SlideShare une entreprise Scribd logo
1  sur  16
Télécharger pour lire hors ligne
FACULTAD DE CIENCIAS BÁSICAS
MAESTRÍA EN ENSEÑANZA DE LA FÍSICA
ELECTROMAGNETISM
Professor: Jimmy A. Cortes, José A. Chaves
VECTOR ANALYSIS AN INTRODUCTION
Verification of the properties of the scalar and vector product in R3
using general vector
expressions
Produced by:
Jhon F. González, Gelver Osorio, Julián F. Villada
April 8, 2021
Part I
Scalar product
1 Properties of dot product (Proof)
Carry out the verification of the properties of the scalar and vector product in R3
using general vector expres-
sions such as:
~
u = (ux,uy,uz); ~
v = (vx,vy,vz); ~
w = (wx,wy,wz).
1. The dot product is distributive over vector addition:
~
u·(~
v+ ~
w) = ~
u·~
v+~
u· ~
w
Proof:
Assuming that the vectors ~
u, ~
v and ~
w are represented by ~
u = (ux,uy,uz), ~
v = (vx,vy,vz) and ~
w =
(wx,wy,wz), then we have:
~
u·(~
v+ ~
w) = (ux,uy,uz)· (vx,vy,vz)+(wx,wy,wz)

~
u·(~
v+ ~
w) = (ux,uy,uz)·(vx,vy,vz)

+ (ux,uy,uz)·(wx,wy,wz)

~
u·(~
v+ ~
w) = ux ·vx +uy ·vy +uz ·vz +ux ·wx +uy ·wy +uz ·wz
~
u·(~
v+ ~
w) = ux ·vx +uy ·vy +uz ·vz

+ ux ·wx +uy ·wy +uz ·wz

.
~
u·~
v+~
u· ~
w = ux ·vx +uy ·vy +uz ·vz

+ ux ·wx +uy ·wy +uz ·wz

.
~
u·(~
v+ ~
w) = ~
u·~
v+~
u· ~
w  (1)
2. The dot product is commutative:
~
v· ~
w = ~
w·~
v
Proof:
Assuming that the vectors are represented by ~
v = (vx,vy,vz) and ~
w = (wx,wy,wz), then we have:
~
v· ~
w = (vx,vy,vz)·(wx,wy,wz)
= vx ·wx +vy ·wy +vz ·wz
= wx ·vx +wy ·vy +wz ·vz .
~
w·~
v = (wx,wy,wz)·(vx,vy,vz)
= wx ·vx +wy ·vy +wz ·vz .
~
v· ~
w = ~
w·~
v  (2)
3. The formula for the Euclidean length of the vector is:
~
v·~
v = k~
vk2
1
Proof:
Assuming that the vector ~
v is represented by ~
v = (vx,vy,vz) , then we have:
~
v·~
v = (vx,vy,vz)·(vx,vy,vz) = vx ·vx +vy ·vy +vz ·vz = (vx)2
+(vy)2
+(vz)2
.
k~
vk2
= k~
vk k~
vk =
q
(vx)2 +(vy)2 +(vz)2
 q
(vx)2 +(vy)2 +(vz)2

= (vx)2
+(vy)2
+(vz)2
~
v·~
v = k~
vk2
 (3)
4. Distributive property for scalar multiplication:
(c~
v)· ~
w =~
v·(c~
w) = c(~
v· ~
w)
Proof:
Assuming that the vectors~
v and ~
w are represented by~
v = (vx,vy,vz), ~
w = (wx,wy,wz) and c ∈ R, then
we have:
(c~
v)· ~
w = (c(vx,vy,vz))·(wx,wy,wz) = (cvx,cvy,cvz)·(wx,wy,wz)
= cvxwx +cvywy +cvzwz = (cvxwx +cvywy +cvzwz)
= cvxwx +cvywy +cvzwz .
~
v·(c~
w) = (vx,vy,vz)·(c(wx,wy,wz)) = (vx,vy,vz)·(cwx,cwy,cwz)
= vxcwx +vycwy +vzcwz = (vxcwx +vycwy +vzcwz)
= cvxwx +cvywy +cvzwz .
c(~
v· ~
w) = c((vx,vy,vz)·(wx,wy,wz)) = c(vxwx +vywy +vzwz)
= cvxwx +cvywy +cvzwz = (cvxwx +cvywy +cvzwz)
= cvxwx +cvywy +cvzwz .
(c~
v)· ~
w =~
v·(c~
w) = c(~
v· ~
w)  (4)
5. Dot product between a vector different of zero and the zero vector:
~
v·~
0 = 0
Proof:
Assuming that the vectors~
v different of zero and~
0 are represented by~
v = (vx,vy,vz) and~
0 = (0x,0y,0z),
then we have:
~
v·~
0 = (vx,vy,vz)·(0x,0y,0z) = vx ·0x +vy ·0y +vz ·0z
= 0+0+0 = 0
~
v·~
0 = 0  (5)
2
6. If ~
v·~
v = 0 , then ~
v =~
0
Proof:
Assuming that the vector ~
v is represented by ~
v = (vx,vy,vz) and that the vector ~
0 = (0x,0y,0z), then we
have:
~
v·~
v = (vx,vy,vz)·(vx,vy,vz) = vx ·vx +vy ·vy +vz ·vz = (vx)2
+(vy)2
+(vz)2
= 0
=
q
(vx)2 +(vy)2 +(vz)2
2
= 0 .
k~
vk2
=
q
(vx)2 +(vy)2 +(vz)2
2
=
q
(0)2 +(0)2 +(0)2
2
= 0
~
v = (0x,0y,0z)  (6)
Part II
Cross product
2 Cross product properties
1. If θ is the angle between the vectors ~
u and ~
v then, the length of the cross product of two vector is:
k~
u×~
vk = kukkvksinθ
Proof:Assuming that the vectors ~
u, ~
v and ~
w are represented by ~
u = (ux,uy,uz), ~
v = (vx,vy,vz), ~
w =
(wx,wy,wz), then we have:
(a) The cross product between the vectors ~
u and ~
v is calculated:
~
u×~
v =
î ĵ k̂
ux uy uz
vx vy vz
~
u×~
v =

(uy)(vz)−(vy)(uz)

î−

(ux)(vz)−(vx)(uz)

ĵ+

(ux)(vy)−(vx)(uy)

k̂
(b) The length of the cross product between the vectors ~
u and ~
v is calculated:
k~
u×~
vk =
q
(uy)(vz)−(vy)(uz)
2
+ (ux)(vz)−(vx)(uz)
2
+ (ux)(vy)−(vx)(uy)
2
(c) The square of the length of the cross product between the vectors ~
u and ~
v is calculated:
k~
u×~
vk2
=

(uy)(vz)−(vy)(uz)
2
| {z }
part 1
+

(ux)(vz)−(vx)(uz)
2
| {z }
part 2
+

(ux)(vy)−(vx)(uy)
2
| {z }
part 3
3
(d) The squared binomials that appear within the radical are calculated separately:

(uy)(vz)−(vy)(uz)
2
| {z }
part 1
=

(uy)(vz)
2
−2

(uy)(vz)(vy)(uz)

+

(vy)(uz)
2
= (uy)2
(vz)2
−2

(uy)(uz)(vy)(vz)

+(vy)2
(uz)2
= (uy)2
(vz)2
−2(uy)(uz)(vy)(vz)+(vy)2
(uz)2
= (uy)2
(vz)2
+(vy)2
(uz)2
−2(uy)(uz)(vy)(vz)

(ux)(vz)−(vx)(uz)
2
| {z }
part 2
=

(ux)(vz)
2
−2

(ux)(vz)(vx)(uz)

+

(vx)(uz)
2
= (ux)2
(vz)2
−2

(ux)(vz)(vx)(uz)

+(vx)2
(uz)2
= (ux)2
(vz)2
−2(ux)(vz)(vx)(uz)+(vx)2
(uz)2
= (ux)2
(vz)2
+(vx)2
(uz)2
−2(ux)(uz)(vx)(vz)

(ux)(vy)−(vx)(uy)
2
| {z }
part 3
=

(ux)(vy)
2
−2

(ux)(vy)(vx)(uy)

+

(vx)(uy)
2
= (ux)2
(vy)2
−2

(ux)(vy)(vx)(uy)

+(vx)2
(uy)2
= (ux)2
(vy)2
−2(ux)(uy)(vx)(vy)+(vx)2
(uy)2
= (ux)2
(vy)2
+(vx)2
(uy)2
−2(ux)(uy)(vx)(vy)
(e) The square of the length of the cross product between the vectors ~
u and ~
v is calculated by replacing
the calculations of the item (d) and simplifying:
k~
u×~
vk2
=

(uy)2
(vz)2
+(vy)2
(uz)2
−2(uy)(uz)(vy)(vz)

+
+

(ux)2
(vz)2
+(vx)2
(uz)2
−2(ux)(uz)(vx)(vz)

+
+

(ux)2
(vy)2
+(vx)2
(uy)2
−2(ux)(uy)(vx)(vy)

k~
u×~
vk2
= (uy)2
(vz)2
+(vy)2
(uz)2
+(ux)2
(vz)2
+(vx)2
(uz)2
+(ux)2
(vy)2
+(vx)2
(uy)2
−2(uy)(uz)(vy)(vz)−2(ux)(uz)(vx)(vz)−2(ux)(uy)(vx)(vy)
(f) Now it can be verified by comparing components that:
k~
u×~
vk2
= k~
uk2
k~
vk2
−(~
u·~
v)2
(7)
k~
u×~
vk2
= (uy)2
(vz)2
+(vy)2
(uz)2
+(ux)2
(vz)2
+(vx)2
(uz)2
+(ux)2
(vy)2
+(vx)2
(uy)2
−2(uy)(uz)(vy)(vz)−2(ux)(uz)(vx)(vz)−2(ux)(uy)(vx)(vy)
k~
uk2
= (ux)2
+(uy)2
+(uz)2
4
k~
vk2
= (vx)2
+(vy)2
+(vz)2
k~
uk2
k~
vk2
=

