SlideShare une entreprise Scribd logo
1  sur  4
Télécharger pour lire hors ligne
Atom-Economical Synthesis of the
N(10)−C(17) Fragment of
Cyclotheonamides via a Novel Passerini
Reaction−Deprotection−Acyl Migration
Strategy1
Timothy D. Owens and J. Edward Semple*
Department of Medicinal Chemistry, CorVas International, Inc.,
3030 Science Park Road, San Diego, California 92121
ed_semple@corVas.com
Received August 1, 2001
ABSTRACT
A novel variant of the atom-economical Passerini reaction between suitably protected argininal, dipeptide isonitrile, and proline components
afforded adduct 13. Orthogonal N-deprotection of 13 led, via a smooth O- to N-acyl migration, to 14, which constitutes the N(10)−C(17) fragment
of the cyclotheonamide family of serine protease inhibitors. Each reaction in this three-step protocol proceeds in good yield and under very
mild conditions.
Peptidyl and peptidomimetic R-ketoamide scaffolds are
useful in small molecule drug discovery programs as
transition-state analogue (TSA) protease inhibitors.2 Such
covalent inhibitors generally exhibit potent in vitro enzyme
inhibitory activity, with sub-nanomolar equilibrium inhibitor
constants (Ki) being typical of representative members.3
Accordingly, they are finding increasing applications as
potential therapeutics for important disease indications.4-7
The cyclotheonamides CtA-CtE3 (1a-g, Figure 1) con-
stitute a growing family of 19-membered macrocyclic
pentapeptide derivatives isolated from the marine sponge
Theonella swinhoei.8
All contain the unusual vinylogous
L-tyrosine, L-R-ketohomoarginine, and β-linked L-diamino-
propanoic acid moieties in addition to more common
L-proline and hydrophobic D-phenylalanine, D-leucine, or
(1) Dedicated to Ruth F. Nutt, respected and admired mentor, on the
occasion of her 60th birthday.
(2) Semple, J. E. Abstracts of Papers, 219th National Meeting of the
American Chemical Society, San Francisco, CA, March 26-30, 2000;
American Chemical Society: Washington, DC, 2000; ORGN 667.
(3) (a) R-Ketoamide serine protease inhibitors: Semple, J. E.; Levy, O.
E.; Minami, N. K.; Owens, T. D.; Siev, D. V. Bioorg. Med. Chem. Lett.
2000, 10, 2305. (b) Semple, J. E.; Rowley, D. C.; Brunck, T. K.; Ripka,
W. C. Bioorg. Med. Chem. Lett. 1997, 7, 315. (c) R-Ketoamide cysteine
protease inhibitors: Nakamura, M.; Inoue, J.; Yamada, T. Bioorg. Med.
Chem. Lett. 2000, 10, 2807. (d) Otto, H. H.; Schirmeister, T. Chem. ReV.,
1997, 97, 133.
(4) NS3-4A Hepatitis C protease and inhibitors thereof: (a) Bennett, J.
M. et al. Bioorg. Med. Chem. Lett. 2001, 11, 355. (b) Hoofnagle, J. H.; Di
Bisceglie, A. M. N. Engl. J. Med. 1997, 336, 347.
(5) HIV protease inhibitors: Sheha, M. M.; Mahfouz, N. M.; Hassan,
H. Y.; Youssef, A. F.; Mimoto, T.; Kiso, Y. Eur. J. Med. Chem. 2000, 35,
887.
(6) Calpain inhibitors: (a) De Biasi, R. L.; Edelstein, C. L.; Sherry, B.;
Tyler, K. L. J. Virol. 2001, 75, 351. (b) Harbeson, S. L.; Abelleira, S. M.;
Akiyama, A.; Barrett, R.; Carroll, R. M.; Straub, J. A.; Tkacz, J. N.; Wu,
C.; Musso, G. J. Med. Chem. 1994, 37, 2918.
(7) HCMV protease inhibitors: LaPlante, S. R.; Bonneau, P. R.; Aubry,
N.; Cameron, D. R.; Deziel, R.; Grande-Maitre, C.; Plouffe, C.; Tong, L.;
Kawai, S. H. J. Am. Chem. Soc. 1999, 121, 2974.
ORGANIC
LETTERS
2001
Vol. 3, No. 21
3301-3304
10.1021/ol0165239 CCC: $20.00 © 2001 American Chemical Society
Published on Web 09/27/2001
D-isoleucine subunits. They are potent, slow-binding inhibi-
tors of several important trypsin-like serine proteases includ-
ing thrombin (factor IIa), factor Xa, trypsin, plasmin, and
tissue plasminogen activator.9
From this group, CtA (1a) and
CtE (1e) express the most potent thrombin inhibitory activity
with Ki values of e1 and 2.9 nM, respectively. Such potent
biological activity is derived from the key pharmacophore,
an electrophilic R-ketoargininamide group, which docks into
the S1 pocket of serine proteases and engages the catalytic
triad serine hydroxyl group to form a hemiketal (TSA)
intermediate, which effectively but reversibly inhibits the
enzyme.
Previous routes10 to the cyclotheonamides proceeded via
construction of individual protected amino acid subunits,
peptide couplings, macrocyclization, and late stage oxidation
to install the reactive ketoamide residue. In all cases,
protected R-hydroxy-β-homoarginine derivatives served as
the key L-R-ketohomoarginine precursors. They were pre-
pared by multistep homologation-hydrolysis approaches
from arginine or ornithine precursors via cyanohydrin10c,d (6-
11 steps), orthothioformate,10a,e
(7-8 steps) or furyllithium
addition-oxidation10b
(5 steps) protocols. Our interest in the
design and synthesis of novel classes of R-ketoamides as
small molecule inhibitors of serine proteases, including prolyl
endopeptidase,11 thrombin,12 factor Xa,3a,13 urokinase,14 and
NS3A hepatitis C protease,4
led us to investigate multiple-
component reaction-based (MCR) approaches to R-hydroxy-
β-aminocarboxylic acid and amide derivatives. These ver-
satile, stable intermediates readily undergo oxidation to
ketoamide targets.
Utilizing the appropriate N-R-protected amino aldehyde
precursors 2 (Figure 2), we recently disclosed novel varia-
tions of the atom-economical Passerini reaction15 for the
direct production of either R-acyloxy-β-amino amides 32,16
or R-hydroxy-β-amino amide derivatives 4.2,16,17 In our hands,
(8) (a) CtA and CtB: Fusetani, N.; Matsunaga, S.; Matsumoto, H.;
Takebayashi, Y. J. Am. Chem. Soc. 1990, 112, 7053. (b) CtC, CtD, and
CtE: Nakao, Y.; Matsunaga, S.; Fusetani, N. Bioorg. Med. Chem. 1995, 3,
1115. (c) CtE2 and CtE3: Nakao, Y.; Oku, N.; Matsunaga, S.; Fusetani,
N. J. Nat. Prod. 1998, 61, 667.
(9) (a) Maryanoff, B. E.; Qui, X.; Padmanabhan, K. P.; Tulinsky, A.;
Almond, H. R.; Andrade-Gordon, P.; Greco, M. N.; Kauffman, J. A.;
Nicolaou, K. C.; Liu, A.; Brungs, P. H.; Fusetani, N. Proc. Natl. Acad. Sci.
U.S.A. 1993, 90, 8048. (b) Lewis, S. D.; Ng, A. S.; Baldwin, J. J.; Fusetani,
N.; Naylor, A. M.; Shafer, J. A. Thrombosis Res. 1993, 70, 173.
(10) Cyclotheonamides, total synthesis: (a) Bastiaans, H. M. M.; van
der Baan, J. L.; Ottenheijm, H. C. J. J. Org. Chem. 1997, 62, 3880. (b)
Deng, J.; Hamada, Y.; Shioiri, T. Tetrahedron Lett. 1996, 37, 2261. (c)
Maryanoff, B. E.; Greco, M. N.; Zhang, H. C.; Andrade-Gordon, P.;
Kauffman, J. A.; Nicolaou, K. C.; Liu, A.; Brungs, P. H. J. Am. Chem.
Soc. 1995, 117, 1225. (d) Wipf, P.; Kim, H. J. Org. Chem. 1993, 58, 5592.
(e) Hagihara, M.; Schreiber, S. L. J. Am. Chem. Soc. 1992, 114, 6570.
(11) Total synthesis of the PEP inhibitor Eurystatin A: Owens, T. D.;
Araldi, G. L.; Nutt, R. F.; Semple, J. E. Tetrahedron Lett. 2001, 42, 6271.
(12) Thrombin inhibitors: (a) Reiner, J. E.; Lim-Wilby, M. S.; Brunck,
T. K.; Uong, T. H.; Goldman, E. A.; Abelman, M. A.; Nutt, R. F.; Semple.
J. E.; Tamura S. Y. Bioorg. Med. Chem. Lett. 1999, 9, 895. (b) Semple, J.
E. Tetrahedron Lett. 1998, 39, 6645. (c) Semple, J. E.; Rowley, D. C.;
Brunck, T. K.; Uong, T. H.; Minami, N. K.; Owens, T. D.; Tamura, S. Y.;
Goldman, E. A.; Siev, D. V.; Ardecky, R. J.; Carpenter, S. H.; Ge, Y.;
Richard, B. M.; Hakanson, K.; Tulinsky, A.; Nutt, R. F.; Ripka, W. C. J.
Med. Chem. 1996, 39, 4531.
(13) FXa inhibitors: (a) Tamura, S. Y.; Levy, O. E.; Reiner, J. E.; Uong,
T. H.; Goldman, E. A.; Brunck, T. K.; Semple, J. E. Bioorg. Med. Chem.
Lett. 2000, 10, 745. (b) Ho, J. Z.; Levy, O. E.; Gibson, T. S.; Nguyen, K.;
Semple, J. E. Bioorg. Med. Chem. Lett. 1999, 9, 3459. (c) Tamura, S. Y.;
Goldman, E. A.; Bergum, P. W.; Semple, J. E. Bioorg. Med. Chem. Lett.
1999, 9, 2573.
(14) uPA inhibitors: (a) Tamura, S. Y.; Weinhouse, M. I.; Roberts, C.
A.; Goldman, E. A.; Masukawa, K.; Anderson, S. M.; Cohen, C. R.;
Bradbury, A. E.; Bernadino, V. T.; Dixon, S. A.; Ma, M. G.; Nolan, T. G.;
Brunck, T. K. Bioorg. Med. Chem. Lett. 2000, 10, 983.
(15) Passerini reaction: (a) Passerini, M. Gazz. Chim. Ital. 1921, 51,
126. (b) Passerini, M.; Ragni, G. Gazz. Chim. Ital. 1931, 61, 964. (c)
Authoritative review: Ugi, I. In Isonitrile Chemistry; Ugi, I., Ed.; Academic
Press: New York, 1971; Chapter 7. (d) TiCl4 activation: Carofiglio, T. et
al. Organometallics 1993, 12, 2726. (e) Seebach, D.; Adam, G.; Gees, T.;
Schiess, M.; Weigand, W. Chem. Ber. 1988, 121, 507. (f) Seebach, D.;
Schiess, M. HelV. Chim. Acta 1983, 66, 1618.
(16) Semple, J. E.; Levy, O. E. PCT Int. Appl. WO 0035868 A2, June,
2000.
Figure 1. Representative examples of biologically active R-keto-
amides: members of the cyclotheonamide (Ct) class of marine
natural products.
Figure 2. Passerini MCR strategy for the construction of R-hy-
droxy-β-amino amides 4 and 6 and their potential elaboration into
the R-ketoamide subunit 7. PG denotes N-protecting group.
3302 Org. Lett., Vol. 3, No. 21, 2001
N-deprotection of 3 under mild conditions generated the
R-acyloxy-β-amino intermediate 5, which underwent a
smooth O- to N-acyl shift and provided adduct 6 in high
yield. Intermediates 4 and 6 routinely serve as useful
advanced precursors to R-ketoamide derivatives 7 by oxida-
tion, preferably at a very late synthetic stage. The recent
report by Banfi et al.18 on a related process prompts us
to disclose our application of the Passerini reaction-
deprotection-acyl migration strategy toward a concise
synthesis of the N(10)-C(17) fragment of CtA (1a) and CtB
(1b).
As outlined in Scheme 1,19
commercially available N-R-
Boc-Ng
-nitroarginine 8 was converted in two steps to the
corresponding Weinreb amide, which was reduced with
lithium aluminum hydride to afford N-R-Boc-Ng
-nitro-
argininal 9 in 65% overall yield (100 g scale).20
