SlideShare une entreprise Scribd logo
1  sur  6
Télécharger pour lire hors ligne
IOSR Journal of Applied Physics (IOSR-JAP)
e-ISSN: 2278-4861.Volume 5, Issue 5 (Jan. 2014), PP 01-06
www.iosrjournals.org
www.iosrjournals.org 1 | Page
Computing net radiation from temperature variables:
Improvising for under-resourced weather stations in developing
countries.
Farai Malvern, SIMBA
Department Of Physics, Geography and Environmental Science, Great Zimbabwe University
Abstract: Most weather stations at farms, schools and other research institutes in the developing world do not
have radiation sensors and this is usually attributed to high costs of these sensors. Net radiation as one
component of radiation is important in crop farming as it influences germination, different growth stages, water
demand, size and quality of yield among other things. This article seeks to demonstrate how a series of
mathematical equations with temperature as a key physical quantity can be used to estimate net radiation using
the basic minimum of resources affordable against readings from a standard net radiometer. To achieve this,
daily data of maximum and minimum temperatures for 20 days was used from an automated weather station at
Great Zimbabwe University in Zimbabwe. A standard CNR 1 net radiometer was installed at the station to give
direct net radiation readings for comparison with the computed readings. A correlation between the calculated
net radiation and the measured one gave 90.8% correspondents. Diurnal net radiation was following the
maximum temperature trends. The average cost of a net radiometer sensor was US$ 3.700 which can be too
high for an ordinary farmer or other small research institutes.
Key words: net radiation, developing, cost, crop, temperature, Zimbabwe
I. Introduction
Weather stations in developing countries have been characterised by lack of maintenance of the
available equipment, they are ill equipped and generally less dense in an area. The reasons for the
aforementioned being primarily lack of funds to purchase the necessary equipment. The available stations
contribute to the knowledge of the climate of an area but the accuracy of the measured variables is
compromised. Measurement of radiation is important at stations as it provides useful data to experts in solar
energy industry, in crop farming, water management, and other sectors of the economy (Meyer, 1999). Air
temperature in the studies of meteorology is understood to be a direct response variable to the incoming solar
radiation. It is on this basis that temperature is used to estimate a radiation component as illustrated in the FAO
irrigation paper 56 (FAO,1998). The sun is the source of solar radiation and the radiation travels as
electromagnetic waves through the space to the atmosphere where it goes through various processes. Part of the
radiation is scattered and absorbed by the aerosol and water vapour in the atmosphere and some is incident on
the earth surface undisturbed and absorbed and reflected by the ground (Meyer, 1999). Net radiation then
constitutes the difference between the total downward radiation (longwave and shortwave) and total upward
radiation (longwave and shortwave). Net radiation is important particularly in crop farming as it is responsible
for germination of seeds, driving photosynthesis, determining the growing degree days of a crop, dictates soil
moisture content and soil temperatures (Simba et. al, 2013). It is therefore imperative to measure this component
of radiation as it informs the farmer on many aspects that will determine the quality and quantity of yield they
will realise. The research was carried out in Masvingo province, which is in the lowveld region of Zimbabwe
where average summer maximum temperatures are 28o
C, usually a season when crop farming is done
(Murwendo and Munthali, 2008). The main applications of net radiometers are in agrometeorology, for the
study of evapotranspiration and crop damage prevention; and in climatology, meteorology and hydrology for
measurement of the radiation balance (Ejieji, 2011). Net radiometers are used in monitoring over glaciers and
ice fields and this is of particular interest to global warming studies and in renewable energy the heat exchange
in thermal solar systems can be monitored. There are various types of net radiometers in the market and these
include: CNR 1 four component net radiometer, which is used in this study as the standard, Radiation Energy
Balance Systems (REBS) net radiometer and NR-Lite net radiometers. The article seeks to demonstrate how net
radiation can be calculated from temperature variables as an improvising strategy in an area where there are no
radiation sensors. The study will explore the accuracy, reliability and possible limitations of the method.
Computing net radiation from temperature variables: Improvising for under-resourced weather
www.iosrjournals.org 2 | Page
II. Study area
Masvingo province is divided into seven districts which are; Gutu, Masvingo, Bikita, Zaka, Chivi,
Mwenezi and Chiredzi. The province occupies the drier Lowveld area in the south of Zimbabwe. Most of the
area in the province is devoted to cattle ranching, subsistence crop farming, with mining and irrigated sugar
growing also significant. Rainfall is highly variable and uncertain, making the province prone to droughts.
(Makadho, 1996). Masvingo province is in the south-eastern part of Zimbabwe. It borders Mozambique on its
eastern border and the provinces of Matabeleland South to the south, Midlands to the north and west and
Manicaland to the north east. The province has an area of 56,566 km² and a population of approximately 1.3
million in 2002,(CSO, 2002).
Figure 1 v v : Map of Masvingo province (Simba et.al 2013).
III. Problem statement
A lot of weather stations at farms, schools and other research institutes in the developing world do not
have radiation sensors and this is usually attributed to high costs of these sensors. Net radiation as one
component of radiation is important in crop farming as it influences germination, different growth stages, water
demand, size and quality of yield among other things. It is against this background that alternative and
affordable ways of measuring this component of radiation can be employed to provide data.
Objective
This article seeks to demonstrate how a series of mathematical equations with temperature as a key
physical quantity can be used to estimate net radiation using the basic minimum of resources affordable.
Radiation and sensors
Part of the extraterrestrial radiation (Ra) is scattered, reflected or absorbed in the process of entering
the atmosphere. The amount of radiation that reaches the earth’s surface is called solar radiation (Rs). It depends
on Ra and the transmission through the atmosphere, which is largely dependent on cloud cover. Rs can be
measured in weather stations with pyranometers, radiometers or solarimeters. In some stations values of solar
radiation are part of the climatological data available. If it is not measured it can be calculated through the use of
an equation which relates solar radiation to extraterrestrial radiation and relative sunshine duration:
Rs = [0.25 + 0.5
N
n
] Ra..............................................................1
Where: Rs = Solar or shortwave radiation (MJ/m2
per day); n = Actual sunshine hours (hour); N =
Maximum possible duration of sunshine; hours or daylight hours (hour);
N
n
= Relative sunshine duration; Ra =
Extraterrestrial radiation (MJ/m2
per day)
The maximum duration of sunshine (N) can be calculated using equations. However, to simplify the
calculation procedures, values of N for different latitudes can be read from Tables in FAO irrigation paper 56
for the Southern Hemisphere. The actual duration of sunshine (n) is recorded with a sunshine recorder and is
part of the climatological data provided by weather stations. The
N
n
ratio can also be obtained from data on
cloud cover, if data on sunshine hours are not available.
Computing net radiation from temperature variables: Improvising for under-resourced weather
www.iosrjournals.org 3 | Page
IV. Construction of a CNR1 four component net radiometer
Figure 2: The CNR1 Four-Component Net Radiation Sensor (source:
http://s.campbellsci.com/documents/us/manuals/nr01)
(1) SWin solar radiation sensor or pyranometer,
(2) LWin Far Infrared radiation sensor or pyrgeometer
(3) radiation shield
(4) leveling assembly for x- and y axis, block plus bolts for x-axis adjustment
(5) leveling assembly for x- and y axis, horizontal rod
(6) connection body containing the Pt100 temperature sensor, heater, and hole for user-supplied temperature
sensor (add cable gland M8)
(7) LWout Far Infrared radiation sensor or pyrgeometer
(8) leveling assembly for x- and y-axis, bolts for y-axis adjustment
(9) SWout solar radiation sensor or pyranometer
A level is located under the radiation screens.
A CNR 1 net radiometer combines two thermopile pyranometers for solar radiation measurement
incoming/reflected/albedo/balance) with two thermopile pyrgeometers for far infrared measurement
(balance/ground surface temperature/sky temperature). There are four separate signal outputs and the integrated
temperature sensor can be used to calculate the downward far infrared radiation. Via a data logger the
temperature signal can be used to control the built-in heating element to minimise dew and frost deposition.
(http://geneq.com/en/departments/environment/product/net-radiometer-cnr
Market prices of Net radiometers
Table 1: Showing market prices of some net radiometers and their accessories
Type of a net radiometer Market price Supplier
Radiation Energy Balance (REBS) $ 2.000 Delta-T Devices (UK)
CNR1 four component $ 5.000 Delta-T Devices(UK)
Albedometer CM 7B $5.663 Sky power international (Germany)
Net radiometer NR-LITE $2.483 Enercorp instruments Ltd (Canada)
Radiation balance transmitter $3.363 Enercorp instruments Ltd (Canada)
V. Methodology
The method used in this study is based on 20 day maximum and minimum temperature data for the
month of January 2012 for a station at Great Zimbabwe University in Masvingo province in Zimbabwe. The
automated weather station used was the RainWise MKIII Weather Transmitter type with a The CC-3000 MK-III
Computer Interface datalogger. The weather station had temperature sensors, relative humidity sensor and wind
sensors. The necessary constants required to get the calculated net radiation were n, N,
N
n
, z, Ra, Rs, Rns Rso.
The actual vapour pressure readings, ea, were estimated for corresponding mean air temperature and relative
humidity readings available, using tables in FAO irrigation paper 56. The calculated net radiation was compared
against the readings of a CNR1 four component net radiometer which is a standard instrument. The CNR 1 was
running concurrently with temperature sensors at the station. Temperatures were recorded at intervals of 30 min
and averaged for the whole day using an automated temperature sensor and the data was stored in a datalogger.
The calculated and measured temperatures were then plotted on a regression curve to determine the level of
correspondents.
Computing net radiation from temperature variables: Improvising for under-resourced weather
www.iosrjournals.org 4 | Page
VI. Net radiation (Rn) estimation
The net radiation is the difference between the incoming net shortwave radiation (Rns) and the outgoing
net longwave radiation (Rnl):
Rn = Rns - Rnl ..............................................................................................2
Where: Rn = Net radiation (MJ/m2
per day); Rns = Net incoming shortwave radiation (MJ/m2
per day); Rnl = Net
outgoing longwave radiation (MJ/m2
per day) ; Rn is normally calculated from the measured shortwave
radiation (Rs) (FAO, 1998).
To explain the calculation of Rn, it is important to first explain some concepts and define certain parameters in
the process of deriving the inputs of Equation 5 for the calculation of Rs. The calculation of clear sky radiation
(Rso), when n=N, is required to compute net longwave radiation. Rso is given by the following simplified
expression: aso R
z
R 




