimizing Hive Queries
Optimizing Hive Queries
 
Pyspark Tutorial | Introduction to Apache Spark with Python | PySpark Trainin...
Pyspark Tutorial | Introduction to Apache Spark with Python | PySpark Trainin...Pyspark Tutorial | Introduction to Apache Spark with Python | PySpark Trainin...
Pyspark Tutorial | Introduction to Apache Spark with Python | PySpark Trainin...
 
Working with JSON Data in PostgreSQL vs. MongoDB
Working with JSON Data in PostgreSQL vs. MongoDBWorking with JSON Data in PostgreSQL vs. MongoDB
Working with JSON Data in PostgreSQL vs. MongoDB
 
Discovering User's Topics of Interest in Recommender Systems
Discovering User's Topics of Interest in Recommender SystemsDiscovering User's Topics of Interest in Recommender Systems
Discovering User's Topics of Interest in Recommender Systems
 
Chapter 1. Introduction
Chapter 1. IntroductionChapter 1. Introduction
Chapter 1. Introduction
 
Deep Natural Language Processing for Search and Recommender Systems
Deep Natural Language Processing for Search and Recommender SystemsDeep Natural Language Processing for Search and Recommender Systems
Deep Natural Language Processing for Search and Recommender Systems
 

En vedette

Learning to Rank Personalized Search Results in Professional Networks
Learning to Rank Personalized Search Results in Professional NetworksLearning to Rank Personalized Search Results in Professional Networks
Learning to Rank Personalized Search Results in Professional Networks
Viet Ha-Thuc
 
Learning to rank fulltext results from clicks
Learning to rank fulltext results from clicksLearning to rank fulltext results from clicks
Learning to rank fulltext results from clicks
tkramar
 
Learning to Rank in Solr: Presented by Michael Nilsson & Diego Ceccarelli, Bl...
Learning to Rank in Solr: Presented by Michael Nilsson & Diego Ceccarelli, Bl...Learning to Rank in Solr: Presented by Michael Nilsson & Diego Ceccarelli, Bl...
Learning to Rank in Solr: Presented by Michael Nilsson & Diego Ceccarelli, Bl...
Lucidworks
 

En vedette (12)

Learning to Rank for Recommender Systems - ACM RecSys 2013 tutorial
Learning to Rank for Recommender Systems -  ACM RecSys 2013 tutorialLearning to Rank for Recommender Systems -  ACM RecSys 2013 tutorial
Learning to Rank for Recommender Systems - ACM RecSys 2013 tutorial
 
Magpie
MagpieMagpie
Magpie
 
Learning to Rank Personalized Search Results in Professional Networks
Learning to Rank Personalized Search Results in Professional NetworksLearning to Rank Personalized Search Results in Professional Networks
Learning to Rank Personalized Search Results in Professional Networks
 
Soergel oa week-2014-lightning
Soergel oa week-2014-lightningSoergel oa week-2014-lightning
Soergel oa week-2014-lightning
 
Learning to rank fulltext results from clicks
Learning to rank fulltext results from clicksLearning to rank fulltext results from clicks
Learning to rank fulltext results from clicks
 
PRML 第4章
PRML 第4章PRML 第4章
PRML 第4章
 
Владимир Гулин, Mail.Ru Group, Learning to rank using clickthrough data
Владимир Гулин, Mail.Ru Group, Learning to rank using clickthrough dataВладимир Гулин, Mail.Ru Group, Learning to rank using clickthrough data
Владимир Гулин, Mail.Ru Group, Learning to rank using clickthrough data
 
DSIRNLP#1 ランキング学習ことはじめ
DSIRNLP#1 ランキング学習ことはじめDSIRNLP#1 ランキング学習ことはじめ
DSIRNLP#1 ランキング学習ことはじめ
 
Learning Continuous Control Policies by Stochastic Value Gradients
Learning Continuous Control Policies by Stochastic Value GradientsLearning Continuous Control Policies by Stochastic Value Gradients
Learning Continuous Control Policies by Stochastic Value Gradients
 
