I0744347

IOSR Journals
IOSR JournalsInternational Organization of Scientific Research (IOSR)
IOSR Journal of Mathematics (IOSR-JM)
e-ISSN: 2278-5728,p-ISSN: 2319-765X, Volume 7, Issue 4 (Jul. - Aug. 2013), PP 43-47
www.iosrjournals.org
www.iosrjournals.org 43 | Page
A new argument for the non-existence of Closed Timelike Curves
Sanath Devalapurkar1
1
(Physics, Center for Fundamental Research and Creative Education, India)
Abstract: In this paper, we attempt to present a short argument, different from that of the original proofs by
that of Hawking, for a theorem stated that no closed timelike curves can exist. In a later paper, we apply this to
quantum gravity and relate the curvature of spacetime to this theorem. Also, we present this paper as a
preliminary introduction to the complete argument of this, and we also provide a preliminary notion of the
concepts which will be narrated in the later papers. We also use this as a starting basis for a true theory of
everything for a theory of everything. We use the notation of [1] and of [2].
Keywords: Theoretical Physics, Quantum Gravity, Mathematical Physics, General Relativity, Quantum
Mechanics
I. The elimination of Closed Timelike Curves in Loop Quantum Gravity
Theorem : There exists no closed timelike curve in the physical world.
To prove this, we introduce spacetime as (ℳ, 𝑔
(4)
) where we can define ℳ as a four dimensional
manifold and 𝑔
(4)
as a Lorentzian metric on it. In the third part, we introduce a ADM 3 + 1 split of the four
dimensional (ℳ, 𝑔
(4)
).
II. ADM 3+1 split of classical four dimensional (𝓜, 𝒈
(𝟒)
)
In this section, we mainly reconstruct the topics in [1].
To do a 3+1 split of classical four dimensional (ℳ, 𝑔
(4)
), we need (ℳ, 𝑔
(4)
) to be homeomorphic to
the direct product space formed by ℝ × 𝛴, where 𝛴 is a three-manifold representing space and 𝑡 ∈ ℝ represents
time. (ℳ, 𝑔
(4)
) needs to be globally hyperbolic, and we assume causality, that is, no closed timelike curves
(CTC) exist. We define closed timelike curves in the following manner.
A curve 𝜋 such that, we have, in a particular coordinate system 𝔎 on (ℳ, 𝑔
(4)
), the following
equations satisfied:
𝜋: 𝑆1
→ (ℳ, 𝑔
(4)
) 1)
And in a shifted coordinate system, 𝔎1, we have
𝑔(𝜋 𝔎1
, 𝜋 𝔎1
) < 0 2)
This allows us to state that the time function is regular. A particular slicing of spacetime, though,
would be a matter of choice. A choice of slicing is equivalent to the choice of a regular function $f$ (i.e., a
scalar field on (ℳ, 𝑔
(4)
)) for which 𝜕 𝜇
𝑡 is timelike.
Suppose there exist two spaces, so that there is a mapping of some sort between them, defined as
Proposition 1: 𝑓 on 𝒜 maps to ℬ. Then, it could be said that {𝑓} is a space itself, multiplied (i.e., it
forms a product space with) by 𝒜 to yield ℬ. Then we could say that {𝑓} = ℬ/𝒜.
I.e., if
𝑓: 𝒜 → ℬ 3)
Then we have
{𝑓} = ℬ/𝒜 4)
Proof: If 𝑓 is defined as
𝑓: 𝒜 → ℬ 5)
Then we need ℬ and 𝒜 to have their points as discrete eigenvalues of some operator corresponding to
each space (we wish to call this the soperator). Thus, as 𝑓 should have eigenvalues corresponding to each
soperator, we need 𝑓 to eigenvalues which exist in both the spaces, which is obviously the union of the two,
which is given by
A new argument for the non-existence of Closed Timelike Curves
www.iosrjournals.org 44 | Page
{𝑓} = ℬ/𝒜 6)
∎
The regular values of 𝑓 then form 3-manifolds, our 𝛴, defined by 𝛴(𝑡0) = 𝑓−1
(𝑡0). Using the
submersion theorem, we can find a local coordinate system {𝑥 𝜇
} over the open set 𝑈, where ∀ 𝑝 ∈ 𝑈, 𝑓(𝑝) =
𝑓(𝑥0
(𝑝), 𝑥1
(𝑝), 𝑥2
(𝑝), 𝑥3
(𝑝)) = 𝑥0
(𝑝).
The 1-form 𝑑𝑓 is then 𝑑𝑥0
and the intrinsic coordinates of each hypersurface are given by 𝑥1
, 𝑥2
, 𝑥3
.
Thus the vectors 𝜕 𝛼 :=
𝜕
𝜕𝑥 𝑎 span the target space to each hypersurface. We can express the components of each
vector field in terms of a general basis {𝑦 𝛼
} as 𝑒 𝑣:
𝜕
𝜕𝑥 𝑣
=
𝜕𝑥 𝑎
𝜕𝑥 𝑣
𝜕
𝑦 𝛼
=: 𝑒 𝑣
𝛼
𝜕 𝛼
7)
Similar to [1], √4
means the metric dual to 𝑑𝑥0
. We have a vector field
(𝑑𝑥0
)√4
: = 𝑔
(4)
(𝑑𝑥0
,∙) = ( 𝑔
(4)
)0𝑣
𝜕𝑣
8)
Thus the vector field with components 𝜕𝑣 𝑓 or ( 𝑔
(4)
)0𝑣
is a normal to the hypersurface. If 𝑛 𝜇
is the unit
normal to 𝛴, then on decomposing 𝜕0 into its components parallel to the hypersurface 𝑁 𝜇
and orthogonal to is
𝑁𝑛 𝜇
, we obtain
𝜕0 = 𝑁𝑛 + 𝑁 9)
Since we have 𝑑𝑥0
(𝜕0) = 1, we see that we must have
−𝑁2
= ( 𝑔
(4)
)00
= −||𝑑𝑥0
||2 10)
III. Loop Part
We first look at Definition 1.0.2. So, we can define elements of a curve as
Definition : If there exists a curve 𝛾, then the elements of it are its 𝑥, 𝑦, 𝑧 and/or 𝑡 components, given
by 𝛾 𝑎
, or by 𝛾𝑎 .
So, using this convention, we have a new definition of a closed timelike curve:
Definition : A curve 𝜋 such that, we have, in a particular coordinate system 𝔎 on (ℳ, 𝑔
(4)
), the
following equations satisfied:
𝜋: 𝑆1
→ (ℳ, 𝑔
(4)
) 11)
And in a shifted coordinate system, 𝔎1, we have
( 𝑔
(4)
) 𝑎𝑏 𝜋 𝔎1 𝑎
, 𝜋 𝔎1 𝑏
< 0 12)
We then define a set of all possible timelike curves defined by 𝜋: 𝑆1
→ (ℳ, 𝑔
(4)
). This set we call the
timelike loop space of (ℳ, 𝑔
(4)
) and call it 𝛺(ℳ, 𝑔
(4)
). Now, if we consider our coordinate system change, to
the system 𝔎1, we would have the following:
𝛺 ℳ, 𝑔
4
= ∅ 13)
Therefore, we may define the coordinate shift such that the causal structure makes the timelike loops
(that is, curves) to vanish and therefore make 𝛺 ℳ, 𝑔4
= ∅. The 𝜋 𝔎1