(ux)2
+(uy)2
+(uz)2

(vx)2
+(vy)2
+(vz)2

= (ux)2
(vx)2
+(ux)2
(vy)2
+(ux)2
(vz)2
+(uy)2
(vx)2
+(uy)2
(vy)2
+(uy)2
(vz)2
+(uz)2
(vx)2
+(uz)2
(vy)2
+(uz)2
(vz)2
k~
uk2
k~
vk2
= (ux)2
(vx)2
+(ux)2
(vy)2
+(ux)2
(vz)2
+(uy)2
(vx)2
+(uy)2
(vy)2
+(uy)2
(vz)2
+(uz)2
(vx)2
+(uz)2
(vy)2
+(uz)2
(vz)2
k~
uk2
k~
vk2
= (ux)2
(vx)2
+(ux)2
(vy)2
+(ux)2
(vz)2
+(uy)2
(vx)2
+(uy)2
(vy)2
+(uy)2
(vz)2
+
(uz)2
(vx)2
+(uz)2
(vy)2
+(uz)2
(vz)2
−(~
u·~
v)2
= −
h
(ux,uy,uz)·(vx,vy,vz)
i2
= −
h
(ux)(vx)+(uy)(vy)+(uz)(vz)
i2
= −
h
(ux)(vx)+(uy)(vy)+(uz)(vz)

(ux)(vx)+(uy)(vy)+(uz)(vz)
i
= −
h
(ux)(vx)(ux)(vx)+(ux)(vx)(uy)(vy)+(ux)(vx)(uz)(vz)

+
+

(uy)(vy)(ux)(vx)+(uy)(vy)(uy)(vy)+(uy)(vy)(uz)(vz)

+
+

(uz)(vz)(ux)(vx)+(uz)(vz)(uy)(vy)+(uz)(vz)(uz)(vz)
i
= −(ux)2
(vx)2
−(uy)2
(vy)2
−(uz)2
(vz)2
−2

(ux)(uy)(vx)(vy)

−2

(ux)(uz)(vx)(vz)

−2

(uy)(uz)(vy)(vz)

(g) Expressing equality k~
u×~
vk2
= k~
uk2
k~
vk2
−(~
u·~
v)2
and simplifying, we have:
(uy)2
(vz)2
+(vy)2
(uz)2
+(ux)2
(vz)2
+(vx)2
(uz)2
+(ux)2
(vy)2
+(vx)2
(uy)2
−
2(uy)(uz)(vy)(vz)−2(ux)(uz)(vx)(vz)−2(ux)(uy)(vx)(vy) =
(ux)2
(vx)2
+(ux)2
(vy)2
+(ux)2
(vz)2
+(uy)2
(vx)2
+(uy)2
(vy)2
+(uy)2
(vz)2
+(uz)2
(vx)2
+
(uz)2
(vy)2
+(uz)2
(vz)2
−(ux)2
(vx)2
−(uy)2
(vy)2
−(uz)2
(vz)2
−2(ux)(uy)(vx)(vy)−
2(ux)(uz)(vx)(vz)−2(uy)(uz)(vy)(vz)
(uy)2
(vz)2
+(uz)2
(vy)2
+(ux)2
(vz)2
+(uz)2
(vx)2
+(ux)2
(vy)2
+(uy)2
(vx)2
−
2(uy)(uz)(vy)(vz)−2(ux)(uz)(vx)(vz)−2(ux)(uy)(vx)(vy) =
(uy)2
(vz)2
+(uz)2
(vy)2
+(ux)2
(vz)2
+(uz)2
(vx)2
+(ux)2
(vy)2
+(uy)2
(vx)2
−
2(uy)(uz)(vy)(vz)−2(ux)(uz)(vx)(vz)−2(ux)(uy)(vx)(vy)+(ux)2
(vx)2
−(ux)2
(vx)2
+
(uy)2
(vy)2
−(uy)2
(vy)2
+(uz)2
(vz)2
−(uz)2
(vz)2
5
(uy)2
(vz)2
−(uy)2
(vz)2
+(uz)2
(vy)2
−(uz)2
(vy)2
+(ux)2
(vz)2
−(ux)2
(vz)2
+(uz)2
(vx)2
−
(uz)2
(vx)2
+(ux)2
(vy)2
−(ux)2
(vy)2
+(uy)2
(vx)2
−(uy)2
(vx)2
−2(uy)(uz)(vy)(vz)+
2(uy)(uz)(vy)(vz)−2(ux)(uz)(vx)(vz)+2(ux)(uz)(vx)(vz)−2(ux)(uy)(vx)(vy)+
2(ux)(uy)(vx)(vy)−(ux)2
(vx)2
+(ux)2
(vx)2
−(uy)2
(vy)2
+(uy)2
(vy)2
−(uz)2
(vz)2
+
(uz)2
(vz)2
0 = 0
k~
u×~
vk2
= k~
uk2
k~
vk2
−(~
u·~
v)2

(h) So, as (~
u·~
v)2
= k~
uk2
k~
vk2
cos2
θ from the definition of dot product, we have:
k~
u×~
vk2
= k~
uk2
k~
vk2
−k~
uk2
k~
vk2
cos2
θ = k~
uk2
k~
vk2

1−cos2
θ

k~
u×~
vk2
= k~
uk2
k~
vk2
sin2
θ
q
k~
u×~
vk2
=
q
k~
uk2
k~
vk2
sin2
θ .
k~
u×~
vk = k~
uk k~
vk sinθ  (8)
2. The length of the cross product of two vectors is equal to the area of the parallelogram determined by the
two vectors (see figure below).
Proof:
Assuming that the vectors ~
u and ~
v are represented by ~
u = (ux,uy,uz), ~
v = (vx,vy,vz), and the angle θ
between the vectors ~
u and ~
v, then we have for example:
6
(a) After verifying that the length of the cross product of two vectors is equal to area of parallelogram
determined by two vectors. The formula will be applied given the following vectors:
~
u = (3,1,−2), ~
v = (1,3,−4)
(b) The dot product between the vectors ~
u and ~
v is calculated:
~
u·~
v = (3,1,−2)·(1,3,−4) = 3·1+1·3+(−2)·(−4) = 3+3+8 = 14
~
u·~
v = 14
(c) The length of the vectors ~
u and ~
v is calculated:
k~
uk =
√
14, k~
vk =
√
26
(d) So, as (~
u·~
v) = k~
uk k~
vkcosθ and θ the angle between the vectors ~
u and ~
v from the definition of
dot product, we have:
cosθ =
~
u·~
v
k~
uk k~
vk
, θ = arccos
~
u·~
v
k~
uk k~
vk
= arccos
14
√
14
√
26
= arccos
14
√
364
θ = 42.79◦
(e) The cross product between the vectors ~
u = (3,1,−2) and ~
v = (1,3,−4) is calculated:
~
u×~
v =
î ĵ k̂
3 1 −2
1 3 −4
= (1)(−4)−(3)(−2)

î− (3)(−4)−(1)(−2)

ĵ+ (3)(3)−(1)(1)

k̂
~
u×~
v = 2î+10ĵ+8k̂
(f) The length of cross product between the vectors ~
u = (3,1,−2) and ~
v = (1,3,−4) is calculated:
k~
u×~
vk =
q
(2)2 +(10)2 +(8)2 =
√
4+100+64 =
√
168
k~
u×~
vk =
√
168 = 12.96
(g) (Previously verified property in literal 1). If θ is the angle between the vectors ~
u and ~
v then, the
length of the cross product of two vector is:
k~
u×~
vk = kukkvksinθ
(h) Replacing the values in the literal (g), we have:
k~
u×~
vk =
√
168 = 12.96
k~
u×~
vk = 12.96
k~
uk k~
vk sinθ =
√
14
√
26 sin(42.79◦
) =
√
364 sin(42.79◦
) = 12.96
k~
uk k~
vk sinθ = 12.96
12.96 = 12.96
k~
u×~
vk = k~
uk k~
vk sinθ 
7
3. Anticommutative property:
~
u×~
v = −(~
v×~
u)
Proof:
Assuming that the vectors ~
u and~
v are represented by ~
u = (ux,uy,uz) and~
v = (vx,vy,vz), then we have:
(a) The cross product between the vectors ~
u and ~
v is calculated:
~
u×~
v =
î ĵ k̂
ux uy uz
vx vy vz
~
u×~
v = (uy)(vz)−(uz)(vy)

î− (ux)(vz)−(uz)(vx)

ĵ+ (ux)(vy)−(uy)(vx)

k̂
(b) The cross product between the vectors ~
v and ~
u is calculated:
~
v×~
u =
î ĵ k̂
vx vy vz
ux uy uz
~
v×~
u = (uz)(vy)−(uy)(vz)

î− (uz)(vx)−(ux)(vz)

ĵ+ (uy)(vx)−(ux)(vy)

k̂
(c) The cross product between the vectors ~
v and ~
u multiplying by (-1) is calculated:
− ~
v×~
u

= (uy)(vz)−(uz)(vy)

î− (ux)(vz)−(uz)(vx)

ĵ+ (ux)(vy)−(uy)(vx)

k̂
(d) Comparing the expressions in the literals (a) and (c) we have:
~
u×~
v = (uy)(vz)−(uz)(vy)

î− (ux)(vz)−(uz)(vx)

