SlideShare une entreprise Scribd logo
1  sur  9
Télécharger pour lire hors ligne
IOSR Journal of Mathematics (IOSR-JM)
e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 11, Issue 1 Ver. V (Jan - Feb. 2015), PP 26-34
www.iosrjournals.org
DOI: 10.9790/5728-11152634 www.iosrjournals.org 26 | Page
On Bernstein Polynomials
Anwar Habib
Department of General Studies,Jubail Industrial College, Al Jubail-31961, Kingdom of Saudi Arabia (K S A)
Abstract:We have defined a new polynomial on the interval [0,1 +
𝑟
𝑛
] for Lebesgue integral in𝐿1norm as
𝑈
𝛼
𝑛𝑟
𝑓, 𝑥 = 𝑛 + 𝑟 + 1 𝑓 𝑡 𝑑𝑡
(𝑘+1)/(𝑛+𝑟+1)
𝑘/(𝑛+𝑟+1)
𝑛+𝑟
𝑘=0
𝑞 𝑛𝑟,𝑘 (𝑥; 𝛼)
where
𝑞 𝑛𝑟,𝑘 (𝑥; 𝛼) =
𝑛 + 𝑟
𝑘
𝑥(𝑥+𝑘𝛼 ) 𝑘−1(1−𝑥)(1−𝑥+ 𝑛+𝑟−𝑘 𝛼) 𝑛+𝑟−𝑘−1
(1+(𝑛+𝑟)𝛼) 𝑛+𝑟−1 and then proved the result of Voronowskaja
.
Keywords:Bernstein Polynomials, Convergence, Generalized Polynomial, 𝐿1 norm, Lebesgue integrable
function
I. Introduction and Results
If 𝑓(𝑥) is a function defined [0,1], the Bernstein polynomial 𝐵
𝑓
𝑛
𝑥 of 𝑓 is given as
𝐵
𝑓
𝑛
𝑥 = 𝑓(𝑘 𝑛)𝑛
𝑘=0 𝑝 𝑛,𝑘 (𝑥)……(1.1)
where
𝑝 𝑛,𝑘 𝑥 =
𝑛
𝑘
𝑥 𝑘
(1 − 𝑥) 𝑛−𝑘
………. (1.2)
Schurer [7] introduced an operator
Snr: c [0, 1+ 𝑟
𝑛
] → c [0, 1]
Defined by
Snr(f,𝑥) = 𝑓(
𝑘
𝑛+𝑟
)𝑛+𝑟
𝑘=0 𝑝 𝑛𝑟 ,𝑘 (𝑥) --------- (1.3)
where
𝑝 𝑛𝑟,𝑘 𝑥 =
𝑛 + 𝑟
𝑘
𝑥 𝑘
(1 − 𝑥) 𝑛+𝑟−𝑘
--------- (1.4)
and𝑟 is a non-negative integer. In case r= 0 , this reduces to the well-known Bernstein operator
A slight modification of Bernstein polynomials due to Kantorovich[9] makes it possible to approximate
Lebesgue integrable function in 𝐿1-norm by the modified polynomials
𝑃
𝑓
𝑛
(𝑥) = 𝑛 + 1 𝑓 𝑡 𝑑𝑡
(𝑘+1)/(𝑛+1)
𝑘/(𝑛+1)
𝑛
𝑘=0 𝑝 𝑛,𝑘 (𝑥)…(1.5)
where𝑃𝑛,𝑘 (𝑥) is defined by (1.2)
By Abel‟s formula (see Jensen [8])
(𝑥 + 𝑦)(𝑥 + 𝑦 + 𝑛𝛼) 𝑛−1
= (
𝑛
𝑘
)𝑛
𝑘=0 𝑥(𝑥 + 𝑘𝛼) 𝑘−1
𝑦(𝑦 + 𝑛 − 𝑘 𝛼) 𝑛−𝑘−1
…. (1.6)
which on substituting (n+r) for n becomes
(𝑥 + 𝑦)(𝑥 + 𝑦 + (𝑛 + 𝑟)𝛼) 𝑛+𝑟−1
= (
𝑛 + 𝑟
𝑘
)𝑛+𝑟
𝑘=0 𝑥(𝑥 + 𝑘𝛼) 𝑘−1
𝑦(𝑦 + 𝑛 + 𝑟 − 𝑘 𝛼) 𝑛+𝑟−𝑘−1
…. (1.7)
If we put𝑦 = 1 − 𝑥 , we obtain (see Cheney and Sharma [5] )
1 = (
𝑛 + 𝑟
𝑘
)𝑛+𝑟
𝑘=0
𝑥(𝑥+𝑘𝛼 ) 𝑘−1(1−𝑥)(1−𝑥+ 𝑛+𝑟−𝑘 𝛼) 𝑛+𝑟−𝑘−1
(1+(𝑛+𝑟)𝛼) 𝑛+𝑟−1 ….. (1.8)
Thus defining
𝑞 𝑛𝑟,𝑘 (𝑥; 𝛼) =
𝑛 + 𝑟
𝑘
𝑥(𝑥+𝑘𝛼 ) 𝑘−1(1−𝑥)(1−𝑥+ 𝑛+𝑟−𝑘 𝛼) 𝑛+𝑟−𝑘−1
(1+(𝑛+𝑟)𝛼) 𝑛+𝑟−1 …..(1.9)
we have
𝑞 𝑛𝑟,𝑘 (𝑥; 𝛼)𝑛+𝑟
𝑘=0 = 1….(1.10)
For a finite interval [0,1+ 𝑟
𝑛
] ,the operator is modified in a manner similar to that done to Bernstein‟s operator by
Kantorovich [9] and thus we defined the operator as
Unr: c[0,1+ 𝑟
𝑛
] → c[0,1]
On Bernstein Polynomials
DOI: 10.9790/5728-11152634 www.iosrjournals.org 27 | Page
by
𝑈
𝛼
𝑛𝑟
𝑓, 𝑥 = 𝑛 + 𝑟 + 1 𝑓 𝑡 𝑑𝑡
(𝑘+1)/(𝑛+𝑟+1)
𝑘/(𝑛+𝑟+1)
𝑛+𝑟
𝑘=0 𝑞 𝑛𝑟,𝑘 (𝑥; 𝛼)----(1.11)
where𝑞 𝑛𝑟,𝑘 (𝑥; 𝛼)same as (1.9) and r isis a non-negative integer. When r =0 &𝛼 = 0, then it reduces to the well-
known operator due to Kantorovich given by (1.5).
The function
( ⱴ, 𝑛+r, 𝑥, 𝑦 )= (
𝑛 + 𝑟
𝑘
)𝑛+𝑟
𝑘=0 (𝑥 + 𝑘𝛼)+ⱴ−1
𝑦(𝑦 + 𝑛+r − 𝑘 )𝛼) 𝑛+r − 𝑘−1
-------(1.12)
satisfies the reduction formula
𝑆 (ⱴ, 𝑛+r, 𝑥, 𝑦) = 𝑥𝑆 (ⱴ − 1, 𝑛+r, 𝑥, 𝑦) + (𝑛+r)(ⱴ, 𝑛+r − 1, 𝑥 + 𝛼, 𝑦) -------- (1.13)
from (1.3 ) & (1.12) we can have
( 0, 𝑛+r, 𝑥, 𝑦) = (𝑥 + 𝑦)(𝑥 + 𝑦 + (𝑛+r)𝛼) 𝑛+r −1
,
by repeated use of reduction formula(1.13) and (1.6) we get
( 1, 𝑛+r, 𝑥, 𝑦) = (
𝑛 + 𝑟
𝑘
)𝑛+𝑟
𝑘=0 𝑘! 𝛼 𝑛+r
(𝑥 + 𝑦)(𝑥 + 𝑦 + (𝑛+r)𝛼) 𝑛+r − 𝑘−1
, -----(1.14)
𝑆 (2, 𝑛, 𝑥, 𝑦) =)= (
𝑛 + 𝑟
𝑘
)𝑛+𝑟
𝑘=0 (𝑥 + 𝑘𝛼)𝑘! 𝛼 𝑛+r
( 1, 𝑛+r − 𝑘, 𝑥 + 𝑘𝛼, 𝑦) . ------(1.15)
Since𝑘! = 𝑒−𝑡
𝑡 𝑘
𝑑𝑡
∞
0
and using binomial expansion we obtain
𝑆(1, 𝑛+r, 𝑥, 𝑦)= 𝑒−𝑡∞
0
(𝑥 + 𝑦) (𝑥 + 𝑦 + (𝑛+r)+ 𝑡𝛼) 𝑛+r−1
𝑑𝑡 , ------(1.16)
( 2, 𝑛+r, 𝑥, 𝑦)= 𝑒−𝑡
𝑑𝑡
∞
0
𝑒−𝑠∞
0
[(𝑥+ )(𝑥 + 𝑦 + (𝑛+r)𝛼 + 𝑡𝛼 + 𝑠𝛼) 𝑛+r −1
+
(𝑛+r)𝛼 𝑛+r
𝑆(𝑥 + 𝑦 + (𝑛+r)+𝑡𝛼 + 𝑠𝛼) 𝑛+r −2
], --------------(1.17)
we, therefore , can show
𝑆(1, 𝑛+r−1, 𝑥 + 𝛼, 1 –𝑥)= 𝑒−𝑡∞
0
(1 + (𝑛+r) +𝑡𝛼)+r−1
𝑑 , ------- (1.18)
𝑆 (1, 𝑛+r−2, 𝑥 + 𝛼, 1 – 𝑥+α) = 𝑒−𝑡∞
0
(1 + (𝑛+r)+𝑡𝛼) 𝑛+r−2
𝑑𝑡 , ----------(1.19)
𝑆(2, 𝑛+r − 2, 𝑥 + 2𝛼, 1 –𝑥)= 𝑒−𝑡
𝑑𝑡
∞
0
𝑒−𝑠∞
0
𝑑𝑠[(𝑥 + 2𝛼) (1 + (𝑛+r)+ 𝑡𝛼 + 𝑠𝛼) 𝑛+r−2
+(𝑛+r − 2)𝛼2
s(1 + (𝑛+r)𝛼 + 𝑡𝛼+𝑠𝛼) 𝑛+r−3
], ---------(1.20)
𝑆 (2, 𝑛+r − 3, 𝑥 + 2𝛼, 1 – 𝑥+α) = 𝑒−𝑡
𝑑𝑡
∞
0
𝑒−𝑠∞
0
𝑑𝑠[(𝑥 + 2𝛼)(1 + (𝑛+r)𝛼 + 𝑡𝛼+ 𝑠𝛼) 𝑛+r−3
+ (𝑛+r −3)2
s(1 + (𝑛+r)𝛼 + 𝑡𝛼+𝑠𝛼) 𝑛+r-4
], ---------(1.21)
Voronowskaja [6] proved his result by assuming 𝑓(𝑥) to be atleast twice differentiable at a point 𝑥 of [ 0 1],
lim
𝑛→∞
𝑛[𝑓 𝑥 − 𝐵
𝑓
𝑛
𝑥 ] = −
1
2
𝑥(1 − 𝑥)𝑓′′(𝑥)
In particular,if𝑓′′(𝑥) ≠ 0, difference𝑓 𝑥 − 𝐵
𝑓
𝑛
𝑥 is exactly of order 𝑛−1
.
In this paper we shall prove the corresponding result of Voronowskaja for Lebesgue integrable function in 𝐿1 –
norm by GeneralizedPolynomial (1.11) and hence we state our result as follows:
Theorem: Let f(x) be bounded Lebesgue integrable function in with its first derivative in [0, 1+
𝑟
𝑛
] and suppose
second derivative 𝑓′′(𝑥) exists at a certain point x of [0, 1+
𝑟
𝑛
] , then for 𝛼 = 𝛼 𝑛𝑟 = 0
1
𝑛+𝑟
,
lim
(𝑛+𝑟)→∞
(𝑛 + 𝑟)[𝑓 𝑥 − 𝑈
𝛼
𝑛𝑟
𝑓, 𝑥 ] =
1
2
[ 1 − 2𝑥 𝑓′
𝑥 − 𝑥 1 − 𝑥 𝑓′′
𝑥 ]
II. Lemmas and their proofs
Lemma 2.1: For all values of 𝑥
𝑘𝑞 𝑛𝑟,𝑘 𝑥; 𝛼 ≤
1 + 𝑛 + 𝑟 𝛼
1 + 𝛼
𝑛 + 𝑟 𝑥 −
𝑛 + 𝑟 𝑛 + 𝑟 − 1 𝑥𝛼
1 + 2𝛼
𝑛+𝑟
𝑘=0
Lemma 2.2: For all values of 𝑥
On Bernstein Polynomials