may lie on ℝ or 𝛴. If 𝜋 𝔎1
lies on 𝛴,
then we need 𝜋 𝔎1
to lie on the regular values of 𝑓.
But the introduction of a metric in ℳ, 𝑔
4
induces a metric on 𝛴, which in turn causes a causal
structure to be formed. Since spacetime is not necessarily Ricci flat, 𝜋 𝔎1
must, to introduce a causal structure on
ℳ, 𝑔4
, exist on ℝ. Then we may define ℝ as having no causal structure. The coordinate shift creates the
closed timelike curves on the ℝ, and therefore a restriction of vectors tangential to ℝ must not exist. This is
wrong.
But ℝ is Riemannian, therefore 𝜋 𝔎1
must not exist. That is, slicing causing closed timelike curves do
not exist. This means that all slicings of ℝ × 𝛴 have no closed timelike curves in them, even on coordinate
shifts, and therefore ℳ, 𝑔4
is globally hyperbolic, ∀ ℳ, 𝑔4
and 𝑔4
. This is the proof of the proposition.
∎
A new argument for the non-existence of Closed Timelike Curves
www.iosrjournals.org 45 | Page
IV. Introduction to the preliminaries of Future Papers
Define 𝑡 𝛼
= 𝑁𝑛 𝛼
+ 𝑁 𝑎
𝑒 𝑎
𝛼
as the components of 𝜕0. We then obtain from [1], the following equation:
𝐷(𝑎 𝑡 𝑏) = 𝑛(𝛼 𝑁;𝛽) + 𝑁𝐷(𝛽 𝑛 𝛼) + 𝐷(𝛼 𝑁𝛽) 14)
We then obtain the extrinsic curvature as
𝐾𝑎𝑏 =
1
2𝑁
(𝑔 𝑎𝑏
− 2𝑁(𝑎;𝑏))
15)
Now we use the Ashtekar approach. The canonical variables (these are 𝑥 𝜇
) are components of the
inverse 3-metric 𝑔 𝑎𝑏 intrinsic to 𝛴 and the components of the spin connection ∇ on 𝛴. The spin connection ∇
defines a bundle connection with base space 𝛴 and the spin space 𝕊. ∇ is then given by
∇= ∇intrinsic + 𝑖𝑲 16)
Defining a particular 𝜇 = 0 would lead to 𝑓 being a component of 𝑔 𝑎𝑏 intrinsic to 𝛴 and the
components of the spin connection ∇ on 𝛴. For the 3 + 1 split, we say that ℳ, 𝑔
4
= 𝛴 × ℝ, and in the spin
connections's space, 𝛴 × 𝕊. We now define 𝛴 × 𝕊 as a five-dimensional space 𝒟, 𝑔5
, with a 5-metric.
We may perform a 4 + 1 split of 𝒟, 𝑔
5
, by stating that 𝕊 would have a 1 + 1 split on it, so we can
define 𝕊 = ℝ × 𝒬. What is 𝒬? We can define the points of 𝒬 as below:
Definition : 𝒬 is defined as ∀𝑝 ∈ 𝒬, 𝑝 × ℝ is a vector in 𝕊.
Here ℝ denotes time, and 𝒬 denotes space. (We can see the reasons for this split later.) Consider the
following equation:
𝒟, 𝑔5
= 𝛴 × ℝ × 𝒬 17)
Look at the first part of the right hand side. It has 𝛴 × ℝ, which is the 3 + 1 split of gravity! So, this
can be reformulated as
𝒟, 𝑔5
= ℳ, 𝑔4
× 𝒬 18)
The spin connection is basically a functional derivative‟s component, that is,
𝑔 𝜇𝑣
= 𝑖ℏ
𝛿
𝛿∇𝜇𝑣
19)
The metric made is 𝑔 𝜇𝑣
= 𝑔
4 𝜇𝑣
+ 𝑛 𝜇
𝑛 𝑣
. Therefore, we have a refined equation, that is
𝑔4 𝜇𝑣
+ 𝑛 𝜇
𝑛 𝑣
= 𝑖ℏ
𝛿
𝛿∇𝜇𝑣
20)
For uncontrollable infinities to vanish, we need ∇𝜇𝑣 ≠ 0, else the 3-dimensional metric would yield
infinite distances between any two (even infinitesimally close) points as ∞.
Now we ask ourselves a question. In the above statement, why was “3-dimensional metric” mentioned?
Why not “the metric” or “4-dimensional metric”?
To answer this, look at the fact that 𝑔 𝜇𝑣
= 𝑔
4 𝜇𝑣
+ 𝑛 𝜇
𝑛 𝑣
. We need the 4-metric 𝑔
4
to be finite, so we
can introduce 𝑛 𝜇
𝑛 𝑣
= −∞ + 𝛿 𝑣
𝜇
. This then yields a finite answer for the 4-metric 𝑔4
, but what about the effect
on 𝛴? Look at how we had defined 𝑛 𝜇
– “𝑛 𝜇
is the unit normal to 𝛴…”. The unit normal cannot be infinity, so
saying that the 3-dimensional metric would yield infinite distances between any two (even infinitesimally close)
points as ∞ is equivalent to saying that the 4-dimensional metric would yield infinite distances between any two
(even infinitesimally close) points as ∞.
In the classical limit, 𝑔
4 𝜇𝑣
+ 𝑛 𝜇
𝑛 𝑣
= 𝑖ℏ
𝛿
𝛿∇ 𝜇𝑣
becomes 𝑔
4 𝜇𝑣
= −𝑛 𝜇
𝑛 𝑣
as we estimate limℏ→0 ℏ, and
therefore we need −1 = 𝑔4
𝜇𝑣 𝑛 𝜇
𝑛 𝑣
, so that 𝑛 𝜇
and 𝑛 𝑣
are negatively normalized to each other.
The space of the spin connection is ℳ, 𝑔4
× 𝒬, and we have a Dirac spinorial wavefunction,
defined as 𝛹 = 𝛼 𝐴, 𝛽𝐴′ . ∇ tells us how to carry the (two) spinor 𝛼 𝐴, (and also 𝛽𝐴′ ), parallel to itself with respect
to the ℳ, 𝑔4
‟s metric connection along some curve 𝛿 that lies on 𝛴, defined as
Definition : A curve 𝛿 such that, we have, in a particular coordinate system 𝔎 on 𝛴, the following
equations satisfied: 𝛿: 𝑆1
→ 𝛴.
Since ℳ, 𝑔4
is globally hyperbolic, from the above discussion, and ℝ is flat, 𝛴 may be considered
to be the global hyperbolicity “generator”. We are using the 𝛿 on a globally hyperbolic surface, and the curve
then becomes a timelike loop, but with restriction that if
A new argument for the non-existence of Closed Timelike Curves
www.iosrjournals.org 46 | Page
Proposition 2: If 𝛿: 𝑆1
→ 𝛴 then we should have 𝛿: 𝑆1
× ℝ → 𝛴 × ℝ so that 𝛿 ≠ 𝜋 𝔎1
, i.e., 𝛿 is not a
closed timelike curve.
Define the connection now as ∇ tells us how to carry the two spinor 𝛹 parallel to itself with respect to
the ℳ, 𝑔
4
's metric connection along some curve 𝛿 that lies on 𝛴, defined as
Definition : A curve 𝛿 such that, we have, in a particular coordinate system 𝔎 on 𝛴, the following
equation satisfied 𝛿: 𝑆1
→ 𝛴.
This new definition allows us to say that ∇ causes a linear transformation of the spin space ℝ × 𝒬, by a
matrix 𝔗 𝐴
𝐵
and 𝔗 𝐴
𝐵
, when acted on ℝ may/may not yield ℝ, but the space 𝒬 is for sure transformed.
As we split 𝒟, 𝑔5
, we can say that 𝔗 𝐴
𝐵
on ℝ would transform, but 𝔗 𝐴
𝐵
on 𝒬 would yield 𝒬. 𝔗 𝐴
𝐵
then
operates only on ℳ, 𝑔4
‟s ℝ components. The elements of 𝔗 𝐴
𝐵
are determined by some sort of basis 𝛽 in 𝛴.