IE: Named Entity Recognition (NER)
IE: Named Entity Recognition (NER)IE: Named Entity Recognition (NER)
IE: Named Entity Recognition (NER)
 
Learning to Rank in Solr: Presented by Michael Nilsson & Diego Ceccarelli, Bl...
Learning to Rank in Solr: Presented by Michael Nilsson & Diego Ceccarelli, Bl...Learning to Rank in Solr: Presented by Michael Nilsson & Diego Ceccarelli, Bl...
Learning to Rank in Solr: Presented by Michael Nilsson & Diego Ceccarelli, Bl...
 
Collaborative Filtering Recommendation System
Collaborative Filtering Recommendation SystemCollaborative Filtering Recommendation System
Collaborative Filtering Recommendation System
 

Similaire à Learning to Rank - From pairwise approach to listwise

Data.Mining.C.6(II).classification and prediction
Data.Mining.C.6(II).classification and predictionData.Mining.C.6(II).classification and prediction
Data.Mining.C.6(II).classification and prediction
Margaret Wang
 
Ranking Objects by Exploiting Relationships: Computing Top-K over Aggregation
Ranking Objects by Exploiting Relationships: Computing Top-K over AggregationRanking Objects by Exploiting Relationships: Computing Top-K over Aggregation
Ranking Objects by Exploiting Relationships: Computing Top-K over Aggregation
Jason Yang
 
Machine learning and Neural Networks
Machine learning and Neural NetworksMachine learning and Neural Networks
Machine learning and Neural Networks
butest
 
Search Engines
Search EnginesSearch Engines
Search Engines
butest
 
IJCSI-10-6-1-288-292
IJCSI-10-6-1-288-292IJCSI-10-6-1-288-292
IJCSI-10-6-1-288-292
HARDIK SINGH
 

Similaire à Learning to Rank - From pairwise approach to listwise (20)

Classification Of Web Documents
Classification Of Web Documents Classification Of Web Documents
Classification Of Web Documents
 
Data.Mining.C.6(II).classification and prediction
Data.Mining.C.6(II).classification and predictionData.Mining.C.6(II).classification and prediction
Data.Mining.C.6(II).classification and prediction
 
ppt
pptppt
ppt
 
boosting algorithm
boosting algorithmboosting algorithm
boosting algorithm
 
Side Notes on Practical Natural Language Processing: Bootstrap Test
Side Notes on Practical Natural Language Processing: Bootstrap TestSide Notes on Practical Natural Language Processing: Bootstrap Test
Side Notes on Practical Natural Language Processing: Bootstrap Test
 
Machine Learning and Artificial Neural Networks.ppt
Machine Learning and Artificial Neural Networks.pptMachine Learning and Artificial Neural Networks.ppt
Machine Learning and Artificial Neural Networks.ppt
 
EFFICIENTLY PROCESSING OF TOP-K TYPICALITY QUERY FOR STRUCTURED DATA
EFFICIENTLY PROCESSING OF TOP-K TYPICALITY QUERY FOR STRUCTURED DATAEFFICIENTLY PROCESSING OF TOP-K TYPICALITY QUERY FOR STRUCTURED DATA
EFFICIENTLY PROCESSING OF TOP-K TYPICALITY QUERY FOR STRUCTURED DATA
 
Ranking Objects by Exploiting Relationships: Computing Top-K over Aggregation
Ranking Objects by Exploiting Relationships: Computing Top-K over AggregationRanking Objects by Exploiting Relationships: Computing Top-K over Aggregation
Ranking Objects by Exploiting Relationships: Computing Top-K over Aggregation
 
Machine learning and Neural Networks
Machine learning and Neural NetworksMachine learning and Neural Networks
Machine learning and Neural Networks
 