DOI: 10.9790/5728-11152634 www.iosrjournals.org 28 | Page
k(k − 1)qnr,k x; α ≤ n + r n + r − 1 (x + 2α){
1 + n + r α
1 + 2α 2
−
n + r − 2 α
1 + 3α 3
n+r
k=0
+ n + r − 2 α2
(
1+ n+r α
1+3α 3 −
n+r−3 α
1+4α 4 )}
Lemma 2.3: For all values of x of [ 0, 1+
𝑟
𝑛
] and for 𝛼 = 𝛼 𝑛𝑟 = 0
1
𝑛+𝑟
, we have
𝑛 + 𝑟 + 1 (𝑡 − 𝑥)2
𝑑𝑡
(𝑘+1)/(𝑛+𝑟+1)
𝑘/(𝑛+𝑟+1)
𝑛+𝑟
𝑘=0
𝑞 𝑛𝑟,𝑘 (𝑥; 𝛼) ≤
𝑥(1 − 𝑥)
𝑛 + 𝑟
Proof of Lemma 2.1:
𝑘𝑞 𝑛𝑟,𝑘 (𝑥; 𝛼)
𝑛+𝑟
𝑘=0
= 𝑘
𝑛+𝑟
𝑘=0
𝑛 + 𝑟
𝑘
𝑥(𝑥 + 𝑘𝛼) 𝑘−1
(1 − 𝑥)(1 − 𝑥 + 𝑛 + 𝑟 − 𝑘 𝛼) 𝑛+𝑟−𝑘−1
(1 + (𝑛 + 𝑟)𝛼) 𝑛+𝑟−1
= (𝑛 + 𝑟)𝑥
𝑛 + 𝑟 − 1
𝑘 − 1
𝑛+𝑟
𝑘=1
𝑥 + 𝑘𝛼 𝑘−1
(1 − 𝑥)(1 − 𝑥 + 𝑛 + 𝑟 − 𝑘 𝛼) 𝑛+𝑟−𝑘−1
(1 + (𝑛 + 𝑟)𝛼) 𝑛+𝑟−1
= 𝑛 + 𝑟 𝑥
𝑛 + 𝑟 − 1
𝜇
𝑛+𝑟−1
𝜇 =0
𝑥 + 𝜇𝛼 + 𝛼 𝜇
(1 − 𝑥)(1 − 𝑥 + 𝑛 + 𝑟 − 𝜇 − 1 𝛼) 𝑛+𝑟−𝜇−2
(1 + (𝑛 + 𝑟)𝛼) 𝑛+𝑟−1
=
(𝑛 + 𝑟)𝑥
1 + (𝑛 + 𝑟)𝛼 𝑛+𝑟−1
{
𝑛 + 𝑟 − 1
𝜇
𝑛+𝑟−1
𝜇 =0
𝑥 + 𝜇𝛼 + 𝛼 𝜇
1 − 𝑥 + 𝑛 + 𝑟 − 𝜇 − 1 𝛼 𝑛+𝑟−𝜇−2
−(𝑛 + 𝑟 − 1)𝛼
𝑛 + 𝑟 − 2
𝜇
𝑛+𝑟−2
𝜇=0
𝑥 + 𝜇𝛼 + 𝛼 𝜇
1 − 𝑥 + 𝑛 + 𝑟 − 𝜇 − 2 𝛼 𝑛+𝑟−𝜇−2
}
=
(𝑛+𝑟)𝑥
1+(𝑛+𝑟)𝛼 𝑛+𝑟−1 [𝑠 1, 𝑛 + 𝑟 − 1, 𝑥 + 𝛼, 1 − 𝑥 − (𝑛 + 𝑟 − 1)𝛼𝑠(1, 𝑛 + 𝑟 − 2, 𝑥 + 𝛼, 1 − 𝑥 + 𝛼]
by (1.15)
=
(𝑛+𝑟)𝑥
1+(𝑛+𝑟)𝛼 𝑛+𝑟−1 [ 𝑒−𝑡
1 + (𝑛 + 𝑟)𝛼 + 𝑡𝛼 𝑛+𝑟−1
𝑑𝑡 − (𝑛 + 𝑟 − 1)𝛼 𝑒−𝑡
(1 + (𝑛 + 𝑟)𝛼 + 𝑡𝛼) 𝑛+𝑟−2
𝑑𝑡]
∞
0
∞
0
by (1.17)&(1.18)
=
(𝑛+𝑟)𝑥
1+(𝑛+𝑟)𝛼 𝑛+𝑟−1 𝑒−𝑡
1 + (𝑛 + 𝑟)𝛼 + 𝑡𝛼 𝑛+𝑟−1
𝑑𝑡 −
(𝑛+𝑟) 𝑛+𝑟−1 𝑥𝛼
1+(𝑛+𝑟)𝛼 𝑛+𝑟−1 𝑒−𝑡
(1 + (𝑛 + 𝑟)𝛼 + 𝑡𝛼) 𝑛+𝑟−2
𝑑𝑡
∞
0
∞
0
=
(𝑛+𝑟)𝑥
1+(𝑛+𝑟)𝛼 𝑛+𝑟−1 𝑒−𝑡
1 +
𝑡𝛼
1+(𝑛+𝑟)𝛼
𝑛+𝑟−1
1 + (𝑛 + 𝑟)𝛼 𝑛+𝑟−1
𝑑𝑡
∞
0
−
(𝑛 + 𝑟)(𝑛 + 𝑟 − 1)𝑥𝛼
1 + (𝑛 + 𝑟)𝛼 𝑛+𝑟−1
𝑒−𝑡
1 +
𝑡𝛼
1 + (𝑛 + 𝑟)𝛼
𝑛+𝑟−2
1 + (𝑛 + 𝑟)𝛼 𝑛+𝑟−2
𝑑𝑡
∞
0
=(𝑛 + 𝑟)𝑥 𝑒−𝑡
1 +
𝑡𝛼
1+(𝑛+𝑟)𝛼
𝑛+𝑟−1
𝑑𝑡
∞
0
--
(𝑛+𝑟)(𝑛+𝑟−1)𝑥𝛼
1+(𝑛+𝑟)𝛼
𝑒−𝑡
1 +
𝑡𝛼
1+(𝑛+𝑟)𝛼
𝑛+𝑟−2
𝑑𝑡
∞
0
= (𝑛 + 𝑟)𝑥 𝑒−
1+(𝑛+𝑟)𝛼
𝛼
𝑢
1 + 𝑢 𝑛+𝑟−1 1+(𝑛+𝑟)𝛼
𝛼
𝑑𝑢
∞
0
–
(𝑛 + 𝑟)(𝑛 + 𝑟 − 1)𝑥𝛼
1 + (𝑛 + 𝑟)𝛼
𝑒−
1+(𝑛+𝑟)𝛼
𝛼
𝑢
1 + 𝑢 𝑛+𝑟−2
1 + (𝑛 + 𝑟)𝛼
𝛼
𝑑𝑢
∞
0
=
(1+(𝑛+𝑟)𝛼)(𝑛+𝑟)𝑥
𝛼
𝑒−(
1
𝛼
+𝑛+𝑟)𝑢
1 + 𝑢 𝑛+𝑟−1
𝑑𝑢
∞
0
-
(𝑛+𝑟)(𝑛+𝑟−1)𝑥𝛼
𝛼
𝑒−(
1
𝛼
+𝑛+𝑟)𝑢
1 + 𝑢 𝑛+𝑟−2
𝑑𝑢
∞
0
On Bernstein Polynomials
DOI: 10.9790/5728-11152634 www.iosrjournals.org 29 | Page
≤
(1+(𝑛+𝑟)𝛼)(𝑛+𝑟)𝑥
𝛼
𝑒−(
1
𝛼
+𝑛+𝑟)𝑢
𝑒(𝑛+𝑟−1)𝑢
𝑑𝑢
∞
0
-
(𝑛+𝑟)(𝑛+𝑟−1)𝑥𝛼
𝛼
𝑒−(
1
𝛼
+𝑛+𝑟)𝑢
𝑒(𝑛+𝑟−2)𝑢
𝑑𝑢
∞
0
=
(1+(𝑛+𝑟)𝛼)(𝑛+𝑟)𝑥
𝛼
𝑒−(
1
𝛼
+1)𝑢
𝑑𝑢
∞
0
-
(𝑛+𝑟)(𝑛+𝑟−1)𝑥𝛼
𝛼
𝑒−(
1
𝛼
+2)𝑢
𝑑𝑢
∞
0
=
(1+(𝑛+𝑟)𝛼)(𝑛+𝑟)𝑥
1+𝛼
𝑒−𝑣
𝑑𝑣
∞
0
-
(𝑛+𝑟)(𝑛+𝑟−1)𝑥𝛼
1+2𝛼
𝑒−𝑤
𝑑𝑤
∞
0
=
(1+(𝑛+𝑟)𝛼)(𝑛+𝑟)𝑥
1+𝛼
-
(𝑛+𝑟)(𝑛+𝑟−1)𝑥𝛼
1+2𝛼
hence the proof of lemma 2.1.
Proof of Lemma 2.2:
𝑘 𝑘 − 1 𝑞 𝑛𝑟,𝑘 𝑥; 𝛼
𝑛+𝑟
𝑘=0
≤ (𝑛 + 𝑟)(𝑛 + 𝑟 − 1)𝑥
𝑛 + 𝑟 − 2
𝑘 − 2
𝑛+𝑟
𝑘=1
𝑥 + 𝑘𝛼 𝑘−1
(1 − 𝑥)(1 − 𝑥 + 𝑛 + 𝑟 − 𝑘 𝛼) 𝑛+𝑟−𝑘−1
(1 + (𝑛 + 𝑟)𝛼) 𝑛+𝑟−1
=
(𝑛+𝑟)(𝑛+𝑟−1)𝑥
(1+(𝑛+𝑟)𝛼) 𝑛+𝑟−1
𝑛 + 𝑟 − 2
𝑣
𝑛+𝑟
𝑘=1 𝑥 + 𝑘𝛼 + 2𝛼 𝑣+1
(1 − 𝑥)(1 − 𝑥 + 𝑛 + 𝑟 − 𝑣 − 2 𝛼) 𝑛+𝑟−𝑘−3
=
(𝑛+𝑟)(𝑛+𝑟−1)𝑥
(1+(𝑛+𝑟)𝛼) 𝑛+𝑟−1[S(2, n+r-2, x+2α,1-x)-(n+r-2)α S(2, n+r-3, x+2α,1-x+α)]
=
(𝑛+𝑟)(𝑛+𝑟−1)𝑥
(1+(𝑛+𝑟)𝛼) 𝑛+𝑟−1[S(2, n+r-2, x+2α,1-x)]−
(𝑛+𝑟)(𝑛+𝑟−1)(𝑛+𝑟−2)𝑥𝛼
(1+(𝑛+𝑟)𝛼) 𝑛+𝑟−1 [S(2, n+r-3, x+2α,1-x+α)]
=𝐼1 − 𝐼2-------------- (2.2.1)
𝐼1 =
(𝑛+𝑟)(𝑛+𝑟−1)𝑥
(1+(𝑛+𝑟)𝛼) 𝑛+𝑟−1[S(2, n+r-2, x+2α,1-x)]
=
(𝑛+𝑟)(𝑛+𝑟−1)𝑥
(1+(𝑛+𝑟)𝛼) 𝑛+𝑟−1 𝑒−𝑡
𝑑𝑡
∞
0
𝑒−𝑠
𝑑𝑠
∞
0
[(𝑥 + 2𝛼) 1 + (𝑛 + 𝑟)𝛼 + 𝑠𝛼 + 𝑡𝛼 𝑛+𝑟−2
+(𝑛 + 𝑟 − 2)𝛼2
𝑠 1 + (𝑛 + 𝑟)𝛼 + 𝑠𝛼 + 𝑡𝛼 𝑛+𝑟−3
]
=
(𝑛+𝑟)(𝑛+𝑟−1)𝑥
(1+(𝑛+𝑟)𝛼) 𝑛+𝑟−1 𝑒−𝑡
𝑑𝑡
∞
0
𝑒−𝑠
𝑑𝑠
∞
0
[(𝑥 + 2𝛼) 1 + (𝑛 + 𝑟)𝛼 + 𝑠𝛼 + 𝑡𝛼 𝑛+𝑟−2
]
+
(𝑛+𝑟)(𝑛+𝑟−1)(𝑛+𝑟−2)𝑥𝛼2
(1+(𝑛+𝑟)𝛼) 𝑛+𝑟−1 [ 𝑒−𝑡
𝑑𝑡
∞
0
𝑒−𝑠
𝑑𝑠
∞
0
[𝑠 1 + (𝑛 + 𝑟)𝛼 + 𝑠𝛼 + 𝑡𝛼 𝑛+𝑟−3
]
=𝐼1.1 + 𝐼1.2 ---------------( 2.2.2)
𝐼1.1=
(𝑛+𝑟)(𝑛+𝑟−1)𝑥
(1+(𝑛+𝑟)𝛼) 𝑛+𝑟−1 𝑒−𝑡
𝑑𝑡
∞
0
𝑒−𝑠
𝑑𝑠
∞
0
[(𝑥 + 2𝛼) 1 + (𝑛 + 𝑟)𝛼 + 𝑠𝛼 + 𝑡𝛼 𝑛+𝑟−2
]
=
(𝑛+𝑟)(𝑛+𝑟−1)𝑥
(1+(𝑛+𝑟)𝛼) 𝑛+𝑟−1 𝑒−𝑡
𝑑𝑡
∞
0
𝑒−𝑠
𝑑𝑠
∞
0
[(𝑥 + 2𝛼) 1 +
𝑠𝛼 +𝑡𝛼
1+(𝑛+𝑟)𝛼
𝑛+𝑟−2
(1 + (𝑛 + 𝑟)𝛼) 𝑛+𝑟−2
]
=
(𝑛+𝑟)(𝑛+𝑟−1)𝑥
1+(𝑛+𝑟)𝛼
𝑒−𝑡
𝑑𝑡
∞
0
𝑒−𝑠
𝑑𝑠
∞
0
[(𝑥 + 2𝛼) 1 +
𝑠𝛼 +𝑡𝛼
1+(𝑛+𝑟)𝛼
𝑛+𝑟−2
]
≤
𝑛+𝑟)(𝑛+𝑟−1)𝑥(𝑥+2𝛼)
1+(𝑛+𝑟)𝛼
𝑒−𝑡
𝑑𝑡
∞
0
𝑒−𝑠
𝑒
(𝑛+𝑟−2)(
𝑠𝛼+𝑡𝛼
1+(𝑛+𝑟)𝛼
)
𝑑𝑠
∞
0
On Bernstein Polynomials
DOI: 10.9790/5728-11152634 www.iosrjournals.org 30 | Page
=
(𝑛+𝑟)(𝑛+𝑟−1)𝑥(𝑥+2𝛼)
1+(𝑛+𝑟)𝛼
𝑒
−𝑡+(
(𝑛+𝑟−2)𝑡𝛼
1+(𝑛 +𝑟)𝛼
)
𝑑𝑡 𝑒
−𝑠+(
(𝑛+𝑟−2)𝑠𝛼
1+(𝑛+𝑟)𝛼
)
𝑑𝑠
∞
0
∞
0
=
(𝑛+𝑟)(𝑛+𝑟−1)𝑥(𝑥+2𝛼)
1+(𝑛+𝑟)𝛼
𝑒
−𝑡(
1+2𝛼
1+(𝑛+𝑟)𝛼
)
𝑑𝑡 𝑒
−𝑠(
1+2𝛼
1+(𝑛+𝑟)𝛼
)
𝑑𝑠
∞
0
∞
0
=
(𝑛+𝑟)(𝑛+𝑟−1)𝑥(𝑥+2𝛼)
1+(𝑛+𝑟)𝛼
𝑒−𝑢
𝑑𝑢
1+(𝑛+𝑟)𝛼
1+2𝛼
𝑒−𝑣
𝑑𝑣
1+(𝑛+𝑟)𝛼
1+2𝛼
∞
0
∞
0
=
(𝑛+𝑟) 𝑛+𝑟−1 𝑥 𝑥+2𝛼
1+2𝛼 2 (1 + (𝑛 + 𝑟)𝛼) 𝑒−𝑢
𝑑𝑢 𝑒−𝑣
𝑑𝑣
∞
0
∞
0
=
𝑛+𝑟 𝑛+𝑟−1 𝑥 𝑥+2𝛼
1+2𝛼 2 (1 + (𝑛 + 𝑟)𝛼)-------------( 2.2.3)
𝐼1.2=𝐶 𝑒−𝑡
𝑑𝑡
∞
0
𝑒−𝑠
𝑑𝑠
∞
0
[𝑠 1 + (𝑛 + 𝑟)𝛼 + 𝑠𝛼 + 𝑡𝛼 𝑛+𝑟−3
]
=
(𝑛+𝑟)(𝑛+𝑟−1)𝑥(𝑥+2𝛼)
1+(𝑛+𝑟)𝛼
𝑒−𝑡
𝑑𝑡
∞
0
𝑠𝑒−𝑠
1 +
𝑠𝛼 +𝑡𝛼
1+(𝑛+𝑟)𝛼
𝑛−3
(1 + (𝑛 + 𝑟)𝛼) 𝑛+𝑟−3
𝑑𝑠
∞
0
≤
(𝑛+𝑟)(𝑛+𝑟−1)(𝑛+𝑟−2)𝑥𝛼2
(1+(𝑛+𝑟)𝛼)2 𝑒−𝑡
𝑑𝑡
∞
0
𝑠𝑒−𝑠
𝑒
(𝑛+𝑟−3)(
𝑠𝛼+𝑡𝛼
1+(𝑛+𝑟)𝛼
)
𝑑𝑠
∞
0
=
(𝑛+𝑟)(𝑛+𝑟−1)(𝑛+𝑟−2)𝑥𝛼2
(1+(𝑛+𝑟)𝛼)2 𝑒−𝑡(
1+3𝛼
1+𝑛𝛼
)
𝑑𝑡 𝑠𝑒−𝑠(
1+3𝛼
1+𝑛𝛼
)
𝑑𝑠
∞
0
∞
0
=
𝑛+𝑟 𝑛+𝑟−1 𝑛+𝑟−2 𝑥𝛼2
1+3𝛼 3 (1 + (𝑛 + 𝑟)𝛼) 𝑒−𝑢
𝑑𝑢 𝑒−𝑣
𝑑𝑣
∞
0
∞
0
=
𝑛+𝑟 𝑛+𝑟−1 𝑛+𝑟−2 𝑥𝛼2
1+3𝛼 3 (1 + (𝑛 + 𝑟)𝛼) ---------------- (2.2.4)
from (2.2.2) , (2.2.3) & ( 2.2.4) we have
𝐼1 ≤ 1 + 𝑛 + 𝑟 𝛼 (𝑛 + 𝑟) 𝑛 + 𝑟 − 1 𝑥{
𝑥+2𝛼
1+2𝛼 2 +
(𝑛+𝑟−2)𝛼2
(1+3𝛼)3 -------------(2.2.5)
Now we evaluate
𝐼2=
(𝑛+𝑟)(𝑛+𝑟−1)(𝑛+𝑟−2)𝑥𝛼
(1+(𝑛+𝑟)𝛼) 𝑛+𝑟−1 [S(2, n+r-3, x+2α,1-x+α)]
=
(𝑛+𝑟)(𝑛+𝑟−1)(𝑛+𝑟−2)𝑥𝛼
(1+(𝑛+𝑟)𝛼) 𝑛+𝑟−1 𝑒−𝑡
𝑑𝑡
∞
0
𝑒−𝑠
𝑑𝑠
∞
0
[(𝑥 + 2𝛼) 1 + (𝑛 + 𝑟)𝛼 + 𝑠𝛼 + 𝑡𝛼 𝑛+𝑟−3
+(𝑛 + 𝑟 − 3)𝛼2
𝑠 1 + (𝑛 + 𝑟)𝛼 + 𝑠𝛼 + 𝑡𝛼 𝑛+𝑟−4
] by (1.19)
=
(𝑛+𝑟)(𝑛+𝑟−1)(𝑛+𝑟−2)𝑥𝛼
(1+(𝑛+𝑟)𝛼) 𝑛+𝑟−1 𝑒−𝑡
𝑑𝑡
∞
0
𝑒−𝑠
𝑑𝑠
∞
0
(𝑥 + 2𝛼) 1 + (𝑛 + 𝑟)𝛼 + 𝑠𝛼 + 𝑡𝛼 𝑛+𝑟−3