We need the basis 𝛽 to be extended to ℳ, 𝑔4
, so we do a direct product by ℝ on ℳ, 𝑔4
× 𝒬 and
ℳ, 𝑔4
, and retrieve back the full spin space (with the 1 + 1 split). This ensures that the 𝔗 𝐴
𝐵
are determined
by some sort of basis 𝔅 in ℳ, 𝑔4
. This allows wavefunctions to be existent as functions of time, so that
𝑖 ℏ
𝜕
𝜕𝑡
𝛹 is not necessarily 0.
See that if the direct product by ℝ had not been done, we would have had a vanishing Hamiltonian and
therefore a Ricci flat spacetime, that is Minkowski space. It must be noted that after the direct product, we end
up with a 6-dimensional spin connection space and a 5-dimensional spacetime, not necessarily Ricci flat. How
are we to explain the sudden introduction of mass into the spacetime picture by doing a direct product? This we
will try examining later. We have already split our 5-dimensional spacetime ℳ, 𝑔5
as a (3 + 1) + 1 split,
as we have ℳ, 𝑔5
= 𝛴 × ℝ × ℝ. ℝ × ℝ, the direct product, is the 2-dimensional ℝ2
. We then have the
two main equations 𝒟, 𝑔6
= 𝛴 × ℝ2
× 𝒬 and ℳ, 𝑔5
= 𝛴 × ℝ × ℝ. The 6-metric 𝑔6 𝜇𝑣
is defined
as 𝑔6 𝜇𝑣
+ 𝑛 𝜇
𝑛 𝑣
= 𝑖 ℏ
𝛿
𝛿 ∇ 𝜇𝑣
. We need 𝜇 , 𝑣 to run over 0, … ,5. A problem here is that ∇ 𝜇𝑣 wanders away
from its original background space – if 𝜇 , 𝑣 is to run over 0, … ,5, then ∇ 𝜇𝑣 would exist on 𝒟, 𝑔6
, and it has
obviously deviated from its original background space 𝛴 . So, for ∇ 𝜇𝑣 , we define different indices 𝑕, 𝑘 which
run over 0, … ,2, so the above equation becomes 𝑔6 𝜇𝑣
+ 𝑛 𝜇
𝑛 𝑣
= 𝑖 ℏ
𝛿
𝛿 ∇ 𝑕 𝑘
.
Our − + + + metric is formed by restricting the Killing form of the group 𝒢 's (of ℳ, 𝑔6
) Lie
algebra 𝔤 to its Cartan subalgebra, say 𝔤 0. If the (Killing form) field equations vanish, a topological field theory
(TFT) can be created on ℳ,∙ , and so even the ∇ 𝑕 𝑘 vanishes. If we do the Chas-Sullivan timelike loop product
of any two timelike loops ∇ 𝑕 𝑘
𝑎
and ∇ 𝑕 𝑘
𝑏
, we need to have the Killing form of the Lie group to be restrictable
to its Cartan subalgebra. If the Killing form vanishes, we have a TFT and the timelike loops vanish. Now we ask
ourselves, is it a local or global TFT? The group of ℳ,∙ can be said to be 𝒢 𝑢 . emph{If 𝒢 𝑢 has a locally
different structure from the global structure of 𝒢 𝑢 , and if the local structure of 𝒢 𝑢 has a non-restrictable Killing
form, then the TFT is local. For an Abelian 𝒢 𝑢 , the TFT vanishes, but for a non-Abelian G, the TFT may
vanish.}
We see that we can define the proposition in section 1 as a theorem:
Theorem : There exists no closed timelike curve in the physical world.
It seems that the above can also be stated alternatively, as a corollary, as below:
Corollary : There exists no map between any two charts on $(mathcal{M}, ^{(4)}g)$ such that
causality is violated in any of them, i.e.,t here exists no map between any two charts on $(mathcal{M},
^{(4)}g)$ such that closed timelike structures (here proved only for curves) is violated in any of them.
Proof : Basically, the main concept we assume is that causality exists. If that exists, then it should hold
in all coordinate systems. According to the definition of closed timelike curves, if there exists a map between
the two coordinate systems, say ℧: 𝔎 → 𝔎1, and the above theorem is false, then 𝛺 ℳ, 𝑔4
= ∅. ∎
If we look at proposition 1, then if we look at the transition map between two charts, 𝔎 and 𝔎1, and
compare it with the above then we see that we can propose:
Proposition 3: The transition map between two charts, 𝔎 and 𝔎1, does not exist.
Proof :We have, if 𝔎/ 𝔎1 exists (as it should), a map ℧: 𝔎 → 𝔎1. Then, from proposition 1, 𝔎/ 𝔎1 =
{℧}. As {℧} does not exist, by the definition of a transition map, 𝜏 : {℧} → {℧} also cannot exist. ∎
A new argument for the non-existence of Closed Timelike Curves
www.iosrjournals.org 47 | Page
V. Conclusion
In this paper, we have proved the theorem which states that no CTCs can exist. Also, we have a
concept simply stated as “functions as spaces”. This has many great implications, as can be exhibited: In future
papers, we see that the symmetry group of the quantum universe during the so-called „quantum super-bounce‟ of
super-LQC must have been 𝑆𝑈 (14) (due to complex reasons explained in those papers). We can easily perform
a breaking as 𝑆𝑈 (14) → 𝑆𝑈 (5) × 𝑆𝑈 (9), where 𝑆𝑈 (9) is the symmetry group of loop quantum supergravity
(due to complex reasons explained in those papers) and 𝑆𝑈 (5) is the Georgi-Glashow model. We obtain
gravity, QCD, and the Electroweak force. By this method, we can obtain quantum electrodynamics as a unitary
representation of the 𝑆𝑈 (14) group through the concept “functions as spaces”.
Acknowledgements
The results of this paper were obtained during my studies at CFRCE (Center for Fundamental Research
and Creative Education). I would like to express deep gratitude to my friends Madhavan Venkatesh and
Vasudev Shyam, and my mentor Prof. Dr. B. S. Ramachandra whose guidance and support were crucial for the
successful completion of this project. I would like to acknowledge the Director Ms. Pratiti B R for creating the
highly charged research atmosphere at CFRCE. I would also like to thank Mrs. Manogna Shastry for the
introduction of LaTex and help in my calculations.
References
Theses:
[1] de A. Gomes, Henrique, The Dynamics of Shapes, Ph.D., University of Nottingham, 2011
Books:
[2] R.Penrose, The Road to Reality (Vintage Books, 2004).