Machine learning by Dr. Vivek Vijay and Dr. Sandeep Yadav
Machine learning by Dr. Vivek Vijay and Dr. Sandeep YadavMachine learning by Dr. Vivek Vijay and Dr. Sandeep Yadav
Machine learning by Dr. Vivek Vijay and Dr. Sandeep Yadav
 
Classification Continued
Classification ContinuedClassification Continued
Classification Continued
 
Classification Continued
Classification ContinuedClassification Continued
Classification Continued
 
Search Engines
Search EnginesSearch Engines
Search Engines
 
[ppt]
[ppt][ppt]
[ppt]
 
[ppt]
[ppt][ppt]
[ppt]
 
[系列活動] Machine Learning 機器學習課程
[系列活動] Machine Learning 機器學習課程[系列活動] Machine Learning 機器學習課程
[系列活動] Machine Learning 機器學習課程
 
DWDM-AG-day-1-2023-SEC A plus Half B--.pdf
DWDM-AG-day-1-2023-SEC A plus Half B--.pdfDWDM-AG-day-1-2023-SEC A plus Half B--.pdf
DWDM-AG-day-1-2023-SEC A plus Half B--.pdf
 
Application of combined support vector machines in process fault diagnosis
Application of combined support vector machines in process fault diagnosisApplication of combined support vector machines in process fault diagnosis
Application of combined support vector machines in process fault diagnosis
 
IJCSI-10-6-1-288-292
IJCSI-10-6-1-288-292IJCSI-10-6-1-288-292
IJCSI-10-6-1-288-292
 
20070702 Text Categorization
20070702 Text Categorization20070702 Text Categorization
20070702 Text Categorization
 

Dernier

Vip Mumbai Call Girls Marol Naka Call On 9920725232 With Body to body massage...
Vip Mumbai Call Girls Marol Naka Call On 9920725232 With Body to body massage...Vip Mumbai Call Girls Marol Naka Call On 9920725232 With Body to body massage...
Vip Mumbai Call Girls Marol Naka Call On 9920725232 With Body to body massage...
amitlee9823
 
Vip Mumbai Call Girls Thane West Call On 9920725232 With Body to body massage...
Vip Mumbai Call Girls Thane West Call On 9920725232 With Body to body massage...Vip Mumbai Call Girls Thane West Call On 9920725232 With Body to body massage...
Vip Mumbai Call Girls Thane West Call On 9920725232 With Body to body massage...
amitlee9823
 
Mg Road Call Girls Service: 🍓 7737669865 🍓 High Profile Model Escorts | Banga...
Mg Road Call Girls Service: 🍓 7737669865 🍓 High Profile Model Escorts | Banga...Mg Road Call Girls Service: 🍓 7737669865 🍓 High Profile Model Escorts | Banga...
Mg Road Call Girls Service: 🍓 7737669865 🍓 High Profile Model Escorts | Banga...
amitlee9823
 
Call Girls In Shalimar Bagh ( Delhi) 9953330565 Escorts Service
Call Girls In Shalimar Bagh ( Delhi) 9953330565 Escorts ServiceCall Girls In Shalimar Bagh ( Delhi) 9953330565 Escorts Service
Call Girls In Shalimar Bagh ( Delhi) 9953330565 Escorts Service
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Call Girls Bannerghatta Road Just Call 👗 7737669865 👗 Top Class Call Girl Ser...
Call Girls Bannerghatta Road Just Call 👗 7737669865 👗 Top Class Call Girl Ser...Call Girls Bannerghatta Road Just Call 👗 7737669865 👗 Top Class Call Girl Ser...
Call Girls Bannerghatta Road Just Call 👗 7737669865 👗 Top Class Call Girl Ser...
amitlee9823
 
Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
amitlee9823
 

Dernier (20)

Vip Mumbai Call Girls Marol Naka Call On 9920725232 With Body to body massage...
Vip Mumbai Call Girls Marol Naka Call On 9920725232 With Body to body massage...Vip Mumbai Call Girls Marol Naka Call On 9920725232 With Body to body massage...
Vip Mumbai Call Girls Marol Naka Call On 9920725232 With Body to body massage...
 