ĵ+ (ux)(vy)−(uy)(vx)

k̂
− ~
v×~
u

= (uy)(vz)−(uz)(vy)

î− (ux)(vz)−(uz)(vx)

ĵ+ (ux)(vy)−(uy)(vx)

k̂
~
u×~
v = −(~
v×~
u)  (9)
4. Distributive property for Multiplication by a constant:
(c~
u)×~
v = c(~
u×~
v) = ~
u×(c~
v)
Proof:
Assuming that the vectors ~
u and ~
v are represented by ~
u = (ux,uy,uz), ~
v = (vx,vy,vz) and c ∈ R, then
we have:
(a) The cross product between the vectors c~
u and ~
v is calculated:
(c~
u)×~
v =
î ĵ k̂
cux cuy cuz
vx vy vz
(c~
u)×~
v =

(cuy)(vz)−(cuz)(vy)

î−

(cux)(vz)−(cuz)(vx)

ĵ+

(cux)(vy)−(cuy)(vx)

k̂
8
(b) The multiplication by c of the cross product between the vectors ~
u and ~
v is calculated:
c(~
u×~
v) =
î ĵ k̂
ux uy uz
vx vy vz
c(~
u×~
v) = c
h
(uy)(vz)−(uz)(vy)

î−

(ux)(vz)−(uz)(vx)

ĵ+

(ux)(vy)−(uy)(vx)

k̂
i
c(~
u×~
v) =

(cuy)(vz)−(cuz)(vy)

î−

(cux)(vz)−(cuz)(vx)

ĵ+

(cux)(vy)−(cuy)(vx)

k̂
(c) The cross product between the vectors ~
u and c~
v is calculated:
~
u×(c~
v) =
î ĵ k̂
ux uy uz
cvx cvy cvz
~
u×(c~
v) =

(uy)(cvz)−(uz)(cvy)

î−

(ux)(cvz)−(uz)(cvx)

ĵ+

(ux)(cvy)−(uy)(cvx)

k̂
~
u×(c~
v) =

(cuy)(vz)−(cuz)(vy)

î−

(cux)(vz)−(cuz)(vx)

ĵ+

(cux)(vy)−(cuy)(vx)

k̂
(d) Comparing the results of the cross product in the literals a, b and c, it is verified that:
(c~
u)×~
v = c(~
u×~
v) = ~
u×(c~
v)  (10)
5. Distributive property:
~
u×(~
v+ ~
w) = ~
u×~
v+~
u× ~
w
Proof:Assuming that the vectors ~
u, ~
v and ~
w are represented by ~
u = (ux,uy,uz), ~
v = (vx,vy,vz), ~
w =
(wx,wy,wz), then we have:
(a) The cross product between the vectors ~
u and ~
v+ ~
w is calculated:
~
u×(~
v+ ~
w) =
î ĵ k̂
ux uy uz
vx +wx vy +wy vz +wz
~
u×(~
v+ ~
w) =

(uy)(vz +wz)−(uz)(vy +wy)

î
−

(ux)(vz +wz)−(uz)(vx +wx)

ĵ
+

(ux)(vy +wy)−(uy)(vx +wx)

k̂
(b) The cross product between the vectors ~
u and ~
v is calculated:
~
u×~
v =
î ĵ k̂
ux uy uz
vx vy vz
~
u×~
v =

(uy)(vz)−(uz)(vy)

î−

(ux)(vz)−(uz)(vx)

ĵ+

(ux)(vy)−(uy)(vx)

k̂
9
(c) The cross product between the vectors ~
u and ~
w is calculated:
~
u× ~
w =
î ĵ k̂
ux uy uz
wx wy wz
~
u× ~
w =

(uy)(wz)−(uz)(wy)

î−

(ux)(wz)−(uz)(wx)

ĵ+

(ux)(wy)−(uy)(wx)

k̂
(d) The sum of the cross product between the vectors ~
u, ~
v and ~
u, ~
w is calculated:
~
u×~
v+~
u× ~
w =

(uy)(vz)−(uz)(vy)

+ (uy)(wz)−(uz)(wy)

î
−

(ux)(vz)−(uz)(vx)

+ (ux)(wz)−(uz)(wx)

ĵ
+

(ux)(vy)−(uy)(vx)

+ (ux)(wy)−(uy)(wx)

k̂
Simplifying we have:
~
u×~
v+~
u× ~
w = (uy)(vz +wz)−(uz)(vy +wy)

î
− (ux)(vz +wz)−(uz)(vx +wx)

ĵ
+ (ux)(vy +wy)−(uy)(vx +wx)

k̂
(e) Comparing the results in the literals (a) and (d) we have:
~
u×(~
v+ ~
w) = (uy)(vz +wz)−(uz)(vy +wy)

î
− (ux)(vz +wz)−(uz)(vx +wx)

ĵ
+ (ux)(vy +wy)−(uy)(vx +wx)

k̂
~
u×~
v+~
u× ~
w = (uy)(vz +wz)−(uz)(vy +wy)

î
− (ux)(vz +wz)−(uz)(vx +wx)

ĵ
+ (ux)(vy +wy)−(uy)(vx +wx)

k̂
(f) Equating the right side of the two previous equations component by component we have:
(uy)(vz +wz)−(uz)(vy +wy)

î = (uy)(vz +wz)−(uz)(vy +wy)

î
− (ux)(vz +wz)−(uz)(vx +wx)

ĵ = − (ux)(vz +wz)−(uz)(vx +wx)

ĵ
(ux)(vy +wy)−(uy)(vx +wx)

k̂ = (ux)(vy +wy)−(uy)(vx +wx)

k̂
(g) With the above it was possible to verify the distributive property of the cross product:
~
u×(~
v+ ~
w) = ~
u×~
v+~
u× ~
w  (11)
6. The scalar triple product of the vectors ~
u, ~
v, and ~
w:
~
u·(~
v× ~
w) = (~
u×~
v)· ~
w
Proof:Assuming that the vectors ~
u, ~
v and ~
w are represented by ~
u = (ux,uy,uz), ~
v = (vx,vy,vz), ~
w =
(wx,wy,wz), then we have:
10
(a) The cross product between the vectors ~
v and ~
w is calculated:
~
v× ~
w =
î ĵ k̂
vx vy vz
wx wy wz
~
v× ~
w = (vy)(wz)−(vz)(wy)

î− (vx)(wz)−(vz)(wx)

ĵ+ (vx)(wy)−(vy)(wx)

k̂
(b) The cross product between the vectors ~
u and ~
v is calculated:
~
u×~
v =
î ĵ k̂
ux uy uz
vx vy vz
~
u×~
v = (uy)(vz)−(uz)(vy)

î− (ux)(vz)−(uz)(vx)

ĵ+ (ux)(vy)−(uy)(vx)

k̂
(c) The scalar triple product of the vectors ~
u·(~
v× ~
w) is calculated:
~
u·(~
v× ~
w) = (ux,uy,uz)·
·
h
(vy)(wz)−(vz)(wy)

î
− (vx)(wz)−(vz)(wx)

ĵ
+ (vx)(wy)−(vy)(wx)

k̂
i
.
~
u·(~
v× ~
w) = +ux · (vy)(wz)−(vz)(wy)

î
−uy · (vx)(wz)−(vz)(wx)

ĵ
+uz · (vx)(wy)−(vy)(wx)

k̂.
~
u·(~
v× ~
w) = + (ux)(vy)(wz)−(ux)(vz)(wy)

î
− (uy)(vx)(wz)−(uy)(vz)(wx)

ĵ
+ (uz)(vx)(wy)−(uz)(vy)(wx)

k̂
(12)
(d) The scalar triple product of the vectors (~
u×~
v)· ~
w is calculated:
(~
u×~
v)· ~
w =
h
(uy)(vz)−(uz)(vy)

î
− (ux)(vz)−(uz)(vx)

ĵ
+ (ux)(vy)−(uy)(vx)

k̂
i
·(wx,wy,wz).
(~
u×~
v)· ~
w = + (uy)(vz)−(uz)(vy)

·(wx)î
− (ux)(vz)−(uz)(vx)

·(wy)ĵ
+ (ux)(vy)−(uy)(vx)

·(wz)k̂.
(~
u×~
v)· ~
w = + (uy)(vz)(wx)−(uz)(vy)(wx)

î
− (ux)(vz)(wy)−(uz)(vx)(wy)

ĵ
+ (ux)(vy)(wz)−(uy)(vx)(wz)

k̂
(13)
11
(e) Comparing the results in the literals (c) and (d) we have:
~
u·(~
v× ~
w) = + (ux)(vy)(wz)−(ux)(vz)(wy)

î
− (uy)(vx)(wz)−(uy)(vz)(wx)

ĵ
+ (uz)(vx)(wy)−(uz)(vy)(wx)

k̂
(~
u×~
v)· ~
w = + (uy)(vz)(wx)−(uz)(vy)(wx)

î
− (ux)(vz)(wy)−(uz)(vx)(wy)

ĵ
+ (ux)(vy)(wz)−(uy)(vx)(wz)

k̂
(f) With the above it was possible to verify the scalar triple product of the vectors property of the cross
product:
~
u·(~
v× ~
w) = (~
u×~
v)· ~
w  (14)
7. The volume of the parallelepiped determined by the vectors ~
u, ~
v and ~
w is the magnitude of their scalar
triple product.
|~
w·(~
u×~
v)| = volume of the parallelepiped
Proof:Assuming that the vectors ~
u, ~
v and ~
w are represented by ~
u = (ux,uy,uz), ~
v = (vx,vy,vz), ~
w =
(wx,wy,wz), then we have:
(a) The scalar triple product of the vectors ~
w·(~
u×~
v) is:
~
w·(~
u×~
v) =
wx wy wz
ux uy uz
vx vy vz
~
w·(~
u×~
v) = (uy)(vz)−(uz)(vy)