100000
2
75.0
..............................................................................(3)
Where Rso is the clear sky solar radiation (MJ/m2
per day); z is station elevation above sea level (m)
Net outgoing longwave radiation (Rnl)
The rate of longwave radiation emission is proportional to the absolute temperature (Kelvin) of the
surface raised to the fourth power. Rnl is calculated using the following expression:
)35.035.1()14.034.0()
2
)()(
(
4
min,
4
max,



so
s
a
KK
nl
R
R
e
TT
R

..............(4)
Where:
Rnl is the net outgoing longwave radiation ,MJ/m2
per day; σ is the Stefan Boltzmann constant (4.903
x 10-9
MJ/K4
per m2
per day); Tmax,K is Maximum absolute temperature during the 24 hr period(K); Tmin,K is
Minimum absolute temperature during the 24 hr period (K); ea is the actual vapour pressure (kpa); Rs/Rso is the
relative shortwave radiation (limited ≤1);
Rs is the measured or calculated solar radiation (MJ/m2
per day) = [0.25+0.5
N
n
] Ra......(5)
Rso is calculated clear sky radiation (MJ/m2
per day) = [0.75+
100000
2z
] x Ra................(6)
Ra is the extraterrestrial radiation derived from the Tables in FAO Irrigation Paper 56 for the southern
hemisphere for the month of January.
Net incoming shortwave radiation (Rns)
The net solar or shortwave radiation, resulting from the balance between incoming and reflected solar
radiation, is given by:
Rns = (1 - 0.23) Rs.......................................................................................................(7)
Where:
Rns is the net solar or shortwave radiation (MJ/m2
per day); Rs is the incoming solar or shortwave radiation
(MJ/m2
per day)
Clear sky radiation (Rso)
The calculation of clear sky radiation (Rso), when n = N, is required to compute net longwave radiation.
Rso is given by equation 6.
Where:
Rso = Clear sky solar radiation (MJ/m2
per day)
z = Station elevation above sea level (m) estimated using a GPS device.
VII. Results And Discussions
The results and discussion are a summary of the findings from the study. The section highlights results
from computing the net radiation, comparing it to the measured radiation to costs implications. The section also
shows the accuracy of the calculating method and correction factors that can be incorporated for future works.
Computing net radiation from temperature variables: Improvising for under-resourced weather
www.iosrjournals.org 5 | Page
The following are constants used in the computation of net radiation, n=11.5 hours, N=13 hours,
N
n
=0.884615, Ra=41.9MJ/m2
/day, Rs=29.00768MJ/m2
/day, Rns=22.33592 MJ/m2
/day, Rso= 32.24261
MJ/m2
/day
Table 2: Showing calculation of net radiation, Rn from temperature readings.
Day Tmax/
o
C
Tmin/
o
C
σ
(T max,K)4
σ
(Tmin,K)4
ea
(kPa)
Rnl
MJ/m2
/day
Computed Rn
MJ/m2
/day
Measured Rn
MJ/m2
/day
1 306.8 291.0 43.40285 35.12924 2.1107 4.617238 17.71868 17.70668
2 299.8 291.2 39.57522 35.22592 1.7047 5.061216 17.2747 17.2627
3 303.0 290.9 41.29213 35.08098 1.7629 5.065843 17.27008 17.25808
4 300.2 291.4 39.78685 35.32279 1.7022 5.086392 17.24953 17.23453
5 304.0 291.0 41.83995 35.12924 1.7659 5.100174 17.23575 17.22375
6 299.0 289.6 39.15449 34.45808 1.5214 5.301007 17.03491 16.63491
7 292.5 289.6 35.85917 34.45808 1.2666 5.521277 16.81464 16.80264
8 299.0 289.6 39.15449 34.45808 1.5686 5.216729 17.11919 17.10719
9 304.0 291.0 41.83995 35.12924 1.9449 4.795388 17.54053 17.55253
10 302.0 292.5 40.74971 35.85917 1.9956 4.689553 17.64637 17.63437
11 297.2 293.7 38.22012 36.45126 1.7787 4.92628 17.40964 17.39764
12 298.6 291.0 38.94539 35.12924 1.7258 4.97603 17.35989 17.34789
13 300.0 290.9 39.68093 35.08098 1.7364 5.0041 17.33182 17.31982
14 303.0 291.5 41.29213 35.3713 1.9777 4.722221 17.6137 17.5837
15 300.0 292.7 39.68093 35.95735 1.8904 4.802088 17.53383 17.50383
16 299.0 291.4 39.15449 35.32279 1.7153 5.021163 17.31476 17.30276
17 300.4 292.7 39.89298 35.95735 1.8876 4.820221 17.5157 17.5027
18 300.5 293.6 39.94613 36.40164 1.9956 4.673569 17.66235 17.64935
19 297.4 291.8 38.3231 35.51714 1.6258 5.132212 17.20371 17.19071
20 294.7 291.4 36.95025 35.32279 1.5073 5.229435 17.10648 17.09448
The table shows results of calculated net radiation from maximum and minimum temperatures from a
weather station at Great Zimbabwe University. The maximum recorded net radiation was on day 1 which
corresponds to the day when maximum daily temperature was registered. This indicates that net radiation is
highly related to temperature patterns. The average net radiation calculated for the twenty day period was
17.3478 MJ/m2
/day and measured was 17.3155 MJ/m2
/day.
Figure 3: Correlation curve between computed and measured net radiation value
The regression curve illustrates the correspondents of the calculated to the measured net radiation. There is a
90.8% correspondents which is a high agreement between the two variables. However this implies that there is
an error of ±4.1% in estimating net radiation from temperature variables.
Figure 4: Diurnal variation of maximum temperatures and measured net radiation.
Computing net radiation from temperature variables: Improvising for under-resourced weather
www.iosrjournals.org 6 | Page
The daily variation of the measured net radiation to the maximum temperatures indicate a strong relationship as
both variables peak and deep on the same days.
VIII. Conclusion
The average net radiation measured and calculated were close which implies that the temperature
variables indeed can be used to estimate net radiation. The regression curve gave the error margin of ± 4.1%
which is the correction factor to be used. The average market price for the sensors of US$3700 is high and can