Ravak dropshipping via API with DroFx.pptx
Ravak dropshipping via API with DroFx.pptxRavak dropshipping via API with DroFx.pptx
Ravak dropshipping via API with DroFx.pptx
 
Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...
Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...
Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...
 
Vip Mumbai Call Girls Thane West Call On 9920725232 With Body to body massage...
Vip Mumbai Call Girls Thane West Call On 9920725232 With Body to body massage...Vip Mumbai Call Girls Thane West Call On 9920725232 With Body to body massage...
Vip Mumbai Call Girls Thane West Call On 9920725232 With Body to body massage...
 
Accredited-Transport-Cooperatives-Jan-2021-Web.pdf
Accredited-Transport-Cooperatives-Jan-2021-Web.pdfAccredited-Transport-Cooperatives-Jan-2021-Web.pdf
Accredited-Transport-Cooperatives-Jan-2021-Web.pdf
 
Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...
Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...
Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...
 
Anomaly detection and data imputation within time series
Anomaly detection and data imputation within time seriesAnomaly detection and data imputation within time series
Anomaly detection and data imputation within time series
 
Week-01-2.ppt BBB human Computer interaction
Week-01-2.ppt BBB human Computer interactionWeek-01-2.ppt BBB human Computer interaction
Week-01-2.ppt BBB human Computer interaction
 
VidaXL dropshipping via API with DroFx.pptx
VidaXL dropshipping via API with DroFx.pptxVidaXL dropshipping via API with DroFx.pptx
VidaXL dropshipping via API with DroFx.pptx
 
BigBuy dropshipping via API with DroFx.pptx
BigBuy dropshipping via API with DroFx.pptxBigBuy dropshipping via API with DroFx.pptx
BigBuy dropshipping via API with DroFx.pptx
 
April 2024 - Crypto Market Report's Analysis
April 2024 - Crypto Market Report's AnalysisApril 2024 - Crypto Market Report's Analysis
April 2024 - Crypto Market Report's Analysis
 
Mg Road Call Girls Service: 🍓 7737669865 🍓 High Profile Model Escorts | Banga...
Mg Road Call Girls Service: 🍓 7737669865 🍓 High Profile Model Escorts | Banga...Mg Road Call Girls Service: 🍓 7737669865 🍓 High Profile Model Escorts | Banga...
Mg Road Call Girls Service: 🍓 7737669865 🍓 High Profile Model Escorts | Banga...
 
BDSM⚡Call Girls in Mandawali Delhi >༒8448380779 Escort Service
BDSM⚡Call Girls in Mandawali Delhi >༒8448380779 Escort ServiceBDSM⚡Call Girls in Mandawali Delhi >༒8448380779 Escort Service
BDSM⚡Call Girls in Mandawali Delhi >༒8448380779 Escort Service
 
Call Girls In Shalimar Bagh ( Delhi) 9953330565 Escorts Service
Call Girls In Shalimar Bagh ( Delhi) 9953330565 Escorts ServiceCall Girls In Shalimar Bagh ( Delhi) 9953330565 Escorts Service
Call Girls In Shalimar Bagh ( Delhi) 9953330565 Escorts Service
 
Edukaciniai dropshipping via API with DroFx
Edukaciniai dropshipping via API with DroFxEdukaciniai dropshipping via API with DroFx
Edukaciniai dropshipping via API with DroFx
 
Call me @ 9892124323 Cheap Rate Call Girls in Vashi with Real Photo 100% Secure
Call me @ 9892124323  Cheap Rate Call Girls in Vashi with Real Photo 100% SecureCall me @ 9892124323  Cheap Rate Call Girls in Vashi with Real Photo 100% Secure
Call me @ 9892124323 Cheap Rate Call Girls in Vashi with Real Photo 100% Secure
 