(wx)− (ux)(vz)−(uz)(vx)

(wy)+ (ux)(vy)−(uy)(vx)

(wz)
~
w·(~
u×~
v) = (uy)(vz)(wx)−(uz)(vy)(wx)−(ux)(vz)(wy)
+(uz)(vx)(wy)+(ux)(vy)(wz)−(uy)(vx)(wz)
~
w·(~
u×~
v) = (ux)(vy)(wz)+(uy)(vz)(wx)+(uz)(vx)(wy)
−(ux)(vz)(wy)−(uy)(vx)(wz)−(uz)(vy)(wx)
(b) The magnitude of their scalar triple product is determinate by:
~
w·(~
u×~
v) = (ux)(vy)(wz)+(uy)(vz)(wx)+(uz)(vx)(wy)
−(ux)(vz)(wy)−(uy)(vx)(wz)−(uz)(vy)(wx)
(c) After verifying that the volume of the parallelepiped determined by the vectors ~
u, ~
v and ~
w = ~
u×~
v
is the magnitude of their scalar triple. The formula will be applied given the following vectors:
~
u = (3,1,−2), ~
v = (1,3,−4), ~
w = (2,10,8)
12
(d) Replacing the values in the literal (b), we have:
~
w·(~
u×~
v) = (3)(3)(8)+(1)(−4)(2)+(−2)(1)(10)−(3)(−4)(10)−(1)(1)(8)−(−2)(3)(2)
72−8−20+120−8+12 = 168 = 168
8. The vector triple product of the vectors ~
u, ~
v, and ~
w is:
~
u×(~
v× ~
w) = (~
u· ~
w)~
v−(~
u·~
v)~
w
Proof: Assuming that the vectors ~
u, ~
v and ~
w are represented by ~
u = (ux,uy,uz), ~
v = (vx,vy,vz),
~
w = (wx,wy,wz), then we have:
(a) The cross product between the vectors ~
v and ~
w is calculated:
~
v× ~
w =
î ĵ k̂
vx vy vz
wx wy wz
~
v× ~
w = (vy)(wz)−(vz)(wy)

î− (vx)(wz)−(vz)(wx)

ĵ+ (vx)(wy)−(vy)(wx)

k̂
(b) The vector triple product of the vectors ~
u, ~
v, and ~
w is calculated:
~
u×(~
v× ~
w) =
î ĵ k̂
ux uy uz
(vy)(wz)−(vz)(wy)

− (vx)(wz)−(vz)(wx)

(vx)(wy)−(vy)(wx)

~
u×(~
v× ~
w) = +
h
(uy)

(vx)(wy)−(vy)(wx)

+(uz)

(vx)(wz)−(vz)(wx)
i
î
−
h
(ux)

(vx)(wy)−(vy)(wx)

−(uz)

(vy)(wz)−(vz)(wy)
i
ĵ
+
h
−(ux)

(vx)(wz)−(vz)(wx)

−(uy)

(vy)(wz)−(vz)(wy)
i
k̂
13
~
u×(~
v× ~
w) = +
h
(uy)(vx)(wy)−(uy)(vy)(wx)+(uz)(vx)(wz)−(uz)(vz)(wx)
i
î
−
h
(ux)(vx)(wy)−(ux)(vy)(wx)−(uz)(vy)(wz)+(uz)(vz)(wy)
i
ĵ
+
h
−(ux)(vx)(wz)+(ux)(vz)(wx)−(uy)(vy)(wz)+(uy)(vz)(wy)
i
k̂
~
u×(~
v× ~
w) = +
h
(uy)(vx)(wy)+(uz)(vx)(wz)−(uy)(vy)(wx)−(uz)(vz)(wx)
i
î
+
h
(ux)(vy)(wx)+(uz)(vy)(wz)−(ux)(vx)(wy)−(uz)(vz)(wy)
i
ĵ
+
h
(ux)(vz)(wx)+(uy)(vz)(wy)−(ux)(vx)(wz)−(uy)(vy)(wz)
i
k̂
(15)
(c) The right side of the equation in the literal (a) is calculated:
(~
u· ~
w)~
v−(~
u·~
v)~
w
~
u· ~
w = (ux,uy,uz)·(wx,wy,wz) = (ux)(wx)+(uy)(wy)+(uz)(wz)
~
u·~
v = (ux,uy,uz)·(vx,vy,vz) = (ux)(vx)+(uy)(vy)+(uz)(vz)
(~
u· ~
w)~
v = (ux)(wx)+(uy)(wy)+(uz)(wz)

(vx,vy,vz)
+
h
(ux)(vx)(wx)+(uy)(vx)(wy)+(uz)(vx)(wz)
i
î
+
h
(ux)(vy)(wx)+(uy)(vy)(wy)+(uz)(vy)(wz)
i
ĵ
+
h
(ux)(vz)(wx)+(uy)(vz)(wy)+(uz)(vz)(wz)
i
k̂
(16)
(~
u·~
v)~
w = (ux)(vx)+(uy)(vy)+(uz)(vz)

(wx,wy,wz)
+
h
(ux)(vx)(wx)+(uy)(vy)(wx)+(uz)(vz)(wx)
i
î
+
h
(ux)(vx)(wy)+(uy)(vy)(wy)+(uz)(vz)(wy)
i
ĵ
+
h
(ux)(vx)(wz)+(uy)(vy)(wz)+(uz)(vz)(wz)
i
k̂
(17)
(~
u· ~
w)~
v−(~
u·~
v)~
w =
+
h
(ux)(vx)(wx)+(uy)(vx)(wy)+(uz)(vx)(wz)−(ux)(vx)(wx)−(uy)(vy)(wx)−(uz)(vz)(wx)
i
î
+
h
(ux)(vy)(wx)+(uy)(vy)(wy)+(uz)(vy)(wz)−(ux)(vx)(wy)−(uy)(vy)(wy)−(uz)(vz)(wy)
i
ĵ
+
h
(ux)(vz)(wx)+(uy)(vz)(wy)+(uz)(vz)(wz)−(ux)(vx)(wz)−(uy)(vy)(wz)−(uz)(vz)(wz)
i
k̂
(~
u· ~
w)~
v−(~
u·~
v)~
w = +
h
(uy)(vx)(wy)+(uz)(vx)(wz)−(uy)(vy)(wx)−(uz)(vz)(wx)
i
î
+
h
(ux)(vy)(wx)+(uz)(vy)(wz)−(ux)(vx)(wy)−(uz)(vz)(wy)
i
ĵ
+
h
(ux)(vz)(wx)+(uy)(vz)(wy)−(ux)(vx)(wz)−(uy)(vy)(wz)
i
k̂
(18)
(d) Comparing the equations 15 and 18 literals (b) and (c) we have:
~
u×(~
v× ~
w) = +
h
(uy)(vx)(wy)+(uz)(vx)(wz)−(uy)(vy)(wx)−(uz)(vz)(wx)
i
î
+
h
(ux)(vy)(wx)+(uz)(vy)(wz)−(ux)(vx)(wy)−(uz)(vz)(wy)
i
ĵ
+
h
(ux)(vz)(wx)+(uy)(vz)(wy)−(ux)(vx)(wz)−(uy)(vy)(wz)
i
k̂
14
(~
u· ~
w)~
v−(~
u·~
v)~
w = +
h
(uy)(vx)(wy)+(uz)(vx)(wz)−(uy)(vy)(wx)−(uz)(vz)(wx)
i
î
+
h
(ux)(vy)(wx)+(uz)(vy)(wz)−(ux)(vx)(wy)−(uz)(vz)(wy)
i
ĵ
+
h
(ux)(vz)(wx)+(uy)(vz)(wy)−(ux)(vx)(wz)−(uy)(vy)(wz)
i
k̂
(e) With the above it was possible to verify the vector triple product of the vectors ~
u, ~
v, and ~
w is:
~
u×(~
v× ~
w) = (~
u· ~
w)~
v−(~
u·~
v)~
w 
15

Contenu connexe

Similaire à ANALISIS VECTORIAL.pdf

Innerproductspaces 151013072051-lva1-app6892 (1)
Innerproductspaces 151013072051-lva1-app6892 (1)Innerproductspaces 151013072051-lva1-app6892 (1)
Innerproductspaces 151013072051-lva1-app6892 (1)
Himanshi Upadhyay
 
dot product of vectors
dot product of vectorsdot product of vectors
dot product of vectors
Elias Dinsa
 
Inner product spaces
Inner product spacesInner product spaces
Inner product spaces
EasyStudy3
 

Similaire à ANALISIS VECTORIAL.pdf (20)

P1 . norm vector space
P1 . norm vector spaceP1 . norm vector space
P1 . norm vector space
 
Vector Space.pptx
Vector Space.pptxVector Space.pptx
Vector Space.pptx
 
Innerproductspaces 151013072051-lva1-app6892 (1)
Innerproductspaces 151013072051-lva1-app6892 (1)Innerproductspaces 151013072051-lva1-app6892 (1)
Innerproductspaces 151013072051-lva1-app6892 (1)
 
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchalppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
 
dot product of vectors
dot product of vectorsdot product of vectors
dot product of vectors
 
Vector space interpretation_of_random_variables
Vector space interpretation_of_random_variablesVector space interpretation_of_random_variables
Vector space interpretation_of_random_variables
 
Inner product spaces
Inner product spacesInner product spaces
Inner product spaces
 
Capitulo 4, 7ma edición
Capitulo 4, 7ma ediciónCapitulo 4, 7ma edición
Capitulo 4, 7ma edición
 