An alternate
route to 9 proceeded via borane reduction of 8 to the
corresponding argininol (MeOH quench, 300 g scale) fol-
lowed by efficient oxidation in DMSO employing the
Parikh-von Doering protocol21
to deliver 9 in 71-76%
overall yield (10-20 g scale).
Concurrent acid-catalyzed esterification and N-deprotection
of the commercially available tyrosine derivative 10 followed
by EDC/HOBt-mediated peptide coupling with Fmoc-D-
phenylalanine afforded the corresponding dipeptide 11 in
nearly quantitative overall yield. Sequential N-deprotection,
N-formylation, and mild diphosgene-mediated formamide
dehydration according to the Ugi protocol22 afforded the
configurationally stable23
dipeptide isonitrile 12 in satisfac-
tory overall yield.
The key Passerini reaction between argininal 9, isonitrile
12, and N-Alloc-proline fragments proceeded under very
mild, essentially neutral conditions over 2 days and delivered
(17) Semple, J. E.; Owens, T. D.; Nguyen, K.; Levy. O. E. Org. Lett.
2000, 2, 2769.
(18) Banfi, L.; Guanti, G.; Riva, R. Chem. Commun. 2000, 985.
(19) All new compounds were characterized by full spectroscopic (NMR,
low/high resolution MS) analysis. Yields refer to spectroscopically and
chromatographically homogeneous (g95% by HPLC, TLC) materials.
(20) Tamura, S. Y.; Semple, J. E.; Ardecky, R. J.; Leon, P.; Carpenter,
S. H.; Ge, Y.; Shamblin, B. M.; Weinhouse, M. I.; Ripka, W. C.; Nutt, R.
F. Tetrahedron Lett. 1996, 37, 4109.
(21) (a) Parikh, J. R.; Doering, W. V. E. J. Am. Chem. Soc. 1967, 89,
5505. (b) Reviews: Tidwell, T. T. Synthesis 1990, 857. (c) Tidwell, T. T.
Org. React. 1990, 39, 297. (d) Mancuso, A. J.; Swern, D. Synthesis 1981,
165.
(22) (a) Skorna, G.; Ugi, I. Angew. Chem., Int. Ed. Engl. 1977, 16, 259.
(b) Giesemann, G.; von Hinrichs, E.; Ugi, I. J. Chem Res. (S) 1982, 79. (c)
Periasamy, M. P.; Walborsky, H. M. Org. Prep. Proced. Int. 1979, 11,
293.
(23) Dipeptide isonitriles prepared by this method retain their chiral
integrity: Urban, R.; Marquarding, D.; Seidel, P.; Ugi, I. Chem. Ber. 1977,
110, 2012.
(24) Experimental Details for 13. A solution of 9 (382.2 mg, 1.26
mmol), N-Alloc-proline (298.0 mg, 1.50 mmol), and isonitrile 12 (590.0
mg, 1.15 mmol) in anhydrous dichloromethane (4.6 mL) was stirred at
ambient temperature for 16 h. Solvent was slowly removed in vacuo, and
the resultant thick residue was stirred for 1 day. Standard extractive workup
in ethyl acetate gave a crude product, which was purified by silica gel flash
chromatography using dichloromethane/isopropanol 98:2 as eluent to afford
690 mg (59.3% yield) of product 13 as an amorphous, colorless solid. RP-
HPLC analysis (Vydac 5 m C18, 5-75% CH3CN, H2O with 0.1% TFA):
tR ) 21.1 and 21.3 min, 1.6:1 mixture at diastereomeric R-acyloxy center.
TLC: (silica gel; dichloromethane/isopropanol 9:1) Rf ) 0.6; (ethyl acetate)
Rf ) 0.4, 0.3; UV, PMA visualization. MS: [MH]+ 1013.9, [MNa]+ 1035.9.
1H NMR (400 MHz, CD3OD): δ 1.40 + 1.45 (2s, 9H), 1.32-1.47 (obscured
m, 2H), 1.49-1.70 (m, 2H), 1.90-2.12 (m, 3H), 2.30 (m, 1H), 2.70-2.89
(complex br m, 1H), 2.95 (m, 1H), 3.02-3.25 (complex m, 4H), 3.39-
3.59 (m, 2H), 3.68 + 3.72 (major + minor s, 3H, ratio ∼1.4-1.6:1), 3.88
+ 4.01 (2m, 1H), 4.40 (m, 1H), 4.50 (m, 2H), 4.57-4.76 (complex m,
2H), 5.03 + 5.11 (minor + major m, 1H R-CHO-acyl methine, ratio 1:2),
5.16-5.37 (m, 2H), 5.25 + 5.27 (2s, 2H), 5.85 + 5.97 (minor + major m,
1H), 6.95 (m, 2H), 7.03-7.14 (m, 4H), 7.16-7.29 (m, 3H), 7.35 (m, 1H),
7.44 (m, 2H).
Scheme 1a
a Reagents and conditions: (a) i-BuOCOCl, NMP, THF, -5 °C;
(b) Me(OMe)NH, -5 °C to rt, 88%; (c) LiAlH4, THF, -78 °C;
KHSO4, H2O, -70 to -30 °C, 74%; (d) BH3, THF, -78 to -20
°C, 12 h; MeOH, -78 °C to rt, 95%; (e) SO3‚Pyr, DMSO, Et3N,
5 °C to rt, 1 h, 75-80%; (f) MeOH, HCl, 0 °C to rt, 98%; (g)
Fmoc-D-Phe-OH, EDC, HOBt, NMM, CH3CN, rt, quant; (h) Et2NH,
CH2Cl2, 0 °C to rt, 99%; (i) HCO2H, Ac2O, CH2Cl2, rt to reflux,
79%; (j) CCl3OCOCl, NMM, -40 to 0 °C, CH2Cl2, 75%; (k) Alloc-
Pro-OH, Boc-Arg(NO2)-H (9), CH2Cl2, 0 °C to rt, 2 days, 59%; (l)
HCl, MeOH, 0 °C to rt, quant.; (m) Et3N, pH 9, MeOH, 0 °C to rt,
15 h, 98%.
Org. Lett., Vol. 3, No. 21, 2001 3303
the complex adduct 13 in a gratifying, albeit unoptimized
59% yield.24 Analysis of 13 by RP-HPLC or chiral HPLC
on Chiracel AD revealed two peaks (ratio ≈ 1.6:1), indicating
formation of one diastereomeric pair at the newly created
R-acyloxy center. Therefore, the integrity of all four original
chiral centers was preserved during the course of the reaction.
Acid-catalyzed N-Boc cleavage of 13 afforded the corre-
sponding stable vicinal O-acyloxyamine hydrochloride salt
quantitatively. Dissolution of this salt in methanol and
adjustment of the solution pH to ∼9 with triethylamine led,
via facile O- to N-acyl migration, to the desired advanced
intermediate 14 in practically quantitative overall yield (cf.
5 to 6 in Figure 2).25
Model compound 14 constitutes the
N(10)-C(17) region of CtA (1a) and CtB (1b) and may be
deemed a suitable precursor for their total synthesis.26 We
envision that application of this three-step sequence to the
appropriately protected isonitrile derivative of D-phe-
tyr(vinyl), argininal, and diaminopropionyl-proline compo-
nents would lead directly to the entire acyclic skeleton of
1a and 1b.
Our approach to the advanced cyclotheonamide intermedi-
ate 14 via the key Passerini reaction-deprotection-acyl
migration strategy is convergent and highly efficient. Pro-
ceeding in just eight steps (longest linear sequence) and in
33% overall yield from a commercially available tyrosine
derivative, it is complementary to other current multistep
routes to similar intermediates.9a,10
In conclusion, the utility of this technology for the rapid
construction of relatively complex R-ketoamide natural
product precursors is highlighted by the concise synthesis
of 14, which serves as a model for the N(10)-C(17) segment
of CtA (1a) and CtB (1b). The key Passerini reaction,
deprotection, and O- to N-acyl migration steps proceed in
moderate to high yields and under mild conditions. Other
noteworthy features include operational simplicity and high
atom-economy. Interest in efficient synthetic approaches to
linear3,17
and cyclic R-ketoamide protease inhibitors2,11
leads
us to speculate on alternate intramolecular variants that might
directly provide advanced macrocyclic intermediates, thus
further expanding the utility of this atom-economical proc-
ess.27
Numerous applications of this new technology to the
synthesis of R-ketoamide natural products and protease
inhibitors are envisioned and will form the basis of forth-
coming publications from our laboratories.
Acknowledgment. Stimulating discussions with R. F.
Nutt, T. K. Brunck, O. E. Levy, S. Y. Tamura, and K. E.
Pryor are gratefully acknowledged.
OL0165239
(25) Experimental Details for 14. To a solution of 13 (675 mg, 0.666
mmol) in anhydrous methanol (5 mL) at 0 °C was added freshly prepared
5 N HCl in anhydrous methanol (10 mL, 50 mmol). After 40 min at 0 °C
the solvent was removed in vacuo. The residue was dissolved in fresh 10
mL portions of anhydrous acetonitrile, re-evaporated (repeated twice), and
then evaporated once from a 10 mL portion of dichloromethane. High
vacuum pumping for several hours afforded 645 mg (102% of theory,
∼quantitative yield) of the corresponding O-acyloxyamine hydrochloride
as a pale tan foam, which was used in the following reaction. To a solution
of amine salt (625 mg, 0.658 mmol) in anhydrous methanol (3.3 mL) was
added Et3N (134.6 mg, 1.33 mmol, 185 mL). The solution was stirred at
ambient temperature for 2 h, during which time a thick yellow slurry formed.
The solvent was removed, and the residue was dissolved in 200 mL of
ethyl acetate, extracted successively with 20 mL portions of 1 N HCl,
saturated NaHCO3 solution (2×), water, and brine, and then dried over
anhydrous MgSO4. Filtration, solvent removal, and filtration through a short
silica gel column using dichloromethane/2-propanol 9:1 as eluent gave 588
mg (97.9% yield) of product 14 as a nearly colorless, amorphous solid.
RP-HPLC analysis (Vydac 5 m C18, 5-75% CH3CN, H2O with 0.1%
TFA): tR ) 19.1 and 19.5 min, 1.6:1 ratio at diastereomeric R-hydroxy
center. TLC: (silica gel; dichloromethane/2-propanol 9:1) Rf ) 0.5; (ethyl
acetate) Rf ) 0.2, 0.25; UV, PMA visualization. MS: [MH]+ 914.8, [MNa]+
936.8. 1H NMR (400 MHz, CD3OD): δ 1.30-1.45 (br m, 1H), 1.48-1.75
(br m, 3H), 1.94 (m, 2H), 2.07 (m, 1H), 2.32 (br m, 1H), 2.70-3.04
(complex m, 3H), 3.07-3.28 (complex m, 3H), 3.48-3.62 (m, 2H), 3.67
(m, 1H), 3.70 + 3.72 (2s, 3H), 4.05-4.13 (m, 1H), 4.37-4.57 (m, 2H),
4.60-4.78 (complex m, 3H), 5.18-5.40 (complex m, 2H), 5.23+ 5.25 (2s,
2H), 5.86 + 5.96 (minor + major m, 1H), 6.96 (m, 2H), 7.05-7.30 (m,
7H), 7.35 (m, 1H), 7.43 (m, 2H).
(26) Elaboration of 14 to the corresponding protected vinylogous tyrosine
(v-Tyr) intermediate could proceed via the following sequence of reac-
tions: (a) TBDMSCl, imidazole, DMF, room temperature; (b) LiBH4, THF,
EtOH, 0 °C to room temperature; (c) SO3‚Pyr, DMSO, Et3N, 5 °C to room
temperature; (d) Ph3PCHCO2t-Bu, CH2Cl2, 0 °C to room temperature.
Alternatively, construction of the corresponding v-Tyr analogue of 12
followed by application of the Passerini reaction, deprotection, and O- to
N-acyl migration sequence may also be a viable approach to this intermedi-
ate.
(27) For application of MCR to synthesis of macrocyclic peptides and
natural products, see: Doemling, A. Comb. Chem. High Throughput Screen.
1998, 1, 1 and references therein.
3304 Org. Lett., Vol. 3, No. 21, 2001