+
(𝑛+𝑟)(𝑛+𝑟−1)(𝑛+𝑟−2)(𝑛+𝑟−3)𝑥𝛼3
(1+(𝑛+𝑟)𝛼) 𝑛+𝑟−1 𝑒−𝑡
𝑑𝑡
∞
0
𝑒−𝑠
𝑑𝑠
∞
0
𝑠 1 + (𝑛 + 𝑟)𝛼 + 𝑠𝛼 + 𝑡𝛼 𝑛+𝑟−4
=𝐼2.1 + 𝐼2.2--------------------(2.2.6)
𝐼2.1 =
(𝑛 + 𝑟)(𝑛 + 𝑟 − 1)(𝑛 + 𝑟 − 2)𝑥𝛼
(1 + (𝑛 + 𝑟)𝛼) 𝑛+𝑟−1
𝑒−𝑡
𝑑𝑡
∞
0
𝑒−𝑠
𝑑𝑠
∞
0
𝑥 + 2𝛼 1 +
𝑠𝛼 + 𝑡𝛼
1 + (𝑛 + 𝑟)𝛼
𝑛+𝑟−3
(1 + (𝑛
+ 𝑟)𝛼) 𝑛+𝑟−3
≤
(𝑛+𝑟)(𝑛+𝑟−1)(𝑛+𝑟−2)𝑥(𝑥+2𝛼)𝛼
(1+(𝑛+𝑟)𝛼)2 𝑒−𝑡
𝑑𝑡
∞
0
𝑒−𝑠
𝑒
(𝑛−3)(
𝑠𝛼+𝑡𝛼
1+(𝑛+𝑟)𝛼
)
𝑑𝑠
∞
0
On Bernstein Polynomials
DOI: 10.9790/5728-11152634 www.iosrjournals.org 31 | Page
=
(𝑛+𝑟)(𝑛+𝑟−1)(𝑛+𝑟−2)𝑥(𝑥+2𝛼)𝛼
(1+(𝑛+𝑟)𝛼)2 𝑒
−𝑡(
1+3𝛼
1+(𝑛+𝑟)𝛼
)
𝑑𝑡 𝑠𝑒
−𝑠(
1+3𝛼
1+(𝑛+𝑟)𝛼
)
𝑑𝑠
∞
0
∞
0
=
(𝑛+𝑟)(𝑛+𝑟−1)(𝑛+𝑟−2)𝑥(𝑥+2𝛼)𝛼
(1+(𝑛+𝑟)𝛼)2 𝑒−𝑢
𝑑𝑢
1+(𝑛+𝑟)𝛼
1+3𝛼
𝑒−𝑣
𝑑𝑣
1+(𝑛+𝑟)𝛼
1+3𝛼
∞
0
∞
0
=
(𝑛+𝑟)(𝑛+𝑟−1)(𝑛+𝑟−2)𝑥(𝑥+2𝛼)𝛼
(1+3𝛼)2 𝑒−𝑢
𝑑𝑢 𝑒−𝑣
𝑑𝑣
∞
0
∞
0
=
(𝑛+𝑟)(𝑛+𝑟−1)(𝑛+𝑟−2)𝑥(𝑥+2𝛼)𝛼
(1+3𝛼)2 --------------(2.2.7)
𝐼2.2 =
(𝑛+𝑟)(𝑛+𝑟−1)(𝑛+𝑟−2)(𝑛+𝑟−3)𝑥𝛼3
(1+(𝑛+𝑟)𝛼) 𝑛+𝑟−1 𝑒−𝑡
𝑑𝑡
∞
0
𝑒−𝑠
𝑑𝑠
∞
0
𝑠 1 + (𝑛 + 𝑟)𝛼 + 𝑠𝛼 + 𝑡𝛼 𝑛+𝑟−4
=
(𝑛+𝑟)(𝑛+𝑟−1)(𝑛+𝑟−2)(𝑛+𝑟−3)𝑥𝛼3
(1+(𝑛+𝑟)𝛼) 𝑛+𝑟−1 𝑒−𝑡
𝑑𝑡
∞
0
𝑠𝑒−𝑠
1 +
𝑠𝛼+𝑡𝛼
1+(𝑛+𝑟)𝛼
𝑛+𝑟−3
𝑑𝑠(1 + (𝑛 + 𝑟)𝛼) 𝑛+𝑟−3∞
0
≤
(𝑛+𝑟)(𝑛+𝑟−1)(𝑛+𝑟−2)(𝑛+𝑟−3)𝑥𝛼3
(1+(𝑛+𝑟)𝛼)3 𝑒−𝑡
𝑑𝑡
∞
0
𝑠𝑒−𝑠
𝑒
(𝑛−4)(
𝑠𝛼+𝑡𝛼
1+(𝑛+𝑟)𝛼
)
𝑑𝑠
∞
0
=
(𝑛+𝑟)(𝑛+𝑟−1)(𝑛+𝑟−2)(𝑛+𝑟−3)𝑥𝛼3
(1+(𝑛+𝑟)𝛼)3 𝑒
−𝑡(
1+4𝛼
1+(𝑛+𝑟)𝛼
)
𝑑𝑡 𝑠𝑒
−𝑠(
1+4𝛼
1+(𝑛+𝑟)𝛼
)
𝑑𝑠
∞
0
∞
0
=
(𝑛+𝑟)(𝑛+𝑟−1)(𝑛+𝑟−2)(𝑛+𝑟−3)𝑥𝛼3
(1+(𝑛+𝑟)𝛼)3 𝑒−𝑢
𝑑𝑢
1+(𝑛+𝑟)𝛼
1+4𝛼
𝑣(
1+(𝑛+𝑟)𝛼
1+4𝛼
)𝑒−𝑣
𝑑𝑣
1+(𝑛+𝑟)𝛼
1+4𝛼
∞
0
∞
0
=
(𝑛+𝑟)(𝑛+𝑟−1)(𝑛+𝑟−2)(𝑛+𝑟−3)𝑥𝛼3
(1+4𝛼)3 𝑒−𝑢
𝑑𝑢 𝑣𝑒−𝑣
𝑑𝑣
∞
0
∞
0
=
(𝑛+𝑟)(𝑛+𝑟−1)(𝑛+𝑟−2)(𝑛+𝑟−3)𝑥𝛼3
(1+4𝛼)3 -----------------(2.2.8)
substituting the values of 𝐼2.1from (2.2.7)&𝐼2.2 from (2.2.8) in (2.2.6) we get
𝐼2≤(𝑛 + 𝑟)(𝑛 + 𝑟 − 1)(𝑛 + 𝑟 − 2)𝑥{
𝑥+2𝛼
(1+3𝛼)2 +
𝑛+𝑟−3 𝛼3
1+4𝛼 3 }
Thereforesubstituting the values of 𝐼1&𝐼2 in (2.2.1), weget
≤ 1 + 𝑛 + 𝑟 𝛼 (𝑛 + 𝑟) 𝑛 + 𝑟 − 1 𝑥{
𝑥+2𝛼
1+2𝛼 2 +
(𝑛+𝑟−2)𝛼2
(1+3𝛼)3 } −(𝑛 + 𝑟)(𝑛 + 𝑟 − 1)(𝑛 + 𝑟 − 2)𝑥{
𝑥+2𝛼
(1+3𝛼)2 +
𝑛+𝑟−3 𝛼3
1+4𝛼 3 }
=(𝑛 + 𝑟) 𝑛 + 𝑟 − 1 𝑥[ 𝑥 + 2𝛼 {
1+(𝑛+𝑟)𝛼
1+2𝛼 2 −
(𝑛+𝑟−2)𝛼
(1+3𝛼)2 } +(𝑛 + 𝑟 − 2)𝛼2
{
1+(𝑛+𝑟)𝛼
(1+3𝛼)2 −
𝑛+𝑟−3 𝛼
1+4𝛼 3 }
hence the proof of lemma 2.2.
Proof of Lemma2.3:
𝑛 + 𝑟 + 1 (𝑡 − 𝑥)2
𝑑𝑡
(𝑘+1)/(𝑛+𝑟+1)
𝑘/(𝑛+𝑟+1)
𝑛+𝑟
𝑘=0
𝑞 𝑛𝑟,𝑘 (𝑥; 𝛼
= [𝑥2
𝑛+𝑟
𝑘=0
−
2𝑘𝑥 + 𝑥
𝑛 + 𝑟 + 1
+
𝑘2
+ 𝑘
𝑛 + 𝑟 + 1 2
+
1
3 𝑛 + 𝑟 + 1 2
]𝑞 𝑛𝑅,𝑘 (𝑥; 𝛼)
≤ 𝑥2
−
1
𝑛 + 𝑟 + 1
2 1 + 𝑛 + 𝑟 𝛼 (𝑛 + 𝑟)𝑥
1 + 𝛼
−
2(𝑛 + 𝑟) 𝑛 + 𝑟 − 1 𝑥2
𝛼
1 + 2𝛼
−
𝑥
𝑛 + 𝑟 + 1
On Bernstein Polynomials
DOI: 10.9790/5728-11152634 www.iosrjournals.org 32 | Page
+
(𝑛 + 𝑟)(𝑛 + 𝑟 − 1)
𝑛 + 𝑟 + 1 2
[ 𝑥 + 2𝛼 {
1 + (𝑛 + 𝑟)𝛼
1 + 2𝛼 2
−
𝑛 + 𝑟 − 2 𝛼
1 + 3𝛼 2
}
+ 𝑛 + 𝑟 − 2 𝛼2
1 + (𝑛 + 𝑟)𝛼
1 + 3𝛼 3
−
𝑛 + 𝑟 − 3
1 + 4𝛼 3
+
2 1 + 𝑛 + 𝑟 𝛼 (𝑛+)𝑥
𝑛 + 𝑟 + 1 2(1 + 𝛼)
−
2(𝑛+𝑟)(𝑛+𝑟−1)𝑥𝛼
𝑛+𝑟+1 2(1+𝛼)
+
1
3 𝑛+𝑟+1 2,by lemma 2.1 & lemma 2.2
= −
𝑥 1−𝑥
𝑛+𝑟+1
+
2 1+ 𝑛+𝑟 𝛼 (𝑛+𝑟)
𝑛+𝑟+1 2 1+𝛼
𝑥 1 − 𝑥 −
2(𝑛+𝑟) 𝑛+𝑟−1 𝛼
𝑛+𝑟+1 2 1+𝛼
𝑥(1 − 𝑥) +
2 1+(𝑛+𝑟)𝛼 (𝑛+𝑟)2 𝑥(1−𝑥)𝛼
𝑛+𝑟+1 2 1+2𝛼 2
−
2 𝑛+𝑟 2(𝑛+𝑟−1)𝑥(1−𝑥)𝛼2
𝑛+𝑟+1 2 1+3𝛼 2 +
(𝑛+𝑟) 𝑛+𝑟−1 (𝑛+𝑟−2)𝛼2
𝑛+𝑟+1 2 1+3𝛼 3 𝑥(1 − 𝑥) +
(𝑛+𝑟)𝑥2
𝑛+𝑟+1
−
2 1+(𝑛+𝑟)𝛼 (𝑛+𝑟)2 𝑥2(1+3𝛼+3𝛼2)
𝑛+𝑟+1 2(1+𝛼) 1+2𝛼 2
−
2 1+ 𝑛+𝑟 𝛼 (𝑛+𝑟)𝑥𝛼
𝑛+𝑟+1 2 1+2𝛼 2 +
2(𝑛+𝑟)2(𝑛+𝑟−1)𝑥2 𝛼(1+5𝛼+7𝛼2)
𝑛+𝑟+1 2(1+2𝛼) 1+3𝛼 2 +
4(𝑛+𝑟) 𝑛+𝑟−1 𝑥𝛼2
𝑛+𝑟+1 2 1+3𝛼 2 −
(𝑛+𝑟) 𝑛+𝑟−1 (𝑛+𝑟−2)𝛼
𝑛+𝑟+1 2 1+3𝛼 3
−𝑥2
(1 + 2𝛼) +
(𝑛+𝑟) 𝑛+𝑟−1 (𝑛+𝑟−2)𝑥𝛼3
𝑛+𝑟+1 2 1+3𝛼 3 +
(𝑛+𝑟) 𝑛+𝑟−1 (1+(𝑛+𝑟)𝛼)𝑥2 𝛼
(𝑛+𝑟+1) 1+2𝛼 2 −
(𝑛+𝑟) 𝑛+𝑟−1 (𝑛+𝑟−2)(𝑛+𝑟−3)𝑥𝛼3
𝑛+𝑟+1 2 1+4𝛼 3 +
1
3 𝑛+𝑟+1 2
≤
𝑥 1 − 𝑥
𝑛 + 𝑟
for α = αnr = ο
1
n + r
and for large n
hence the proof of Lemma 2.3.
III. Proof Of The Theorem
Proof :
The function 𝑓 𝑡 can be expended by Taylor‟s Theorem at 𝑡 = 𝑥 as
𝑓 𝑡 = 𝑓 𝑥 + 𝑡 − 𝑥 𝑓′
𝑥 + (𝑡 − 𝑥)2
[
1
2
𝑓"(𝑥) + 𝜂(𝑡 − 𝑥) ] ----------(3.1)
where𝜂(ℎ) is bounded 𝜂 ℎ ≤ 𝐻 for all h and converges to „0‟ with h.
Multiplying eqn. (3.1) by 𝑛 + 𝑟 + 1 𝑞 𝑛𝑟,𝑘 (𝑥; 𝛼)and integrating it from k/(n+r+1) to (k+1)/(n+r+1),and then on
summing ,we get
𝑛 + 𝑟 + 1 𝑓 𝑡 𝑑𝑡
(𝑘+1)/(𝑛+𝑟+1)
𝑘/(𝑛+𝑟+1)
𝑛+𝑟
𝑘=0
𝑞 𝑛𝑟,𝑘 (𝑥; 𝛼)
= 𝑛 + 𝑟 + 1 𝑓 𝑥 𝑑𝑡
(𝑘+1)/(𝑛+𝑟+1)
𝑘/(𝑛+𝑟+1)
𝑛+𝑟
𝑘=0
𝑞 𝑛𝑟,𝑘 (𝑥; 𝛼)
+ 𝑛 + 𝑟 + 1 𝑓 𝑡 − 𝑥 𝑓′
(𝑥)𝑑𝑡
(𝑘+1)/(𝑛+𝑟+1)
𝑘/(𝑛+𝑟+1)
𝑛+𝑟
𝑘=0
𝑞 𝑛𝑟,𝑘 (𝑥; 𝛼)
+
1
2
𝑛 + 𝑟 + 1 (𝑡 − 𝑥)2
𝑓"(𝑥)𝑑𝑡
(𝑘+1)/(𝑛+𝑟+1)
𝑘/(𝑛+𝑟+1)
𝑛+𝑟
𝑘=0
𝑞 𝑛𝑟,𝑘 (𝑥; 𝛼)
+ 𝑛 + 𝑟 + 1 𝑡 − 𝑥 2
𝜂(𝑡 − 𝑥)𝑑𝑡
(𝑘+1)/(𝑛+𝑟+1)
𝑘/(𝑛+𝑟+1)
𝑛+𝑟
𝑘=0
𝑞 𝑛𝑟,𝑘 (𝑥; 𝛼)
= 𝐼3+𝐼4 + 𝐼5+𝐼6 (say) ----- --------- (3.2)
On Bernstein Polynomials
DOI: 10.9790/5728-11152634 www.iosrjournals.org 33 | Page
Now first we evaluate𝐼3:
𝐼3 = 𝑛 + 𝑟 + 1 𝑓 𝑥 𝑑𝑡
𝑘+1
𝑛+𝑟+1
𝑘
𝑛+𝑟+1
𝑛+𝑟
𝑘=0 𝑞 𝑛𝑟,𝑘 𝑥; 𝛼 = 𝑓 𝑥 ----- ---------(3.3)
and then
𝐼4 = 𝑛 + 𝑟 + 1 𝑓 𝑡 − 𝑥 𝑓′
(𝑥)𝑑𝑡
(𝑘+1)/(𝑛+1)
𝑘/(𝑛+1)
𝑛+𝑟
𝑘=0
𝑞 𝑛𝑟,𝑘 (𝑥; 𝛼)
=
2𝑘 + 1
2 𝑛 + 𝑟 + 1
− 𝑥
𝑛+𝑟
𝑘=0
𝑓′
𝑥 𝑞 𝑛𝑟,𝑘 𝑥; 𝛼
≤
(1−2𝑥)
2(𝑛+𝑟)
𝑓′
𝑥 for𝛼 = 𝛼 𝑛𝑟 = 𝑜(1 (𝑛 + 𝑟))(3.4)
Now we evaluate𝐼5:
𝐼5 =
1
2
𝑛 + 𝑟 + 1 (𝑡 − 𝑥)2
𝑓"(𝑥)𝑑𝑡
(𝑘+1)/(𝑛+𝑟+1)
𝑘/(𝑛+𝑟+1)
𝑛+𝑟
𝑘=0
𝑞 𝑛𝑟,𝑘 (𝑥; 𝛼)
≤ 𝑥 1 − 𝑥 𝑓"(𝑥)/2(𝑛 + 𝑟) (by lemma 2.3 ) ------------- (3.5)
and then in the last we evaluate 𝐼6 :
𝐼6 = 𝑛 + 𝑟 + 1 𝑡 − 𝑥 2
𝜂(𝑡 − 𝑥)𝑑𝑡
(𝑘+1)/(𝑛+𝑟+1)
𝑘/(𝑛+𝑟+1)
𝑛+𝑟
𝑘=0
𝑞 𝑛𝑟,𝑘 (𝑥; 𝛼)
Let ∈> 0 be arbitrary 𝛿 > 0 such that 𝜂 ℎ < 𝜖for ℎ < 𝛿 .
Thus breaking up the sum 𝐼6 into two parts corresponding to those values of t for which | t - x |<, and those for
which 𝑡 − 𝑥 ≥ 𝛿 and since in the given range of t,
𝑘
𝑛+𝑟
− 𝑥 ~ 𝑡 − 𝑥 , we have
𝐼6 ≤∈ 𝑛 + 𝑟 + 1 𝑞 𝑛𝑟,𝑘
𝑘
𝑛+𝑟
−𝑥 <𝛿
𝑥; 𝛼  