be avoided as proved by the calculations. The weather station can have a simple Stevenson screen with
maximum and minimum temperatures, a sunshine recorder and possibly wind sensors to estimate the net
radiation and relative humidity.
References
[1] (http://geneq.com/en/departments/environment/product/net-radiometer-cnr
[2] Campbell products. http://s.campbellsci.com/documents/us/manuals/nr01)
[3] Central Statistics Office (CSO) (2002).“Zimbabwe Population Profile”. http://www.zimstat.co.zw/dmdocuments/Census/Census.pdf
[4] Delta T devices. www.delta-t.co.uk
[5] Ejieji, C. J. (2011). Performance of Three Emprical Reference Evaporation Models under Three Sky Conditions using two solar
radiation estimation methods at Ilorin, Nigeria. Agricultural Engineering International: CICR journal. Manuscript No. 1673. 13(3).
[6] Enercorp Instruments limited. http://www.enercorp.com/
[7] FAO. 1998a. Crop evapotranspiration: Guidelines for computing crop water requirements. By: Richard Allen, Luis Pereira, Dirk
Raes and Martin Smith. FAO Irrigation and Drainage Paper 56. Rome, Italy.
[8] Makadho, J. M. (1996) “potential Effects of Climate on Corn Production in Zimbabwe”, Climate Research, Vol.6, pp.146-151.
[9] Meyer. S . (1999). Standard reference evaporation for inland, south eastern Australia. CSIRO land and Water, Adelaide
LaboratorynTechnical Report 35/98. Available online at: http://turing.une.edu.au/~hschiret/Docs/tr35-98.pdf
[10] Murwendo T. & Munthali A. (2008). The value of backyard trees to people’s lives in Masvingo City, Zimbabwe J. Geogr. Res.
2(1):24-37.
[11] Simba F.M, Mubvuma M, Murwendo T, Chikodzi D (2013). Prediction of yield and biomass productions: A remedy to climate
change in semi-arid regions of Zimbabwe. International Journal of Advance Agriculture Research Vol 1. pp 14-21
[12] Skypower international . http://skypowerinternational.com/

Contenu connexe

Tendances

Application of Remote sensing in fruit crops
Application of Remote sensing in fruit cropsApplication of Remote sensing in fruit crops
Application of Remote sensing in fruit cropsKiran Patnaik
 
Remote sensing in agriculture
Remote sensing in agricultureRemote sensing in agriculture
Remote sensing in agricultureChitra Nair
 
Remote Sensing - A tool of plant disease management
Remote Sensing - A tool of plant disease managementRemote Sensing - A tool of plant disease management
Remote Sensing - A tool of plant disease managementAnand Choudhary
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...ijceronline
 
Forest monitoring through remote sensing
Forest monitoring through remote sensingForest monitoring through remote sensing
Forest monitoring through remote sensingPritam Kumar Barman
 
Remote sensing application in agriculture & forestry_Dr Menon A R R (The Kera...
Remote sensing application in agriculture & forestry_Dr Menon A R R (The Kera...Remote sensing application in agriculture & forestry_Dr Menon A R R (The Kera...
Remote sensing application in agriculture & forestry_Dr Menon A R R (The Kera...India Water Portal
 
CROP MONITORING HILLARY
CROP MONITORING HILLARYCROP MONITORING HILLARY
CROP MONITORING HILLARYHillary Mugiyo
 
Remote sensing 311
Remote sensing 311Remote sensing 311
Remote sensing 311Hafez Ahmad
 
A presention on remote sensing & its application (1)
A presention on remote sensing & its application (1)A presention on remote sensing & its application (1)
A presention on remote sensing & its application (1)Ankit Singh
 
Use of UAV for Hydrological Monitoring
Use of UAV for Hydrological MonitoringUse of UAV for Hydrological Monitoring
Use of UAV for Hydrological MonitoringSalvatore Manfreda
 
UAS based soil moisture monitoring
UAS based soil moisture monitoringUAS based soil moisture monitoring
UAS based soil moisture monitoringSalvatore Manfreda
 
Remote Sensing Vivek
Remote Sensing VivekRemote Sensing Vivek
Remote Sensing Vivekvivek akkala
 
Calibration of Physically based Hydrological Models
Calibration of Physically based Hydrological ModelsCalibration of Physically based Hydrological Models
Calibration of Physically based Hydrological ModelsSalvatore Manfreda
 
An integrative information aqueduct to close the gaps between global satellit...
An integrative information aqueduct to close the gaps between global satellit...An integrative information aqueduct to close the gaps between global satellit...
An integrative information aqueduct to close the gaps between global satellit...Salvatore Manfreda
 

Tendances (20)

Application of Remote sensing in fruit crops
Application of Remote sensing in fruit cropsApplication of Remote sensing in fruit crops
Application of Remote sensing in fruit crops
 
Remote sensing in agriculture
Remote sensing in agricultureRemote sensing in agriculture
Remote sensing in agriculture
 
Remote Sensing - A tool of plant disease management
Remote Sensing - A tool of plant disease managementRemote Sensing - A tool of plant disease management
Remote Sensing - A tool of plant disease management
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
 
remote sensing
remote sensingremote sensing
remote sensing
 
Credit seminar
Credit seminarCredit seminar
Credit seminar
 
1 remote sensing
1 remote sensing1 remote sensing
1 remote sensing
 
Forest monitoring through remote sensing
Forest monitoring through remote sensingForest monitoring through remote sensing
Forest monitoring through remote sensing
 
Remote sensing application in agriculture & forestry_Dr Menon A R R (The Kera...
Remote sensing application in agriculture & forestry_Dr Menon A R R (The Kera...Remote sensing application in agriculture & forestry_Dr Menon A R R (The Kera...
Remote sensing application in agriculture & forestry_Dr Menon A R R (The Kera...
 