Recommandé

Lagrange par
LagrangeLagrange
LagrangeHữu Trần
5.8K vues35 diapositives
Lagrange's Theorem par
Lagrange's TheoremLagrange's Theorem
Lagrange's Theoremjohn1129
5.7K vues16 diapositives
Hamilton application par
Hamilton applicationHamilton application
Hamilton applicationSamad Akbar
5K vues49 diapositives
PART X.1 - Superstring Theory par
PART X.1 - Superstring TheoryPART X.1 - Superstring Theory
PART X.1 - Superstring TheoryMaurice R. TREMBLAY
811 vues198 diapositives
PART X.2 - Superstring Theory par
PART X.2 - Superstring TheoryPART X.2 - Superstring Theory
PART X.2 - Superstring TheoryMaurice R. TREMBLAY
590 vues129 diapositives
Dynamical Systems Methods in Early-Universe Cosmologies par
Dynamical Systems Methods in Early-Universe CosmologiesDynamical Systems Methods in Early-Universe Cosmologies
Dynamical Systems Methods in Early-Universe CosmologiesIkjyot Singh Kohli
478 vues60 diapositives

Contenu connexe

Tendances

Instantons in 1D QM par
Instantons in 1D QMInstantons in 1D QM
Instantons in 1D QMScott Shermer
917 vues65 diapositives
Prof. Rob Leigh (University of Illinois) par
Prof. Rob Leigh (University of Illinois)Prof. Rob Leigh (University of Illinois)
Prof. Rob Leigh (University of Illinois)Rene Kotze
2K vues36 diapositives
Common fixed point theorems using faintly compatible par
Common fixed point theorems using faintly compatibleCommon fixed point theorems using faintly compatible
Common fixed point theorems using faintly compatibleAlexander Decker
184 vues10 diapositives
N. Bilic - "Hamiltonian Method in the Braneworld" 1/3 par
N. Bilic - "Hamiltonian Method in the Braneworld" 1/3N. Bilic - "Hamiltonian Method in the Braneworld" 1/3
N. Bilic - "Hamiltonian Method in the Braneworld" 1/3SEENET-MTP
653 vues54 diapositives
Born reciprocity par
Born reciprocityBorn reciprocity
Born reciprocityRene Kotze
497 vues28 diapositives
Parallel transport additional explorations part1&amp;2 sqrd par
Parallel transport additional explorations part1&amp;2 sqrdParallel transport additional explorations part1&amp;2 sqrd
Parallel transport additional explorations part1&amp;2 sqrdfoxtrot jp R
115 vues8 diapositives

Tendances(18)

Prof. Rob Leigh (University of Illinois) par Rene Kotze
Prof. Rob Leigh (University of Illinois)Prof. Rob Leigh (University of Illinois)
Prof. Rob Leigh (University of Illinois)
Rene Kotze2K vues
Common fixed point theorems using faintly compatible par Alexander Decker
Common fixed point theorems using faintly compatibleCommon fixed point theorems using faintly compatible
Common fixed point theorems using faintly compatible
Alexander Decker184 vues
N. Bilic - "Hamiltonian Method in the Braneworld" 1/3 par SEENET-MTP
N. Bilic - "Hamiltonian Method in the Braneworld" 1/3N. Bilic - "Hamiltonian Method in the Braneworld" 1/3
N. Bilic - "Hamiltonian Method in the Braneworld" 1/3
SEENET-MTP653 vues
Parallel transport additional explorations part1&amp;2 sqrd par foxtrot jp R
Parallel transport additional explorations part1&amp;2 sqrdParallel transport additional explorations part1&amp;2 sqrd
Parallel transport additional explorations part1&amp;2 sqrd
foxtrot jp R115 vues
I. Cotaescu - "Canonical quantization of the covariant fields: the Dirac fiel... par SEENET-MTP
I. Cotaescu - "Canonical quantization of the covariant fields: the Dirac fiel...I. Cotaescu - "Canonical quantization of the covariant fields: the Dirac fiel...
I. Cotaescu - "Canonical quantization of the covariant fields: the Dirac fiel...
SEENET-MTP574 vues
N. Bilic - "Hamiltonian Method in the Braneworld" 2/3 par SEENET-MTP
N. Bilic - "Hamiltonian Method in the Braneworld" 2/3N. Bilic - "Hamiltonian Method in the Braneworld" 2/3
N. Bilic - "Hamiltonian Method in the Braneworld" 2/3
SEENET-MTP418 vues
Fixed point theorem in fuzzy metric space with e.a property par Alexander Decker
Fixed point theorem in fuzzy metric space with e.a propertyFixed point theorem in fuzzy metric space with e.a property
Fixed point theorem in fuzzy metric space with e.a property
Alexander Decker421 vues
N. Bilic - "Hamiltonian Method in the Braneworld" 3/3 par SEENET-MTP
N. Bilic - "Hamiltonian Method in the Braneworld" 3/3N. Bilic - "Hamiltonian Method in the Braneworld" 3/3
N. Bilic - "Hamiltonian Method in the Braneworld" 3/3
SEENET-MTP354 vues
Impacts of a New Spatial Variable on a Black Hole Metric Solution par IJSRED
Impacts of a New Spatial Variable on a Black Hole Metric SolutionImpacts of a New Spatial Variable on a Black Hole Metric Solution
Impacts of a New Spatial Variable on a Black Hole Metric Solution
IJSRED41 vues
D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ... par SEENET-MTP
D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...
D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...
SEENET-MTP664 vues
Derivation of Ideal Gas Distribution via Micro-Canonical Ensembling par Tony Yen
Derivation of Ideal Gas Distribution via Micro-Canonical Ensembling Derivation of Ideal Gas Distribution via Micro-Canonical Ensembling
Derivation of Ideal Gas Distribution via Micro-Canonical Ensembling
Tony Yen66 vues

En vedette

J017526165 par
J017526165J017526165
J017526165IOSR Journals
122 vues5 diapositives
L1103047478 par
L1103047478L1103047478
L1103047478IOSR Journals
142 vues5 diapositives
P01254123131 par
P01254123131P01254123131
P01254123131IOSR Journals
207 vues9 diapositives
G010633439 par
G010633439G010633439
G010633439IOSR Journals
49 vues6 diapositives
Vitality of Physics In Nanoscience and Nanotechnology par
Vitality of Physics In Nanoscience and NanotechnologyVitality of Physics In Nanoscience and Nanotechnology
Vitality of Physics In Nanoscience and NanotechnologyIOSR Journals
247 vues5 diapositives
G017124045 par
G017124045G017124045
G017124045IOSR Journals
128 vues6 diapositives

En vedette(20)