1
1
1
2
nk
k
rn
k
dtxt
+ 𝐻 𝑛 + 𝑟 + 1 𝑞 𝑛𝑟,𝑘
𝑘
𝑛+𝑟
−𝑥 ≥𝛿
𝑥; 𝛼 



1
1
1
nk
k
rn
k
dt
= 𝐼6.1+𝐼6.2 (say)
𝐼6.1 ≤
∈
𝑛+𝑟
| 𝑥 1 − 𝑥 |, for 𝛼 = 𝛼 𝑛𝑟 = 𝑜(
1
𝑛+𝑟
)
𝐼6.2 = 𝑛 + 𝑟 + 1 𝐻 𝑑𝑡
𝑘+1
𝑛+𝑟+1
𝑘
𝑛+𝑟+1
𝑞 𝑛𝑟,𝑘 (𝑥; 𝛼)
|
𝑘
𝑛+𝑟
−𝑥|≥𝛿
On Bernstein Polynomials
DOI: 10.9790/5728-11152634 www.iosrjournals.org 34 | Page
= (𝑛 + 𝑟 + 1) 𝑞 𝑛𝑟,𝑘
𝑘
𝑛+𝑟
−𝑥 ≥𝛿
𝑥; 𝛼
1
𝑛 + 𝑟 + 1
But if 𝛿 = (𝑛 + 𝑟)−𝛽
, 0 < β < 1/2 (see also Kantorovitch [9]),
then for 𝛼 = 𝛼 𝑛𝑟 = 𝑜(
1
𝑛+𝑟
)
𝑞 𝑛𝑟,𝑘𝑘
𝑛+𝑟
−𝑥 ≥(𝑛+𝑟)−𝛽 𝑥; 𝛼 ≤ 𝐶(𝑛 + 𝑟)−𝜈
for ѵ>0, the constant C= C(β,ѵ).
whence𝐼6.2 <
𝜖
𝑛+𝑟+1
< 𝜖/(𝑛 + 𝑟) for sufficiently large n ,
therefore itgives
𝐼6 < 𝜖/(𝑛 + 𝑟), for all sufficiently large n ----- (3.6)
Hence from (3.2), (3.3), (3.4), (3.5) and (3.6), we have
𝑛 + 𝑟 + 1 𝑓 𝑡 𝑑𝑡
(𝑘+1)/(𝑛+𝑟+1)
𝑘/(𝑛+𝑟+1)
𝑛+𝑟
𝑘=0
𝑞 𝑛𝑟,𝑘 (𝑥; 𝛼)
= 𝑓 𝑥 + [{ 1 − 2𝑥 𝑓′
𝑥 + 𝑥 1 − 𝑥 𝑓"(𝑥)}/2(𝑛 + 𝑟)] + (𝜖/(𝑛 + 𝑟)
and therefore, finally we get
lim
(𝑛+𝑟)→∞
( 𝑛 + 𝑟) 𝑈
𝛼
𝑛𝑟
𝑓, 𝑥 − 𝑓 𝑥 =
1
2
[ 1 − 2𝑥 𝑓′
𝑥 − 𝑥 1 − 𝑥 𝑓"
𝑥 ]
where𝜖 → 0 𝑎𝑠𝑛 → ∞
hencethe proof of the theorem.
IV. Conclusions
The result of Voronowskaja has been extended for Lebesgueintegrable function in 𝐿1-norm by our
newly defined Generalized Polynomials 𝑈
𝛼
𝑛𝑟
𝑓, 𝑥 on the interval [ 0,1+
𝑟
𝑛
]
References
[1]. A. Habib, “On the degree of approximation of functions by certain new Bernstein typePolynomials,” Indian J. pure Math., vol. 7, pp.
882-888, 1981.
[2]. A Habib , S Umar and H H Khan , “ On the Degree of Approximation by Bernstein type Operators”
[3]. Communications , de la Fac. Des Sc. De L‟Univ. d‟Ankara, Tom 33 Annee 1984 pp.121-136
[4]. A. Habib & S. Al Shehri(2012) “On Generalized Polynomials I „ International Journal of Engineering Research and Development e-
ISSN:2278-067X, 2278-800X, Volume 5, Issue 4 ,December 2012 , pp.18-26
[5]. E. Cheney and A. Sharma, “On a generalization of Bernstein polynomials,” Rev. Mat. Univ. Parma, vol. 2, pp. 77-84, 1964.
[6]. E. Voronowskaja, “Determination de la formeasymtotiqued‟approximation d ésfonctionléspôlynômes de M Bernstein”. C.R. Acad.
Sci. URSS, vol. 22, pp. 79-85, 1932.
[7]. Shurer, F : “Linear positive operations in approximation” , Math. Inst. Tech. Delf. Report 1962
[8]. J. Jensen, “Sur uneidentité Abel et surd‟autressformulesamalogues,” Acta Math. , vol. 26, pp.307-318, 1902.
[9]. L. Kantorovitch, “Sur certainsdéveloppmentssuivantléspôlynômesdé la forms,” Bernstein I,II. C.R. Acad. Sci. URSS, vol. 20, pp.
563-68,595-600, 1930.
[10]. G.G. Lorentz,“Bernstein Polynomials”, University of Toronto Press, Toronto, 1955.

Contenu connexe

Tendances

Jordan Higher (𝜎, 𝜏)-Centralizer on Prime Ring
Jordan Higher (𝜎, 𝜏)-Centralizer on Prime RingJordan Higher (𝜎, 𝜏)-Centralizer on Prime Ring
Jordan Higher (𝜎, 𝜏)-Centralizer on Prime RingIOSR Journals
 
Exercices calculs de_primitives
Exercices calculs de_primitivesExercices calculs de_primitives
Exercices calculs de_primitivesZaakXO
 
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...IJMER
 
Ecuaciones dispositivos electronicos
Ecuaciones dispositivos electronicosEcuaciones dispositivos electronicos
Ecuaciones dispositivos electronicosfsdewr
 
Tenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear Equations
Tenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear EquationsTenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear Equations
Tenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear EquationsQUESTJOURNAL
 
Recurrent Networks and LSTM deep dive
Recurrent Networks and LSTM deep diveRecurrent Networks and LSTM deep dive
Recurrent Networks and LSTM deep diveAlex Kalinin
 
Seven Dimensional Cross Product using the Octonionic Fanoplane
Seven Dimensional Cross Product using the Octonionic FanoplaneSeven Dimensional Cross Product using the Octonionic Fanoplane
Seven Dimensional Cross Product using the Octonionic FanoplaneAdrian Sotelo
 
Solving Partial Integro Differential Equations using Modified Differential Tr...
Solving Partial Integro Differential Equations using Modified Differential Tr...Solving Partial Integro Differential Equations using Modified Differential Tr...
Solving Partial Integro Differential Equations using Modified Differential Tr...Associate Professor in VSB Coimbatore
 
A Fifth-Order Iterative Method for Solving Nonlinear Equations
A Fifth-Order Iterative Method for Solving Nonlinear EquationsA Fifth-Order Iterative Method for Solving Nonlinear Equations
A Fifth-Order Iterative Method for Solving Nonlinear Equationsinventionjournals
 
Backpropagation: Understanding How to Update ANNs Weights Step-by-Step
Backpropagation: Understanding How to Update ANNs Weights Step-by-StepBackpropagation: Understanding How to Update ANNs Weights Step-by-Step
Backpropagation: Understanding How to Update ANNs Weights Step-by-StepAhmed Gad
 
A fixed point result in banach spaces
A fixed point result in banach spacesA fixed point result in banach spaces
A fixed point result in banach spacesAlexander Decker
 
A Course in Fuzzy Systems and Control Matlab Chapter Three
A Course in Fuzzy Systems and Control Matlab Chapter ThreeA Course in Fuzzy Systems and Control Matlab Chapter Three
A Course in Fuzzy Systems and Control Matlab Chapter ThreeChung Hua Universit
 
Euler and improved euler method
Euler and improved euler methodEuler and improved euler method
Euler and improved euler methodSohaib Butt
 

Tendances (19)

Jordan Higher (𝜎, 𝜏)-Centralizer on Prime Ring
Jordan Higher (𝜎, 𝜏)-Centralizer on Prime RingJordan Higher (𝜎, 𝜏)-Centralizer on Prime Ring
Jordan Higher (𝜎, 𝜏)-Centralizer on Prime Ring
 
Exercices calculs de_primitives
Exercices calculs de_primitivesExercices calculs de_primitives
Exercices calculs de_primitives
 
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
 
Ecuaciones dispositivos electronicos
Ecuaciones dispositivos electronicosEcuaciones dispositivos electronicos
Ecuaciones dispositivos electronicos
 
Tenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear Equations
Tenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear EquationsTenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear Equations
Tenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear Equations
 
Integrales solucionario
Integrales solucionarioIntegrales solucionario
Integrales solucionario
 
F04573843
F04573843F04573843
F04573843
 
Recurrent Networks and LSTM deep dive
Recurrent Networks and LSTM deep diveRecurrent Networks and LSTM deep dive
Recurrent Networks and LSTM deep dive
 
Seven Dimensional Cross Product using the Octonionic Fanoplane
Seven Dimensional Cross Product using the Octonionic FanoplaneSeven Dimensional Cross Product using the Octonionic Fanoplane
Seven Dimensional Cross Product using the Octonionic Fanoplane
 
C0560913
C0560913C0560913
C0560913
 
Runge Kutta Method
Runge Kutta MethodRunge Kutta Method
Runge Kutta Method
 
Solving Partial Integro Differential Equations using Modified Differential Tr...
Solving Partial Integro Differential Equations using Modified Differential Tr...Solving Partial Integro Differential Equations using Modified Differential Tr...
Solving Partial Integro Differential Equations using Modified Differential Tr...
 
A Fifth-Order Iterative Method for Solving Nonlinear Equations
A Fifth-Order Iterative Method for Solving Nonlinear EquationsA Fifth-Order Iterative Method for Solving Nonlinear Equations
A Fifth-Order Iterative Method for Solving Nonlinear Equations
 
I1076166
I1076166I1076166
I1076166
 
Backpropagation: Understanding How to Update ANNs Weights Step-by-Step
Backpropagation: Understanding How to Update ANNs Weights Step-by-StepBackpropagation: Understanding How to Update ANNs Weights Step-by-Step
Backpropagation: Understanding How to Update ANNs Weights Step-by-Step
 
285 294
285 294285 294
285 294
 
A fixed point result in banach spaces
A fixed point result in banach spacesA fixed point result in banach spaces
A fixed point result in banach spaces
 
A Course in Fuzzy Systems and Control Matlab Chapter Three
A Course in Fuzzy Systems and Control Matlab Chapter ThreeA Course in Fuzzy Systems and Control Matlab Chapter Three
A Course in Fuzzy Systems and Control Matlab Chapter Three
 
Euler and improved euler method
Euler and improved euler methodEuler and improved euler method
Euler and improved euler method
 

En vedette

Embedded Web Server based Interactive data acquisition and Control System
Embedded Web Server based Interactive data acquisition and Control SystemEmbedded Web Server based Interactive data acquisition and Control System
Embedded Web Server based Interactive data acquisition and Control SystemIOSR Journals
 
Case Study of Tolled Road Project
Case Study of Tolled Road ProjectCase Study of Tolled Road Project
Case Study of Tolled Road ProjectIOSR Journals
 
Audit Firm Rotation and Audit Report Lag in Nigeria
Audit Firm Rotation and Audit Report Lag in NigeriaAudit Firm Rotation and Audit Report Lag in Nigeria
Audit Firm Rotation and Audit Report Lag in NigeriaIOSR Journals
 
The Effect of Impurity Concentration on Activation Energy Change of Palm Oil ...
The Effect of Impurity Concentration on Activation Energy Change of Palm Oil ...The Effect of Impurity Concentration on Activation Energy Change of Palm Oil ...
The Effect of Impurity Concentration on Activation Energy Change of Palm Oil ...IOSR Journals
 
Single Phase Formation of CuInS2 Nanoparticles: Structural, Morphological, Th...
Single Phase Formation of CuInS2 Nanoparticles: Structural, Morphological, Th...Single Phase Formation of CuInS2 Nanoparticles: Structural, Morphological, Th...
Single Phase Formation of CuInS2 Nanoparticles: Structural, Morphological, Th...IOSR Journals
 
International Takeover and Restructuring: Implications for Managerial Learnin...
International Takeover and Restructuring: Implications for Managerial Learnin...International Takeover and Restructuring: Implications for Managerial Learnin...
International Takeover and Restructuring: Implications for Managerial Learnin...IOSR Journals
 
Effect of Silica Fume on Fly Ash Cement Bricks - An Experimental Study
Effect of Silica Fume on Fly Ash Cement Bricks - An Experimental StudyEffect of Silica Fume on Fly Ash Cement Bricks - An Experimental Study
Effect of Silica Fume on Fly Ash Cement Bricks - An Experimental StudyIOSR Journals
 
A classification of methods for frequent pattern mining
A classification of methods for frequent pattern miningA classification of methods for frequent pattern mining
A classification of methods for frequent pattern miningIOSR Journals
 
Comparative Analysis of a 15 Story Flat Plate Building with and Without Shear...
Comparative Analysis of a 15 Story Flat Plate Building with and Without Shear...Comparative Analysis of a 15 Story Flat Plate Building with and Without Shear...
Comparative Analysis of a 15 Story Flat Plate Building with and Without Shear...IOSR Journals
 
Rheological Characterization of Bituminous Binder containing Wax based Warm M...
Rheological Characterization of Bituminous Binder containing Wax based Warm M...Rheological Characterization of Bituminous Binder containing Wax based Warm M...
Rheological Characterization of Bituminous Binder containing Wax based Warm M...IOSR Journals
 
Wireless Sensor Network Using Six Sigma Multi Hop Routing
Wireless Sensor Network Using Six Sigma Multi Hop RoutingWireless Sensor Network Using Six Sigma Multi Hop Routing
Wireless Sensor Network Using Six Sigma Multi Hop RoutingIOSR Journals
 
Effect on Environment by Burning Different Agricultural Waste
Effect on Environment by Burning Different Agricultural WasteEffect on Environment by Burning Different Agricultural Waste
Effect on Environment by Burning Different Agricultural WasteIOSR Journals
 
Experimental Investigation and Analysis of Extrusion of Lead from Round Secti...
Experimental Investigation and Analysis of Extrusion of Lead from Round Secti...Experimental Investigation and Analysis of Extrusion of Lead from Round Secti...
Experimental Investigation and Analysis of Extrusion of Lead from Round Secti...IOSR Journals
 
Project and Change Management Success Factors from Malaysian Government Depar...
Project and Change Management Success Factors from Malaysian Government Depar...Project and Change Management Success Factors from Malaysian Government Depar...
Project and Change Management Success Factors from Malaysian Government Depar...IOSR Journals
 

En vedette (20)

Embedded Web Server based Interactive data acquisition and Control System
Embedded Web Server based Interactive data acquisition and Control SystemEmbedded Web Server based Interactive data acquisition and Control System
Embedded Web Server based Interactive data acquisition and Control System
 
Case Study of Tolled Road Project
Case Study of Tolled Road ProjectCase Study of Tolled Road Project
Case Study of Tolled Road Project
 
Audit Firm Rotation and Audit Report Lag in Nigeria
Audit Firm Rotation and Audit Report Lag in NigeriaAudit Firm Rotation and Audit Report Lag in Nigeria
Audit Firm Rotation and Audit Report Lag in Nigeria
 
G1302044952
G1302044952G1302044952
G1302044952
 
L017548287
L017548287L017548287
L017548287
 
H012636165
H012636165H012636165
H012636165
 
The Effect of Impurity Concentration on Activation Energy Change of Palm Oil ...
The Effect of Impurity Concentration on Activation Energy Change of Palm Oil ...The Effect of Impurity Concentration on Activation Energy Change of Palm Oil ...
The Effect of Impurity Concentration on Activation Energy Change of Palm Oil ...
 