Remote sensing for
Remote sensing forRemote sensing for
Remote sensing for
 
CROP MONITORING HILLARY
CROP MONITORING HILLARYCROP MONITORING HILLARY
CROP MONITORING HILLARY
 
Remote+Sensing
Remote+SensingRemote+Sensing
Remote+Sensing
 
Remote sensing 311
Remote sensing 311Remote sensing 311
Remote sensing 311
 
A presention on remote sensing & its application (1)
A presention on remote sensing & its application (1)A presention on remote sensing & its application (1)
A presention on remote sensing & its application (1)
 
Use of UAV for Hydrological Monitoring
Use of UAV for Hydrological MonitoringUse of UAV for Hydrological Monitoring
Use of UAV for Hydrological Monitoring
 
surveying paper
surveying papersurveying paper
surveying paper
 
UAS based soil moisture monitoring
UAS based soil moisture monitoringUAS based soil moisture monitoring
UAS based soil moisture monitoring
 
Remote Sensing Vivek
Remote Sensing VivekRemote Sensing Vivek
Remote Sensing Vivek
 
Calibration of Physically based Hydrological Models
Calibration of Physically based Hydrological ModelsCalibration of Physically based Hydrological Models
Calibration of Physically based Hydrological Models
 
An integrative information aqueduct to close the gaps between global satellit...
An integrative information aqueduct to close the gaps between global satellit...An integrative information aqueduct to close the gaps between global satellit...
An integrative information aqueduct to close the gaps between global satellit...
 

En vedette

Maritime Conflicts
Maritime ConflictsMaritime Conflicts
Maritime ConflictsNeal Young
 
Radiation Response of Bacteria Associated with Human Cancellous Bone
Radiation Response of Bacteria Associated with Human Cancellous BoneRadiation Response of Bacteria Associated with Human Cancellous Bone
Radiation Response of Bacteria Associated with Human Cancellous BoneIOSR Journals
 
An Empirical Study of Seasonal Rainfall Effect in Calabar, Cross River State,...
An Empirical Study of Seasonal Rainfall Effect in Calabar, Cross River State,...An Empirical Study of Seasonal Rainfall Effect in Calabar, Cross River State,...
An Empirical Study of Seasonal Rainfall Effect in Calabar, Cross River State,...IOSR Journals
 
The Girl Guide to Getting Ahead
The Girl Guide to Getting AheadThe Girl Guide to Getting Ahead
The Girl Guide to Getting Aheadljws
 
One shoulder bridesmaid dresses gudeer.com
One shoulder bridesmaid dresses   gudeer.comOne shoulder bridesmaid dresses   gudeer.com
One shoulder bridesmaid dresses gudeer.comGudeer Kitty
 
First Presbyterian Power Point
First Presbyterian Power PointFirst Presbyterian Power Point
First Presbyterian Power PointMichelle Hill
 
Madcom osp design, engineering & construction capabilities
Madcom osp design, engineering & construction capabilitiesMadcom osp design, engineering & construction capabilities
Madcom osp design, engineering & construction capabilitiesRich Frank
 

En vedette (20)

I010626370
I010626370I010626370
I010626370
 
E010632226
E010632226E010632226
E010632226
 
F010522834
F010522834F010522834
F010522834
 
L1304037178
L1304037178L1304037178
L1304037178
 
J1304026874
J1304026874J1304026874
J1304026874
 
K012316167
K012316167K012316167
K012316167
 
S01226115124
S01226115124S01226115124
S01226115124
 
Q01243111116
Q01243111116Q01243111116
Q01243111116
 
Maritime Conflicts
Maritime ConflictsMaritime Conflicts
Maritime Conflicts
 
Radiation Response of Bacteria Associated with Human Cancellous Bone
Radiation Response of Bacteria Associated with Human Cancellous BoneRadiation Response of Bacteria Associated with Human Cancellous Bone
Radiation Response of Bacteria Associated with Human Cancellous Bone
 
An Empirical Study of Seasonal Rainfall Effect in Calabar, Cross River State,...
An Empirical Study of Seasonal Rainfall Effect in Calabar, Cross River State,...An Empirical Study of Seasonal Rainfall Effect in Calabar, Cross River State,...
An Empirical Study of Seasonal Rainfall Effect in Calabar, Cross River State,...
 
Iklan penawaran 1
Iklan penawaran 1Iklan penawaran 1
Iklan penawaran 1
 
H017324449
H017324449H017324449
H017324449
 
The Girl Guide to Getting Ahead
The Girl Guide to Getting AheadThe Girl Guide to Getting Ahead
The Girl Guide to Getting Ahead
 
One shoulder bridesmaid dresses gudeer.com
One shoulder bridesmaid dresses   gudeer.comOne shoulder bridesmaid dresses   gudeer.com
One shoulder bridesmaid dresses gudeer.com
 
First Presbyterian Power Point
First Presbyterian Power PointFirst Presbyterian Power Point
First Presbyterian Power Point
 
URUS SIUP
URUS SIUPURUS SIUP
URUS SIUP
 
Madcom osp design, engineering & construction capabilities
Madcom osp design, engineering & construction capabilitiesMadcom osp design, engineering & construction capabilities
Madcom osp design, engineering & construction capabilities
 
Proc eval prees
Proc eval preesProc eval prees
Proc eval prees
 
A1304020111
A1304020111A1304020111
A1304020111
 

Similaire à Computing net radiation from temperature variables: Improvising for under-resourced weather stations in developing countries.

remote sensing in agriculture
remote sensing in agricultureremote sensing in agriculture
remote sensing in agricultureveerendra manduri
 
Solar radiation and pyranometer a review
Solar radiation and pyranometer   a reviewSolar radiation and pyranometer   a review
Solar radiation and pyranometer a reviewRaghuvirsinh Parmar
 
Predictive Analysis of Global Solar Radiation in Awka Using Statistical Error...
Predictive Analysis of Global Solar Radiation in Awka Using Statistical Error...Predictive Analysis of Global Solar Radiation in Awka Using Statistical Error...
Predictive Analysis of Global Solar Radiation in Awka Using Statistical Error...ijtsrd
 
Understanding the Measurement of Solar Radiation Using Pyranometers
Understanding the Measurement of Solar Radiation Using PyranometersUnderstanding the Measurement of Solar Radiation Using Pyranometers
Understanding the Measurement of Solar Radiation Using PyranometersLogics PowerAMR Pvt. Ltd.
 