Vitality of Physics In Nanoscience and Nanotechnology par IOSR Journals
Vitality of Physics In Nanoscience and NanotechnologyVitality of Physics In Nanoscience and Nanotechnology
Vitality of Physics In Nanoscience and Nanotechnology
IOSR Journals247 vues
Investigation of General Equation That Best Describe the Relationship between... par IOSR Journals
Investigation of General Equation That Best Describe the Relationship between...Investigation of General Equation That Best Describe the Relationship between...
Investigation of General Equation That Best Describe the Relationship between...
IOSR Journals219 vues
Safety Features Evaluation of the Vehicle Interior Using Finite Element Analy... par IOSR Journals
Safety Features Evaluation of the Vehicle Interior Using Finite Element Analy...Safety Features Evaluation of the Vehicle Interior Using Finite Element Analy...
Safety Features Evaluation of the Vehicle Interior Using Finite Element Analy...
IOSR Journals220 vues
Network Lifetime Analysis of Routing Protocols of Short Network in Qualnet par IOSR Journals
Network Lifetime Analysis of Routing Protocols of Short Network in QualnetNetwork Lifetime Analysis of Routing Protocols of Short Network in Qualnet
Network Lifetime Analysis of Routing Protocols of Short Network in Qualnet
IOSR Journals335 vues
Design and Analysis of Microstrip Antenna for CDMA Systems Communication par IOSR Journals
Design and Analysis of Microstrip Antenna for CDMA Systems CommunicationDesign and Analysis of Microstrip Antenna for CDMA Systems Communication
Design and Analysis of Microstrip Antenna for CDMA Systems Communication
IOSR Journals490 vues
Assessment of Amcon’s Role in Resuscitating the Banking Sector during the Glo... par IOSR Journals
Assessment of Amcon’s Role in Resuscitating the Banking Sector during the Glo...Assessment of Amcon’s Role in Resuscitating the Banking Sector during the Glo...
Assessment of Amcon’s Role in Resuscitating the Banking Sector during the Glo...
IOSR Journals571 vues

Similaire à I0744347

Fixed Point Results for Weakly Compatible Mappings in Convex G-Metric Space par
Fixed Point Results for Weakly Compatible Mappings in Convex G-Metric SpaceFixed Point Results for Weakly Compatible Mappings in Convex G-Metric Space
Fixed Point Results for Weakly Compatible Mappings in Convex G-Metric Spaceinventionjournals
495 vues5 diapositives
Change variablethm par
Change variablethmChange variablethm
Change variablethmJasonleav
147 vues6 diapositives
Quantization of the Orbital Motion of a Mass In The Presence Of Einstein’s Gr... par
Quantization of the Orbital Motion of a Mass In The Presence Of Einstein’s Gr...Quantization of the Orbital Motion of a Mass In The Presence Of Einstein’s Gr...
Quantization of the Orbital Motion of a Mass In The Presence Of Einstein’s Gr...IOSR Journals
205 vues9 diapositives
Outgoing ingoingkleingordon ghp par
Outgoing ingoingkleingordon ghpOutgoing ingoingkleingordon ghp
Outgoing ingoingkleingordon ghpfoxtrot jp R
190 vues4 diapositives
Matrix Transformations on Paranormed Sequence Spaces Related To De La Vallée-... par
Matrix Transformations on Paranormed Sequence Spaces Related To De La Vallée-...Matrix Transformations on Paranormed Sequence Spaces Related To De La Vallée-...
Matrix Transformations on Paranormed Sequence Spaces Related To De La Vallée-...inventionjournals
69 vues4 diapositives

Similaire à I0744347(20)

Fixed Point Results for Weakly Compatible Mappings in Convex G-Metric Space par inventionjournals
Fixed Point Results for Weakly Compatible Mappings in Convex G-Metric SpaceFixed Point Results for Weakly Compatible Mappings in Convex G-Metric Space
Fixed Point Results for Weakly Compatible Mappings in Convex G-Metric Space
Change variablethm par Jasonleav
Change variablethmChange variablethm
Change variablethm
Jasonleav147 vues
Quantization of the Orbital Motion of a Mass In The Presence Of Einstein’s Gr... par IOSR Journals
Quantization of the Orbital Motion of a Mass In The Presence Of Einstein’s Gr...Quantization of the Orbital Motion of a Mass In The Presence Of Einstein’s Gr...
Quantization of the Orbital Motion of a Mass In The Presence Of Einstein’s Gr...
IOSR Journals205 vues
Outgoing ingoingkleingordon ghp par foxtrot jp R
Outgoing ingoingkleingordon ghpOutgoing ingoingkleingordon ghp
Outgoing ingoingkleingordon ghp
foxtrot jp R190 vues
Matrix Transformations on Paranormed Sequence Spaces Related To De La Vallée-... par inventionjournals
Matrix Transformations on Paranormed Sequence Spaces Related To De La Vallée-...Matrix Transformations on Paranormed Sequence Spaces Related To De La Vallée-...
Matrix Transformations on Paranormed Sequence Spaces Related To De La Vallée-...
Anisotropic Bianchi Type-III Dark Energy Model with Time-Dependent Decelerati... par IOSR Journals
Anisotropic Bianchi Type-III Dark Energy Model with Time-Dependent Decelerati...Anisotropic Bianchi Type-III Dark Energy Model with Time-Dependent Decelerati...
Anisotropic Bianchi Type-III Dark Energy Model with Time-Dependent Decelerati...
IOSR Journals364 vues
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping par inventionjournals
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix MappingDual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Cocentroidal and Isogonal Structures and Their Matricinal Forms, Procedures a... par inventionjournals
Cocentroidal and Isogonal Structures and Their Matricinal Forms, Procedures a...Cocentroidal and Isogonal Structures and Their Matricinal Forms, Procedures a...
Cocentroidal and Isogonal Structures and Their Matricinal Forms, Procedures a...
Devaney Chaos Induced by Turbulent and Erratic Functions par IOSRJM
Devaney Chaos Induced by Turbulent and Erratic FunctionsDevaney Chaos Induced by Turbulent and Erratic Functions
Devaney Chaos Induced by Turbulent and Erratic Functions
IOSRJM56 vues
Maxwell's formulation - differential forms on euclidean space par greentask
Maxwell's formulation  - differential forms on euclidean spaceMaxwell's formulation  - differential forms on euclidean space
Maxwell's formulation - differential forms on euclidean space
greentask1.1K vues
The Mathematical Universe in a Nutshell par Kannan Nambiar
The Mathematical Universe in a NutshellThe Mathematical Universe in a Nutshell
The Mathematical Universe in a Nutshell
Kannan Nambiar133 vues
CR- Submanifoldsof a Nearly Hyperbolic Cosymplectic Manifold par IOSR Journals
CR- Submanifoldsof a Nearly Hyperbolic Cosymplectic ManifoldCR- Submanifoldsof a Nearly Hyperbolic Cosymplectic Manifold
CR- Submanifoldsof a Nearly Hyperbolic Cosymplectic Manifold
IOSR Journals234 vues
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ... par mathsjournal
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
mathsjournal11 vues
Schrodinger equation and its applications: Chapter 2 par Dr.Pankaj Khirade
Schrodinger equation and its applications: Chapter 2Schrodinger equation and its applications: Chapter 2
Schrodinger equation and its applications: Chapter 2
Dr.Pankaj Khirade1.9K vues
Qausi Conformal Curvature Tensor on 푳푪푺 풏-Manifolds par inventionjournals
Qausi Conformal Curvature Tensor on 푳푪푺 풏-ManifoldsQausi Conformal Curvature Tensor on 푳푪푺 풏-Manifolds
Qausi Conformal Curvature Tensor on 푳푪푺 풏-Manifolds