Contenu connexe

Tendances

Effect Of Ethanol In Oligodendrocytes, research miami
Effect Of Ethanol In Oligodendrocytes, research miamiEffect Of Ethanol In Oligodendrocytes, research miami
Effect Of Ethanol In Oligodendrocytes, research miamiLydia Cortes
 
Dissertation Defense
Dissertation DefenseDissertation Defense
Dissertation DefensePei-Ju Chin
 
Modulation of MMP and ADAM gene expression in human chondrocytes by IL-1 and OSM
Modulation of MMP and ADAM gene expression in human chondrocytes by IL-1 and OSMModulation of MMP and ADAM gene expression in human chondrocytes by IL-1 and OSM
Modulation of MMP and ADAM gene expression in human chondrocytes by IL-1 and OSMpjtkoshy
 
13_Marcu_Novel insights into CB1 receptor function_J Pharmacol Exp Ther
13_Marcu_Novel insights into CB1 receptor function_J Pharmacol Exp Ther13_Marcu_Novel insights into CB1 receptor function_J Pharmacol Exp Ther
13_Marcu_Novel insights into CB1 receptor function_J Pharmacol Exp TherJahan Marcu, Ph.D
 
IRJET- Subcellular Localization of Transmembrane E-cadherin-GFP Fusion Pr...
IRJET-  	  Subcellular Localization of Transmembrane E-cadherin-GFP Fusion Pr...IRJET-  	  Subcellular Localization of Transmembrane E-cadherin-GFP Fusion Pr...
IRJET- Subcellular Localization of Transmembrane E-cadherin-GFP Fusion Pr...IRJET Journal
 
Science 2013-schuenemann-179-83 leprosy önemli
Science 2013-schuenemann-179-83 leprosy önemliScience 2013-schuenemann-179-83 leprosy önemli
Science 2013-schuenemann-179-83 leprosy önemliHazal Sav
 
Fingolimod the path from a fungal metabolite to fda approved drug-biom255-sp...
Fingolimod  the path from a fungal metabolite to fda approved drug-biom255-sp...Fingolimod  the path from a fungal metabolite to fda approved drug-biom255-sp...
Fingolimod the path from a fungal metabolite to fda approved drug-biom255-sp...People with Multiple Sclerosis (Vic) Inc.
 