Invezz.com - Grow your wealth with trading signals
Invezz.com - Grow your wealth with trading signalsInvezz.com - Grow your wealth with trading signals
Invezz.com - Grow your wealth with trading signals
 
Call Girls Bannerghatta Road Just Call 👗 7737669865 👗 Top Class Call Girl Ser...
Call Girls Bannerghatta Road Just Call 👗 7737669865 👗 Top Class Call Girl Ser...Call Girls Bannerghatta Road Just Call 👗 7737669865 👗 Top Class Call Girl Ser...
Call Girls Bannerghatta Road Just Call 👗 7737669865 👗 Top Class Call Girl Ser...
 
Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
 
Midocean dropshipping via API with DroFx
Midocean dropshipping via API with DroFxMidocean dropshipping via API with DroFx
Midocean dropshipping via API with DroFx
 

Learning to Rank - From pairwise approach to listwise

  • 1. ì   Learning  To  Rank:  From  Pairwise   Approach  to  Listwise  Approach   Zhe  Cao,  Tao  Qin,  Tie-­‐Yan  Liu,  Ming-­‐Feng  Tsai,  and  Hang  Li   Hasan  Hüseyin  Topcu   Learning  To  Rank  
  • 2. Outline   ì  Related  Work   ì  Learning  System   ì  Learning  to  Rank   ì  Pairwise  vs.  Listwise  Approach   ì  Experiments   ì  Conclusion  
  • 3. Related  Work   ì  Pairwise  Approach  :  Learning  task  is  formalized  as  classificaNon   of  object  pairs  into  two  categories  (  correctly  ranked  and   incorrectly  ranked)   ì  The  methods  of  classificaNon:   ì  Ranking  SVM  (Herbrich  et  al.,  1999)  and  Joachims(2002)  applied   RankingSVM  to  InformaNon  Retrieval   ì  RankBoost  (  Freund  et  al.  1998)   ì  RankNet  (Burges  et  al.  2005):    
  • 5. Learning  System   Training  Data,  Data  Preprocessing,  …   How  objects  are  idenNfied?   How  instances  are  modeled?   SVM,  ANN,  BoosNng   Evaluate  with  test  data   Adapted  from  Paaern  Classificaton(Duda,  Hart,  Stork)    
  • 8. Learning  to  Rank   ì  A  number  of  queries  are  provided   ì  Each  query  is  associated  with  perfect  ranking  list  of  documents   (Ground-­‐Truth)   ì  A  Ranking  funcNon  is  created  using  the  training  data  such  that   the  model  can  precisely  predict  the  ranking  list.   ì  Try  to  opNmize  a  Loss  funcNon  for  learning.  Note  that  the  loss   funcNon  for  ranking  is  slightly  different  in  the  sense  that  it   makes  use  of  sorNng.  
  • 10. Data  Labeling   ì  Explicit  Human  Judgment  (Perfect,  Excellent,  Good,  Fair,  Bad)   ì  Implicit  Relevance  Judgment  :  Derived  from  click  data  (Search   log  data)   ì  Ordered  Pairs  between  documents  (A  >  B)   ì  List  of  judgments(scores)  
  • 12. Pairwise  Approach   ì  Training  data  instances  are  document  pairs  in  learning  
  • 13. Pairwise  Approach   ì  Collects  document  pairs  from  the  ranking  list  and  for  each   document  pairs  it  assigns  a  label.   ì   Data  labels  +1  if  score  of  A  >  B  and  -­‐1  if  A  <  B     ì  Formalizes  the  problem  of  learning  to  rank  as  binary   classificaNon   ì  RankingSVM,  RankBoost  and  RankNet  
  • 14. Pairwise  Approach  Drawbacks   ì  ObjecNve  of  learning  is  formalized  as  minimizing  errors  in   classificaNon  of  document  pairs  rather  than  minimizing  errors  in   ranking  of  documents.   ì  Training  process  is  computaNonally  costly,  as  the  documents  of   pairs  is  very  large.  