Single Phase Formation of CuInS2 Nanoparticles: Structural, Morphological, Th...
Single Phase Formation of CuInS2 Nanoparticles: Structural, Morphological, Th...Single Phase Formation of CuInS2 Nanoparticles: Structural, Morphological, Th...
Single Phase Formation of CuInS2 Nanoparticles: Structural, Morphological, Th...
 
International Takeover and Restructuring: Implications for Managerial Learnin...
International Takeover and Restructuring: Implications for Managerial Learnin...International Takeover and Restructuring: Implications for Managerial Learnin...
International Takeover and Restructuring: Implications for Managerial Learnin...
 
Effect of Silica Fume on Fly Ash Cement Bricks - An Experimental Study
Effect of Silica Fume on Fly Ash Cement Bricks - An Experimental StudyEffect of Silica Fume on Fly Ash Cement Bricks - An Experimental Study
Effect of Silica Fume on Fly Ash Cement Bricks - An Experimental Study
 
A classification of methods for frequent pattern mining
A classification of methods for frequent pattern miningA classification of methods for frequent pattern mining
A classification of methods for frequent pattern mining
 
Comparative Analysis of a 15 Story Flat Plate Building with and Without Shear...
Comparative Analysis of a 15 Story Flat Plate Building with and Without Shear...Comparative Analysis of a 15 Story Flat Plate Building with and Without Shear...
Comparative Analysis of a 15 Story Flat Plate Building with and Without Shear...
 
Rheological Characterization of Bituminous Binder containing Wax based Warm M...
Rheological Characterization of Bituminous Binder containing Wax based Warm M...Rheological Characterization of Bituminous Binder containing Wax based Warm M...
Rheological Characterization of Bituminous Binder containing Wax based Warm M...
 
Wireless Sensor Network Using Six Sigma Multi Hop Routing
Wireless Sensor Network Using Six Sigma Multi Hop RoutingWireless Sensor Network Using Six Sigma Multi Hop Routing
Wireless Sensor Network Using Six Sigma Multi Hop Routing
 
Effect on Environment by Burning Different Agricultural Waste
Effect on Environment by Burning Different Agricultural WasteEffect on Environment by Burning Different Agricultural Waste
Effect on Environment by Burning Different Agricultural Waste
 
J0815355
J0815355J0815355
J0815355
 
J010316164
J010316164J010316164
J010316164
 
Experimental Investigation and Analysis of Extrusion of Lead from Round Secti...
Experimental Investigation and Analysis of Extrusion of Lead from Round Secti...Experimental Investigation and Analysis of Extrusion of Lead from Round Secti...
Experimental Investigation and Analysis of Extrusion of Lead from Round Secti...
 
Project and Change Management Success Factors from Malaysian Government Depar...
Project and Change Management Success Factors from Malaysian Government Depar...Project and Change Management Success Factors from Malaysian Government Depar...
Project and Change Management Success Factors from Malaysian Government Depar...
 
A0610105
A0610105A0610105
A0610105
 

Similaire à On Bernstein Polynomials

International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)irjes
 
Paul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel ProblemPaul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel ProblemPaul Bleau
 
FOURIER SERIES Presentation of given functions.pptx
FOURIER SERIES Presentation of given functions.pptxFOURIER SERIES Presentation of given functions.pptx
FOURIER SERIES Presentation of given functions.pptxjyotidighole2
 
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICSRai University
 
publisher in research
publisher in researchpublisher in research
publisher in researchrikaseorika
 
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix MappingDual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mappinginventionjournals
 
Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variablesSanthanam Krishnan
 
SUEC 高中 Adv Maths (Rational Root Theorem)
SUEC 高中 Adv Maths (Rational Root Theorem)SUEC 高中 Adv Maths (Rational Root Theorem)
SUEC 高中 Adv Maths (Rational Root Theorem)tungwc
 
Piii taller transformaciones lineales
Piii taller transformaciones linealesPiii taller transformaciones lineales
Piii taller transformaciones linealesJHANDRYALCIVARGUAJAL
 
One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...Lossian Barbosa Bacelar Miranda
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSRai University
 
Assignment_1_solutions.pdf
Assignment_1_solutions.pdfAssignment_1_solutions.pdf
Assignment_1_solutions.pdfAbhayRupareliya1
 
Lecture 3 - Series Expansion III.pptx
Lecture 3 - Series Expansion III.pptxLecture 3 - Series Expansion III.pptx
Lecture 3 - Series Expansion III.pptxPratik P Chougule
 
A Class of Polynomials Associated with Differential Operator and with a Gener...
A Class of Polynomials Associated with Differential Operator and with a Gener...A Class of Polynomials Associated with Differential Operator and with a Gener...
A Class of Polynomials Associated with Differential Operator and with a Gener...iosrjce
 
Lecture 11 state observer-2020-typed
Lecture 11 state observer-2020-typedLecture 11 state observer-2020-typed
Lecture 11 state observer-2020-typedcairo university
 
내적의 이해.pdf
내적의 이해.pdf내적의 이해.pdf
내적의 이해.pdfLee Dustin
 

Similaire à On Bernstein Polynomials (20)

International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)
 
Paul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel ProblemPaul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel Problem
 
FOURIER SERIES Presentation of given functions.pptx
FOURIER SERIES Presentation of given functions.pptxFOURIER SERIES Presentation of given functions.pptx
FOURIER SERIES Presentation of given functions.pptx
 
Periodic Solutions for Non-Linear Systems of Integral Equations
Periodic Solutions for Non-Linear Systems of Integral EquationsPeriodic Solutions for Non-Linear Systems of Integral Equations
Periodic Solutions for Non-Linear Systems of Integral Equations
 
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
 
publisher in research
publisher in researchpublisher in research
publisher in research
 
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix MappingDual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
 
Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variables
 
SUEC 高中 Adv Maths (Rational Root Theorem)
SUEC 高中 Adv Maths (Rational Root Theorem)SUEC 高中 Adv Maths (Rational Root Theorem)
SUEC 高中 Adv Maths (Rational Root Theorem)
 
HERMITE SERIES
HERMITE SERIESHERMITE SERIES
HERMITE SERIES
 
Piii taller transformaciones lineales
Piii taller transformaciones linealesPiii taller transformaciones lineales
Piii taller transformaciones lineales
 
One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
 
Taller 1 parcial 3
Taller 1 parcial 3Taller 1 parcial 3
Taller 1 parcial 3
 
Assignment_1_solutions.pdf
Assignment_1_solutions.pdfAssignment_1_solutions.pdf
Assignment_1_solutions.pdf
 
Lecture 3 - Series Expansion III.pptx
Lecture 3 - Series Expansion III.pptxLecture 3 - Series Expansion III.pptx
Lecture 3 - Series Expansion III.pptx
 
A Class of Polynomials Associated with Differential Operator and with a Gener...
A Class of Polynomials Associated with Differential Operator and with a Gener...A Class of Polynomials Associated with Differential Operator and with a Gener...
A Class of Polynomials Associated with Differential Operator and with a Gener...
 
Lecture 11 state observer-2020-typed
Lecture 11 state observer-2020-typedLecture 11 state observer-2020-typed
Lecture 11 state observer-2020-typed
 
내적의 이해.pdf
내적의 이해.pdf내적의 이해.pdf
내적의 이해.pdf
 

Plus de IOSR Journals (20)

A011140104
A011140104A011140104
A011140104
 
M0111397100
M0111397100M0111397100
M0111397100
 
L011138596
L011138596L011138596
L011138596
 
K011138084
K011138084K011138084
K011138084
 
J011137479
J011137479J011137479
J011137479
 
I011136673
I011136673I011136673
I011136673
 
G011134454
G011134454G011134454
G011134454
 
H011135565
H011135565H011135565
H011135565
 
F011134043
F011134043F011134043
F011134043
 
E011133639
E011133639E011133639
E011133639
 
D011132635
D011132635D011132635
D011132635
 
C011131925
C011131925C011131925
C011131925
 
B011130918
B011130918B011130918
B011130918
 
A011130108
A011130108A011130108
A011130108
 
I011125160
I011125160I011125160
I011125160
 
H011124050
H011124050H011124050
H011124050
 
G011123539
G011123539G011123539
G011123539
 
F011123134
F011123134F011123134
F011123134
 
E011122530
E011122530E011122530
E011122530
 
D011121524
D011121524D011121524
D011121524
 

Dernier

Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsSérgio Sacani
 
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRL
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRLGwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRL
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRLkantirani197
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxseri bangash
 
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....muralinath2
 
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...Monika Rani
 
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptxTHE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptxANSARKHAN96
 
Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Silpa
 
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptxPSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptxSuji236384
 
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry Areesha Ahmad
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusNazaninKarimi6
 
Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.Silpa
 
Chemistry 5th semester paper 1st Notes.pdf
Chemistry 5th semester paper 1st Notes.pdfChemistry 5th semester paper 1st Notes.pdf
Chemistry 5th semester paper 1st Notes.pdfSumit Kumar yadav
 
Zoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfZoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfSumit Kumar yadav
 
POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.Silpa
 
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate ProfessorThyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate Professormuralinath2
 
CYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxSilpa
 
LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.Silpa
 

Dernier (20)

Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
 
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRL
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRLGwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRL
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRL
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptx
 
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
 
Site Acceptance Test .
Site Acceptance Test                    .Site Acceptance Test                    .
Site Acceptance Test .
 
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...
 
Clean In Place(CIP).pptx .
Clean In Place(CIP).pptx                 .Clean In Place(CIP).pptx                 .
Clean In Place(CIP).pptx .
 
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptxTHE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
 
Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.
 
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptxPSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
 
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virus
 
Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.
 
Chemistry 5th semester paper 1st Notes.pdf
Chemistry 5th semester paper 1st Notes.pdfChemistry 5th semester paper 1st Notes.pdf
Chemistry 5th semester paper 1st Notes.pdf
 
Zoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfZoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdf
 
POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.
 
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate ProfessorThyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
 
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICEPATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
 
CYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptx
 
LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.
 