Targeting giants - the pharmacology of adhesions GPCRs
Targeting giants - the pharmacology of adhesions GPCRsTargeting giants - the pharmacology of adhesions GPCRs
Targeting giants - the pharmacology of adhesions GPCRsLaura Berry
 
Infect. Immun.-2016-Jain-439-51
Infect. Immun.-2016-Jain-439-51Infect. Immun.-2016-Jain-439-51
Infect. Immun.-2016-Jain-439-51Neena Jain
 
Sub-optimal phenotypes of double-knockout of E.coli
Sub-optimal phenotypes of double-knockout of E.coliSub-optimal phenotypes of double-knockout of E.coli
Sub-optimal phenotypes of double-knockout of E.coliDr Fatumina Abukar
 
Epigenetic regulation of rice flowering and reproduction
Epigenetic regulation of rice flowering and reproductionEpigenetic regulation of rice flowering and reproduction
Epigenetic regulation of rice flowering and reproductionRoshan Parihar
 
FASEBJ-2015-277350v1-Varisco
FASEBJ-2015-277350v1-VariscoFASEBJ-2015-277350v1-Varisco
FASEBJ-2015-277350v1-VariscoMontell Brown
 
RADIOPROTECTIVE EFFECT OF ASCORBIC ACID (VITAMIN C
RADIOPROTECTIVE EFFECT OF ASCORBIC ACID (VITAMIN CRADIOPROTECTIVE EFFECT OF ASCORBIC ACID (VITAMIN C
RADIOPROTECTIVE EFFECT OF ASCORBIC ACID (VITAMIN CMuhammad Bello Gusau
 
Temp-Sensitive Inhibition of Development in Dictyostelium - Dev Bio 251 18-26...
Temp-Sensitive Inhibition of Development in Dictyostelium - Dev Bio 251 18-26...Temp-Sensitive Inhibition of Development in Dictyostelium - Dev Bio 251 18-26...
Temp-Sensitive Inhibition of Development in Dictyostelium - Dev Bio 251 18-26...James Silverman
 

Tendances (20)

Effect Of Ethanol In Oligodendrocytes, research miami
Effect Of Ethanol In Oligodendrocytes, research miamiEffect Of Ethanol In Oligodendrocytes, research miami
Effect Of Ethanol In Oligodendrocytes, research miami
 
Dissertation Defense
Dissertation DefenseDissertation Defense
Dissertation Defense
 
Modulation of MMP and ADAM gene expression in human chondrocytes by IL-1 and OSM
Modulation of MMP and ADAM gene expression in human chondrocytes by IL-1 and OSMModulation of MMP and ADAM gene expression in human chondrocytes by IL-1 and OSM
Modulation of MMP and ADAM gene expression in human chondrocytes by IL-1 and OSM
 
OspC PNAS
OspC PNASOspC PNAS
OspC PNAS
 
13_Marcu_Novel insights into CB1 receptor function_J Pharmacol Exp Ther
13_Marcu_Novel insights into CB1 receptor function_J Pharmacol Exp Ther13_Marcu_Novel insights into CB1 receptor function_J Pharmacol Exp Ther
13_Marcu_Novel insights into CB1 receptor function_J Pharmacol Exp Ther
 
IRJET- Subcellular Localization of Transmembrane E-cadherin-GFP Fusion Pr...
IRJET-  	  Subcellular Localization of Transmembrane E-cadherin-GFP Fusion Pr...IRJET-  	  Subcellular Localization of Transmembrane E-cadherin-GFP Fusion Pr...
IRJET- Subcellular Localization of Transmembrane E-cadherin-GFP Fusion Pr...
 
Science 2013-schuenemann-179-83 leprosy önemli
Science 2013-schuenemann-179-83 leprosy önemliScience 2013-schuenemann-179-83 leprosy önemli
Science 2013-schuenemann-179-83 leprosy önemli
 
Fingolimod the path from a fungal metabolite to fda approved drug-biom255-sp...
Fingolimod  the path from a fungal metabolite to fda approved drug-biom255-sp...Fingolimod  the path from a fungal metabolite to fda approved drug-biom255-sp...
Fingolimod the path from a fungal metabolite to fda approved drug-biom255-sp...
 
Targeting giants - the pharmacology of adhesions GPCRs
Targeting giants - the pharmacology of adhesions GPCRsTargeting giants - the pharmacology of adhesions GPCRs
Targeting giants - the pharmacology of adhesions GPCRs
 
Defense
DefenseDefense
Defense
 
Infect. Immun.-2016-Jain-439-51
Infect. Immun.-2016-Jain-439-51Infect. Immun.-2016-Jain-439-51
Infect. Immun.-2016-Jain-439-51
 
Sub-optimal phenotypes of double-knockout of E.coli
Sub-optimal phenotypes of double-knockout of E.coliSub-optimal phenotypes of double-knockout of E.coli
Sub-optimal phenotypes of double-knockout of E.coli
 
Epigenetic regulation of rice flowering and reproduction
Epigenetic regulation of rice flowering and reproductionEpigenetic regulation of rice flowering and reproduction
Epigenetic regulation of rice flowering and reproduction
 
FASEBJ-2015-277350v1-Varisco
FASEBJ-2015-277350v1-VariscoFASEBJ-2015-277350v1-Varisco
FASEBJ-2015-277350v1-Varisco
 
Fiskum, Gary
Fiskum, GaryFiskum, Gary
Fiskum, Gary
 
A Simple Rule For Proteins To Follow
A Simple Rule For Proteins To FollowA Simple Rule For Proteins To Follow
A Simple Rule For Proteins To Follow
 
RADIOPROTECTIVE EFFECT OF ASCORBIC ACID (VITAMIN C
RADIOPROTECTIVE EFFECT OF ASCORBIC ACID (VITAMIN CRADIOPROTECTIVE EFFECT OF ASCORBIC ACID (VITAMIN C
RADIOPROTECTIVE EFFECT OF ASCORBIC ACID (VITAMIN C
 
Neocaridina denticulata
Neocaridina denticulataNeocaridina denticulata
Neocaridina denticulata
 
11u bio 03
11u bio 0311u bio 03
11u bio 03
 
Temp-Sensitive Inhibition of Development in Dictyostelium - Dev Bio 251 18-26...
Temp-Sensitive Inhibition of Development in Dictyostelium - Dev Bio 251 18-26...Temp-Sensitive Inhibition of Development in Dictyostelium - Dev Bio 251 18-26...
Temp-Sensitive Inhibition of Development in Dictyostelium - Dev Bio 251 18-26...
 

En vedette

Howard lake it's a digital minefield
Howard lake it's a digital minefieldHoward lake it's a digital minefield
Howard lake it's a digital minefieldsounddelivery
 
Penny Wrout Local Media Presentation
Penny Wrout Local Media PresentationPenny Wrout Local Media Presentation
Penny Wrout Local Media Presentationsounddelivery
 
ПРОЕКТНІ ЗАВДАННЯ ЯК ПРОПЕДЕВТИКА ПРОЕКТНОЇ ДІЯЛЬНОСТІ МОЛОДШИХ ШКОЛЯРІВ
ПРОЕКТНІ ЗАВДАННЯ ЯК ПРОПЕДЕВТИКА ПРОЕКТНОЇ ДІЯЛЬНОСТІ МОЛОДШИХ ШКОЛЯРІВ ПРОЕКТНІ ЗАВДАННЯ ЯК ПРОПЕДЕВТИКА ПРОЕКТНОЇ ДІЯЛЬНОСТІ МОЛОДШИХ ШКОЛЯРІВ
ПРОЕКТНІ ЗАВДАННЯ ЯК ПРОПЕДЕВТИКА ПРОЕКТНОЇ ДІЯЛЬНОСТІ МОЛОДШИХ ШКОЛЯРІВ Артём Бондаренко
 
Advanced motion controls ps16l40
Advanced motion controls ps16l40Advanced motion controls ps16l40
Advanced motion controls ps16l40Electromate
 
Flc star-tower-flc-star-tower-ha-dong
Flc star-tower-flc-star-tower-ha-dongFlc star-tower-flc-star-tower-ha-dong
Flc star-tower-flc-star-tower-ha-dongnicebluesky82vn
 
A freira e o hippie
A freira e o hippieA freira e o hippie
A freira e o hippiepietra bravo
 
ВИКОРИСТАННЯ ІНФОРМАЦІЙНИХ ТЕХНОЛОГІЙ НА УРОКАХ У ПОЧАТКОВИХ КЛАСАХ
ВИКОРИСТАННЯ ІНФОРМАЦІЙНИХ ТЕХНОЛОГІЙ НА УРОКАХ  У ПОЧАТКОВИХ КЛАСАХВИКОРИСТАННЯ ІНФОРМАЦІЙНИХ ТЕХНОЛОГІЙ НА УРОКАХ  У ПОЧАТКОВИХ КЛАСАХ
ВИКОРИСТАННЯ ІНФОРМАЦІЙНИХ ТЕХНОЛОГІЙ НА УРОКАХ У ПОЧАТКОВИХ КЛАСАХАртём Бондаренко
 
Cнятие мерок и построение чертежа юбки
Cнятие мерок и построение чертежа юбкиCнятие мерок и построение чертежа юбки
Cнятие мерок и построение чертежа юбкиТатьяна Думенко
 

En vedette (16)

toparch-logo
toparch-logotoparch-logo
toparch-logo
 
Howard lake it's a digital minefield
Howard lake it's a digital minefieldHoward lake it's a digital minefield
Howard lake it's a digital minefield
 
Penny Wrout Local Media Presentation
Penny Wrout Local Media PresentationPenny Wrout Local Media Presentation
Penny Wrout Local Media Presentation
 