Math for Intelligent Systems - 01 Linear Algebra 01 Vector Spaces
Math for Intelligent Systems - 01 Linear Algebra 01  Vector SpacesMath for Intelligent Systems - 01 Linear Algebra 01  Vector Spaces
Math for Intelligent Systems - 01 Linear Algebra 01 Vector Spaces
 
Vectorspace in 2,3and n space
Vectorspace in 2,3and n spaceVectorspace in 2,3and n space
Vectorspace in 2,3and n space
 
Vectors 2.pdf
Vectors 2.pdfVectors 2.pdf
Vectors 2.pdf
 
Solution to schrodinger equation with dirac comb potential
Solution to schrodinger equation with dirac comb potential Solution to schrodinger equation with dirac comb potential
Solution to schrodinger equation with dirac comb potential
 
Calculus Homework Help
Calculus Homework HelpCalculus Homework Help
Calculus Homework Help
 
8 arc length and area of surfaces x
8 arc length and area of surfaces x8 arc length and area of surfaces x
8 arc length and area of surfaces x
 
Mcs 013 solve assignment
Mcs 013 solve assignmentMcs 013 solve assignment
Mcs 013 solve assignment
 
Ch4
Ch4Ch4
Ch4
 
150490106037
150490106037150490106037
150490106037
 
Efficient Algorithm for Constructing KU-algebras from Block Codes
Efficient Algorithm for Constructing KU-algebras from Block CodesEfficient Algorithm for Constructing KU-algebras from Block Codes
Efficient Algorithm for Constructing KU-algebras from Block Codes
 
Integration
IntegrationIntegration
Integration
 
Chapter 4: Vector Spaces - Part 1/Slides By Pearson
Chapter 4: Vector Spaces - Part 1/Slides By PearsonChapter 4: Vector Spaces - Part 1/Slides By Pearson
Chapter 4: Vector Spaces - Part 1/Slides By Pearson
 

Dernier

Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
jaanualu31
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
Epec Engineered Technologies
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
mphochane1998
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
MsecMca
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
MayuraD1
 

Dernier (20)

Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
 
Rums floating Omkareshwar FSPV IM_16112021.pdf
Rums floating Omkareshwar FSPV IM_16112021.pdfRums floating Omkareshwar FSPV IM_16112021.pdf
Rums floating Omkareshwar FSPV IM_16112021.pdf
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
 
2016EF22_0 solar project report rooftop projects
2016EF22_0 solar project report rooftop projects2016EF22_0 solar project report rooftop projects
2016EF22_0 solar project report rooftop projects
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
Air Compressor reciprocating single stage
Air Compressor reciprocating single stageAir Compressor reciprocating single stage
Air Compressor reciprocating single stage
 