Development of a solar radiation sensor system with pyranometer
Development of a solar radiation sensor system with  pyranometerDevelopment of a solar radiation sensor system with  pyranometer
Development of a solar radiation sensor system with pyranometerIJECEIAES
 
RE.SUN Validation (March 2013)
RE.SUN Validation (March 2013)RE.SUN Validation (March 2013)
RE.SUN Validation (March 2013)Carlos Pinto
 
Calculation of the Sun exposure for the synthesis of vitamin D in Urcuquí, Ec...
Calculation of the Sun exposure for the synthesis of vitamin D in Urcuquí, Ec...Calculation of the Sun exposure for the synthesis of vitamin D in Urcuquí, Ec...
Calculation of the Sun exposure for the synthesis of vitamin D in Urcuquí, Ec...Javier García Molleja
 
SWaRMA_IRBM_Module2_#5, Role of hydrometeorological monitoring for IRBM in Ne...
SWaRMA_IRBM_Module2_#5, Role of hydrometeorological monitoring for IRBM in Ne...SWaRMA_IRBM_Module2_#5, Role of hydrometeorological monitoring for IRBM in Ne...
SWaRMA_IRBM_Module2_#5, Role of hydrometeorological monitoring for IRBM in Ne...ICIMOD
 
Estimation of diffuse solar radiation in the south of cameroon
Estimation of diffuse solar radiation in the south of cameroonEstimation of diffuse solar radiation in the south of cameroon
Estimation of diffuse solar radiation in the south of cameroonAlexander Decker
 
A New Temperature-Based Model for Estimating Global Solar Radiation in Port-...
	A New Temperature-Based Model for Estimating Global Solar Radiation in Port-...	A New Temperature-Based Model for Estimating Global Solar Radiation in Port-...
A New Temperature-Based Model for Estimating Global Solar Radiation in Port-...theijes
 
Typical Meteorological Year Report for CSP, CPV and PV solar plants
Typical Meteorological Year Report for CSP, CPV and PV solar plantsTypical Meteorological Year Report for CSP, CPV and PV solar plants
Typical Meteorological Year Report for CSP, CPV and PV solar plantsIrSOLaV Pomares
 
Ionospheric Behaviour Analysis over Thailand Using Radio Occultation Technique
Ionospheric Behaviour Analysis over Thailand Using Radio Occultation TechniqueIonospheric Behaviour Analysis over Thailand Using Radio Occultation Technique
Ionospheric Behaviour Analysis over Thailand Using Radio Occultation TechniqueIJERA Editor
 
Weather observation and forecasting using radiosonde
Weather observation and forecasting using radiosondeWeather observation and forecasting using radiosonde
Weather observation and forecasting using radiosondeTELKOMNIKA JOURNAL
 
Big data and remote sensing: A new software of ingestion
Big data and remote sensing: A new software of ingestion Big data and remote sensing: A new software of ingestion
Big data and remote sensing: A new software of ingestion IJECEIAES
 

Similaire à Computing net radiation from temperature variables: Improvising for under-resourced weather stations in developing countries. (20)

12 ijcse-01224
12 ijcse-0122412 ijcse-01224
12 ijcse-01224
 
remote sensing in agriculture
remote sensing in agricultureremote sensing in agriculture
remote sensing in agriculture
 
Solar radiation and pyranometer a review
Solar radiation and pyranometer   a reviewSolar radiation and pyranometer   a review
Solar radiation and pyranometer a review
 
D04722440
D04722440D04722440
D04722440
 
Predictive Analysis of Global Solar Radiation in Awka Using Statistical Error...
Predictive Analysis of Global Solar Radiation in Awka Using Statistical Error...Predictive Analysis of Global Solar Radiation in Awka Using Statistical Error...
Predictive Analysis of Global Solar Radiation in Awka Using Statistical Error...
 
Understanding the Measurement of Solar Radiation Using Pyranometers
Understanding the Measurement of Solar Radiation Using PyranometersUnderstanding the Measurement of Solar Radiation Using Pyranometers
Understanding the Measurement of Solar Radiation Using Pyranometers
 
Development of a solar radiation sensor system with pyranometer
Development of a solar radiation sensor system with  pyranometerDevelopment of a solar radiation sensor system with  pyranometer
Development of a solar radiation sensor system with pyranometer
 
RE.SUN Validation (March 2013)
RE.SUN Validation (March 2013)RE.SUN Validation (March 2013)
RE.SUN Validation (March 2013)
 
Calculation of the Sun exposure for the synthesis of vitamin D in Urcuquí, Ec...
Calculation of the Sun exposure for the synthesis of vitamin D in Urcuquí, Ec...Calculation of the Sun exposure for the synthesis of vitamin D in Urcuquí, Ec...
Calculation of the Sun exposure for the synthesis of vitamin D in Urcuquí, Ec...
 
SWaRMA_IRBM_Module2_#5, Role of hydrometeorological monitoring for IRBM in Ne...
SWaRMA_IRBM_Module2_#5, Role of hydrometeorological monitoring for IRBM in Ne...SWaRMA_IRBM_Module2_#5, Role of hydrometeorological monitoring for IRBM in Ne...
SWaRMA_IRBM_Module2_#5, Role of hydrometeorological monitoring for IRBM in Ne...
 
04Drought_Prone_Area.pdf
04Drought_Prone_Area.pdf04Drought_Prone_Area.pdf
04Drought_Prone_Area.pdf
 
Ijciet 10 01_152
Ijciet 10 01_152Ijciet 10 01_152
Ijciet 10 01_152
 
Estimation of diffuse solar radiation in the south of cameroon
Estimation of diffuse solar radiation in the south of cameroonEstimation of diffuse solar radiation in the south of cameroon
Estimation of diffuse solar radiation in the south of cameroon
 
09 huld presentation_61853_4_a
09 huld presentation_61853_4_a09 huld presentation_61853_4_a
09 huld presentation_61853_4_a
 
Remote Sensing
Remote SensingRemote Sensing
Remote Sensing
 
A New Temperature-Based Model for Estimating Global Solar Radiation in Port-...
	A New Temperature-Based Model for Estimating Global Solar Radiation in Port-...	A New Temperature-Based Model for Estimating Global Solar Radiation in Port-...
A New Temperature-Based Model for Estimating Global Solar Radiation in Port-...
 