  • 15. Pairwise  Approach  Drawbacks   ì  Equally  treats  document  pairs  across  different   grades  (labels)  (Ex.1)   ì  The  number  of  generated  document  pairs  varies   largely  from  query  to  query,  which  will  result  in   training  a  model  biased  toward  queries  with  more   document  pairs.  (Ex.2)  
  • 16. Listwise  Approach   ì  Training  data  instances  are  document  list   ì  The  objecNve  of  learning  is  formalized  as  minimizaNon  of  the   total  loses  with  respect  to  the  training  data.   ì  Listwise  Loss  FuncNon  uses  probability  models:  Permuta(on   Probability  and  Top  One  Probability   ments d(i0 ) are given, we construct feature vectors x(i0 ) from them and use the trained ranking function to assign scores to the documents d(i0 ) . Finally we rank the documents d(i0 ) in descending order of the scores. We call the learning problem described above as the listwise approach to learn- ing to rank. By contrast, in the pairwise approach, a new training data set T 0 is created from T , in which each feature vector pair x(i) j and x(i) k forms a new instance where j , k, and +1 is assigned to the pair if y(i) j is larger than y(i) k otherwise 1. It turns out that the training data T 0 is a data set of bi- nary classification. A classification model like SVM can be created. As explained in Section 1, although the pair- of scores s is defined Ps(⇡ where s⇡( j) is the scor ⇡. Let us consider an ex ing scores s = (s1, s tions ⇡ = h1, 2, 3i an lows: Ps(⇡) = ( (s1) + ( ments d(i0 ) are given, we construct feature vectors x(i0 ) from them and use the trained ranking function to assign scores to the documents d(i0 ) . Finally we rank the documents d(i0 ) in descending order of the scores. We call the learning problem described above as the listwise approach to learn- ing to rank. By contrast, in the pairwise approach, a new training data set T 0 is created from T , in which each feature vector pair x(i) j and x(i) k forms a new instance where j , k, and +1 is assigned to the pair if y(i) j is larger than y(i) k otherwise 1. It turns out that the training data T 0 is a data set of bi- nary classification. A classification model like SVM can be created. As explained in Section 1, although the pair- of scores s is defined Ps(⇡ where s⇡( j) is the scor ⇡. Let us consider an ex ing scores s = (s1, s tions ⇡ = h1, 2, 3i an lows: Ps(⇡) = ( (s1) + ( ments d(i0 ) are given, we construct feature vectors x(i0 ) from them and use the trained ranking function to assign scores to the documents d(i0 ) . Finally we rank the documents d(i0 ) in descending order of the scores. We call the learning problem described above as the listwise approach to learn- ing to rank. By contrast, in the pairwise approach, a new training data set T 0 is created from T , in which each feature vector pair x(i) j and x(i) k forms a new instance where j , k, and +1 is assigned to the pair if y(i) j is larger than y(i) k otherwise 1. It turns out that the training data T 0 is a data set of bi- nary classification. A classification model like SVM can be created. As explained in Section 1, although the pair- of scores s is defined Ps(⇡ where s⇡( j) is the scor ⇡. Let us consider an ex ing scores s = (s1, s tions ⇡ = h1, 2, 3i an lows: Ps(⇡) = ( (s1) + (