ANALISIS VECTORIAL.pdf

  • 1. FACULTAD DE CIENCIAS BÁSICAS MAESTRÍA EN ENSEÑANZA DE LA FÍSICA ELECTROMAGNETISM Professor: Jimmy A. Cortes, José A. Chaves VECTOR ANALYSIS AN INTRODUCTION Verification of the properties of the scalar and vector product in R3 using general vector expressions Produced by: Jhon F. González, Gelver Osorio, Julián F. Villada April 8, 2021
  • 2. Part I Scalar product 1 Properties of dot product (Proof) Carry out the verification of the properties of the scalar and vector product in R3 using general vector expres- sions such as: ~ u = (ux,uy,uz); ~ v = (vx,vy,vz); ~ w = (wx,wy,wz). 1. The dot product is distributive over vector addition: ~ u·(~ v+ ~ w) = ~ u·~ v+~ u· ~ w Proof: Assuming that the vectors ~ u, ~ v and ~ w are represented by ~ u = (ux,uy,uz), ~ v = (vx,vy,vz) and ~ w = (wx,wy,wz), then we have: ~ u·(~ v+ ~ w) = (ux,uy,uz)· (vx,vy,vz)+(wx,wy,wz) ~ u·(~ v+ ~ w) = (ux,uy,uz)·(vx,vy,vz) + (ux,uy,uz)·(wx,wy,wz) ~ u·(~ v+ ~ w) = ux ·vx +uy ·vy +uz ·vz +ux ·wx +uy ·wy +uz ·wz ~ u·(~ v+ ~ w) = ux ·vx +uy ·vy +uz ·vz + ux ·wx +uy ·wy +uz ·wz . ~ u·~ v+~ u· ~ w = ux ·vx +uy ·vy +uz ·vz + ux ·wx +uy ·wy +uz ·wz . ~ u·(~ v+ ~ w) = ~ u·~ v+~ u· ~ w (1) 2. The dot product is commutative: ~ v· ~ w = ~ w·~ v Proof: Assuming that the vectors are represented by ~ v = (vx,vy,vz) and ~ w = (wx,wy,wz), then we have: ~ v· ~ w = (vx,vy,vz)·(wx,wy,wz) = vx ·wx +vy ·wy +vz ·wz = wx ·vx +wy ·vy +wz ·vz . ~ w·~ v = (wx,wy,wz)·(vx,vy,vz) = wx ·vx +wy ·vy +wz ·vz . ~ v· ~ w = ~ w·~ v (2) 3. The formula for the Euclidean length of the vector is: ~ v·~ v = k~ vk2 1
  • 3. Proof: Assuming that the vector ~ v is represented by ~ v = (vx,vy,vz) , then we have: ~ v·~ v = (vx,vy,vz)·(vx,vy,vz) = vx ·vx +vy ·vy +vz ·vz = (vx)2 +(vy)2 +(vz)2 . k~ vk2 = k~ vk k~ vk = q (vx)2 +(vy)2 +(vz)2 q (vx)2 +(vy)2 +(vz)2 = (vx)2 +(vy)2 +(vz)2 ~ v·~ v = k~ vk2 (3) 4. Distributive property for scalar multiplication: (c~ v)· ~ w =~ v·(c~ w) = c(~ v· ~ w) Proof: Assuming that the vectors~ v and ~ w are represented by~ v = (vx,vy,vz), ~ w = (wx,wy,wz) and c ∈ R, then we have: (c~ v)· ~ w = (c(vx,vy,vz))·(wx,wy,wz) = (cvx,cvy,cvz)·(wx,wy,wz) = cvxwx +cvywy +cvzwz = (cvxwx +cvywy +cvzwz) = cvxwx +cvywy +cvzwz . ~ v·(c~ w) = (vx,vy,vz)·(c(wx,wy,wz)) = (vx,vy,vz)·(cwx,cwy,cwz) = vxcwx +vycwy +vzcwz = (vxcwx +vycwy +vzcwz) = cvxwx +cvywy +cvzwz . c(~ v· ~ w) = c((vx,vy,vz)·(wx,wy,wz)) = c(vxwx +vywy +vzwz) = cvxwx +cvywy +cvzwz = (cvxwx +cvywy +cvzwz) = cvxwx +cvywy +cvzwz . (c~ v)· ~ w =~ v·(c~ w) = c(~ v· ~ w) (4) 5. Dot product between a vector different of zero and the zero vector: ~ v·~ 0 = 0 Proof: Assuming that the vectors~ v different of zero and~ 0 are represented by~ v = (vx,vy,vz) and~ 0 = (0x,0y,0z), then we have: ~ v·~ 0 = (vx,vy,vz)·(0x,0y,0z) = vx ·0x +vy ·0y +vz ·0z = 0+0+0 = 0 ~ v·~ 0 = 0 (5) 2
  • 4. 6. If ~ v·~ v = 0 , then ~ v =~ 0 Proof: Assuming that the vector ~ v is represented by ~ v = (vx,vy,vz) and that the vector ~ 0 = (0x,0y,0z), then we have: ~ v·~ v = (vx,vy,vz)·(vx,vy,vz) = vx ·vx +vy ·vy +vz ·vz = (vx)2 +(vy)2 +(vz)2 = 0 = q (vx)2 +(vy)2 +(vz)2 2 = 0 . k~ vk2 = q (vx)2 +(vy)2 +(vz)2 2 = q (0)2 +(0)2 +(0)2 2 = 0 ~ v = (0x,0y,0z) (6) Part II Cross product 2 Cross product properties 1. If θ is the angle between the vectors ~ u and ~ v then, the length of the cross product of two vector is: k~ u×~ vk = kukkvksinθ Proof:Assuming that the vectors ~ u, ~ v and ~ w are represented by ~ u = (ux,uy,uz), ~ v = (vx,vy,vz), ~ w = (wx,wy,wz), then we have: (a) The cross product between the vectors ~ u and ~ v is calculated: ~ u×~ v = î ĵ k̂ ux uy uz vx vy vz ~ u×~ v = (uy)(vz)−(vy)(uz) î− (ux)(vz)−(vx)(uz) ĵ+ (ux)(vy)−(vx)(uy) k̂ (b) The length of the cross product between the vectors ~ u and ~ v is calculated: k~ u×~ vk = q (uy)(vz)−(vy)(uz) 2 + (ux)(vz)−(vx)(uz) 2 + (ux)(vy)−(vx)(uy) 2 (c) The square of the length of the cross product between the vectors ~ u and ~ v is calculated: k~ u×~ vk2 = (uy)(vz)−(vy)(uz) 2 | {z } part 1 + (ux)(vz)−(vx)(uz) 2 | {z } part 2 + (ux)(vy)−(vx)(uy) 2 | {z } part 3 3
  • 5. (d) The squared binomials that appear within the radical are calculated separately: (uy)(vz)−(vy)(uz) 2 | {z } part 1 = (uy)(vz) 2 −2 (uy)(vz)(vy)(uz) + (vy)(uz) 2 = (uy)2 (vz)2 −2 (uy)(uz)(vy)(vz) +(vy)2 (uz)2 = (uy)2 (vz)2 −2(uy)(uz)(vy)(vz)+(vy)2 (uz)2 = (uy)2 (vz)2 +(vy)2 (uz)2 −2(uy)(uz)(vy)(vz) (ux)(vz)−(vx)(uz) 2 | {z } part 2 = (ux)(vz) 2 −2 (ux)(vz)(vx)(uz) + (vx)(uz) 2 = (ux)2 (vz)2 −2 (ux)(vz)(vx)(uz) +(vx)2 (uz)2 = (ux)2 (vz)2 −2(ux)(vz)(vx)(uz)+(vx)2 (uz)2 = (ux)2 (vz)2 +(vx)2 (uz)2 −2(ux)(uz)(vx)(vz) (ux)(vy)−(vx)(uy) 2 | {z } part 3 = (ux)(vy) 2 −2 (ux)(vy)(vx)(uy) + (vx)(uy) 2 = (ux)2 (vy)2 −2 (ux)(vy)(vx)(uy) +(vx)2 (uy)2 = (ux)2 (vy)2 −2(ux)(uy)(vx)(vy)+(vx)2 (uy)2 = (ux)2 (vy)2 +(vx)2 (uy)2 −2(ux)(uy)(vx)(vy) (e) The square of the length of the cross product between the vectors ~ u and ~ v is calculated by replacing the calculations of the item (d) and simplifying: k~ u×~ vk2 = (uy)2 (vz)2 +(vy)2 (uz)2 −2(uy)(uz)(vy)(vz) + + (ux)2 (vz)2 +(vx)2 (uz)2 −2(ux)(uz)(vx)(vz) + + (ux)2 (vy)2 +(vx)2 (uy)2 −2(ux)(uy)(vx)(vy) k~ u×~ vk2 = (uy)2 (vz)2 +(vy)2 (uz)2 +(ux)2 (vz)2 +(vx)2 (uz)2 +(ux)2 (vy)2 +(vx)2 (uy)2 −2(uy)(uz)(vy)(vz)−2(ux)(uz)(vx)(vz)−2(ux)(uy)(vx)(vy) (f) Now it can be verified by comparing components that: k~ u×~ vk2 = k~ uk2 k~ vk2 −(~ u·~ v)2 (7) k~ u×~ vk2 = (uy)2 (vz)2 +(vy)2 (uz)2 +(ux)2 (vz)2 +(vx)2 (uz)2 +(ux)2 (vy)2 +(vx)2 (uy)2 −2(uy)(uz)(vy)(vz)−2(ux)(uz)(vx)(vz)−2(ux)(uy)(vx)(vy) k~ uk2 = (ux)2 +(uy)2 +(uz)2 4
  • 6. k~ vk2 = (vx)2 +(vy)2 +(vz)2 k~ uk2 k~ vk2 = (ux)2 +(uy)2 +(uz)2 (vx)2 +(vy)2 +(vz)2 = (ux)2 (vx)2 +(ux)2 (vy)2 +(ux)2 (vz)2 +(uy)2 (vx)2 +(uy)2 (vy)2 +(uy)2 (vz)2 +(uz)2 (vx)2 +(uz)2 (vy)2 +(uz)2 (vz)2 k~ uk2 k~ vk2 = (ux)2 (vx)2 +(ux)2 (vy)2 +(ux)2 (vz)2 +(uy)2 (vx)2 +(uy)2 (vy)2 +(uy)2 (vz)2 +(uz)2 (vx)2 +(uz)2 (vy)2 +(uz)2 (vz)2 k~ uk2 k~ vk2 = (ux)2 (vx)2 +(ux)2 (vy)2 +(ux)2 (vz)2 +(uy)2 (vx)2 +(uy)2 (vy)2 +(uy)2 (vz)2 + (uz)2 (vx)2 +(uz)2 (vy)2 +(uz)2 (vz)2 −(~ u·~ v)2 = − h (ux,uy,uz)·(vx,vy,vz) i2 = − h (ux)(vx)+(uy)(vy)+(uz)(vz) i2 = − h (ux)(vx)+(uy)(vy)+(uz)(vz) (ux)(vx)+(uy)(vy)+(uz)(vz) i = − h (ux)(vx)(ux)(vx)+(ux)(vx)(uy)(vy)+(ux)(vx)(uz)(vz) + + (uy)(vy)(ux)(vx)+(uy)(vy)(uy)(vy)+(uy)(vy)(uz)(vz) + + (uz)(vz)(ux)(vx)+(uz)(vz)(uy)(vy)+(uz)(vz)(uz)(vz) i = −(ux)2 (vx)2 −(uy)2 (vy)2 −(uz)2 (vz)2 −2 (ux)(uy)(vx)(vy) −2 (ux)(uz)(vx)(vz) −2 (uy)(uz)(vy)(vz) (g) Expressing equality k~ u×~ vk2 = k~ uk2 k~ vk2 −(~ u·~ v)2 and simplifying, we have: (uy)2 (vz)2 +(vy)2 (uz)2 +(ux)2 (vz)2 +(vx)2 (uz)2 +(ux)2 (vy)2 +(vx)2 (uy)2 − 2(uy)(uz)(vy)(vz)−2(ux)(uz)(vx)(vz)−2(ux)(uy)(vx)(vy) = (ux)2 (vx)2 +(ux)2 (vy)2 +(ux)2 (vz)2 +(uy)2 (vx)2 +(uy)2 (vy)2 +(uy)2 (vz)2 +(uz)2 (vx)2 + (uz)2 (vy)2 +(uz)2 (vz)2 −(ux)2 (vx)2 −(uy)2 (vy)2 −(uz)2 (vz)2 −2(ux)(uy)(vx)(vy)− 2(ux)(uz)(vx)(vz)−2(uy)(uz)(vy)(vz) (uy)2 (vz)2 +(uz)2 (vy)2 +(ux)2 (vz)2 +(uz)2 (vx)2 +(ux)2 (vy)2 +(uy)2 (vx)2 − 2(uy)(uz)(vy)(vz)−2(ux)(uz)(vx)(vz)−2(ux)(uy)(vx)(vy) = (uy)2 (vz)2 +(uz)2 (vy)2 +(ux)2 (vz)2 +(uz)2 (vx)2 +(ux)2 (vy)2 +(uy)2 (vx)2 − 2(uy)(uz)(vy)(vz)−2(ux)(uz)(vx)(vz)−2(ux)(uy)(vx)(vy)+(ux)2 (vx)2 −(ux)2 (vx)2 + (uy)2 (vy)2 −(uy)2 (vy)2 +(uz)2 (vz)2 −(uz)2 (vz)2 5