Typical Meteorological Year Report for CSP, CPV and PV solar plants
Typical Meteorological Year Report for CSP, CPV and PV solar plantsTypical Meteorological Year Report for CSP, CPV and PV solar plants
Typical Meteorological Year Report for CSP, CPV and PV solar plants
 
Ionospheric Behaviour Analysis over Thailand Using Radio Occultation Technique
Ionospheric Behaviour Analysis over Thailand Using Radio Occultation TechniqueIonospheric Behaviour Analysis over Thailand Using Radio Occultation Technique
Ionospheric Behaviour Analysis over Thailand Using Radio Occultation Technique
 
Weather observation and forecasting using radiosonde
Weather observation and forecasting using radiosondeWeather observation and forecasting using radiosonde
Weather observation and forecasting using radiosonde
 
Big data and remote sensing: A new software of ingestion
Big data and remote sensing: A new software of ingestion Big data and remote sensing: A new software of ingestion
Big data and remote sensing: A new software of ingestion
 

Plus de IOSR Journals (20)

A011140104
A011140104A011140104
A011140104
 
M0111397100
M0111397100M0111397100
M0111397100
 
L011138596
L011138596L011138596
L011138596
 
K011138084
K011138084K011138084
K011138084
 
J011137479
J011137479J011137479
J011137479
 
I011136673
I011136673I011136673
I011136673
 
G011134454
G011134454G011134454
G011134454
 
H011135565
H011135565H011135565
H011135565
 
F011134043
F011134043F011134043
F011134043
 
E011133639
E011133639E011133639
E011133639
 
D011132635
D011132635D011132635
D011132635
 
C011131925
C011131925C011131925
C011131925
 
B011130918
B011130918B011130918
B011130918
 
A011130108
A011130108A011130108
A011130108
 
I011125160
I011125160I011125160
I011125160
 
H011124050
H011124050H011124050
H011124050
 
G011123539
G011123539G011123539
G011123539
 
F011123134
F011123134F011123134
F011123134
 
E011122530
E011122530E011122530
E011122530
 
D011121524
D011121524D011121524
D011121524
 

Dernier

Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxMohamedFarag457087
 
FAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceFAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceAlex Henderson
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY1301aanya
 
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptxClimate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptxDiariAli
 
An introduction on sequence tagged site mapping
An introduction on sequence tagged site mappingAn introduction on sequence tagged site mapping
An introduction on sequence tagged site mappingadibshanto115
 
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort ServiceCall Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort Serviceshivanisharma5244
 
Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.Silpa
 
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIACURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIADr. TATHAGAT KHOBRAGADE
 
Factory Acceptance Test( FAT).pptx .
Factory Acceptance Test( FAT).pptx       .Factory Acceptance Test( FAT).pptx       .
Factory Acceptance Test( FAT).pptx .Poonam Aher Patil
 
Introduction of DNA analysis in Forensic's .pptx
Introduction of DNA analysis in Forensic's .pptxIntroduction of DNA analysis in Forensic's .pptx
Introduction of DNA analysis in Forensic's .pptxrohankumarsinghrore1
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusNazaninKarimi6
 
Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Silpa
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticssakshisoni2385
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsSérgio Sacani
 
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....muralinath2
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and ClassificationsAreesha Ahmad
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...Scintica Instrumentation
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)Areesha Ahmad
 

Dernier (20)

Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
 
FAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceFAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical Science
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY
 
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptxClimate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
 
Clean In Place(CIP).pptx .
Clean In Place(CIP).pptx                 .Clean In Place(CIP).pptx                 .
Clean In Place(CIP).pptx .
 
An introduction on sequence tagged site mapping
An introduction on sequence tagged site mappingAn introduction on sequence tagged site mapping
An introduction on sequence tagged site mapping
 
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort ServiceCall Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
 
Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.
 
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIACURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
 
Factory Acceptance Test( FAT).pptx .
Factory Acceptance Test( FAT).pptx       .Factory Acceptance Test( FAT).pptx       .
Factory Acceptance Test( FAT).pptx .
 
Introduction of DNA analysis in Forensic's .pptx
Introduction of DNA analysis in Forensic's .pptxIntroduction of DNA analysis in Forensic's .pptx
Introduction of DNA analysis in Forensic's .pptx
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virus
 
Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
 
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and Classifications
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
 
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICEPATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 

Computing net radiation from temperature variables: Improvising for under-resourced weather stations in developing countries.