On Bernstein Polynomials

  • 1. IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 11, Issue 1 Ver. V (Jan - Feb. 2015), PP 26-34 www.iosrjournals.org DOI: 10.9790/5728-11152634 www.iosrjournals.org 26 | Page On Bernstein Polynomials Anwar Habib Department of General Studies,Jubail Industrial College, Al Jubail-31961, Kingdom of Saudi Arabia (K S A) Abstract:We have defined a new polynomial on the interval [0,1 + 𝑟 𝑛 ] for Lebesgue integral in𝐿1norm as 𝑈 𝛼 𝑛𝑟 𝑓, 𝑥 = 𝑛 + 𝑟 + 1 𝑓 𝑡 𝑑𝑡 (𝑘+1)/(𝑛+𝑟+1) 𝑘/(𝑛+𝑟+1) 𝑛+𝑟 𝑘=0 𝑞 𝑛𝑟,𝑘 (𝑥; 𝛼) where 𝑞 𝑛𝑟,𝑘 (𝑥; 𝛼) = 𝑛 + 𝑟 𝑘 𝑥(𝑥+𝑘𝛼 ) 𝑘−1(1−𝑥)(1−𝑥+ 𝑛+𝑟−𝑘 𝛼) 𝑛+𝑟−𝑘−1 (1+(𝑛+𝑟)𝛼) 𝑛+𝑟−1 and then proved the result of Voronowskaja . Keywords:Bernstein Polynomials, Convergence, Generalized Polynomial, 𝐿1 norm, Lebesgue integrable function I. Introduction and Results If 𝑓(𝑥) is a function defined [0,1], the Bernstein polynomial 𝐵 𝑓 𝑛 𝑥 of 𝑓 is given as 𝐵 𝑓 𝑛 𝑥 = 𝑓(𝑘 𝑛)𝑛 𝑘=0 𝑝 𝑛,𝑘 (𝑥)……(1.1) where 𝑝 𝑛,𝑘 𝑥 = 𝑛 𝑘 𝑥 𝑘 (1 − 𝑥) 𝑛−𝑘 ………. (1.2) Schurer [7] introduced an operator Snr: c [0, 1+ 𝑟 𝑛 ] → c [0, 1] Defined by Snr(f,𝑥) = 𝑓( 𝑘 𝑛+𝑟 )𝑛+𝑟 𝑘=0 𝑝 𝑛𝑟 ,𝑘 (𝑥) --------- (1.3) where 𝑝 𝑛𝑟,𝑘 𝑥 = 𝑛 + 𝑟 𝑘 𝑥 𝑘 (1 − 𝑥) 𝑛+𝑟−𝑘 --------- (1.4) and𝑟 is a non-negative integer. In case r= 0 , this reduces to the well-known Bernstein operator A slight modification of Bernstein polynomials due to Kantorovich[9] makes it possible to approximate Lebesgue integrable function in 𝐿1-norm by the modified polynomials 𝑃 𝑓 𝑛 (𝑥) = 𝑛 + 1 𝑓 𝑡 𝑑𝑡 (𝑘+1)/(𝑛+1) 𝑘/(𝑛+1) 𝑛 𝑘=0 𝑝 𝑛,𝑘 (𝑥)…(1.5) where𝑃𝑛,𝑘 (𝑥) is defined by (1.2) By Abel‟s formula (see Jensen [8]) (𝑥 + 𝑦)(𝑥 + 𝑦 + 𝑛𝛼) 𝑛−1 = ( 𝑛 𝑘 )𝑛 𝑘=0 𝑥(𝑥 + 𝑘𝛼) 𝑘−1 𝑦(𝑦 + 𝑛 − 𝑘 𝛼) 𝑛−𝑘−1 …. (1.6) which on substituting (n+r) for n becomes (𝑥 + 𝑦)(𝑥 + 𝑦 + (𝑛 + 𝑟)𝛼) 𝑛+𝑟−1 = ( 𝑛 + 𝑟 𝑘 )𝑛+𝑟 𝑘=0 𝑥(𝑥 + 𝑘𝛼) 𝑘−1 𝑦(𝑦 + 𝑛 + 𝑟 − 𝑘 𝛼) 𝑛+𝑟−𝑘−1 …. (1.7) If we put𝑦 = 1 − 𝑥 , we obtain (see Cheney and Sharma [5] ) 1 = ( 𝑛 + 𝑟 𝑘 )𝑛+𝑟 𝑘=0 𝑥(𝑥+𝑘𝛼 ) 𝑘−1(1−𝑥)(1−𝑥+ 𝑛+𝑟−𝑘 𝛼) 𝑛+𝑟−𝑘−1 (1+(𝑛+𝑟)𝛼) 𝑛+𝑟−1 ….. (1.8) Thus defining 𝑞 𝑛𝑟,𝑘 (𝑥; 𝛼) = 𝑛 + 𝑟 𝑘 𝑥(𝑥+𝑘𝛼 ) 𝑘−1(1−𝑥)(1−𝑥+ 𝑛+𝑟−𝑘 𝛼) 𝑛+𝑟−𝑘−1 (1+(𝑛+𝑟)𝛼) 𝑛+𝑟−1 …..(1.9) we have 𝑞 𝑛𝑟,𝑘 (𝑥; 𝛼)𝑛+𝑟 𝑘=0 = 1….(1.10) For a finite interval [0,1+ 𝑟 𝑛 ] ,the operator is modified in a manner similar to that done to Bernstein‟s operator by Kantorovich [9] and thus we defined the operator as Unr: c[0,1+ 𝑟 𝑛 ] → c[0,1]
  • 2. On Bernstein Polynomials DOI: 10.9790/5728-11152634 www.iosrjournals.org 27 | Page by 𝑈 𝛼 𝑛𝑟 𝑓, 𝑥 = 𝑛 + 𝑟 + 1 𝑓 𝑡 𝑑𝑡 (𝑘+1)/(𝑛+𝑟+1) 𝑘/(𝑛+𝑟+1) 𝑛+𝑟 𝑘=0 𝑞 𝑛𝑟,𝑘 (𝑥; 𝛼)----(1.11) where𝑞 𝑛𝑟,𝑘 (𝑥; 𝛼)same as (1.9) and r isis a non-negative integer. When r =0 &𝛼 = 0, then it reduces to the well- known operator due to Kantorovich given by (1.5). The function ( ⱴ, 𝑛+r, 𝑥, 𝑦 )= ( 𝑛 + 𝑟 𝑘 )𝑛+𝑟 𝑘=0 (𝑥 + 𝑘𝛼)+ⱴ−1 𝑦(𝑦 + 𝑛+r − 𝑘 )𝛼) 𝑛+r − 𝑘−1 -------(1.12) satisfies the reduction formula 𝑆 (ⱴ, 𝑛+r, 𝑥, 𝑦) = 𝑥𝑆 (ⱴ − 1, 𝑛+r, 𝑥, 𝑦) + (𝑛+r)(ⱴ, 𝑛+r − 1, 𝑥 + 𝛼, 𝑦) -------- (1.13) from (1.3 ) & (1.12) we can have ( 0, 𝑛+r, 𝑥, 𝑦) = (𝑥 + 𝑦)(𝑥 + 𝑦 + (𝑛+r)𝛼) 𝑛+r −1 , by repeated use of reduction formula(1.13) and (1.6) we get ( 1, 𝑛+r, 𝑥, 𝑦) = ( 𝑛 + 𝑟 𝑘 )𝑛+𝑟 𝑘=0 𝑘! 𝛼 𝑛+r (𝑥 + 𝑦)(𝑥 + 𝑦 + (𝑛+r)𝛼) 𝑛+r − 𝑘−1 , -----(1.14) 𝑆 (2, 𝑛, 𝑥, 𝑦) =)= ( 𝑛 + 𝑟 𝑘 )𝑛+𝑟 𝑘=0 (𝑥 + 𝑘𝛼)𝑘! 𝛼 𝑛+r ( 1, 𝑛+r − 𝑘, 𝑥 + 𝑘𝛼, 𝑦) . ------(1.15) Since𝑘! = 𝑒−𝑡 𝑡 𝑘 𝑑𝑡 ∞ 0 and using binomial expansion we obtain 𝑆(1, 𝑛+r, 𝑥, 𝑦)= 𝑒−𝑡∞ 0 (𝑥 + 𝑦) (𝑥 + 𝑦 + (𝑛+r)+ 𝑡𝛼) 𝑛+r−1 𝑑𝑡 , ------(1.16) ( 2, 𝑛+r, 𝑥, 𝑦)= 𝑒−𝑡 𝑑𝑡 ∞ 0 𝑒−𝑠∞ 0 [(𝑥+ )(𝑥 + 𝑦 + (𝑛+r)𝛼 + 𝑡𝛼 + 𝑠𝛼) 𝑛+r −1 + (𝑛+r)𝛼 𝑛+r 𝑆(𝑥 + 𝑦 + (𝑛+r)+𝑡𝛼 + 𝑠𝛼) 𝑛+r −2 ], --------------(1.17) we, therefore , can show 𝑆(1, 𝑛+r−1, 𝑥 + 𝛼, 1 –𝑥)= 𝑒−𝑡∞ 0 (1 + (𝑛+r) +𝑡𝛼)+r−1 𝑑 , ------- (1.18) 𝑆 (1, 𝑛+r−2, 𝑥 + 𝛼, 1 – 𝑥+α) = 𝑒−𝑡∞ 0 (1 + (𝑛+r)+𝑡𝛼) 𝑛+r−2 𝑑𝑡 , ----------(1.19) 𝑆(2, 𝑛+r − 2, 𝑥 + 2𝛼, 1 –𝑥)= 𝑒−𝑡 𝑑𝑡 ∞ 0 𝑒−𝑠∞ 0 𝑑𝑠[(𝑥 + 2𝛼) (1 + (𝑛+r)+ 𝑡𝛼 + 𝑠𝛼) 𝑛+r−2 +(𝑛+r − 2)𝛼2 s(1 + (𝑛+r)𝛼 + 𝑡𝛼+𝑠𝛼) 𝑛+r−3 ], ---------(1.20) 𝑆 (2, 𝑛+r − 3, 𝑥 + 2𝛼, 1 – 𝑥+α) = 𝑒−𝑡 𝑑𝑡 ∞ 0 𝑒−𝑠∞ 0 𝑑𝑠[(𝑥 + 2𝛼)(1 + (𝑛+r)𝛼 + 𝑡𝛼+ 𝑠𝛼) 𝑛+r−3 + (𝑛+r −3)2 s(1 + (𝑛+r)𝛼 + 𝑡𝛼+𝑠𝛼) 𝑛+r-4 ], ---------(1.21) Voronowskaja [6] proved his result by assuming 𝑓(𝑥) to be atleast twice differentiable at a point 𝑥 of [ 0 1], lim 𝑛→∞ 𝑛[𝑓 𝑥 − 𝐵 𝑓 𝑛 𝑥 ] = − 1 2 𝑥(1 − 𝑥)𝑓′′(𝑥) In particular,if𝑓′′(𝑥) ≠ 0, difference𝑓 𝑥 − 𝐵 𝑓 𝑛 𝑥 is exactly of order 𝑛−1 . In this paper we shall prove the corresponding result of Voronowskaja for Lebesgue integrable function in 𝐿1 – norm by GeneralizedPolynomial (1.11) and hence we state our result as follows: Theorem: Let f(x) be bounded Lebesgue integrable function in with its first derivative in [0, 1+ 𝑟 𝑛 ] and suppose second derivative 𝑓′′(𝑥) exists at a certain point x of [0, 1+ 𝑟 𝑛 ] , then for 𝛼 = 𝛼 𝑛𝑟 = 0 1 𝑛+𝑟 , lim (𝑛+𝑟)→∞ (𝑛 + 𝑟)[𝑓 𝑥 − 𝑈 𝛼 𝑛𝑟 𝑓, 𝑥 ] = 1 2 [ 1 − 2𝑥 𝑓′ 𝑥 − 𝑥 1 − 𝑥 𝑓′′ 𝑥 ] II. Lemmas and their proofs Lemma 2.1: For all values of 𝑥 𝑘𝑞 𝑛𝑟,𝑘 𝑥; 𝛼 ≤ 1 + 𝑛 + 𝑟 𝛼 1 + 𝛼 𝑛 + 𝑟 𝑥 − 𝑛 + 𝑟 𝑛 + 𝑟 − 1 𝑥𝛼 1 + 2𝛼 𝑛+𝑟 𝑘=0 Lemma 2.2: For all values of 𝑥
  • 3. On Bernstein Polynomials DOI: 10.9790/5728-11152634 www.iosrjournals.org 28 | Page k(k − 1)qnr,k x; α ≤ n + r n + r − 1 (x + 2α){ 1 + n + r α 1 + 2α 2 − n + r − 2 α 1 + 3α 3 n+r k=0 + n + r − 2 α2 ( 1+ n+r α 1+3α 3 − n+r−3 α 1+4α 4 )} Lemma 2.3: For all values of x of [ 0, 1+ 𝑟 𝑛 ] and for 𝛼 = 𝛼 𝑛𝑟 = 0 1 𝑛+𝑟 , we have 𝑛 + 𝑟 + 1 (𝑡 − 𝑥)2 𝑑𝑡 (𝑘+1)/(𝑛+𝑟+1) 𝑘/(𝑛+𝑟+1) 𝑛+𝑟 𝑘=0 𝑞 𝑛𝑟,𝑘 (𝑥; 𝛼) ≤ 𝑥(1 − 𝑥) 𝑛 + 𝑟 Proof of Lemma 2.1: 𝑘𝑞 𝑛𝑟,𝑘 (𝑥; 𝛼) 𝑛+𝑟 𝑘=0 = 𝑘 𝑛+𝑟 𝑘=0 𝑛 + 𝑟 𝑘 𝑥(𝑥 + 𝑘𝛼) 𝑘−1 (1 − 𝑥)(1 − 𝑥 + 𝑛 + 𝑟 − 𝑘 𝛼) 𝑛+𝑟−𝑘−1 (1 + (𝑛 + 𝑟)𝛼) 𝑛+𝑟−1 = (𝑛 + 𝑟)𝑥 𝑛 + 𝑟 − 1 𝑘 − 1 𝑛+𝑟 𝑘=1 𝑥 + 𝑘𝛼 𝑘−1 (1 − 𝑥)(1 − 𝑥 + 𝑛 + 𝑟 − 𝑘 𝛼) 𝑛+𝑟−𝑘−1 (1 + (𝑛 + 𝑟)𝛼) 𝑛+𝑟−1 = 𝑛 + 𝑟 𝑥 𝑛 + 𝑟 − 1 𝜇 𝑛+𝑟−1 𝜇 =0 𝑥 + 𝜇𝛼 + 𝛼 𝜇 (1 − 𝑥)(1 − 𝑥 + 𝑛 + 𝑟 − 𝜇 − 1 𝛼) 𝑛+𝑟−𝜇−2 (1 + (𝑛 + 𝑟)𝛼) 𝑛+𝑟−1 = (𝑛 + 𝑟)𝑥 1 + (𝑛 + 𝑟)𝛼 𝑛+𝑟−1 { 𝑛 + 𝑟 − 1 𝜇 𝑛+𝑟−1 𝜇 =0 𝑥 + 𝜇𝛼 + 𝛼 𝜇 1 − 𝑥 + 𝑛 + 𝑟 − 𝜇 − 1 𝛼 𝑛+𝑟−𝜇−2 −(𝑛 + 𝑟 − 1)𝛼 𝑛 + 𝑟 − 2 𝜇 𝑛+𝑟−2 𝜇=0 𝑥 + 𝜇𝛼 + 𝛼 𝜇 1 − 𝑥 + 𝑛 + 𝑟 − 𝜇 − 2 𝛼 𝑛+𝑟−𝜇−2 } = (𝑛+𝑟)𝑥 1+(𝑛+𝑟)𝛼 𝑛+𝑟−1 [𝑠 1, 𝑛 + 𝑟 − 1, 𝑥 + 𝛼, 1 − 𝑥 − (𝑛 + 𝑟 − 1)𝛼𝑠(1, 𝑛 + 𝑟 − 2, 𝑥 + 𝛼, 1 − 𝑥 + 𝛼] by (1.15) = (𝑛+𝑟)𝑥 1+(𝑛+𝑟)𝛼 𝑛+𝑟−1 [ 𝑒−𝑡 1 + (𝑛 + 𝑟)𝛼 + 𝑡𝛼 𝑛+𝑟−1 𝑑𝑡 − (𝑛 + 𝑟 − 1)𝛼 𝑒−𝑡 (1 + (𝑛 + 𝑟)𝛼 + 𝑡𝛼) 𝑛+𝑟−2 𝑑𝑡] ∞ 0 ∞ 0 by (1.17)&(1.18) = (𝑛+𝑟)𝑥 1+(𝑛+𝑟)𝛼 𝑛+𝑟−1 𝑒−𝑡 1 + (𝑛 + 𝑟)𝛼 + 𝑡𝛼 𝑛+𝑟−1 𝑑𝑡 − (𝑛+𝑟) 𝑛+𝑟−1 𝑥𝛼 1+(𝑛+𝑟)𝛼 𝑛+𝑟−1 𝑒−𝑡 (1 + (𝑛 + 𝑟)𝛼 + 𝑡𝛼) 𝑛+𝑟−2 𝑑𝑡 ∞ 0 ∞ 0 = (𝑛+𝑟)𝑥 1+(𝑛+𝑟)𝛼 𝑛+𝑟−1 𝑒−𝑡 1 + 𝑡𝛼 1+(𝑛+𝑟)𝛼 𝑛+𝑟−1 1 + (𝑛 + 𝑟)𝛼 𝑛+𝑟−1 𝑑𝑡 ∞ 0 − (𝑛 + 𝑟)(𝑛 + 𝑟 − 1)𝑥𝛼 1 + (𝑛 + 𝑟)𝛼 𝑛+𝑟−1 𝑒−𝑡 1 + 𝑡𝛼 1 + (𝑛 + 𝑟)𝛼 𝑛+𝑟−2 1 + (𝑛 + 𝑟)𝛼 𝑛+𝑟−2 𝑑𝑡 ∞ 0 =(𝑛 + 𝑟)𝑥 𝑒−𝑡 1 + 𝑡𝛼 1+(𝑛+𝑟)𝛼 𝑛+𝑟−1 𝑑𝑡 ∞ 0 -- (𝑛+𝑟)(𝑛+𝑟−1)𝑥𝛼 1+(𝑛+𝑟)𝛼 𝑒−𝑡 1 + 𝑡𝛼 1+(𝑛+𝑟)𝛼 𝑛+𝑟−2 𝑑𝑡 ∞ 0 = (𝑛 + 𝑟)𝑥 𝑒− 1+(𝑛+𝑟)𝛼 𝛼 𝑢 1 + 𝑢 𝑛+𝑟−1 1+(𝑛+𝑟)𝛼 𝛼 𝑑𝑢 ∞ 0 – (𝑛 + 𝑟)(𝑛 + 𝑟 − 1)𝑥𝛼 1 + (𝑛 + 𝑟)𝛼 𝑒− 1+(𝑛+𝑟)𝛼 𝛼 𝑢 1 + 𝑢 𝑛+𝑟−2 1 + (𝑛 + 𝑟)𝛼 𝛼 𝑑𝑢 ∞ 0 = (1+(𝑛+𝑟)𝛼)(𝑛+𝑟)𝑥 𝛼 𝑒−( 1 𝛼 +𝑛+𝑟)𝑢 1 + 𝑢 𝑛+𝑟−1 𝑑𝑢 ∞ 0 - (𝑛+𝑟)(𝑛+𝑟−1)𝑥𝛼 𝛼 𝑒−( 1 𝛼 +𝑛+𝑟)𝑢 1 + 𝑢 𝑛+𝑟−2 𝑑𝑢 ∞ 0
  • 4. On Bernstein Polynomials DOI: 10.9790/5728-11152634 www.iosrjournals.org 29 | Page ≤ (1+(𝑛+𝑟)𝛼)(𝑛+𝑟)𝑥 𝛼 𝑒−( 1 𝛼 +𝑛+𝑟)𝑢 𝑒(𝑛+𝑟−1)𝑢 𝑑𝑢 ∞ 0 - (𝑛+𝑟)(𝑛+𝑟−1)𝑥𝛼 𝛼 𝑒−( 1 𝛼 +𝑛+𝑟)𝑢 𝑒(𝑛+𝑟−2)𝑢 𝑑𝑢 ∞ 0 = (1+(𝑛+𝑟)𝛼)(𝑛+𝑟)𝑥 𝛼 𝑒−( 1 𝛼 +1)𝑢 𝑑𝑢 ∞ 0 - (𝑛+𝑟)(𝑛+𝑟−1)𝑥𝛼 𝛼 𝑒−( 1 𝛼 +2)𝑢 𝑑𝑢 ∞ 0 = (1+(𝑛+𝑟)𝛼)(𝑛+𝑟)𝑥 1+𝛼 𝑒−𝑣 𝑑𝑣 ∞ 0 - (𝑛+𝑟)(𝑛+𝑟−1)𝑥𝛼 1+2𝛼 𝑒−𝑤 𝑑𝑤 ∞ 0 = (1+(𝑛+𝑟)𝛼)(𝑛+𝑟)𝑥 1+𝛼 - (𝑛+𝑟)(𝑛+𝑟−1)𝑥𝛼 1+2𝛼 hence the proof of lemma 2.1. Proof of Lemma 2.2: 𝑘 𝑘 − 1 𝑞 𝑛𝑟,𝑘 𝑥; 𝛼 𝑛+𝑟 𝑘=0 ≤ (𝑛 + 𝑟)(𝑛 + 𝑟 − 1)𝑥 𝑛 + 𝑟 − 2 𝑘 − 2 𝑛+𝑟 𝑘=1 𝑥 + 𝑘𝛼 𝑘−1 (1 − 𝑥)(1 − 𝑥 + 𝑛 + 𝑟 − 𝑘 𝛼) 𝑛+𝑟−𝑘−1 (1 + (𝑛 + 𝑟)𝛼) 𝑛+𝑟−1 = (𝑛+𝑟)(𝑛+𝑟−1)𝑥 (1+(𝑛+𝑟)𝛼) 𝑛+𝑟−1 𝑛 + 𝑟 − 2 𝑣 𝑛+𝑟 𝑘=1 𝑥 + 𝑘𝛼 + 2𝛼 𝑣+1 (1 − 𝑥)(1 − 𝑥 + 𝑛 + 𝑟 − 𝑣 − 2 𝛼) 𝑛+𝑟−𝑘−3 = (𝑛+𝑟)(𝑛+𝑟−1)𝑥 (1+(𝑛+𝑟)𝛼) 𝑛+𝑟−1[S(2, n+r-2, x+2α,1-x)-(n+r-2)α S(2, n+r-3, x+2α,1-x+α)] = (𝑛+𝑟)(𝑛+𝑟−1)𝑥 (1+(𝑛+𝑟)𝛼) 𝑛+𝑟−1[S(2, n+r-2, x+2α,1-x)]− (𝑛+𝑟)(𝑛+𝑟−1)(𝑛+𝑟−2)𝑥𝛼 (1+(𝑛+𝑟)𝛼) 𝑛+𝑟−1 [S(2, n+r-3, x+2α,1-x+α)] =𝐼1 − 𝐼2-------------- (2.2.1) 𝐼1 = (𝑛+𝑟)(𝑛+𝑟−1)𝑥 (1+(𝑛+𝑟)𝛼) 𝑛+𝑟−1[S(2, n+r-2, x+2α,1-x)] = (𝑛+𝑟)(𝑛+𝑟−1)𝑥 (1+(𝑛+𝑟)𝛼) 𝑛+𝑟−1 𝑒−𝑡 𝑑𝑡 ∞ 0 𝑒−𝑠 𝑑𝑠 ∞ 0 [(𝑥 + 2𝛼) 1 + (𝑛 + 𝑟)𝛼 + 𝑠𝛼 + 𝑡𝛼 𝑛+𝑟−2 +(𝑛 + 𝑟 − 2)𝛼2 𝑠 1 + (𝑛 + 𝑟)𝛼 + 𝑠𝛼 + 𝑡𝛼 𝑛+𝑟−3 ] = (𝑛+𝑟)(𝑛+𝑟−1)𝑥 (1+(𝑛+𝑟)𝛼) 𝑛+𝑟−1 𝑒−𝑡 𝑑𝑡 ∞ 0 𝑒−𝑠 𝑑𝑠 ∞ 0 [(𝑥 + 2𝛼) 1 + (𝑛 + 𝑟)𝛼 + 𝑠𝛼 + 𝑡𝛼 𝑛+𝑟−2 ] + (𝑛+𝑟)(𝑛+𝑟−1)(𝑛+𝑟−2)𝑥𝛼2 (1+(𝑛+𝑟)𝛼) 𝑛+𝑟−1 [ 𝑒−𝑡 𝑑𝑡 ∞ 0 𝑒−𝑠 𝑑𝑠 ∞ 0 [𝑠 1 + (𝑛 + 𝑟)𝛼 + 𝑠𝛼 + 𝑡𝛼 𝑛+𝑟−3 ] =𝐼1.1 + 𝐼1.2 ---------------( 2.2.2) 𝐼1.1= (𝑛+𝑟)(𝑛+𝑟−1)𝑥 (1+(𝑛+𝑟)𝛼) 𝑛+𝑟−1 𝑒−𝑡 𝑑𝑡 ∞ 0 𝑒−𝑠 𝑑𝑠 ∞ 0 [(𝑥 + 2𝛼) 1 + (𝑛 + 𝑟)𝛼 + 𝑠𝛼 + 𝑡𝛼 𝑛+𝑟−2 ] = (𝑛+𝑟)(𝑛+𝑟−1)𝑥 (1+(𝑛+𝑟)𝛼) 𝑛+𝑟−1 𝑒−𝑡 𝑑𝑡 ∞ 0 𝑒−𝑠 𝑑𝑠 ∞ 0 [(𝑥 + 2𝛼) 1 + 𝑠𝛼 +𝑡𝛼 1+(𝑛+𝑟)𝛼 𝑛+𝑟−2 (1 + (𝑛 + 𝑟)𝛼) 𝑛+𝑟−2 ] = (𝑛+𝑟)(𝑛+𝑟−1)𝑥 1+(𝑛+𝑟)𝛼 𝑒−𝑡 𝑑𝑡 ∞ 0 𝑒−𝑠 𝑑𝑠 ∞ 0 [(𝑥 + 2𝛼) 1 + 𝑠𝛼 +𝑡𝛼 1+(𝑛+𝑟)𝛼 𝑛+𝑟−2 ] ≤ 𝑛+𝑟)(𝑛+𝑟−1)𝑥(𝑥+2𝛼) 1+(𝑛+𝑟)𝛼 𝑒−𝑡 𝑑𝑡 ∞ 0 𝑒−𝑠 𝑒 (𝑛+𝑟−2)( 𝑠𝛼+𝑡𝛼 1+(𝑛+𝑟)𝛼 ) 𝑑𝑠 ∞ 0
  • 5. On Bernstein Polynomials DOI: 10.9790/5728-11152634 www.iosrjournals.org 30 | Page = (𝑛+𝑟)(𝑛+𝑟−1)𝑥(𝑥+2𝛼) 1+(𝑛+𝑟)𝛼 𝑒 −𝑡+( (𝑛+𝑟−2)𝑡𝛼 1+(𝑛 +𝑟)𝛼 ) 𝑑𝑡 𝑒 −𝑠+( (𝑛+𝑟−2)𝑠𝛼 1+(𝑛+𝑟)𝛼 ) 𝑑𝑠 ∞ 0 ∞ 0 = (𝑛+𝑟)(𝑛+𝑟−1)𝑥(𝑥+2𝛼) 1+(𝑛+𝑟)𝛼 𝑒 −𝑡( 1+2𝛼 1+(𝑛+𝑟)𝛼 ) 𝑑𝑡 𝑒 −𝑠( 1+2𝛼 1+(𝑛+𝑟)𝛼 ) 𝑑𝑠 ∞ 0 ∞ 0 = (𝑛+𝑟)(𝑛+𝑟−1)𝑥(𝑥+2𝛼) 1+(𝑛+𝑟)𝛼 𝑒−𝑢 𝑑𝑢 1+(𝑛+𝑟)𝛼 1+2𝛼 𝑒−𝑣 𝑑𝑣 1+(𝑛+𝑟)𝛼 1+2𝛼 ∞ 0 ∞ 0 = (𝑛+𝑟) 𝑛+𝑟−1 𝑥 𝑥+2𝛼 1+2𝛼 2 (1 + (𝑛 + 𝑟)𝛼) 𝑒−𝑢 𝑑𝑢 𝑒−𝑣 𝑑𝑣 ∞ 0 ∞ 0 = 𝑛+𝑟 𝑛+𝑟−1 𝑥 𝑥+2𝛼 1+2𝛼 2 (1 + (𝑛 + 𝑟)𝛼)-------------( 2.2.3) 𝐼1.2=𝐶 𝑒−𝑡 𝑑𝑡 ∞ 0 𝑒−𝑠 𝑑𝑠 ∞ 0 [𝑠 1 + (𝑛 + 𝑟)𝛼 + 𝑠𝛼 + 𝑡𝛼 𝑛+𝑟−3 ] = (𝑛+𝑟)(𝑛+𝑟−1)𝑥(𝑥+2𝛼) 1+(𝑛+𝑟)𝛼 𝑒−𝑡 𝑑𝑡 ∞ 0 𝑠𝑒−𝑠 1 + 𝑠𝛼 +𝑡𝛼 1+(𝑛+𝑟)𝛼 𝑛−3 (1 + (𝑛 + 𝑟)𝛼) 𝑛+𝑟−3 𝑑𝑠 ∞ 0 ≤ (𝑛+𝑟)(𝑛+𝑟−1)(𝑛+𝑟−2)𝑥𝛼2 (1+(𝑛+𝑟)𝛼)2 𝑒−𝑡 𝑑𝑡 ∞ 0 𝑠𝑒−𝑠 𝑒 (𝑛+𝑟−3)( 𝑠𝛼+𝑡𝛼 1+(𝑛+𝑟)𝛼 ) 𝑑𝑠 ∞ 0 = (𝑛+𝑟)(𝑛+𝑟−1)(𝑛+𝑟−2)𝑥𝛼2 (1+(𝑛+𝑟)𝛼)2 𝑒−𝑡( 1+3𝛼 1+𝑛𝛼 ) 𝑑𝑡 𝑠𝑒−𝑠( 1+3𝛼 1+𝑛𝛼 ) 𝑑𝑠 ∞ 0 ∞ 0 = 𝑛+𝑟 𝑛+𝑟−1 𝑛+𝑟−2 𝑥𝛼2 1+3𝛼 3 (1 + (𝑛 + 𝑟)𝛼) 𝑒−𝑢 𝑑𝑢 𝑒−𝑣 𝑑𝑣 ∞ 0 ∞ 0 = 𝑛+𝑟 𝑛+𝑟−1 𝑛+𝑟−2 𝑥𝛼2 1+3𝛼 3 (1 + (𝑛 + 𝑟)𝛼) ---------------- (2.2.4) from (2.2.2) , (2.2.3) & ( 2.2.4) we have 𝐼1 ≤ 1 + 𝑛 + 𝑟 𝛼 (𝑛 + 𝑟) 𝑛 + 𝑟 − 1 𝑥{ 𝑥+2𝛼 1+2𝛼 2 + (𝑛+𝑟−2)𝛼2 (1+3𝛼)3 -------------(2.2.5) Now we evaluate 𝐼2= (𝑛+𝑟)(𝑛+𝑟−1)(𝑛+𝑟−2)𝑥𝛼 (1+(𝑛+𝑟)𝛼) 𝑛+𝑟−1 [S(2, n+r-3, x+2α,1-x+α)] = (𝑛+𝑟)(𝑛+𝑟−1)(𝑛+𝑟−2)𝑥𝛼 (1+(𝑛+𝑟)𝛼) 𝑛+𝑟−1 𝑒−𝑡 𝑑𝑡 ∞ 0 𝑒−𝑠 𝑑𝑠 ∞ 0 [(𝑥 + 2𝛼) 1 + (𝑛 + 𝑟)𝛼 + 𝑠𝛼 + 𝑡𝛼 𝑛+𝑟−3 +(𝑛 + 𝑟 − 3)𝛼2 𝑠 1 + (𝑛 + 𝑟)𝛼 + 𝑠𝛼 + 𝑡𝛼 𝑛+𝑟−4 ] by (1.19) = (𝑛+𝑟)(𝑛+𝑟−1)(𝑛+𝑟−2)𝑥𝛼 (1+(𝑛+𝑟)𝛼) 𝑛+𝑟−1 𝑒−𝑡 𝑑𝑡 ∞ 0 𝑒−𝑠 𝑑𝑠 ∞ 0 (𝑥 + 2𝛼) 1 + (𝑛 + 𝑟)𝛼 + 𝑠𝛼 + 𝑡𝛼 𝑛+𝑟−3 + (𝑛+𝑟)(𝑛+𝑟−1)(𝑛+𝑟−2)(𝑛+𝑟−3)𝑥𝛼3 (1+(𝑛+𝑟)𝛼) 𝑛+𝑟−1 𝑒−𝑡 𝑑𝑡 ∞ 0 𝑒−𝑠 𝑑𝑠 ∞ 0 𝑠 1 + (𝑛 + 𝑟)𝛼 + 𝑠𝛼 + 𝑡𝛼 𝑛+𝑟−4 =𝐼2.1 + 𝐼2.2--------------------(2.2.6) 𝐼2.1 = (𝑛 + 𝑟)(𝑛 + 𝑟 − 1)(𝑛 + 𝑟 − 2)𝑥𝛼 (1 + (𝑛 + 𝑟)𝛼) 𝑛+𝑟−1 𝑒−𝑡 𝑑𝑡 ∞ 0 𝑒−𝑠 𝑑𝑠 ∞ 0 𝑥 + 2𝛼 1 + 𝑠𝛼 + 𝑡𝛼 1 + (𝑛 + 𝑟)𝛼 𝑛+𝑟−3 (1 + (𝑛 + 𝑟)𝛼) 𝑛+𝑟−3 ≤ (𝑛+𝑟)(𝑛+𝑟−1)(𝑛+𝑟−2)𝑥(𝑥+2𝛼)𝛼 (1+(𝑛+𝑟)𝛼)2 𝑒−𝑡 𝑑𝑡 ∞ 0 𝑒−𝑠 𝑒 (𝑛−3)( 𝑠𝛼+𝑡𝛼 1+(𝑛+𝑟)𝛼 ) 𝑑𝑠 ∞ 0
  • 6. On Bernstein Polynomials DOI: 10.9790/5728-11152634 www.iosrjournals.org 31 | Page = (𝑛+𝑟)(𝑛+𝑟−1)(𝑛+𝑟−2)𝑥(𝑥+2𝛼)𝛼 (1+(𝑛+𝑟)𝛼)2 𝑒 −𝑡( 1+3𝛼 1+(𝑛+𝑟)𝛼 ) 𝑑𝑡 𝑠𝑒 −𝑠( 1+3𝛼 1+(𝑛+𝑟)𝛼 ) 𝑑𝑠 ∞ 0 ∞ 0 = (𝑛+𝑟)(𝑛+𝑟−1)(𝑛+𝑟−2)𝑥(𝑥+2𝛼)𝛼 (1+(𝑛+𝑟)𝛼)2 𝑒−𝑢 𝑑𝑢 1+(𝑛+𝑟)𝛼 1+3𝛼 𝑒−𝑣 𝑑𝑣 1+(𝑛+𝑟)𝛼 1+3𝛼 ∞ 0 ∞ 0 = (𝑛+𝑟)(𝑛+𝑟−1)(𝑛+𝑟−2)𝑥(𝑥+2𝛼)𝛼 (1+3𝛼)2 𝑒−𝑢 𝑑𝑢 𝑒−𝑣 𝑑𝑣 ∞ 0 ∞ 0 = (𝑛+𝑟)(𝑛+𝑟−1)(𝑛+𝑟−2)𝑥(𝑥+2𝛼)𝛼 (1+3𝛼)2 --------------(2.2.7) 𝐼2.2 = (𝑛+𝑟)(𝑛+𝑟−1)(𝑛+𝑟−2)(𝑛+𝑟−3)𝑥𝛼3 (1+(𝑛+𝑟)𝛼) 𝑛+𝑟−1 𝑒−𝑡 𝑑𝑡 ∞ 0 𝑒−𝑠 𝑑𝑠 ∞ 0 𝑠 1 + (𝑛 + 𝑟)𝛼 + 𝑠𝛼 + 𝑡𝛼 𝑛+𝑟−4 = (𝑛+𝑟)(𝑛+𝑟−1)(𝑛+𝑟−2)(𝑛+𝑟−3)𝑥𝛼3 (1+(𝑛+𝑟)𝛼) 𝑛+𝑟−1 𝑒−𝑡 𝑑𝑡 ∞ 0 𝑠𝑒−𝑠 1 + 𝑠𝛼+𝑡𝛼 1+(𝑛+𝑟)𝛼 𝑛+𝑟−3 𝑑𝑠(1 + (𝑛 + 𝑟)𝛼) 𝑛+𝑟−3∞ 0 ≤ (𝑛+𝑟)(𝑛+𝑟−1)(𝑛+𝑟−2)(𝑛+𝑟−3)𝑥𝛼3 (1+(𝑛+𝑟)𝛼)3 𝑒−𝑡 𝑑𝑡 ∞ 0 𝑠𝑒−𝑠 𝑒 (𝑛−4)( 𝑠𝛼+𝑡𝛼 1+(𝑛+𝑟)𝛼 ) 𝑑𝑠 ∞ 0 = (𝑛+𝑟)(𝑛+𝑟−1)(𝑛+𝑟−2)(𝑛+𝑟−3)𝑥𝛼3 (1+(𝑛+𝑟)𝛼)3 𝑒 −𝑡( 1+4𝛼 1+(𝑛+𝑟)𝛼 ) 𝑑𝑡 𝑠𝑒 −𝑠( 1+4𝛼 1+(𝑛+𝑟)𝛼 ) 𝑑𝑠 ∞ 0 ∞ 0 = (𝑛+𝑟)(𝑛+𝑟−1)(𝑛+𝑟−2)(𝑛+𝑟−3)𝑥𝛼3 (1+(𝑛+𝑟)𝛼)3 𝑒−𝑢 𝑑𝑢 1+(𝑛+𝑟)𝛼 1+4𝛼 𝑣( 1+(𝑛+𝑟)𝛼 1+4𝛼 )𝑒−𝑣 𝑑𝑣 1+(𝑛+𝑟)𝛼 1+4𝛼 ∞ 0 ∞ 0 = (𝑛+𝑟)(𝑛+𝑟−1)(𝑛+𝑟−2)(𝑛+𝑟−3)𝑥𝛼3 (1+4𝛼)3 𝑒−𝑢 𝑑𝑢 𝑣𝑒−𝑣 𝑑𝑣 ∞ 0 ∞ 0 = (𝑛+𝑟)(𝑛+𝑟−1)(𝑛+𝑟−2)(𝑛+𝑟−3)𝑥𝛼3 (1+4𝛼)3 -----------------(2.2.8) substituting the values of 𝐼2.1from (2.2.7)&𝐼2.2 from (2.2.8) in (2.2.6) we get 𝐼2≤(𝑛 + 𝑟)(𝑛 + 𝑟 − 1)(𝑛 + 𝑟 − 2)𝑥{ 𝑥+2𝛼 (1+3𝛼)2 + 𝑛+𝑟−3 𝛼3 1+4𝛼 3 } Thereforesubstituting the values of 𝐼1&𝐼2 in (2.2.1), weget ≤ 1 + 𝑛 + 𝑟 𝛼 (𝑛 + 𝑟) 𝑛 + 𝑟 − 1 𝑥{ 𝑥+2𝛼 1+2𝛼 2 + (𝑛+𝑟−2)𝛼2 (1+3𝛼)3 } −(𝑛 + 𝑟)(𝑛 + 𝑟 − 1)(𝑛 + 𝑟 − 2)𝑥{ 𝑥+2𝛼 (1+3𝛼)2 + 𝑛+𝑟−3 𝛼3 1+4𝛼 3 } =(𝑛 + 𝑟) 𝑛 + 𝑟 − 1 𝑥[ 𝑥 + 2𝛼 { 1+(𝑛+𝑟)𝛼 1+2𝛼 2 − (𝑛+𝑟−2)𝛼 (1+3𝛼)2 } +(𝑛 + 𝑟 − 2)𝛼2 { 1+(𝑛+𝑟)𝛼 (1+3𝛼)2 − 𝑛+𝑟−3 𝛼 1+4𝛼 3 } hence the proof of lemma 2.2. Proof of Lemma2.3: 𝑛 + 𝑟 + 1 (𝑡 − 𝑥)2 𝑑𝑡 (𝑘+1)/(𝑛+𝑟+1) 𝑘/(𝑛+𝑟+1) 𝑛+𝑟 𝑘=0 𝑞 𝑛𝑟,𝑘 (𝑥; 𝛼 = [𝑥2 𝑛+𝑟 𝑘=0 − 2𝑘𝑥 + 𝑥 𝑛 + 𝑟 + 1 + 𝑘2 + 𝑘 𝑛 + 𝑟 + 1 2 + 1 3 𝑛 + 𝑟 + 1 2 ]𝑞 𝑛𝑅,𝑘 (𝑥; 𝛼) ≤ 𝑥2 − 1 𝑛 + 𝑟 + 1 2 1 + 𝑛 + 𝑟 𝛼 (𝑛 + 𝑟)𝑥 1 + 𝛼 − 2(𝑛 + 𝑟) 𝑛 + 𝑟 − 1 𝑥2 𝛼 1 + 2𝛼 − 𝑥 𝑛 + 𝑟 + 1