  • 17. Permutation  Probability   ì  Objects  :  {A,B,C}  and  PermutaNons:  ABC,  ACB,  BAC,  BCA,  CAB,  CBA   ì  Suppose  Ranking  funcNon  that  assigns  scores  to  objects  sA,  sB  and  sC   ì  Permuta5on  Probabilty:  Likelihood  of  a  permutaNon   ì  P(ABC)  >  P(CBA)    if      sA  >  sB  >  sC  
  • 18. Top  One  Probability   ì  Objects  :  {A,B,C}  and  PermutaNons:  ABC,  ACB,  BAC,  BCA,  CAB,  CBA   ì  Suppose  Ranking  funcNon  that  assigns  scores  to  objects  sA,  sB  and  sC   ì  Top  one  probability  of  an  object  represents  the  probability  of  its   being  ranked  on  the  top,  given  the  scores  of  all  the  objects   ì  P(A)  =  P(ABC)  +  P(ACB)   ì  NoNce  that  in  order  to  calculate  n  top  one  probabiliNes,  we  sNll  need   to  calculate  n!  permutaNon  probabiliNes.   ì  P(A)  =  P(ABC)  +  P(ACB)   ì  P(B)  =  P(BAC)  +  P(BCA)   ì  P(C)  =  P(CBA)  +  P(CAB)  
  • 19. Listwise  Loss  Function   ì  With  the  use  of  top  one  probability,  given  two  lists  of  scores  we   can  use  any  metric  to  represent  the  distance  between  two   score  lists.   ì  For  example  when  we  use  Cross  Entropy  as  metric,  the  listwise   loss  funcNon  becomes   ì  Ground  Truth:  ABCD      vs.      Ranking  Output:  ACBD  or  ABDC    
  • 20. ListNet   ì  Learning  Method:  ListNet   ì  OpNmize  Listwise  Loss  funcNon  based  on  top  one  probability   with  Neural  Network  and  Gradient  Descent  as  opNmizaNon   algorithm.   ì  Linear  Network  Model  is  used  for  simplicity:  y  =  wTx  +  b  
  • 22. Ranking  Accuracy   ì  ListNet              vs.            RankNet,  RankingSVM,  RankBoost   ì  3  Datasets:  TREC  2003,  OHSUMED  and  CSearch   ì  TREC  2003:  Relevance  Judgments  (Relevant  and  Irrelevant),  20  features   extracted   ì  OHSUMED:  Relevance  Judgments  (Definitely  Relevant,  PosiNvely   Relevant    and  Irrelevant),  30  features   ì  CSearch:  Relevance  Judgments  from  4(‘Perfect  Match’)  to  0  (‘Bad   Match’),  600  features   ì  EvaluaNon  Measures:  Normalized  Discounted  CumulaNve  Gain   (NDCG)  and  Mean  Average  Precision(MAP)      
  • 23. Experiments   ì  NDCG@n  on  TREC    
  • 24. Experiments   ì  NDCG@n  on  OHSUMED    
  • 25. Experiments   ì  NDCG@n  on  CSearch    
  • 26. Conclusion   ì  Discussed   ì  Learning  to  Rank   ì  Pairwise  approach  and  its  drawbacks   ì  Listwise  Approach  outperforms  the  exisNng  Pairwise  Approaches   ì  EvaluaNon  of  the  Paper   ì  Linear  Neural  Network  model  is  used.  What  about  Non-­‐Linear   model?   ì  Listwise  Loss  FuncNon  is  the  key  issue.(Probability  models)  
  • 27. References   ì  Zhe  Cao,  Tao  Qin,  Tie-­‐Yan  Liu,  Ming-­‐Feng  Tsai,  and  Hang  Li.  2007.   Learning  to  rank:  from  pairwise  approach  to  listwise  approach.   In  Proceedings  of  the  24th  interna(onal  conference  on  Machine   learning  (ICML  '07),  Zoubin  Ghahramani  (Ed.).  ACM,  New  York,   NY,  USA,  129-­‐136.  DOI=10.1145/1273496.1273513  hap:// doi.acm.org/10.1145/1273496.1273513   ì  Hang  Li:  A  Short  Introduc5on  to  Learning  to  Rank.   IEICE  TransacNons  94-­‐D(10):  1854-­‐1862  (2011)   ì  Learning  to  Rank.  Hang  Li.  Microsow  Research  Asia.  ACL-­‐IJCNLP   2009  Tutorial.  Aug.  2,  2009.  Singapore