  • 1. IOSR Journal of Applied Physics (IOSR-JAP) e-ISSN: 2278-4861.Volume 5, Issue 5 (Jan. 2014), PP 01-06 www.iosrjournals.org www.iosrjournals.org 1 | Page Computing net radiation from temperature variables: Improvising for under-resourced weather stations in developing countries. Farai Malvern, SIMBA Department Of Physics, Geography and Environmental Science, Great Zimbabwe University Abstract: Most weather stations at farms, schools and other research institutes in the developing world do not have radiation sensors and this is usually attributed to high costs of these sensors. Net radiation as one component of radiation is important in crop farming as it influences germination, different growth stages, water demand, size and quality of yield among other things. This article seeks to demonstrate how a series of mathematical equations with temperature as a key physical quantity can be used to estimate net radiation using the basic minimum of resources affordable against readings from a standard net radiometer. To achieve this, daily data of maximum and minimum temperatures for 20 days was used from an automated weather station at Great Zimbabwe University in Zimbabwe. A standard CNR 1 net radiometer was installed at the station to give direct net radiation readings for comparison with the computed readings. A correlation between the calculated net radiation and the measured one gave 90.8% correspondents. Diurnal net radiation was following the maximum temperature trends. The average cost of a net radiometer sensor was US$ 3.700 which can be too high for an ordinary farmer or other small research institutes. Key words: net radiation, developing, cost, crop, temperature, Zimbabwe I. Introduction Weather stations in developing countries have been characterised by lack of maintenance of the available equipment, they are ill equipped and generally less dense in an area. The reasons for the aforementioned being primarily lack of funds to purchase the necessary equipment. The available stations contribute to the knowledge of the climate of an area but the accuracy of the measured variables is compromised. Measurement of radiation is important at stations as it provides useful data to experts in solar energy industry, in crop farming, water management, and other sectors of the economy (Meyer, 1999). Air temperature in the studies of meteorology is understood to be a direct response variable to the incoming solar radiation. It is on this basis that temperature is used to estimate a radiation component as illustrated in the FAO irrigation paper 56 (FAO,1998). The sun is the source of solar radiation and the radiation travels as electromagnetic waves through the space to the atmosphere where it goes through various processes. Part of the radiation is scattered and absorbed by the aerosol and water vapour in the atmosphere and some is incident on the earth surface undisturbed and absorbed and reflected by the ground (Meyer, 1999). Net radiation then constitutes the difference between the total downward radiation (longwave and shortwave) and total upward radiation (longwave and shortwave). Net radiation is important particularly in crop farming as it is responsible for germination of seeds, driving photosynthesis, determining the growing degree days of a crop, dictates soil moisture content and soil temperatures (Simba et. al, 2013). It is therefore imperative to measure this component of radiation as it informs the farmer on many aspects that will determine the quality and quantity of yield they will realise. The research was carried out in Masvingo province, which is in the lowveld region of Zimbabwe where average summer maximum temperatures are 28o C, usually a season when crop farming is done (Murwendo and Munthali, 2008). The main applications of net radiometers are in agrometeorology, for the study of evapotranspiration and crop damage prevention; and in climatology, meteorology and hydrology for measurement of the radiation balance (Ejieji, 2011). Net radiometers are used in monitoring over glaciers and ice fields and this is of particular interest to global warming studies and in renewable energy the heat exchange in thermal solar systems can be monitored. There are various types of net radiometers in the market and these include: CNR 1 four component net radiometer, which is used in this study as the standard, Radiation Energy Balance Systems (REBS) net radiometer and NR-Lite net radiometers. The article seeks to demonstrate how net radiation can be calculated from temperature variables as an improvising strategy in an area where there are no radiation sensors. The study will explore the accuracy, reliability and possible limitations of the method.
  • 2. Computing net radiation from temperature variables: Improvising for under-resourced weather www.iosrjournals.org 2 | Page II. Study area Masvingo province is divided into seven districts which are; Gutu, Masvingo, Bikita, Zaka, Chivi, Mwenezi and Chiredzi. The province occupies the drier Lowveld area in the south of Zimbabwe. Most of the area in the province is devoted to cattle ranching, subsistence crop farming, with mining and irrigated sugar growing also significant. Rainfall is highly variable and uncertain, making the province prone to droughts. (Makadho, 1996). Masvingo province is in the south-eastern part of Zimbabwe. It borders Mozambique on its eastern border and the provinces of Matabeleland South to the south, Midlands to the north and west and Manicaland to the north east. The province has an area of 56,566 km² and a population of approximately 1.3 million in 2002,(CSO, 2002). Figure 1 v v : Map of Masvingo province (Simba et.al 2013). III. Problem statement A lot of weather stations at farms, schools and other research institutes in the developing world do not have radiation sensors and this is usually attributed to high costs of these sensors. Net radiation as one component of radiation is important in crop farming as it influences germination, different growth stages, water demand, size and quality of yield among other things. It is against this background that alternative and affordable ways of measuring this component of radiation can be employed to provide data. Objective This article seeks to demonstrate how a series of mathematical equations with temperature as a key physical quantity can be used to estimate net radiation using the basic minimum of resources affordable. Radiation and sensors Part of the extraterrestrial radiation (Ra) is scattered, reflected or absorbed in the process of entering the atmosphere. The amount of radiation that reaches the earth’s surface is called solar radiation (Rs). It depends on Ra and the transmission through the atmosphere, which is largely dependent on cloud cover. Rs can be measured in weather stations with pyranometers, radiometers or solarimeters. In some stations values of solar radiation are part of the climatological data available. If it is not measured it can be calculated through the use of an equation which relates solar radiation to extraterrestrial radiation and relative sunshine duration: Rs = [0.25 + 0.5 N n ] Ra..............................................................1 Where: Rs = Solar or shortwave radiation (MJ/m2 per day); n = Actual sunshine hours (hour); N = Maximum possible duration of sunshine; hours or daylight hours (hour); N n = Relative sunshine duration; Ra = Extraterrestrial radiation (MJ/m2 per day) The maximum duration of sunshine (N) can be calculated using equations. However, to simplify the calculation procedures, values of N for different latitudes can be read from Tables in FAO irrigation paper 56 for the Southern Hemisphere. The actual duration of sunshine (n) is recorded with a sunshine recorder and is part of the climatological data provided by weather stations. The N n ratio can also be obtained from data on cloud cover, if data on sunshine hours are not available.
  • 3. Computing net radiation from temperature variables: Improvising for under-resourced weather www.iosrjournals.org 3 | Page IV. Construction of a CNR1 four component net radiometer Figure 2: The CNR1 Four-Component Net Radiation Sensor (source: http://s.campbellsci.com/documents/us/manuals/nr01) (1) SWin solar radiation sensor or pyranometer, (2) LWin Far Infrared radiation sensor or pyrgeometer (3) radiation shield (4) leveling assembly for x- and y axis, block plus bolts for x-axis adjustment (5) leveling assembly for x- and y axis, horizontal rod (6) connection body containing the Pt100 temperature sensor, heater, and hole for user-supplied temperature sensor (add cable gland M8) (7) LWout Far Infrared radiation sensor or pyrgeometer (8) leveling assembly for x- and y-axis, bolts for y-axis adjustment (9) SWout solar radiation sensor or pyranometer A level is located under the radiation screens. A CNR 1 net radiometer combines two thermopile pyranometers for solar radiation measurement incoming/reflected/albedo/balance) with two thermopile pyrgeometers for far infrared measurement (balance/ground surface temperature/sky temperature). There are four separate signal outputs and the integrated temperature sensor can be used to calculate the downward far infrared radiation. Via a data logger the temperature signal can be used to control the built-in heating element to minimise dew and frost deposition. (http://geneq.com/en/departments/environment/product/net-radiometer-cnr Market prices of Net radiometers Table 1: Showing market prices of some net radiometers and their accessories Type of a net radiometer Market price Supplier Radiation Energy Balance (REBS) $ 2.000 Delta-T Devices (UK) CNR1 four component $ 5.000 Delta-T Devices(UK) Albedometer CM 7B $5.663 Sky power international (Germany) Net radiometer NR-LITE $2.483 Enercorp instruments Ltd (Canada) Radiation balance transmitter $3.363 Enercorp instruments Ltd (Canada) V. Methodology The method used in this study is based on 20 day maximum and minimum temperature data for the month of January 2012 for a station at Great Zimbabwe University in Masvingo province in Zimbabwe. The automated weather station used was the RainWise MKIII Weather Transmitter type with a The CC-3000 MK-III Computer Interface datalogger. The weather station had temperature sensors, relative humidity sensor and wind sensors. The necessary constants required to get the calculated net radiation were n, N, N n , z, Ra, Rs, Rns Rso. The actual vapour pressure readings, ea, were estimated for corresponding mean air temperature and relative humidity readings available, using tables in FAO irrigation paper 56. The calculated net radiation was compared against the readings of a CNR1 four component net radiometer which is a standard instrument. The CNR 1 was running concurrently with temperature sensors at the station. Temperatures were recorded at intervals of 30 min and averaged for the whole day using an automated temperature sensor and the data was stored in a datalogger. The calculated and measured temperatures were then plotted on a regression curve to determine the level of correspondents.