Plus de IOSR Journals

A011140104 par
A011140104A011140104
A011140104IOSR Journals
1.2K vues4 diapositives
M0111397100 par
M0111397100M0111397100
M0111397100IOSR Journals
747 vues4 diapositives
L011138596 par
L011138596L011138596
L011138596IOSR Journals
732 vues12 diapositives
K011138084 par
K011138084K011138084
K011138084IOSR Journals
602 vues5 diapositives
J011137479 par
J011137479J011137479
J011137479IOSR Journals
603 vues6 diapositives
I011136673 par
I011136673I011136673
I011136673IOSR Journals
511 vues8 diapositives

I0744347

  • 1. IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728,p-ISSN: 2319-765X, Volume 7, Issue 4 (Jul. - Aug. 2013), PP 43-47 www.iosrjournals.org www.iosrjournals.org 43 | Page A new argument for the non-existence of Closed Timelike Curves Sanath Devalapurkar1 1 (Physics, Center for Fundamental Research and Creative Education, India) Abstract: In this paper, we attempt to present a short argument, different from that of the original proofs by that of Hawking, for a theorem stated that no closed timelike curves can exist. In a later paper, we apply this to quantum gravity and relate the curvature of spacetime to this theorem. Also, we present this paper as a preliminary introduction to the complete argument of this, and we also provide a preliminary notion of the concepts which will be narrated in the later papers. We also use this as a starting basis for a true theory of everything for a theory of everything. We use the notation of [1] and of [2]. Keywords: Theoretical Physics, Quantum Gravity, Mathematical Physics, General Relativity, Quantum Mechanics I. The elimination of Closed Timelike Curves in Loop Quantum Gravity Theorem : There exists no closed timelike curve in the physical world. To prove this, we introduce spacetime as (ℳ, 𝑔 (4) ) where we can define ℳ as a four dimensional manifold and 𝑔 (4) as a Lorentzian metric on it. In the third part, we introduce a ADM 3 + 1 split of the four dimensional (ℳ, 𝑔 (4) ). II. ADM 3+1 split of classical four dimensional (𝓜, 𝒈 (𝟒) ) In this section, we mainly reconstruct the topics in [1]. To do a 3+1 split of classical four dimensional (ℳ, 𝑔 (4) ), we need (ℳ, 𝑔 (4) ) to be homeomorphic to the direct product space formed by ℝ × 𝛴, where 𝛴 is a three-manifold representing space and 𝑡 ∈ ℝ represents time. (ℳ, 𝑔 (4) ) needs to be globally hyperbolic, and we assume causality, that is, no closed timelike curves (CTC) exist. We define closed timelike curves in the following manner. A curve 𝜋 such that, we have, in a particular coordinate system 𝔎 on (ℳ, 𝑔 (4) ), the following equations satisfied: 𝜋: 𝑆1 → (ℳ, 𝑔 (4) ) 1) And in a shifted coordinate system, 𝔎1, we have 𝑔(𝜋 𝔎1 , 𝜋 𝔎1 ) < 0 2) This allows us to state that the time function is regular. A particular slicing of spacetime, though, would be a matter of choice. A choice of slicing is equivalent to the choice of a regular function $f$ (i.e., a scalar field on (ℳ, 𝑔 (4) )) for which 𝜕 𝜇 𝑡 is timelike. Suppose there exist two spaces, so that there is a mapping of some sort between them, defined as Proposition 1: 𝑓 on 𝒜 maps to ℬ. Then, it could be said that {𝑓} is a space itself, multiplied (i.e., it forms a product space with) by 𝒜 to yield ℬ. Then we could say that {𝑓} = ℬ/𝒜. I.e., if 𝑓: 𝒜 → ℬ 3) Then we have {𝑓} = ℬ/𝒜 4) Proof: If 𝑓 is defined as 𝑓: 𝒜 → ℬ 5) Then we need ℬ and 𝒜 to have their points as discrete eigenvalues of some operator corresponding to each space (we wish to call this the soperator). Thus, as 𝑓 should have eigenvalues corresponding to each soperator, we need 𝑓 to eigenvalues which exist in both the spaces, which is obviously the union of the two, which is given by
  • 2. A new argument for the non-existence of Closed Timelike Curves www.iosrjournals.org 44 | Page {𝑓} = ℬ/𝒜 6) ∎ The regular values of 𝑓 then form 3-manifolds, our 𝛴, defined by 𝛴(𝑡0) = 𝑓−1 (𝑡0). Using the submersion theorem, we can find a local coordinate system {𝑥 𝜇 } over the open set 𝑈, where ∀ 𝑝 ∈ 𝑈, 𝑓(𝑝) = 𝑓(𝑥0 (𝑝), 𝑥1 (𝑝), 𝑥2 (𝑝), 𝑥3 (𝑝)) = 𝑥0 (𝑝). The 1-form 𝑑𝑓 is then 𝑑𝑥0 and the intrinsic coordinates of each hypersurface are given by 𝑥1 , 𝑥2 , 𝑥3 . Thus the vectors 𝜕 𝛼 := 𝜕 𝜕𝑥 𝑎 span the target space to each hypersurface. We can express the components of each vector field in terms of a general basis {𝑦 𝛼 } as 𝑒 𝑣: 𝜕 𝜕𝑥 𝑣 = 𝜕𝑥 𝑎 𝜕𝑥 𝑣 𝜕 𝑦 𝛼 =: 𝑒 𝑣 𝛼 𝜕 𝛼 7) Similar to [1], √4 means the metric dual to 𝑑𝑥0 . We have a vector field (𝑑𝑥0 )√4 : = 𝑔 (4) (𝑑𝑥0 ,∙) = ( 𝑔 (4) )0𝑣 𝜕𝑣 8) Thus the vector field with components 𝜕𝑣 𝑓 or ( 𝑔 (4) )0𝑣 is a normal to the hypersurface. If 𝑛 𝜇 is the unit normal to 𝛴, then on decomposing 𝜕0 into its components parallel to the hypersurface 𝑁 𝜇 and orthogonal to is 𝑁𝑛 𝜇 , we obtain 𝜕0 = 𝑁𝑛 + 𝑁 9) Since we have 𝑑𝑥0 (𝜕0) = 1, we see that we must have −𝑁2 = ( 𝑔 (4) )00 = −||𝑑𝑥0 ||2 10) III. Loop Part We first look at Definition 1.0.2. So, we can define elements of a curve as Definition : If there exists a curve 𝛾, then the elements of it are its 𝑥, 𝑦, 𝑧 and/or 𝑡 components, given by 𝛾 𝑎 , or by 𝛾𝑎 . So, using this convention, we have a new definition of a closed timelike curve: Definition : A curve 𝜋 such that, we have, in a particular coordinate system 𝔎 on (ℳ, 𝑔 (4) ), the following equations satisfied: 𝜋: 𝑆1 → (ℳ, 𝑔 (4) ) 11) And in a shifted coordinate system, 𝔎1, we have ( 𝑔 (4) ) 𝑎𝑏 𝜋 𝔎1 𝑎 , 𝜋 𝔎1 𝑏 < 0 12) We then define a set of all possible timelike curves defined by 𝜋: 𝑆1 → (ℳ, 𝑔 (4) ). This set we call the timelike loop space of (ℳ, 𝑔 (4) ) and call it 𝛺(ℳ, 𝑔 (4) ). Now, if we consider our coordinate system change, to the system 𝔎1, we would have the following: 𝛺 ℳ, 𝑔 4 = ∅ 13) Therefore, we may define the coordinate shift such that the causal structure makes the timelike loops (that is, curves) to vanish and therefore make 𝛺 ℳ, 𝑔4 = ∅. The 𝜋 𝔎1 may lie on ℝ or 𝛴. If 𝜋 𝔎1 lies on 𝛴, then we need 𝜋 𝔎1 to lie on the regular values of 𝑓. But the introduction of a metric in ℳ, 𝑔 4 induces a metric on 𝛴, which in turn causes a causal structure to be formed. Since spacetime is not necessarily Ricci flat, 𝜋 𝔎1 must, to introduce a causal structure on ℳ, 𝑔4 , exist on ℝ. Then we may define ℝ as having no causal structure. The coordinate shift creates the closed timelike curves on the ℝ, and therefore a restriction of vectors tangential to ℝ must not exist. This is wrong. But ℝ is Riemannian, therefore 𝜋 𝔎1 must not exist. That is, slicing causing closed timelike curves do not exist. This means that all slicings of ℝ × 𝛴 have no closed timelike curves in them, even on coordinate shifts, and therefore ℳ, 𝑔4 is globally hyperbolic, ∀ ℳ, 𝑔4 and 𝑔4 . This is the proof of the proposition. ∎
  • 3. A new argument for the non-existence of Closed Timelike Curves www.iosrjournals.org 45 | Page IV. Introduction to the preliminaries of Future Papers Define 𝑡 𝛼 = 𝑁𝑛 𝛼 + 𝑁 𝑎 𝑒 𝑎 𝛼 as the components of 𝜕0. We then obtain from [1], the following equation: 𝐷(𝑎 𝑡 𝑏) = 𝑛(𝛼 𝑁;𝛽) + 𝑁𝐷(𝛽 𝑛 𝛼) + 𝐷(𝛼 𝑁𝛽) 14) We then obtain the extrinsic curvature as 𝐾𝑎𝑏 = 1 2𝑁 (𝑔 𝑎𝑏 − 2𝑁(𝑎;𝑏)) 15) Now we use the Ashtekar approach. The canonical variables (these are 𝑥 𝜇 ) are components of the inverse 3-metric 𝑔 𝑎𝑏 intrinsic to 𝛴 and the components of the spin connection ∇ on 𝛴. The spin connection ∇ defines a bundle connection with base space 𝛴 and the spin space 𝕊. ∇ is then given by ∇= ∇intrinsic + 𝑖𝑲 16) Defining a particular 𝜇 = 0 would lead to 𝑓 being a component of 𝑔 𝑎𝑏 intrinsic to 𝛴 and the components of the spin connection ∇ on 𝛴. For the 3 + 1 split, we say that ℳ, 𝑔 4 = 𝛴 × ℝ, and in the spin connections's space, 𝛴 × 𝕊. We now define 𝛴 × 𝕊 as a five-dimensional space 𝒟, 𝑔5 , with a 5-metric. We may perform a 4 + 1 split of 𝒟, 𝑔 5 , by stating that 𝕊 would have a 1 + 1 split on it, so we can define 𝕊 = ℝ × 𝒬. What is 𝒬? We can define the points of 𝒬 as below: Definition : 𝒬 is defined as ∀𝑝 ∈ 𝒬, 𝑝 × ℝ is a vector in 𝕊. Here ℝ denotes time, and 𝒬 denotes space. (We can see the reasons for this split later.) Consider the following equation: 𝒟, 𝑔5 = 𝛴 × ℝ × 𝒬 17) Look at the first part of the right hand side. It has 𝛴 × ℝ, which is the 3 + 1 split of gravity! So, this can be reformulated as 𝒟, 𝑔5 = ℳ, 𝑔4 × 𝒬 18) The spin connection is basically a functional derivative‟s component, that is, 𝑔 𝜇𝑣 = 𝑖ℏ 𝛿 𝛿∇𝜇𝑣 19) The metric made is 𝑔 𝜇𝑣 = 𝑔 4 𝜇𝑣 + 𝑛 𝜇 𝑛 𝑣 . Therefore, we have a refined equation, that is 𝑔4 𝜇𝑣 + 𝑛 𝜇 𝑛 𝑣 = 𝑖ℏ 𝛿 𝛿∇𝜇𝑣 20) For uncontrollable infinities to vanish, we need ∇𝜇𝑣 ≠ 0, else the 3-dimensional metric would yield infinite distances between any two (even infinitesimally close) points as ∞. Now we ask ourselves a question. In the above statement, why was “3-dimensional metric” mentioned? Why not “the metric” or “4-dimensional metric”? To answer this, look at the fact that 𝑔 𝜇𝑣 = 𝑔 4 𝜇𝑣 + 𝑛 𝜇 𝑛 𝑣 . We need the 4-metric 𝑔 4 to be finite, so we can introduce 𝑛 𝜇 𝑛 𝑣 = −∞ + 𝛿 𝑣 𝜇 . This then yields a finite answer for the 4-metric 𝑔4 , but what about the effect on 𝛴? Look at how we had defined 𝑛 𝜇 – “𝑛 𝜇 is the unit normal to 𝛴…”. The unit normal cannot be infinity, so saying that the 3-dimensional metric would yield infinite distances between any two (even infinitesimally close) points as ∞ is equivalent to saying that the 4-dimensional metric would yield infinite distances between any two (even infinitesimally close) points as ∞. In the classical limit, 𝑔 4 𝜇𝑣 + 𝑛 𝜇 𝑛 𝑣 = 𝑖ℏ 𝛿 𝛿∇ 𝜇𝑣 becomes 𝑔 4 𝜇𝑣 = −𝑛 𝜇 𝑛 𝑣 as we estimate limℏ→0 ℏ, and therefore we need −1 = 𝑔4 𝜇𝑣 𝑛 𝜇 𝑛 𝑣 , so that 𝑛 𝜇 and 𝑛 𝑣 are negatively normalized to each other. The space of the spin connection is ℳ, 𝑔4 × 𝒬, and we have a Dirac spinorial wavefunction, defined as 𝛹 = 𝛼 𝐴, 𝛽𝐴′ . ∇ tells us how to carry the (two) spinor 𝛼 𝐴, (and also 𝛽𝐴′ ), parallel to itself with respect to the ℳ, 𝑔4 ‟s metric connection along some curve 𝛿 that lies on 𝛴, defined as Definition : A curve 𝛿 such that, we have, in a particular coordinate system 𝔎 on 𝛴, the following equations satisfied: 𝛿: 𝑆1 → 𝛴. Since ℳ, 𝑔4 is globally hyperbolic, from the above discussion, and ℝ is flat, 𝛴 may be considered to be the global hyperbolicity “generator”. We are using the 𝛿 on a globally hyperbolic surface, and the curve then becomes a timelike loop, but with restriction that if