  • 7. (uy)2 (vz)2 −(uy)2 (vz)2 +(uz)2 (vy)2 −(uz)2 (vy)2 +(ux)2 (vz)2 −(ux)2 (vz)2 +(uz)2 (vx)2 − (uz)2 (vx)2 +(ux)2 (vy)2 −(ux)2 (vy)2 +(uy)2 (vx)2 −(uy)2 (vx)2 −2(uy)(uz)(vy)(vz)+ 2(uy)(uz)(vy)(vz)−2(ux)(uz)(vx)(vz)+2(ux)(uz)(vx)(vz)−2(ux)(uy)(vx)(vy)+ 2(ux)(uy)(vx)(vy)−(ux)2 (vx)2 +(ux)2 (vx)2 −(uy)2 (vy)2 +(uy)2 (vy)2 −(uz)2 (vz)2 + (uz)2 (vz)2 0 = 0 k~ u×~ vk2 = k~ uk2 k~ vk2 −(~ u·~ v)2 (h) So, as (~ u·~ v)2 = k~ uk2 k~ vk2 cos2 θ from the definition of dot product, we have: k~ u×~ vk2 = k~ uk2 k~ vk2 −k~ uk2 k~ vk2 cos2 θ = k~ uk2 k~ vk2 1−cos2 θ k~ u×~ vk2 = k~ uk2 k~ vk2 sin2 θ q k~ u×~ vk2 = q k~ uk2 k~ vk2 sin2 θ . k~ u×~ vk = k~ uk k~ vk sinθ (8) 2. The length of the cross product of two vectors is equal to the area of the parallelogram determined by the two vectors (see figure below). Proof: Assuming that the vectors ~ u and ~ v are represented by ~ u = (ux,uy,uz), ~ v = (vx,vy,vz), and the angle θ between the vectors ~ u and ~ v, then we have for example: 6
  • 8. (a) After verifying that the length of the cross product of two vectors is equal to area of parallelogram determined by two vectors. The formula will be applied given the following vectors: ~ u = (3,1,−2), ~ v = (1,3,−4) (b) The dot product between the vectors ~ u and ~ v is calculated: ~ u·~ v = (3,1,−2)·(1,3,−4) = 3·1+1·3+(−2)·(−4) = 3+3+8 = 14 ~ u·~ v = 14 (c) The length of the vectors ~ u and ~ v is calculated: k~ uk = √ 14, k~ vk = √ 26 (d) So, as (~ u·~ v) = k~ uk k~ vkcosθ and θ the angle between the vectors ~ u and ~ v from the definition of dot product, we have: cosθ = ~ u·~ v k~ uk k~ vk , θ = arccos ~ u·~ v k~ uk k~ vk = arccos 14 √ 14 √ 26 = arccos 14 √ 364 θ = 42.79◦ (e) The cross product between the vectors ~ u = (3,1,−2) and ~ v = (1,3,−4) is calculated: ~ u×~ v = î ĵ k̂ 3 1 −2 1 3 −4 = (1)(−4)−(3)(−2) î− (3)(−4)−(1)(−2) ĵ+ (3)(3)−(1)(1) k̂ ~ u×~ v = 2î+10ĵ+8k̂ (f) The length of cross product between the vectors ~ u = (3,1,−2) and ~ v = (1,3,−4) is calculated: k~ u×~ vk = q (2)2 +(10)2 +(8)2 = √ 4+100+64 = √ 168 k~ u×~ vk = √ 168 = 12.96 (g) (Previously verified property in literal 1). If θ is the angle between the vectors ~ u and ~ v then, the length of the cross product of two vector is: k~ u×~ vk = kukkvksinθ (h) Replacing the values in the literal (g), we have: k~ u×~ vk = √ 168 = 12.96 k~ u×~ vk = 12.96 k~ uk k~ vk sinθ = √ 14 √ 26 sin(42.79◦ ) = √ 364 sin(42.79◦ ) = 12.96 k~ uk k~ vk sinθ = 12.96 12.96 = 12.96 k~ u×~ vk = k~ uk k~ vk sinθ 7
  • 9. 3. Anticommutative property: ~ u×~ v = −(~ v×~ u) Proof: Assuming that the vectors ~ u and~ v are represented by ~ u = (ux,uy,uz) and~ v = (vx,vy,vz), then we have: (a) The cross product between the vectors ~ u and ~ v is calculated: ~ u×~ v = î ĵ k̂ ux uy uz vx vy vz ~ u×~ v = (uy)(vz)−(uz)(vy) î− (ux)(vz)−(uz)(vx) ĵ+ (ux)(vy)−(uy)(vx) k̂ (b) The cross product between the vectors ~ v and ~ u is calculated: ~ v×~ u = î ĵ k̂ vx vy vz ux uy uz ~ v×~ u = (uz)(vy)−(uy)(vz) î− (uz)(vx)−(ux)(vz) ĵ+ (uy)(vx)−(ux)(vy) k̂ (c) The cross product between the vectors ~ v and ~ u multiplying by (-1) is calculated: − ~ v×~ u = (uy)(vz)−(uz)(vy) î− (ux)(vz)−(uz)(vx) ĵ+ (ux)(vy)−(uy)(vx) k̂ (d) Comparing the expressions in the literals (a) and (c) we have: ~ u×~ v = (uy)(vz)−(uz)(vy) î− (ux)(vz)−(uz)(vx) ĵ+ (ux)(vy)−(uy)(vx) k̂ − ~ v×~ u = (uy)(vz)−(uz)(vy) î− (ux)(vz)−(uz)(vx) ĵ+ (ux)(vy)−(uy)(vx) k̂ ~ u×~ v = −(~ v×~ u) (9) 4. Distributive property for Multiplication by a constant: (c~ u)×~ v = c(~ u×~ v) = ~ u×(c~ v) Proof: Assuming that the vectors ~ u and ~ v are represented by ~ u = (ux,uy,uz), ~ v = (vx,vy,vz) and c ∈ R, then we have: (a) The cross product between the vectors c~ u and ~ v is calculated: (c~ u)×~ v = î ĵ k̂ cux cuy cuz vx vy vz (c~ u)×~ v = (cuy)(vz)−(cuz)(vy) î− (cux)(vz)−(cuz)(vx) ĵ+ (cux)(vy)−(cuy)(vx) k̂ 8
  • 10. (b) The multiplication by c of the cross product between the vectors ~ u and ~ v is calculated: c(~ u×~ v) = î ĵ k̂ ux uy uz vx vy vz c(~ u×~ v) = c h (uy)(vz)−(uz)(vy) î− (ux)(vz)−(uz)(vx) ĵ+ (ux)(vy)−(uy)(vx) k̂ i c(~ u×~ v) = (cuy)(vz)−(cuz)(vy) î− (cux)(vz)−(cuz)(vx) ĵ+ (cux)(vy)−(cuy)(vx) k̂ (c) The cross product between the vectors ~ u and c~ v is calculated: ~ u×(c~ v) = î ĵ k̂ ux uy uz cvx cvy cvz ~ u×(c~ v) = (uy)(cvz)−(uz)(cvy) î− (ux)(cvz)−(uz)(cvx) ĵ+ (ux)(cvy)−(uy)(cvx) k̂ ~ u×(c~ v) = (cuy)(vz)−(cuz)(vy) î− (cux)(vz)−(cuz)(vx) ĵ+ (cux)(vy)−(cuy)(vx) k̂ (d) Comparing the results of the cross product in the literals a, b and c, it is verified that: (c~ u)×~ v = c(~ u×~ v) = ~ u×(c~ v) (10) 5. Distributive property: ~ u×(~ v+ ~ w) = ~ u×~ v+~ u× ~ w Proof:Assuming that the vectors ~ u, ~ v and ~ w are represented by ~ u = (ux,uy,uz), ~ v = (vx,vy,vz), ~ w = (wx,wy,wz), then we have: (a) The cross product between the vectors ~ u and ~ v+ ~ w is calculated: ~ u×(~ v+ ~ w) = î ĵ k̂ ux uy uz vx +wx vy +wy vz +wz ~ u×(~ v+ ~ w) = (uy)(vz +wz)−(uz)(vy +wy) î − (ux)(vz +wz)−(uz)(vx +wx) ĵ + (ux)(vy +wy)−(uy)(vx +wx) k̂ (b) The cross product between the vectors ~ u and ~ v is calculated: ~ u×~ v = î ĵ k̂ ux uy uz vx vy vz ~ u×~ v = (uy)(vz)−(uz)(vy) î− (ux)(vz)−(uz)(vx) ĵ+ (ux)(vy)−(uy)(vx) k̂ 9
  • 11. (c) The cross product between the vectors ~ u and ~ w is calculated: ~ u× ~ w = î ĵ k̂ ux uy uz wx wy wz ~ u× ~ w = (uy)(wz)−(uz)(wy) î− (ux)(wz)−(uz)(wx) ĵ+ (ux)(wy)−(uy)(wx) k̂ (d) The sum of the cross product between the vectors ~ u, ~ v and ~ u, ~ w is calculated: ~ u×~ v+~ u× ~ w = (uy)(vz)−(uz)(vy) + (uy)(wz)−(uz)(wy) î − (ux)(vz)−(uz)(vx) + (ux)(wz)−(uz)(wx) ĵ + (ux)(vy)−(uy)(vx) + (ux)(wy)−(uy)(wx) k̂ Simplifying we have: ~ u×~ v+~ u× ~ w = (uy)(vz +wz)−(uz)(vy +wy) î − (ux)(vz +wz)−(uz)(vx +wx) ĵ + (ux)(vy +wy)−(uy)(vx +wx) k̂ (e) Comparing the results in the literals (a) and (d) we have: ~ u×(~ v+ ~ w) = (uy)(vz +wz)−(uz)(vy +wy) î − (ux)(vz +wz)−(uz)(vx +wx) ĵ + (ux)(vy +wy)−(uy)(vx +wx) k̂ ~ u×~ v+~ u× ~ w = (uy)(vz +wz)−(uz)(vy +wy) î − (ux)(vz +wz)−(uz)(vx +wx) ĵ + (ux)(vy +wy)−(uy)(vx +wx) k̂ (f) Equating the right side of the two previous equations component by component we have: (uy)(vz +wz)−(uz)(vy +wy) î = (uy)(vz +wz)−(uz)(vy +wy) î − (ux)(vz +wz)−(uz)(vx +wx) ĵ = − (ux)(vz +wz)−(uz)(vx +wx) ĵ (ux)(vy +wy)−(uy)(vx +wx) k̂ = (ux)(vy +wy)−(uy)(vx +wx) k̂ (g) With the above it was possible to verify the distributive property of the cross product: ~ u×(~ v+ ~ w) = ~ u×~ v+~ u× ~ w (11) 6. The scalar triple product of the vectors ~ u, ~ v, and ~ w: ~ u·(~ v× ~ w) = (~ u×~ v)· ~ w Proof:Assuming that the vectors ~ u, ~ v and ~ w are represented by ~ u = (ux,uy,uz), ~ v = (vx,vy,vz), ~ w = (wx,wy,wz), then we have: 10