  • 4. Computing net radiation from temperature variables: Improvising for under-resourced weather www.iosrjournals.org 4 | Page VI. Net radiation (Rn) estimation The net radiation is the difference between the incoming net shortwave radiation (Rns) and the outgoing net longwave radiation (Rnl): Rn = Rns - Rnl ..............................................................................................2 Where: Rn = Net radiation (MJ/m2 per day); Rns = Net incoming shortwave radiation (MJ/m2 per day); Rnl = Net outgoing longwave radiation (MJ/m2 per day) ; Rn is normally calculated from the measured shortwave radiation (Rs) (FAO, 1998). To explain the calculation of Rn, it is important to first explain some concepts and define certain parameters in the process of deriving the inputs of Equation 5 for the calculation of Rs. The calculation of clear sky radiation (Rso), when n=N, is required to compute net longwave radiation. Rso is given by the following simplified expression: aso R z R      100000 2 75.0 ..............................................................................(3) Where Rso is the clear sky solar radiation (MJ/m2 per day); z is station elevation above sea level (m) Net outgoing longwave radiation (Rnl) The rate of longwave radiation emission is proportional to the absolute temperature (Kelvin) of the surface raised to the fourth power. Rnl is calculated using the following expression: )35.035.1()14.034.0() 2 )()( ( 4 min, 4 max,    so s a KK nl R R e TT R  ..............(4) Where: Rnl is the net outgoing longwave radiation ,MJ/m2 per day; σ is the Stefan Boltzmann constant (4.903 x 10-9 MJ/K4 per m2 per day); Tmax,K is Maximum absolute temperature during the 24 hr period(K); Tmin,K is Minimum absolute temperature during the 24 hr period (K); ea is the actual vapour pressure (kpa); Rs/Rso is the relative shortwave radiation (limited ≤1); Rs is the measured or calculated solar radiation (MJ/m2 per day) = [0.25+0.5 N n ] Ra......(5) Rso is calculated clear sky radiation (MJ/m2 per day) = [0.75+ 100000 2z ] x Ra................(6) Ra is the extraterrestrial radiation derived from the Tables in FAO Irrigation Paper 56 for the southern hemisphere for the month of January. Net incoming shortwave radiation (Rns) The net solar or shortwave radiation, resulting from the balance between incoming and reflected solar radiation, is given by: Rns = (1 - 0.23) Rs.......................................................................................................(7) Where: Rns is the net solar or shortwave radiation (MJ/m2 per day); Rs is the incoming solar or shortwave radiation (MJ/m2 per day) Clear sky radiation (Rso) The calculation of clear sky radiation (Rso), when n = N, is required to compute net longwave radiation. Rso is given by equation 6. Where: Rso = Clear sky solar radiation (MJ/m2 per day) z = Station elevation above sea level (m) estimated using a GPS device. VII. Results And Discussions The results and discussion are a summary of the findings from the study. The section highlights results from computing the net radiation, comparing it to the measured radiation to costs implications. The section also shows the accuracy of the calculating method and correction factors that can be incorporated for future works.
  • 5. Computing net radiation from temperature variables: Improvising for under-resourced weather www.iosrjournals.org 5 | Page The following are constants used in the computation of net radiation, n=11.5 hours, N=13 hours, N n =0.884615, Ra=41.9MJ/m2 /day, Rs=29.00768MJ/m2 /day, Rns=22.33592 MJ/m2 /day, Rso= 32.24261 MJ/m2 /day Table 2: Showing calculation of net radiation, Rn from temperature readings. Day Tmax/ o C Tmin/ o C σ (T max,K)4 σ (Tmin,K)4 ea (kPa) Rnl MJ/m2 /day Computed Rn MJ/m2 /day Measured Rn MJ/m2 /day 1 306.8 291.0 43.40285 35.12924 2.1107 4.617238 17.71868 17.70668 2 299.8 291.2 39.57522 35.22592 1.7047 5.061216 17.2747 17.2627 3 303.0 290.9 41.29213 35.08098 1.7629 5.065843 17.27008 17.25808 4 300.2 291.4 39.78685 35.32279 1.7022 5.086392 17.24953 17.23453 5 304.0 291.0 41.83995 35.12924 1.7659 5.100174 17.23575 17.22375 6 299.0 289.6 39.15449 34.45808 1.5214 5.301007 17.03491 16.63491 7 292.5 289.6 35.85917 34.45808 1.2666 5.521277 16.81464 16.80264 8 299.0 289.6 39.15449 34.45808 1.5686 5.216729 17.11919 17.10719 9 304.0 291.0 41.83995 35.12924 1.9449 4.795388 17.54053 17.55253 10 302.0 292.5 40.74971 35.85917 1.9956 4.689553 17.64637 17.63437 11 297.2 293.7 38.22012 36.45126 1.7787 4.92628 17.40964 17.39764 12 298.6 291.0 38.94539 35.12924 1.7258 4.97603 17.35989 17.34789 13 300.0 290.9 39.68093 35.08098 1.7364 5.0041 17.33182 17.31982 14 303.0 291.5 41.29213 35.3713 1.9777 4.722221 17.6137 17.5837 15 300.0 292.7 39.68093 35.95735 1.8904 4.802088 17.53383 17.50383 16 299.0 291.4 39.15449 35.32279 1.7153 5.021163 17.31476 17.30276 17 300.4 292.7 39.89298 35.95735 1.8876 4.820221 17.5157 17.5027 18 300.5 293.6 39.94613 36.40164 1.9956 4.673569 17.66235 17.64935 19 297.4 291.8 38.3231 35.51714 1.6258 5.132212 17.20371 17.19071 20 294.7 291.4 36.95025 35.32279 1.5073 5.229435 17.10648 17.09448 The table shows results of calculated net radiation from maximum and minimum temperatures from a weather station at Great Zimbabwe University. The maximum recorded net radiation was on day 1 which corresponds to the day when maximum daily temperature was registered. This indicates that net radiation is highly related to temperature patterns. The average net radiation calculated for the twenty day period was 17.3478 MJ/m2 /day and measured was 17.3155 MJ/m2 /day. Figure 3: Correlation curve between computed and measured net radiation value The regression curve illustrates the correspondents of the calculated to the measured net radiation. There is a 90.8% correspondents which is a high agreement between the two variables. However this implies that there is an error of ±4.1% in estimating net radiation from temperature variables. Figure 4: Diurnal variation of maximum temperatures and measured net radiation.
  • 6. Computing net radiation from temperature variables: Improvising for under-resourced weather www.iosrjournals.org 6 | Page The daily variation of the measured net radiation to the maximum temperatures indicate a strong relationship as both variables peak and deep on the same days. VIII. Conclusion The average net radiation measured and calculated were close which implies that the temperature variables indeed can be used to estimate net radiation. The regression curve gave the error margin of ± 4.1% which is the correction factor to be used. The average market price for the sensors of US$3700 is high and can be avoided as proved by the calculations. The weather station can have a simple Stevenson screen with maximum and minimum temperatures, a sunshine recorder and possibly wind sensors to estimate the net radiation and relative humidity. References [1] (http://geneq.com/en/departments/environment/product/net-radiometer-cnr [2] Campbell products. http://s.campbellsci.com/documents/us/manuals/nr01) [3] Central Statistics Office (CSO) (2002).“Zimbabwe Population Profile”. http://www.zimstat.co.zw/dmdocuments/Census/Census.pdf [4] Delta T devices. www.delta-t.co.uk [5] Ejieji, C. J. (2011). Performance of Three Emprical Reference Evaporation Models under Three Sky Conditions using two solar radiation estimation methods at Ilorin, Nigeria. Agricultural Engineering International: CICR journal. Manuscript No. 1673. 13(3). [6] Enercorp Instruments limited. http://www.enercorp.com/ [7] FAO. 1998a. Crop evapotranspiration: Guidelines for computing crop water requirements. By: Richard Allen, Luis Pereira, Dirk Raes and Martin Smith. FAO Irrigation and Drainage Paper 56. Rome, Italy. [8] Makadho, J. M. (1996) “potential Effects of Climate on Corn Production in Zimbabwe”, Climate Research, Vol.6, pp.146-151. [9] Meyer. S . (1999). Standard reference evaporation for inland, south eastern Australia. CSIRO land and Water, Adelaide LaboratorynTechnical Report 35/98. Available online at: http://turing.une.edu.au/~hschiret/Docs/tr35-98.pdf [10] Murwendo T. & Munthali A. (2008). The value of backyard trees to people’s lives in Masvingo City, Zimbabwe J. Geogr. Res. 2(1):24-37. [11] Simba F.M, Mubvuma M, Murwendo T, Chikodzi D (2013). Prediction of yield and biomass productions: A remedy to climate change in semi-arid regions of Zimbabwe. International Journal of Advance Agriculture Research Vol 1. pp 14-21 [12] Skypower international . http://skypowerinternational.com/