ПРОЕКТНІ ЗАВДАННЯ ЯК ПРОПЕДЕВТИКА ПРОЕКТНОЇ ДІЯЛЬНОСТІ МОЛОДШИХ ШКОЛЯРІВ
ПРОЕКТНІ ЗАВДАННЯ ЯК ПРОПЕДЕВТИКА ПРОЕКТНОЇ ДІЯЛЬНОСТІ МОЛОДШИХ ШКОЛЯРІВ ПРОЕКТНІ ЗАВДАННЯ ЯК ПРОПЕДЕВТИКА ПРОЕКТНОЇ ДІЯЛЬНОСТІ МОЛОДШИХ ШКОЛЯРІВ
ПРОЕКТНІ ЗАВДАННЯ ЯК ПРОПЕДЕВТИКА ПРОЕКТНОЇ ДІЯЛЬНОСТІ МОЛОДШИХ ШКОЛЯРІВ
 
Advanced motion controls ps16l40
Advanced motion controls ps16l40Advanced motion controls ps16l40
Advanced motion controls ps16l40
 
Amando se
Amando seAmando se
Amando se
 
Flc star-tower-flc-star-tower-ha-dong
Flc star-tower-flc-star-tower-ha-dongFlc star-tower-flc-star-tower-ha-dong
Flc star-tower-flc-star-tower-ha-dong
 
India Tower
India TowerIndia Tower
India Tower
 
Plan de-vida
Plan de-vidaPlan de-vida
Plan de-vida
 
A freira e o hippie
A freira e o hippieA freira e o hippie
A freira e o hippie
 
CBD HQ Offices
CBD HQ OfficesCBD HQ Offices
CBD HQ Offices
 
MCR
MCRMCR
MCR
 
ВИКОРИСТАННЯ ІНФОРМАЦІЙНИХ ТЕХНОЛОГІЙ НА УРОКАХ У ПОЧАТКОВИХ КЛАСАХ
ВИКОРИСТАННЯ ІНФОРМАЦІЙНИХ ТЕХНОЛОГІЙ НА УРОКАХ  У ПОЧАТКОВИХ КЛАСАХВИКОРИСТАННЯ ІНФОРМАЦІЙНИХ ТЕХНОЛОГІЙ НА УРОКАХ  У ПОЧАТКОВИХ КЛАСАХ
ВИКОРИСТАННЯ ІНФОРМАЦІЙНИХ ТЕХНОЛОГІЙ НА УРОКАХ У ПОЧАТКОВИХ КЛАСАХ
 
Cнятие мерок и построение чертежа юбки
Cнятие мерок и построение чертежа юбкиCнятие мерок и построение чертежа юбки
Cнятие мерок и построение чертежа юбки
 
Randa CV
Randa CVRanda CV
Randa CV
 
Via 09 2013 tee
Via 09 2013 teeVia 09 2013 tee
Via 09 2013 tee
 

Similaire à Ct Modell JES Org Lett

TFA Passerini JES Org Lett
TFA Passerini JES Org LettTFA Passerini JES Org Lett
TFA Passerini JES Org LettJ. Edward Semple
 
Tfa_N-methylation
Tfa_N-methylationTfa_N-methylation
Tfa_N-methylationJordan Gipe
 
Мутации бактерий на арене с антибиотиками
Мутации бактерий на арене с антибиотикамиМутации бактерий на арене с антибиотиками
Мутации бактерий на арене с антибиотикамиAnatol Alizar
 
Catalytic Antibodies_JACS 1987 Powell et. al.
Catalytic Antibodies_JACS 1987 Powell et. al.Catalytic Antibodies_JACS 1987 Powell et. al.
Catalytic Antibodies_JACS 1987 Powell et. al.Michael Powell
 
Pandey_et_al-2008-Journal_of_Neurochemistry
Pandey_et_al-2008-Journal_of_NeurochemistryPandey_et_al-2008-Journal_of_Neurochemistry
Pandey_et_al-2008-Journal_of_NeurochemistryMritunjay Pandey
 
JOC '98 (Dihydro)Pipercide
JOC '98 (Dihydro)PipercideJOC '98 (Dihydro)Pipercide
JOC '98 (Dihydro)PipercideJ. Edward Semple
 
Thesis defense - QUANG ONG - FINAL
Thesis defense - QUANG ONG - FINALThesis defense - QUANG ONG - FINAL
Thesis defense - QUANG ONG - FINALQuang Ong
 
BMCL P1Bicyclic Arg Surrogates
BMCL  P1Bicyclic Arg SurrogatesBMCL  P1Bicyclic Arg Surrogates
BMCL P1Bicyclic Arg SurrogatesJ. Edward Semple
 
JMC 1996 39 4531LactamSulf
JMC 1996 39 4531LactamSulfJMC 1996 39 4531LactamSulf
JMC 1996 39 4531LactamSulfJ. Edward Semple
 
B. Zhao paper2-JACS 2005.water soluble SWNT
B. Zhao paper2-JACS 2005.water soluble SWNTB. Zhao paper2-JACS 2005.water soluble SWNT
B. Zhao paper2-JACS 2005.water soluble SWNTbinzhao2004
 
Sortase A Inhibition By Ugi Products
Sortase A Inhibition By Ugi ProductsSortase A Inhibition By Ugi Products
Sortase A Inhibition By Ugi Productsdavidabulger
 
A Lovatt and Roberst IS. Micobiology 1994
A Lovatt and Roberst IS. Micobiology 1994A Lovatt and Roberst IS. Micobiology 1994
A Lovatt and Roberst IS. Micobiology 1994Archie Lovatt
 
2010 terachem-technetium-symp-mazzi-final program
2010 terachem-technetium-symp-mazzi-final program2010 terachem-technetium-symp-mazzi-final program
2010 terachem-technetium-symp-mazzi-final programKonstantin German
 

Similaire à Ct Modell JES Org Lett (20)

TFA Passerini JES Org Lett
TFA Passerini JES Org LettTFA Passerini JES Org Lett
TFA Passerini JES Org Lett
 
HCAM Org Lett 2000 2 19
HCAM Org Lett 2000 2 19HCAM Org Lett 2000 2 19
HCAM Org Lett 2000 2 19
 
Tet. Lett. Eurystatin TS
Tet. Lett. Eurystatin TSTet. Lett. Eurystatin TS
Tet. Lett. Eurystatin TS
 
joc1998
joc1998joc1998
joc1998
 
Tfa_N-methylation
Tfa_N-methylationTfa_N-methylation
Tfa_N-methylation
 
SBrand_VLA4
SBrand_VLA4SBrand_VLA4
SBrand_VLA4
 
Мутации бактерий на арене с антибиотиками
Мутации бактерий на арене с антибиотикамиМутации бактерий на арене с антибиотиками
Мутации бактерий на арене с антибиотиками
 
SBrand_Paquette
SBrand_PaquetteSBrand_Paquette
SBrand_Paquette
 
Catalytic Antibodies_JACS 1987 Powell et. al.
Catalytic Antibodies_JACS 1987 Powell et. al.Catalytic Antibodies_JACS 1987 Powell et. al.
Catalytic Antibodies_JACS 1987 Powell et. al.
 
Pandey_et_al-2008-Journal_of_Neurochemistry
Pandey_et_al-2008-Journal_of_NeurochemistryPandey_et_al-2008-Journal_of_Neurochemistry
Pandey_et_al-2008-Journal_of_Neurochemistry
 
JOC '98 (Dihydro)Pipercide
JOC '98 (Dihydro)PipercideJOC '98 (Dihydro)Pipercide
JOC '98 (Dihydro)Pipercide
 
Thesis defense - QUANG ONG - FINAL
Thesis defense - QUANG ONG - FINALThesis defense - QUANG ONG - FINAL
Thesis defense - QUANG ONG - FINAL
 
2007 sdarticlenon-biotin
2007 sdarticlenon-biotin2007 sdarticlenon-biotin
2007 sdarticlenon-biotin
 
Artículo alzheimer
Artículo alzheimerArtículo alzheimer
Artículo alzheimer
 
BMCL P1Bicyclic Arg Surrogates
BMCL  P1Bicyclic Arg SurrogatesBMCL  P1Bicyclic Arg Surrogates
BMCL P1Bicyclic Arg Surrogates
 
JMC 1996 39 4531LactamSulf
JMC 1996 39 4531LactamSulfJMC 1996 39 4531LactamSulf
JMC 1996 39 4531LactamSulf
 
B. Zhao paper2-JACS 2005.water soluble SWNT
B. Zhao paper2-JACS 2005.water soluble SWNTB. Zhao paper2-JACS 2005.water soluble SWNT
B. Zhao paper2-JACS 2005.water soluble SWNT
 
Sortase A Inhibition By Ugi Products
Sortase A Inhibition By Ugi ProductsSortase A Inhibition By Ugi Products
Sortase A Inhibition By Ugi Products
 
A Lovatt and Roberst IS. Micobiology 1994
A Lovatt and Roberst IS. Micobiology 1994A Lovatt and Roberst IS. Micobiology 1994
A Lovatt and Roberst IS. Micobiology 1994
 
2010 terachem-technetium-symp-mazzi-final program
2010 terachem-technetium-symp-mazzi-final program2010 terachem-technetium-symp-mazzi-final program
2010 terachem-technetium-symp-mazzi-final program
 