  • 4. A new argument for the non-existence of Closed Timelike Curves www.iosrjournals.org 46 | Page Proposition 2: If 𝛿: 𝑆1 → 𝛴 then we should have 𝛿: 𝑆1 × ℝ → 𝛴 × ℝ so that 𝛿 ≠ 𝜋 𝔎1 , i.e., 𝛿 is not a closed timelike curve. Define the connection now as ∇ tells us how to carry the two spinor 𝛹 parallel to itself with respect to the ℳ, 𝑔 4 's metric connection along some curve 𝛿 that lies on 𝛴, defined as Definition : A curve 𝛿 such that, we have, in a particular coordinate system 𝔎 on 𝛴, the following equation satisfied 𝛿: 𝑆1 → 𝛴. This new definition allows us to say that ∇ causes a linear transformation of the spin space ℝ × 𝒬, by a matrix 𝔗 𝐴 𝐵 and 𝔗 𝐴 𝐵 , when acted on ℝ may/may not yield ℝ, but the space 𝒬 is for sure transformed. As we split 𝒟, 𝑔5 , we can say that 𝔗 𝐴 𝐵 on ℝ would transform, but 𝔗 𝐴 𝐵 on 𝒬 would yield 𝒬. 𝔗 𝐴 𝐵 then operates only on ℳ, 𝑔4 ‟s ℝ components. The elements of 𝔗 𝐴 𝐵 are determined by some sort of basis 𝛽 in 𝛴. We need the basis 𝛽 to be extended to ℳ, 𝑔4 , so we do a direct product by ℝ on ℳ, 𝑔4 × 𝒬 and ℳ, 𝑔4 , and retrieve back the full spin space (with the 1 + 1 split). This ensures that the 𝔗 𝐴 𝐵 are determined by some sort of basis 𝔅 in ℳ, 𝑔4 . This allows wavefunctions to be existent as functions of time, so that 𝑖 ℏ 𝜕 𝜕𝑡 𝛹 is not necessarily 0. See that if the direct product by ℝ had not been done, we would have had a vanishing Hamiltonian and therefore a Ricci flat spacetime, that is Minkowski space. It must be noted that after the direct product, we end up with a 6-dimensional spin connection space and a 5-dimensional spacetime, not necessarily Ricci flat. How are we to explain the sudden introduction of mass into the spacetime picture by doing a direct product? This we will try examining later. We have already split our 5-dimensional spacetime ℳ, 𝑔5 as a (3 + 1) + 1 split, as we have ℳ, 𝑔5 = 𝛴 × ℝ × ℝ. ℝ × ℝ, the direct product, is the 2-dimensional ℝ2 . We then have the two main equations 𝒟, 𝑔6 = 𝛴 × ℝ2 × 𝒬 and ℳ, 𝑔5 = 𝛴 × ℝ × ℝ. The 6-metric 𝑔6 𝜇𝑣 is defined as 𝑔6 𝜇𝑣 + 𝑛 𝜇 𝑛 𝑣 = 𝑖 ℏ 𝛿 𝛿 ∇ 𝜇𝑣 . We need 𝜇 , 𝑣 to run over 0, … ,5. A problem here is that ∇ 𝜇𝑣 wanders away from its original background space – if 𝜇 , 𝑣 is to run over 0, … ,5, then ∇ 𝜇𝑣 would exist on 𝒟, 𝑔6 , and it has obviously deviated from its original background space 𝛴 . So, for ∇ 𝜇𝑣 , we define different indices 𝑕, 𝑘 which run over 0, … ,2, so the above equation becomes 𝑔6 𝜇𝑣 + 𝑛 𝜇 𝑛 𝑣 = 𝑖 ℏ 𝛿 𝛿 ∇ 𝑕 𝑘 . Our − + + + metric is formed by restricting the Killing form of the group 𝒢 's (of ℳ, 𝑔6 ) Lie algebra 𝔤 to its Cartan subalgebra, say 𝔤 0. If the (Killing form) field equations vanish, a topological field theory (TFT) can be created on ℳ,∙ , and so even the ∇ 𝑕 𝑘 vanishes. If we do the Chas-Sullivan timelike loop product of any two timelike loops ∇ 𝑕 𝑘 𝑎 and ∇ 𝑕 𝑘 𝑏 , we need to have the Killing form of the Lie group to be restrictable to its Cartan subalgebra. If the Killing form vanishes, we have a TFT and the timelike loops vanish. Now we ask ourselves, is it a local or global TFT? The group of ℳ,∙ can be said to be 𝒢 𝑢 . emph{If 𝒢 𝑢 has a locally different structure from the global structure of 𝒢 𝑢 , and if the local structure of 𝒢 𝑢 has a non-restrictable Killing form, then the TFT is local. For an Abelian 𝒢 𝑢 , the TFT vanishes, but for a non-Abelian G, the TFT may vanish.} We see that we can define the proposition in section 1 as a theorem: Theorem : There exists no closed timelike curve in the physical world. It seems that the above can also be stated alternatively, as a corollary, as below: Corollary : There exists no map between any two charts on $(mathcal{M}, ^{(4)}g)$ such that causality is violated in any of them, i.e.,t here exists no map between any two charts on $(mathcal{M}, ^{(4)}g)$ such that closed timelike structures (here proved only for curves) is violated in any of them. Proof : Basically, the main concept we assume is that causality exists. If that exists, then it should hold in all coordinate systems. According to the definition of closed timelike curves, if there exists a map between the two coordinate systems, say ℧: 𝔎 → 𝔎1, and the above theorem is false, then 𝛺 ℳ, 𝑔4 = ∅. ∎ If we look at proposition 1, then if we look at the transition map between two charts, 𝔎 and 𝔎1, and compare it with the above then we see that we can propose: Proposition 3: The transition map between two charts, 𝔎 and 𝔎1, does not exist. Proof :We have, if 𝔎/ 𝔎1 exists (as it should), a map ℧: 𝔎 → 𝔎1. Then, from proposition 1, 𝔎/ 𝔎1 = {℧}. As {℧} does not exist, by the definition of a transition map, 𝜏 : {℧} → {℧} also cannot exist. ∎
  • 5. A new argument for the non-existence of Closed Timelike Curves www.iosrjournals.org 47 | Page V. Conclusion In this paper, we have proved the theorem which states that no CTCs can exist. Also, we have a concept simply stated as “functions as spaces”. This has many great implications, as can be exhibited: In future papers, we see that the symmetry group of the quantum universe during the so-called „quantum super-bounce‟ of super-LQC must have been 𝑆𝑈 (14) (due to complex reasons explained in those papers). We can easily perform a breaking as 𝑆𝑈 (14) → 𝑆𝑈 (5) × 𝑆𝑈 (9), where 𝑆𝑈 (9) is the symmetry group of loop quantum supergravity (due to complex reasons explained in those papers) and 𝑆𝑈 (5) is the Georgi-Glashow model. We obtain gravity, QCD, and the Electroweak force. By this method, we can obtain quantum electrodynamics as a unitary representation of the 𝑆𝑈 (14) group through the concept “functions as spaces”. Acknowledgements The results of this paper were obtained during my studies at CFRCE (Center for Fundamental Research and Creative Education). I would like to express deep gratitude to my friends Madhavan Venkatesh and Vasudev Shyam, and my mentor Prof. Dr. B. S. Ramachandra whose guidance and support were crucial for the successful completion of this project. I would like to acknowledge the Director Ms. Pratiti B R for creating the highly charged research atmosphere at CFRCE. I would also like to thank Mrs. Manogna Shastry for the introduction of LaTex and help in my calculations. References Theses: [1] de A. Gomes, Henrique, The Dynamics of Shapes, Ph.D., University of Nottingham, 2011 Books: [2] R.Penrose, The Road to Reality (Vintage Books, 2004).