  • 12. (a) The cross product between the vectors ~ v and ~ w is calculated: ~ v× ~ w = î ĵ k̂ vx vy vz wx wy wz ~ v× ~ w = (vy)(wz)−(vz)(wy) î− (vx)(wz)−(vz)(wx) ĵ+ (vx)(wy)−(vy)(wx) k̂ (b) The cross product between the vectors ~ u and ~ v is calculated: ~ u×~ v = î ĵ k̂ ux uy uz vx vy vz ~ u×~ v = (uy)(vz)−(uz)(vy) î− (ux)(vz)−(uz)(vx) ĵ+ (ux)(vy)−(uy)(vx) k̂ (c) The scalar triple product of the vectors ~ u·(~ v× ~ w) is calculated: ~ u·(~ v× ~ w) = (ux,uy,uz)· · h (vy)(wz)−(vz)(wy) î − (vx)(wz)−(vz)(wx) ĵ + (vx)(wy)−(vy)(wx) k̂ i . ~ u·(~ v× ~ w) = +ux · (vy)(wz)−(vz)(wy) î −uy · (vx)(wz)−(vz)(wx) ĵ +uz · (vx)(wy)−(vy)(wx) k̂. ~ u·(~ v× ~ w) = + (ux)(vy)(wz)−(ux)(vz)(wy) î − (uy)(vx)(wz)−(uy)(vz)(wx) ĵ + (uz)(vx)(wy)−(uz)(vy)(wx) k̂ (12) (d) The scalar triple product of the vectors (~ u×~ v)· ~ w is calculated: (~ u×~ v)· ~ w = h (uy)(vz)−(uz)(vy) î − (ux)(vz)−(uz)(vx) ĵ + (ux)(vy)−(uy)(vx) k̂ i ·(wx,wy,wz). (~ u×~ v)· ~ w = + (uy)(vz)−(uz)(vy) ·(wx)î − (ux)(vz)−(uz)(vx) ·(wy)ĵ + (ux)(vy)−(uy)(vx) ·(wz)k̂. (~ u×~ v)· ~ w = + (uy)(vz)(wx)−(uz)(vy)(wx) î − (ux)(vz)(wy)−(uz)(vx)(wy) ĵ + (ux)(vy)(wz)−(uy)(vx)(wz) k̂ (13) 11
  • 13. (e) Comparing the results in the literals (c) and (d) we have: ~ u·(~ v× ~ w) = + (ux)(vy)(wz)−(ux)(vz)(wy) î − (uy)(vx)(wz)−(uy)(vz)(wx) ĵ + (uz)(vx)(wy)−(uz)(vy)(wx) k̂ (~ u×~ v)· ~ w = + (uy)(vz)(wx)−(uz)(vy)(wx) î − (ux)(vz)(wy)−(uz)(vx)(wy) ĵ + (ux)(vy)(wz)−(uy)(vx)(wz) k̂ (f) With the above it was possible to verify the scalar triple product of the vectors property of the cross product: ~ u·(~ v× ~ w) = (~ u×~ v)· ~ w (14) 7. The volume of the parallelepiped determined by the vectors ~ u, ~ v and ~ w is the magnitude of their scalar triple product. |~ w·(~ u×~ v)| = volume of the parallelepiped Proof:Assuming that the vectors ~ u, ~ v and ~ w are represented by ~ u = (ux,uy,uz), ~ v = (vx,vy,vz), ~ w = (wx,wy,wz), then we have: (a) The scalar triple product of the vectors ~ w·(~ u×~ v) is: ~ w·(~ u×~ v) = wx wy wz ux uy uz vx vy vz ~ w·(~ u×~ v) = (uy)(vz)−(uz)(vy) (wx)− (ux)(vz)−(uz)(vx) (wy)+ (ux)(vy)−(uy)(vx) (wz) ~ w·(~ u×~ v) = (uy)(vz)(wx)−(uz)(vy)(wx)−(ux)(vz)(wy) +(uz)(vx)(wy)+(ux)(vy)(wz)−(uy)(vx)(wz) ~ w·(~ u×~ v) = (ux)(vy)(wz)+(uy)(vz)(wx)+(uz)(vx)(wy) −(ux)(vz)(wy)−(uy)(vx)(wz)−(uz)(vy)(wx) (b) The magnitude of their scalar triple product is determinate by: ~ w·(~ u×~ v) = (ux)(vy)(wz)+(uy)(vz)(wx)+(uz)(vx)(wy) −(ux)(vz)(wy)−(uy)(vx)(wz)−(uz)(vy)(wx) (c) After verifying that the volume of the parallelepiped determined by the vectors ~ u, ~ v and ~ w = ~ u×~ v is the magnitude of their scalar triple. The formula will be applied given the following vectors: ~ u = (3,1,−2), ~ v = (1,3,−4), ~ w = (2,10,8) 12
  • 14. (d) Replacing the values in the literal (b), we have: ~ w·(~ u×~ v) = (3)(3)(8)+(1)(−4)(2)+(−2)(1)(10)−(3)(−4)(10)−(1)(1)(8)−(−2)(3)(2) 72−8−20+120−8+12 = 168 = 168 8. The vector triple product of the vectors ~ u, ~ v, and ~ w is: ~ u×(~ v× ~ w) = (~ u· ~ w)~ v−(~ u·~ v)~ w Proof: Assuming that the vectors ~ u, ~ v and ~ w are represented by ~ u = (ux,uy,uz), ~ v = (vx,vy,vz), ~ w = (wx,wy,wz), then we have: (a) The cross product between the vectors ~ v and ~ w is calculated: ~ v× ~ w = î ĵ k̂ vx vy vz wx wy wz ~ v× ~ w = (vy)(wz)−(vz)(wy) î− (vx)(wz)−(vz)(wx) ĵ+ (vx)(wy)−(vy)(wx) k̂ (b) The vector triple product of the vectors ~ u, ~ v, and ~ w is calculated: ~ u×(~ v× ~ w) = î ĵ k̂ ux uy uz (vy)(wz)−(vz)(wy) − (vx)(wz)−(vz)(wx) (vx)(wy)−(vy)(wx) ~ u×(~ v× ~ w) = + h (uy) (vx)(wy)−(vy)(wx) +(uz) (vx)(wz)−(vz)(wx) i î − h (ux) (vx)(wy)−(vy)(wx) −(uz) (vy)(wz)−(vz)(wy) i ĵ + h −(ux) (vx)(wz)−(vz)(wx) −(uy) (vy)(wz)−(vz)(wy) i k̂ 13
  • 15. ~ u×(~ v× ~ w) = + h (uy)(vx)(wy)−(uy)(vy)(wx)+(uz)(vx)(wz)−(uz)(vz)(wx) i î − h (ux)(vx)(wy)−(ux)(vy)(wx)−(uz)(vy)(wz)+(uz)(vz)(wy) i ĵ + h −(ux)(vx)(wz)+(ux)(vz)(wx)−(uy)(vy)(wz)+(uy)(vz)(wy) i k̂ ~ u×(~ v× ~ w) = + h (uy)(vx)(wy)+(uz)(vx)(wz)−(uy)(vy)(wx)−(uz)(vz)(wx) i î + h (ux)(vy)(wx)+(uz)(vy)(wz)−(ux)(vx)(wy)−(uz)(vz)(wy) i ĵ + h (ux)(vz)(wx)+(uy)(vz)(wy)−(ux)(vx)(wz)−(uy)(vy)(wz) i k̂ (15) (c) The right side of the equation in the literal (a) is calculated: (~ u· ~ w)~ v−(~ u·~ v)~ w ~ u· ~ w = (ux,uy,uz)·(wx,wy,wz) = (ux)(wx)+(uy)(wy)+(uz)(wz) ~ u·~ v = (ux,uy,uz)·(vx,vy,vz) = (ux)(vx)+(uy)(vy)+(uz)(vz) (~ u· ~ w)~ v = (ux)(wx)+(uy)(wy)+(uz)(wz) (vx,vy,vz) + h (ux)(vx)(wx)+(uy)(vx)(wy)+(uz)(vx)(wz) i î + h (ux)(vy)(wx)+(uy)(vy)(wy)+(uz)(vy)(wz) i ĵ + h (ux)(vz)(wx)+(uy)(vz)(wy)+(uz)(vz)(wz) i k̂ (16) (~ u·~ v)~ w = (ux)(vx)+(uy)(vy)+(uz)(vz) (wx,wy,wz) + h (ux)(vx)(wx)+(uy)(vy)(wx)+(uz)(vz)(wx) i î + h (ux)(vx)(wy)+(uy)(vy)(wy)+(uz)(vz)(wy) i ĵ + h (ux)(vx)(wz)+(uy)(vy)(wz)+(uz)(vz)(wz) i k̂ (17) (~ u· ~ w)~ v−(~ u·~ v)~ w = + h (ux)(vx)(wx)+(uy)(vx)(wy)+(uz)(vx)(wz)−(ux)(vx)(wx)−(uy)(vy)(wx)−(uz)(vz)(wx) i î + h (ux)(vy)(wx)+(uy)(vy)(wy)+(uz)(vy)(wz)−(ux)(vx)(wy)−(uy)(vy)(wy)−(uz)(vz)(wy) i ĵ + h (ux)(vz)(wx)+(uy)(vz)(wy)+(uz)(vz)(wz)−(ux)(vx)(wz)−(uy)(vy)(wz)−(uz)(vz)(wz) i k̂ (~ u· ~ w)~ v−(~ u·~ v)~ w = + h (uy)(vx)(wy)+(uz)(vx)(wz)−(uy)(vy)(wx)−(uz)(vz)(wx) i î + h (ux)(vy)(wx)+(uz)(vy)(wz)−(ux)(vx)(wy)−(uz)(vz)(wy) i ĵ + h (ux)(vz)(wx)+(uy)(vz)(wy)−(ux)(vx)(wz)−(uy)(vy)(wz) i k̂ (18) (d) Comparing the equations 15 and 18 literals (b) and (c) we have: ~ u×(~ v× ~ w) = + h (uy)(vx)(wy)+(uz)(vx)(wz)−(uy)(vy)(wx)−(uz)(vz)(wx) i î + h (ux)(vy)(wx)+(uz)(vy)(wz)−(ux)(vx)(wy)−(uz)(vz)(wy) i ĵ + h (ux)(vz)(wx)+(uy)(vz)(wy)−(ux)(vx)(wz)−(uy)(vy)(wz) i k̂ 14
  • 16. (~ u· ~ w)~ v−(~ u·~ v)~ w = + h (uy)(vx)(wy)+(uz)(vx)(wz)−(uy)(vy)(wx)−(uz)(vz)(wx) i î + h (ux)(vy)(wx)+(uz)(vy)(wz)−(ux)(vx)(wy)−(uz)(vz)(wy) i ĵ + h (ux)(vz)(wx)+(uy)(vz)(wy)−(ux)(vx)(wz)−(uy)(vy)(wz) i k̂ (e) With the above it was possible to verify the vector triple product of the vectors ~ u, ~ v, and ~ w is: ~ u×(~ v× ~ w) = (~ u· ~ w)~ v−(~ u·~ v)~ w 15