Plus de J. Edward Semple

Semple et al 2016 J Poly Sci_Part_A__Polymer_Chemistry
Semple et al 2016 J Poly Sci_Part_A__Polymer_ChemistrySemple et al 2016 J Poly Sci_Part_A__Polymer_Chemistry
Semple et al 2016 J Poly Sci_Part_A__Polymer_ChemistryJ. Edward Semple
 
HCV Overview Boceprevir & Thiazolides JES_mod062116
HCV Overview Boceprevir & Thiazolides JES_mod062116HCV Overview Boceprevir & Thiazolides JES_mod062116
HCV Overview Boceprevir & Thiazolides JES_mod062116J. Edward Semple
 
JES DuPont & Shell Ag Chem Overview 0616
JES DuPont & Shell Ag Chem Overview 0616JES DuPont & Shell Ag Chem Overview 0616
JES DuPont & Shell Ag Chem Overview 0616J. Edward Semple
 
Semple-PMSE.519-ACS Denver
Semple-PMSE.519-ACS DenverSemple-PMSE.519-ACS Denver
Semple-PMSE.519-ACS DenverJ. Edward Semple
 
Semple et al. TZD SAR in HCV 2011 J Med Chem
Semple et al. TZD SAR in HCV 2011 J Med ChemSemple et al. TZD SAR in HCV 2011 J Med Chem
Semple et al. TZD SAR in HCV 2011 J Med ChemJ. Edward Semple
 
Semple et al. TZD SAR in HBV 2011 J Med Chem
Semple et al. TZD SAR in HBV 2011 J Med ChemSemple et al. TZD SAR in HBV 2011 J Med Chem
Semple et al. TZD SAR in HBV 2011 J Med ChemJ. Edward Semple
 

Plus de J. Edward Semple (7)

Semple et al 2016 J Poly Sci_Part_A__Polymer_Chemistry
Semple et al 2016 J Poly Sci_Part_A__Polymer_ChemistrySemple et al 2016 J Poly Sci_Part_A__Polymer_Chemistry
Semple et al 2016 J Poly Sci_Part_A__Polymer_Chemistry
 
HCV Overview Boceprevir & Thiazolides JES_mod062116
HCV Overview Boceprevir & Thiazolides JES_mod062116HCV Overview Boceprevir & Thiazolides JES_mod062116
HCV Overview Boceprevir & Thiazolides JES_mod062116
 
JES DuPont & Shell Ag Chem Overview 0616
JES DuPont & Shell Ag Chem Overview 0616JES DuPont & Shell Ag Chem Overview 0616
JES DuPont & Shell Ag Chem Overview 0616
 
JOC '96 OH-Ester HPI
JOC '96 OH-Ester HPIJOC '96 OH-Ester HPI
JOC '96 OH-Ester HPI
 
Semple-PMSE.519-ACS Denver
Semple-PMSE.519-ACS DenverSemple-PMSE.519-ACS Denver
Semple-PMSE.519-ACS Denver
 
Semple et al. TZD SAR in HCV 2011 J Med Chem
Semple et al. TZD SAR in HCV 2011 J Med ChemSemple et al. TZD SAR in HCV 2011 J Med Chem
Semple et al. TZD SAR in HCV 2011 J Med Chem
 
Semple et al. TZD SAR in HBV 2011 J Med Chem
Semple et al. TZD SAR in HBV 2011 J Med ChemSemple et al. TZD SAR in HBV 2011 J Med Chem
Semple et al. TZD SAR in HBV 2011 J Med Chem
 