  • 7. On Bernstein Polynomials DOI: 10.9790/5728-11152634 www.iosrjournals.org 32 | Page + (𝑛 + 𝑟)(𝑛 + 𝑟 − 1) 𝑛 + 𝑟 + 1 2 [ 𝑥 + 2𝛼 { 1 + (𝑛 + 𝑟)𝛼 1 + 2𝛼 2 − 𝑛 + 𝑟 − 2 𝛼 1 + 3𝛼 2 } + 𝑛 + 𝑟 − 2 𝛼2 1 + (𝑛 + 𝑟)𝛼 1 + 3𝛼 3 − 𝑛 + 𝑟 − 3 1 + 4𝛼 3 + 2 1 + 𝑛 + 𝑟 𝛼 (𝑛+)𝑥 𝑛 + 𝑟 + 1 2(1 + 𝛼) − 2(𝑛+𝑟)(𝑛+𝑟−1)𝑥𝛼 𝑛+𝑟+1 2(1+𝛼) + 1 3 𝑛+𝑟+1 2,by lemma 2.1 & lemma 2.2 = − 𝑥 1−𝑥 𝑛+𝑟+1 + 2 1+ 𝑛+𝑟 𝛼 (𝑛+𝑟) 𝑛+𝑟+1 2 1+𝛼 𝑥 1 − 𝑥 − 2(𝑛+𝑟) 𝑛+𝑟−1 𝛼 𝑛+𝑟+1 2 1+𝛼 𝑥(1 − 𝑥) + 2 1+(𝑛+𝑟)𝛼 (𝑛+𝑟)2 𝑥(1−𝑥)𝛼 𝑛+𝑟+1 2 1+2𝛼 2 − 2 𝑛+𝑟 2(𝑛+𝑟−1)𝑥(1−𝑥)𝛼2 𝑛+𝑟+1 2 1+3𝛼 2 + (𝑛+𝑟) 𝑛+𝑟−1 (𝑛+𝑟−2)𝛼2 𝑛+𝑟+1 2 1+3𝛼 3 𝑥(1 − 𝑥) + (𝑛+𝑟)𝑥2 𝑛+𝑟+1 − 2 1+(𝑛+𝑟)𝛼 (𝑛+𝑟)2 𝑥2(1+3𝛼+3𝛼2) 𝑛+𝑟+1 2(1+𝛼) 1+2𝛼 2 − 2 1+ 𝑛+𝑟 𝛼 (𝑛+𝑟)𝑥𝛼 𝑛+𝑟+1 2 1+2𝛼 2 + 2(𝑛+𝑟)2(𝑛+𝑟−1)𝑥2 𝛼(1+5𝛼+7𝛼2) 𝑛+𝑟+1 2(1+2𝛼) 1+3𝛼 2 + 4(𝑛+𝑟) 𝑛+𝑟−1 𝑥𝛼2 𝑛+𝑟+1 2 1+3𝛼 2 − (𝑛+𝑟) 𝑛+𝑟−1 (𝑛+𝑟−2)𝛼 𝑛+𝑟+1 2 1+3𝛼 3 −𝑥2 (1 + 2𝛼) + (𝑛+𝑟) 𝑛+𝑟−1 (𝑛+𝑟−2)𝑥𝛼3 𝑛+𝑟+1 2 1+3𝛼 3 + (𝑛+𝑟) 𝑛+𝑟−1 (1+(𝑛+𝑟)𝛼)𝑥2 𝛼 (𝑛+𝑟+1) 1+2𝛼 2 − (𝑛+𝑟) 𝑛+𝑟−1 (𝑛+𝑟−2)(𝑛+𝑟−3)𝑥𝛼3 𝑛+𝑟+1 2 1+4𝛼 3 + 1 3 𝑛+𝑟+1 2 ≤ 𝑥 1 − 𝑥 𝑛 + 𝑟 for α = αnr = ο 1 n + r and for large n hence the proof of Lemma 2.3. III. Proof Of The Theorem Proof : The function 𝑓 𝑡 can be expended by Taylor‟s Theorem at 𝑡 = 𝑥 as 𝑓 𝑡 = 𝑓 𝑥 + 𝑡 − 𝑥 𝑓′ 𝑥 + (𝑡 − 𝑥)2 [ 1 2 𝑓"(𝑥) + 𝜂(𝑡 − 𝑥) ] ----------(3.1) where𝜂(ℎ) is bounded 𝜂 ℎ ≤ 𝐻 for all h and converges to „0‟ with h. Multiplying eqn. (3.1) by 𝑛 + 𝑟 + 1 𝑞 𝑛𝑟,𝑘 (𝑥; 𝛼)and integrating it from k/(n+r+1) to (k+1)/(n+r+1),and then on summing ,we get 𝑛 + 𝑟 + 1 𝑓 𝑡 𝑑𝑡 (𝑘+1)/(𝑛+𝑟+1) 𝑘/(𝑛+𝑟+1) 𝑛+𝑟 𝑘=0 𝑞 𝑛𝑟,𝑘 (𝑥; 𝛼) = 𝑛 + 𝑟 + 1 𝑓 𝑥 𝑑𝑡 (𝑘+1)/(𝑛+𝑟+1) 𝑘/(𝑛+𝑟+1) 𝑛+𝑟 𝑘=0 𝑞 𝑛𝑟,𝑘 (𝑥; 𝛼) + 𝑛 + 𝑟 + 1 𝑓 𝑡 − 𝑥 𝑓′ (𝑥)𝑑𝑡 (𝑘+1)/(𝑛+𝑟+1) 𝑘/(𝑛+𝑟+1) 𝑛+𝑟 𝑘=0 𝑞 𝑛𝑟,𝑘 (𝑥; 𝛼) + 1 2 𝑛 + 𝑟 + 1 (𝑡 − 𝑥)2 𝑓"(𝑥)𝑑𝑡 (𝑘+1)/(𝑛+𝑟+1) 𝑘/(𝑛+𝑟+1) 𝑛+𝑟 𝑘=0 𝑞 𝑛𝑟,𝑘 (𝑥; 𝛼) + 𝑛 + 𝑟 + 1 𝑡 − 𝑥 2 𝜂(𝑡 − 𝑥)𝑑𝑡 (𝑘+1)/(𝑛+𝑟+1) 𝑘/(𝑛+𝑟+1) 𝑛+𝑟 𝑘=0 𝑞 𝑛𝑟,𝑘 (𝑥; 𝛼) = 𝐼3+𝐼4 + 𝐼5+𝐼6 (say) ----- --------- (3.2)
  • 8. On Bernstein Polynomials DOI: 10.9790/5728-11152634 www.iosrjournals.org 33 | Page Now first we evaluate𝐼3: 𝐼3 = 𝑛 + 𝑟 + 1 𝑓 𝑥 𝑑𝑡 𝑘+1 𝑛+𝑟+1 𝑘 𝑛+𝑟+1 𝑛+𝑟 𝑘=0 𝑞 𝑛𝑟,𝑘 𝑥; 𝛼 = 𝑓 𝑥 ----- ---------(3.3) and then 𝐼4 = 𝑛 + 𝑟 + 1 𝑓 𝑡 − 𝑥 𝑓′ (𝑥)𝑑𝑡 (𝑘+1)/(𝑛+1) 𝑘/(𝑛+1) 𝑛+𝑟 𝑘=0 𝑞 𝑛𝑟,𝑘 (𝑥; 𝛼) = 2𝑘 + 1 2 𝑛 + 𝑟 + 1 − 𝑥 𝑛+𝑟 𝑘=0 𝑓′ 𝑥 𝑞 𝑛𝑟,𝑘 𝑥; 𝛼 ≤ (1−2𝑥) 2(𝑛+𝑟) 𝑓′ 𝑥 for𝛼 = 𝛼 𝑛𝑟 = 𝑜(1 (𝑛 + 𝑟))(3.4) Now we evaluate𝐼5: 𝐼5 = 1 2 𝑛 + 𝑟 + 1 (𝑡 − 𝑥)2 𝑓"(𝑥)𝑑𝑡 (𝑘+1)/(𝑛+𝑟+1) 𝑘/(𝑛+𝑟+1) 𝑛+𝑟 𝑘=0 𝑞 𝑛𝑟,𝑘 (𝑥; 𝛼) ≤ 𝑥 1 − 𝑥 𝑓"(𝑥)/2(𝑛 + 𝑟) (by lemma 2.3 ) ------------- (3.5) and then in the last we evaluate 𝐼6 : 𝐼6 = 𝑛 + 𝑟 + 1 𝑡 − 𝑥 2 𝜂(𝑡 − 𝑥)𝑑𝑡 (𝑘+1)/(𝑛+𝑟+1) 𝑘/(𝑛+𝑟+1) 𝑛+𝑟 𝑘=0 𝑞 𝑛𝑟,𝑘 (𝑥; 𝛼) Let ∈> 0 be arbitrary 𝛿 > 0 such that 𝜂 ℎ < 𝜖for ℎ < 𝛿 . Thus breaking up the sum 𝐼6 into two parts corresponding to those values of t for which | t - x |<, and those for which 𝑡 − 𝑥 ≥ 𝛿 and since in the given range of t, 𝑘 𝑛+𝑟 − 𝑥 ~ 𝑡 − 𝑥 , we have 𝐼6 ≤∈ 𝑛 + 𝑟 + 1 𝑞 𝑛𝑟,𝑘 𝑘 𝑛+𝑟 −𝑥 <𝛿 𝑥; 𝛼       1 1 1 2 nk k rn k dtxt + 𝐻 𝑛 + 𝑟 + 1 𝑞 𝑛𝑟,𝑘 𝑘 𝑛+𝑟 −𝑥 ≥𝛿 𝑥; 𝛼     1 1 1 nk k rn k dt = 𝐼6.1+𝐼6.2 (say) 𝐼6.1 ≤ ∈ 𝑛+𝑟 | 𝑥 1 − 𝑥 |, for 𝛼 = 𝛼 𝑛𝑟 = 𝑜( 1 𝑛+𝑟 ) 𝐼6.2 = 𝑛 + 𝑟 + 1 𝐻 𝑑𝑡 𝑘+1 𝑛+𝑟+1 𝑘 𝑛+𝑟+1 𝑞 𝑛𝑟,𝑘 (𝑥; 𝛼) | 𝑘 𝑛+𝑟 −𝑥|≥𝛿
  • 9. On Bernstein Polynomials DOI: 10.9790/5728-11152634 www.iosrjournals.org 34 | Page = (𝑛 + 𝑟 + 1) 𝑞 𝑛𝑟,𝑘 𝑘 𝑛+𝑟 −𝑥 ≥𝛿 𝑥; 𝛼 1 𝑛 + 𝑟 + 1 But if 𝛿 = (𝑛 + 𝑟)−𝛽 , 0 < β < 1/2 (see also Kantorovitch [9]), then for 𝛼 = 𝛼 𝑛𝑟 = 𝑜( 1 𝑛+𝑟 ) 𝑞 𝑛𝑟,𝑘𝑘 𝑛+𝑟 −𝑥 ≥(𝑛+𝑟)−𝛽 𝑥; 𝛼 ≤ 𝐶(𝑛 + 𝑟)−𝜈 for ѵ>0, the constant C= C(β,ѵ). whence𝐼6.2 < 𝜖 𝑛+𝑟+1 < 𝜖/(𝑛 + 𝑟) for sufficiently large n , therefore itgives 𝐼6 < 𝜖/(𝑛 + 𝑟), for all sufficiently large n ----- (3.6) Hence from (3.2), (3.3), (3.4), (3.5) and (3.6), we have 𝑛 + 𝑟 + 1 𝑓 𝑡 𝑑𝑡 (𝑘+1)/(𝑛+𝑟+1) 𝑘/(𝑛+𝑟+1) 𝑛+𝑟 𝑘=0 𝑞 𝑛𝑟,𝑘 (𝑥; 𝛼) = 𝑓 𝑥 + [{ 1 − 2𝑥 𝑓′ 𝑥 + 𝑥 1 − 𝑥 𝑓"(𝑥)}/2(𝑛 + 𝑟)] + (𝜖/(𝑛 + 𝑟) and therefore, finally we get lim (𝑛+𝑟)→∞ ( 𝑛 + 𝑟) 𝑈 𝛼 𝑛𝑟 𝑓, 𝑥 − 𝑓 𝑥 = 1 2 [ 1 − 2𝑥 𝑓′ 𝑥 − 𝑥 1 − 𝑥 𝑓" 𝑥 ] where𝜖 → 0 𝑎𝑠𝑛 → ∞ hencethe proof of the theorem. IV. Conclusions The result of Voronowskaja has been extended for Lebesgueintegrable function in 𝐿1-norm by our newly defined Generalized Polynomials 𝑈 𝛼 𝑛𝑟 𝑓, 𝑥 on the interval [ 0,1+ 𝑟 𝑛 ] References [1]. A. Habib, “On the degree of approximation of functions by certain new Bernstein typePolynomials,” Indian J. pure Math., vol. 7, pp. 882-888, 1981. [2]. A Habib , S Umar and H H Khan , “ On the Degree of Approximation by Bernstein type Operators” [3]. Communications , de la Fac. Des Sc. De L‟Univ. d‟Ankara, Tom 33 Annee 1984 pp.121-136 [4]. A. Habib & S. Al Shehri(2012) “On Generalized Polynomials I „ International Journal of Engineering Research and Development e- ISSN:2278-067X, 2278-800X, Volume 5, Issue 4 ,December 2012 , pp.18-26 [5]. E. Cheney and A. Sharma, “On a generalization of Bernstein polynomials,” Rev. Mat. Univ. Parma, vol. 2, pp. 77-84, 1964. [6]. E. Voronowskaja, “Determination de la formeasymtotiqued‟approximation d ésfonctionléspôlynômes de M Bernstein”. C.R. Acad. Sci. URSS, vol. 22, pp. 79-85, 1932. [7]. Shurer, F : “Linear positive operations in approximation” , Math. Inst. Tech. Delf. Report 1962 [8]. J. Jensen, “Sur uneidentité Abel et surd‟autressformulesamalogues,” Acta Math. , vol. 26, pp.307-318, 1902. [9]. L. Kantorovitch, “Sur certainsdéveloppmentssuivantléspôlynômesdé la forms,” Bernstein I,II. C.R. Acad. Sci. URSS, vol. 20, pp. 563-68,595-600, 1930. [10]. G.G. Lorentz,“Bernstein Polynomials”, University of Toronto Press, Toronto, 1955.