Ct Modell JES Org Lett

  • 1. Atom-Economical Synthesis of the N(10)−C(17) Fragment of Cyclotheonamides via a Novel Passerini Reaction−Deprotection−Acyl Migration Strategy1 Timothy D. Owens and J. Edward Semple* Department of Medicinal Chemistry, CorVas International, Inc., 3030 Science Park Road, San Diego, California 92121 ed_semple@corVas.com Received August 1, 2001 ABSTRACT A novel variant of the atom-economical Passerini reaction between suitably protected argininal, dipeptide isonitrile, and proline components afforded adduct 13. Orthogonal N-deprotection of 13 led, via a smooth O- to N-acyl migration, to 14, which constitutes the N(10)−C(17) fragment of the cyclotheonamide family of serine protease inhibitors. Each reaction in this three-step protocol proceeds in good yield and under very mild conditions. Peptidyl and peptidomimetic R-ketoamide scaffolds are useful in small molecule drug discovery programs as transition-state analogue (TSA) protease inhibitors.2 Such covalent inhibitors generally exhibit potent in vitro enzyme inhibitory activity, with sub-nanomolar equilibrium inhibitor constants (Ki) being typical of representative members.3 Accordingly, they are finding increasing applications as potential therapeutics for important disease indications.4-7 The cyclotheonamides CtA-CtE3 (1a-g, Figure 1) con- stitute a growing family of 19-membered macrocyclic pentapeptide derivatives isolated from the marine sponge Theonella swinhoei.8 All contain the unusual vinylogous L-tyrosine, L-R-ketohomoarginine, and β-linked L-diamino- propanoic acid moieties in addition to more common L-proline and hydrophobic D-phenylalanine, D-leucine, or (1) Dedicated to Ruth F. Nutt, respected and admired mentor, on the occasion of her 60th birthday. (2) Semple, J. E. Abstracts of Papers, 219th National Meeting of the American Chemical Society, San Francisco, CA, March 26-30, 2000; American Chemical Society: Washington, DC, 2000; ORGN 667. (3) (a) R-Ketoamide serine protease inhibitors: Semple, J. E.; Levy, O. E.; Minami, N. K.; Owens, T. D.; Siev, D. V. Bioorg. Med. Chem. Lett. 2000, 10, 2305. (b) Semple, J. E.; Rowley, D. C.; Brunck, T. K.; Ripka, W. C. Bioorg. Med. Chem. Lett. 1997, 7, 315. (c) R-Ketoamide cysteine protease inhibitors: Nakamura, M.; Inoue, J.; Yamada, T. Bioorg. Med. Chem. Lett. 2000, 10, 2807. (d) Otto, H. H.; Schirmeister, T. Chem. ReV., 1997, 97, 133. (4) NS3-4A Hepatitis C protease and inhibitors thereof: (a) Bennett, J. M. et al. Bioorg. Med. Chem. Lett. 2001, 11, 355. (b) Hoofnagle, J. H.; Di Bisceglie, A. M. N. Engl. J. Med. 1997, 336, 347. (5) HIV protease inhibitors: Sheha, M. M.; Mahfouz, N. M.; Hassan, H. Y.; Youssef, A. F.; Mimoto, T.; Kiso, Y. Eur. J. Med. Chem. 2000, 35, 887. (6) Calpain inhibitors: (a) De Biasi, R. L.; Edelstein, C. L.; Sherry, B.; Tyler, K. L. J. Virol. 2001, 75, 351. (b) Harbeson, S. L.; Abelleira, S. M.; Akiyama, A.; Barrett, R.; Carroll, R. M.; Straub, J. A.; Tkacz, J. N.; Wu, C.; Musso, G. J. Med. Chem. 1994, 37, 2918. (7) HCMV protease inhibitors: LaPlante, S. R.; Bonneau, P. R.; Aubry, N.; Cameron, D. R.; Deziel, R.; Grande-Maitre, C.; Plouffe, C.; Tong, L.; Kawai, S. H. J. Am. Chem. Soc. 1999, 121, 2974. ORGANIC LETTERS 2001 Vol. 3, No. 21 3301-3304 10.1021/ol0165239 CCC: $20.00 © 2001 American Chemical Society Published on Web 09/27/2001
  • 2. D-isoleucine subunits. They are potent, slow-binding inhibi- tors of several important trypsin-like serine proteases includ- ing thrombin (factor IIa), factor Xa, trypsin, plasmin, and tissue plasminogen activator.9 From this group, CtA (1a) and CtE (1e) express the most potent thrombin inhibitory activity with Ki values of e1 and 2.9 nM, respectively. Such potent biological activity is derived from the key pharmacophore, an electrophilic R-ketoargininamide group, which docks into the S1 pocket of serine proteases and engages the catalytic triad serine hydroxyl group to form a hemiketal (TSA) intermediate, which effectively but reversibly inhibits the enzyme. Previous routes10 to the cyclotheonamides proceeded via construction of individual protected amino acid subunits, peptide couplings, macrocyclization, and late stage oxidation to install the reactive ketoamide residue. In all cases, protected R-hydroxy-β-homoarginine derivatives served as the key L-R-ketohomoarginine precursors. They were pre- pared by multistep homologation-hydrolysis approaches from arginine or ornithine precursors via cyanohydrin10c,d (6- 11 steps), orthothioformate,10a,e (7-8 steps) or furyllithium addition-oxidation10b (5 steps) protocols. Our interest in the design and synthesis of novel classes of R-ketoamides as small molecule inhibitors of serine proteases, including prolyl endopeptidase,11 thrombin,12 factor Xa,3a,13 urokinase,14 and NS3A hepatitis C protease,4 led us to investigate multiple- component reaction-based (MCR) approaches to R-hydroxy- β-aminocarboxylic acid and amide derivatives. These ver- satile, stable intermediates readily undergo oxidation to ketoamide targets. Utilizing the appropriate N-R-protected amino aldehyde precursors 2 (Figure 2), we recently disclosed novel varia- tions of the atom-economical Passerini reaction15 for the direct production of either R-acyloxy-β-amino amides 32,16 or R-hydroxy-β-amino amide derivatives 4.2,16,17 In our hands, (8) (a) CtA and CtB: Fusetani, N.; Matsunaga, S.; Matsumoto, H.; Takebayashi, Y. J. Am. Chem. Soc. 1990, 112, 7053. (b) CtC, CtD, and CtE: Nakao, Y.; Matsunaga, S.; Fusetani, N. Bioorg. Med. Chem. 1995, 3, 1115. (c) CtE2 and CtE3: Nakao, Y.; Oku, N.; Matsunaga, S.; Fusetani, N. J. Nat. Prod. 1998, 61, 667. (9) (a) Maryanoff, B. E.; Qui, X.; Padmanabhan, K. P.; Tulinsky, A.; Almond, H. R.; Andrade-Gordon, P.; Greco, M. N.; Kauffman, J. A.; Nicolaou, K. C.; Liu, A.; Brungs, P. H.; Fusetani, N. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 8048. (b) Lewis, S. D.; Ng, A. S.; Baldwin, J. J.; Fusetani, N.; Naylor, A. M.; Shafer, J. A. Thrombosis Res. 1993, 70, 173. (10) Cyclotheonamides, total synthesis: (a) Bastiaans, H. M. M.; van der Baan, J. L.; Ottenheijm, H. C. J. J. Org. Chem. 1997, 62, 3880. (b) Deng, J.; Hamada, Y.; Shioiri, T. Tetrahedron Lett. 1996, 37, 2261. (c) Maryanoff, B. E.; Greco, M. N.; Zhang, H. C.; Andrade-Gordon, P.; Kauffman, J. A.; Nicolaou, K. C.; Liu, A.; Brungs, P. H. J. Am. Chem. Soc. 1995, 117, 1225. (d) Wipf, P.; Kim, H. J. Org. Chem. 1993, 58, 5592. (e) Hagihara, M.; Schreiber, S. L. J. Am. Chem. Soc. 1992, 114, 6570. (11) Total synthesis of the PEP inhibitor Eurystatin A: Owens, T. D.; Araldi, G. L.; Nutt, R. F.; Semple, J. E. Tetrahedron Lett. 2001, 42, 6271. (12) Thrombin inhibitors: (a) Reiner, J. E.; Lim-Wilby, M. S.; Brunck, T. K.; Uong, T. H.; Goldman, E. A.; Abelman, M. A.; Nutt, R. F.; Semple. J. E.; Tamura S. Y. Bioorg. Med. Chem. Lett. 1999, 9, 895. (b) Semple, J. E. Tetrahedron Lett. 1998, 39, 6645. (c) Semple, J. E.; Rowley, D. C.; Brunck, T. K.; Uong, T. H.; Minami, N. K.; Owens, T. D.; Tamura, S. Y.; Goldman, E. A.; Siev, D. V.; Ardecky, R. J.; Carpenter, S. H.; Ge, Y.; Richard, B. M.; Hakanson, K.; Tulinsky, A.; Nutt, R. F.; Ripka, W. C. J. Med. Chem. 1996, 39, 4531. (13) FXa inhibitors: (a) Tamura, S. Y.; Levy, O. E.; Reiner, J. E.; Uong, T. H.; Goldman, E. A.; Brunck, T. K.; Semple, J. E. Bioorg. Med. Chem. Lett. 2000, 10, 745. (b) Ho, J. Z.; Levy, O. E.; Gibson, T. S.; Nguyen, K.; Semple, J. E. Bioorg. Med. Chem. Lett. 1999, 9, 3459. (c) Tamura, S. Y.; Goldman, E. A.; Bergum, P. W.; Semple, J. E. Bioorg. Med. Chem. Lett. 1999, 9, 2573. (14) uPA inhibitors: (a) Tamura, S. Y.; Weinhouse, M. I.; Roberts, C. A.; Goldman, E. A.; Masukawa, K.; Anderson, S. M.; Cohen, C. R.; Bradbury, A. E.; Bernadino, V. T.; Dixon, S. A.; Ma, M. G.; Nolan, T. G.; Brunck, T. K. Bioorg. Med. Chem. Lett. 2000, 10, 983. (15) Passerini reaction: (a) Passerini, M. Gazz. Chim. Ital. 1921, 51, 126. (b) Passerini, M.; Ragni, G. Gazz. Chim. Ital. 1931, 61, 964. (c) Authoritative review: Ugi, I. In Isonitrile Chemistry; Ugi, I., Ed.; Academic Press: New York, 1971; Chapter 7. (d) TiCl4 activation: Carofiglio, T. et al. Organometallics 1993, 12, 2726. (e) Seebach, D.; Adam, G.; Gees, T.; Schiess, M.; Weigand, W. Chem. Ber. 1988, 121, 507. (f) Seebach, D.; Schiess, M. HelV. Chim. Acta 1983, 66, 1618. (16) Semple, J. E.; Levy, O. E. PCT Int. Appl. WO 0035868 A2, June, 2000. Figure 1. Representative examples of biologically active R-keto- amides: members of the cyclotheonamide (Ct) class of marine natural products. Figure 2. Passerini MCR strategy for the construction of R-hy- droxy-β-amino amides 4 and 6 and their potential elaboration into the R-ketoamide subunit 7. PG denotes N-protecting group. 3302 Org. Lett., Vol. 3, No. 21, 2001
  • 3. N-deprotection of 3 under mild conditions generated the R-acyloxy-β-amino intermediate 5, which underwent a smooth O- to N-acyl shift and provided adduct 6 in high yield. Intermediates 4 and 6 routinely serve as useful advanced precursors to R-ketoamide derivatives 7 by oxida- tion, preferably at a very late synthetic stage. The recent report by Banfi et al.18 on a related process prompts us to disclose our application of the Passerini reaction- deprotection-acyl migration strategy toward a concise synthesis of the N(10)-C(17) fragment of CtA (1a) and CtB (1b). As outlined in Scheme 1,19 commercially available N-R- Boc-Ng -nitroarginine 8 was converted in two steps to the corresponding Weinreb amide, which was reduced with lithium aluminum hydride to afford N-R-Boc-Ng -nitro- argininal 9 in 65% overall yield (100 g scale).20 An alternate route to 9 proceeded via borane reduction of 8 to the corresponding argininol (MeOH quench, 300 g scale) fol- lowed by efficient oxidation in DMSO employing the Parikh-von Doering protocol21 to deliver 9 in 71-76% overall yield (10-20 g scale). Concurrent acid-catalyzed esterification and N-deprotection of the commercially available tyrosine derivative 10 followed by EDC/HOBt-mediated peptide coupling with Fmoc-D- phenylalanine afforded the corresponding dipeptide 11 in nearly quantitative overall yield. Sequential N-deprotection, N-formylation, and mild diphosgene-mediated formamide dehydration according to the Ugi protocol22 afforded the configurationally stable23 dipeptide isonitrile 12 in satisfac- tory overall yield. The key Passerini reaction between argininal 9, isonitrile 12, and N-Alloc-proline fragments proceeded under very mild, essentially neutral conditions over 2 days and delivered (17) Semple, J. E.; Owens, T. D.; Nguyen, K.; Levy. O. E. Org. Lett. 2000, 2, 2769. (18) Banfi, L.; Guanti, G.; Riva, R. Chem. Commun. 2000, 985. (19) All new compounds were characterized by full spectroscopic (NMR, low/high resolution MS) analysis. Yields refer to spectroscopically and chromatographically homogeneous (g95% by HPLC, TLC) materials. (20) Tamura, S. Y.; Semple, J. E.; Ardecky, R. J.; Leon, P.; Carpenter, S. H.; Ge, Y.; Shamblin, B. M.; Weinhouse, M. I.; Ripka, W. C.; Nutt, R. F. Tetrahedron Lett. 1996, 37, 4109. (21) (a) Parikh, J. R.; Doering, W. V. E. J. Am. Chem. Soc. 1967, 89, 5505. (b) Reviews: Tidwell, T. T. Synthesis 1990, 857. (c) Tidwell, T. T. Org. React. 1990, 39, 297. (d) Mancuso, A. J.; Swern, D. Synthesis 1981, 165. (22) (a) Skorna, G.; Ugi, I. Angew. Chem., Int. Ed. Engl. 1977, 16, 259. (b) Giesemann, G.; von Hinrichs, E.; Ugi, I. J. Chem Res. (S) 1982, 79. (c) Periasamy, M. P.; Walborsky, H. M. Org. Prep. Proced. Int. 1979, 11, 293. (23) Dipeptide isonitriles prepared by this method retain their chiral integrity: Urban, R.; Marquarding, D.; Seidel, P.; Ugi, I. Chem. Ber. 1977, 110, 2012. (24) Experimental Details for 13. A solution of 9 (382.2 mg, 1.26 mmol), N-Alloc-proline (298.0 mg, 1.50 mmol), and isonitrile 12 (590.0 mg, 1.15 mmol) in anhydrous dichloromethane (4.6 mL) was stirred at ambient temperature for 16 h. Solvent was slowly removed in vacuo, and the resultant thick residue was stirred for 1 day. Standard extractive workup in ethyl acetate gave a crude product, which was purified by silica gel flash chromatography using dichloromethane/isopropanol 98:2 as eluent to afford 690 mg (59.3% yield) of product 13 as an amorphous, colorless solid. RP- HPLC analysis (Vydac 5 m C18, 5-75% CH3CN, H2O with 0.1% TFA): tR ) 21.1 and 21.3 min, 1.6:1 mixture at diastereomeric R-acyloxy center. TLC: (silica gel; dichloromethane/isopropanol 9:1) Rf ) 0.6; (ethyl acetate) Rf ) 0.4, 0.3; UV, PMA visualization. MS: [MH]+ 1013.9, [MNa]+ 1035.9. 1H NMR (400 MHz, CD3OD): δ 1.40 + 1.45 (2s, 9H), 1.32-1.47 (obscured m, 2H), 1.49-1.70 (m, 2H), 1.90-2.12 (m, 3H), 2.30 (m, 1H), 2.70-2.89 (complex br m, 1H), 2.95 (m, 1H), 3.02-3.25 (complex m, 4H), 3.39- 3.59 (m, 2H), 3.68 + 3.72 (major + minor s, 3H, ratio ∼1.4-1.6:1), 3.88 + 4.01 (2m, 1H), 4.40 (m, 1H), 4.50 (m, 2H), 4.57-4.76 (complex m, 2H), 5.03 + 5.11 (minor + major m, 1H R-CHO-acyl methine, ratio 1:2), 5.16-5.37 (m, 2H), 5.25 + 5.27 (2s, 2H), 5.85 + 5.97 (minor + major m, 1H), 6.95 (m, 2H), 7.03-7.14 (m, 4H), 7.16-7.29 (m, 3H), 7.35 (m, 1H), 7.44 (m, 2H). Scheme 1a a Reagents and conditions: (a) i-BuOCOCl, NMP, THF, -5 °C; (b) Me(OMe)NH, -5 °C to rt, 88%; (c) LiAlH4, THF, -78 °C; KHSO4, H2O, -70 to -30 °C, 74%; (d) BH3, THF, -78 to -20 °C, 12 h; MeOH, -78 °C to rt, 95%; (e) SO3‚Pyr, DMSO, Et3N, 5 °C to rt, 1 h, 75-80%; (f) MeOH, HCl, 0 °C to rt, 98%; (g) Fmoc-D-Phe-OH, EDC, HOBt, NMM, CH3CN, rt, quant; (h) Et2NH, CH2Cl2, 0 °C to rt, 99%; (i) HCO2H, Ac2O, CH2Cl2, rt to reflux, 79%; (j) CCl3OCOCl, NMM, -40 to 0 °C, CH2Cl2, 75%; (k) Alloc- Pro-OH, Boc-Arg(NO2)-H (9), CH2Cl2, 0 °C to rt, 2 days, 59%; (l) HCl, MeOH, 0 °C to rt, quant.; (m) Et3N, pH 9, MeOH, 0 °C to rt, 15 h, 98%. Org. Lett., Vol. 3, No. 21, 2001 3303
  • 4. the complex adduct 13 in a gratifying, albeit unoptimized 59% yield.24 Analysis of 13 by RP-HPLC or chiral HPLC on Chiracel AD revealed two peaks (ratio ≈ 1.6:1), indicating formation of one diastereomeric pair at the newly created R-acyloxy center. Therefore, the integrity of all four original chiral centers was preserved during the course of the reaction. Acid-catalyzed N-Boc cleavage of 13 afforded the corre- sponding stable vicinal O-acyloxyamine hydrochloride salt quantitatively. Dissolution of this salt in methanol and adjustment of the solution pH to ∼9 with triethylamine led, via facile O- to N-acyl migration, to the desired advanced intermediate 14 in practically quantitative overall yield (cf. 5 to 6 in Figure 2).25 Model compound 14 constitutes the N(10)-C(17) region of CtA (1a) and CtB (1b) and may be deemed a suitable precursor for their total synthesis.26 We envision that application of this three-step sequence to the appropriately protected isonitrile derivative of D-phe- tyr(vinyl), argininal, and diaminopropionyl-proline compo- nents would lead directly to the entire acyclic skeleton of 1a and 1b. Our approach to the advanced cyclotheonamide intermedi- ate 14 via the key Passerini reaction-deprotection-acyl migration strategy is convergent and highly efficient. Pro- ceeding in just eight steps (longest linear sequence) and in 33% overall yield from a commercially available tyrosine derivative, it is complementary to other current multistep routes to similar intermediates.9a,10 In conclusion, the utility of this technology for the rapid construction of relatively complex R-ketoamide natural product precursors is highlighted by the concise synthesis of 14, which serves as a model for the N(10)-C(17) segment of CtA (1a) and CtB (1b). The key Passerini reaction, deprotection, and O- to N-acyl migration steps proceed in moderate to high yields and under mild conditions. Other noteworthy features include operational simplicity and high atom-economy. Interest in efficient synthetic approaches to linear3,17 and cyclic R-ketoamide protease inhibitors2,11 leads us to speculate on alternate intramolecular variants that might directly provide advanced macrocyclic intermediates, thus further expanding the utility of this atom-economical proc- ess.27 Numerous applications of this new technology to the synthesis of R-ketoamide natural products and protease inhibitors are envisioned and will form the basis of forth- coming publications from our laboratories. Acknowledgment. Stimulating discussions with R. F. Nutt, T. K. Brunck, O. E. Levy, S. Y. Tamura, and K. E. Pryor are gratefully acknowledged. OL0165239 (25) Experimental Details for 14. To a solution of 13 (675 mg, 0.666 mmol) in anhydrous methanol (5 mL) at 0 °C was added freshly prepared 5 N HCl in anhydrous methanol (10 mL, 50 mmol). After 40 min at 0 °C the solvent was removed in vacuo. The residue was dissolved in fresh 10 mL portions of anhydrous acetonitrile, re-evaporated (repeated twice), and then evaporated once from a 10 mL portion of dichloromethane. High vacuum pumping for several hours afforded 645 mg (102% of theory, ∼quantitative yield) of the corresponding O-acyloxyamine hydrochloride as a pale tan foam, which was used in the following reaction. To a solution of amine salt (625 mg, 0.658 mmol) in anhydrous methanol (3.3 mL) was added Et3N (134.6 mg, 1.33 mmol, 185 mL). The solution was stirred at ambient temperature for 2 h, during which time a thick yellow slurry formed. The solvent was removed, and the residue was dissolved in 200 mL of ethyl acetate, extracted successively with 20 mL portions of 1 N HCl, saturated NaHCO3 solution (2×), water, and brine, and then dried over anhydrous MgSO4. Filtration, solvent removal, and filtration through a short silica gel column using dichloromethane/2-propanol 9:1 as eluent gave 588 mg (97.9% yield) of product 14 as a nearly colorless, amorphous solid. RP-HPLC analysis (Vydac 5 m C18, 5-75% CH3CN, H2O with 0.1% TFA): tR ) 19.1 and 19.5 min, 1.6:1 ratio at diastereomeric R-hydroxy center. TLC: (silica gel; dichloromethane/2-propanol 9:1) Rf ) 0.5; (ethyl acetate) Rf ) 0.2, 0.25; UV, PMA visualization. MS: [MH]+ 914.8, [MNa]+ 936.8. 1H NMR (400 MHz, CD3OD): δ 1.30-1.45 (br m, 1H), 1.48-1.75 (br m, 3H), 1.94 (m, 2H), 2.07 (m, 1H), 2.32 (br m, 1H), 2.70-3.04 (complex m, 3H), 3.07-3.28 (complex m, 3H), 3.48-3.62 (m, 2H), 3.67 (m, 1H), 3.70 + 3.72 (2s, 3H), 4.05-4.13 (m, 1H), 4.37-4.57 (m, 2H), 4.60-4.78 (complex m, 3H), 5.18-5.40 (complex m, 2H), 5.23+ 5.25 (2s, 2H), 5.86 + 5.96 (minor + major m, 1H), 6.96 (m, 2H), 7.05-7.30 (m, 7H), 7.35 (m, 1H), 7.43 (m, 2H). (26) Elaboration of 14 to the corresponding protected vinylogous tyrosine (v-Tyr) intermediate could proceed via the following sequence of reac- tions: (a) TBDMSCl, imidazole, DMF, room temperature; (b) LiBH4, THF, EtOH, 0 °C to room temperature; (c) SO3‚Pyr, DMSO, Et3N, 5 °C to room temperature; (d) Ph3PCHCO2t-Bu, CH2Cl2, 0 °C to room temperature. Alternatively, construction of the corresponding v-Tyr analogue of 12 followed by application of the Passerini reaction, deprotection, and O- to N-acyl migration sequence may also be a viable approach to this intermedi- ate. (27) For application of MCR to synthesis of macrocyclic peptides and natural products, see: Doemling, A. Comb. Chem. High Throughput Screen. 1998, 1, 1 and references therein. 3304 Org. Lett., Vol. 3, No. 21, 2001