SlideShare une entreprise Scribd logo
1  sur  52
Mathematics
By jitendra thakor
Session
Matrices and Determinants - 2
Session Objectives
 Determinant of a Square Matrix
 Minors and Cofactors
 Properties of Determinants
 Applications of Determinants
Area of a Triangle
Solution of System of Linear Equations (Cramer’s Rule)
 Class Exercise
Determinants
If is a square matrix of order 1,
then |A| = | a11 | = a11
ijA = a 
 
If is a square matrix of order 2, then
11 12
21 22
a a
A =
a a
 
 
 
|A| = = a11a22 – a21a12
a a
a a
1 1 1 2
2 1 2 2
Example
4 - 3
Evaluate the determinant :
2 5
( )
4 - 3
Solution : = 4 ×5 - 2 × -3 = 20 + 6 = 26
2 5
Solution
If A = is a square matrix of order 3, then
11 12 13
21 22 23
31 32 33
a a a
a a a
a a a
 
 
 
  
[Expanding along first row]
11 12 13
22 23 21 23 21 22
21 22 23 11 12 13
32 33 31 33 31 32
31 32 33
a a a
a a a a a a
| A |= a a a = a - a + a
a a a a a a
a a a
( ) ( ) ( )11 22 33 32 23 12 21 33 31 23 13 21 32 31 22= a a a - a a - a a a - a a + a a a - a a
( ) ( )11 22 33 12 31 23 13 21 32 11 23 32 12 21 33 13 31 22a a a a a a a a a a a a a a a a a a= + + − + +
Example
2 3 - 5
Evaluate the determinant : 7 1 - 2
-3 4 1
( )
2 3 - 5
1 - 2 7 - 2 7 1
7 1 - 2 = 2 - 3 + -5
4 1 -3 1 -3 4
-3 4 1
( ) ( ) ( )= 2 1 + 8 - 3 7 - 6 - 5 28 + 3
= 18 - 3 - 155
= -140
[Expanding along first row]
Solution :
Minors
-1 4
If A = , then
2 3
 
 
 
21 21 22 22M = Minor of a = 4, M = Minor of a = -1
11 11 12 12M = Minor of a = 3, M = Minor of a = 2
Minors
4 7 8
If A = -9 0 0 , then
2 3 4
 
 
 
  
M11 = Minor of a11 = determinant of the order 2 × 2 square
sub-matrix is obtained by leaving first
row and first column of A
0 0
= = 0
3 4
Similarly, M23 = Minor of a23
4 7
= =12-14=-2
2 3
M32 = Minor of a32 etc.
4 8
= = 0+72 =72
-9 0
Cofactors
( )i+ j
ij ij ijC = Cofactor of a in A = -1 M ,
ij ijwhere M is minor of a in A
Cofactors (Con.)
C11 = Cofactor of a11 = (–1)1 + 1
M11 = (–1)1 +1
0 0
= 0
3 4
C23 = Cofactor of a23 = (–1)2 + 3
M23 = − =
4 7
2
2 3
C32 = Cofactor of a32 = (–1)3 + 2
M32 = etc.
4 8
- =-72
-9 0
4 7 8
A = -9 0 0
2 3 4
 
 
 
  
Value of Determinant in Terms of
Minors and Cofactors
11 12 13
21 22 23
31 32 33
a a a
If A = a a a , then
a a a
 
 
 
  
( )
3 3
i j
ij ij ij ij
j 1 j 1
A 1 a M a C
+
= =
= − =∑ ∑
i1 i1 i2 i2 i3 i3= a C +a C + a C , for i =1 or i = 2 or i = 3
Properties of Determinants
1. The value of a determinant remains unchanged, if its
rows and columns are interchanged.
1 1 1 1 2 3
2 2 2 1 2 3
3 3 3 1 2 3
a b c a a a
a b c = b b b
a b c c c c
i e A A=. . '
2. If any two rows (or columns) of a determinant are interchanged,
then the value of the determinant is changed by minus sign.
[ ]
1 1 1 2 2 2
2 2 2 1 1 1 2 1
3 3 3 3 3 3
a b c a b c
a b c = - a b c R R
a b c a b c
Applying ↔
Properties (Con.)
3. If all the elements of a row (or column) is multiplied by a
non-zero number k, then the value of the new determinant
is k times the value of the original determinant.
1 1 1 1 1 1
2 2 2 2 2 2
3 3 3 3 3 3
ka kb kc a b c
a b c = k a b c
a b c a b c
which also implies
1 1 1 1 1 1
2 2 2 2 2 2
3 3 3 3 3 3
a b c ma mb mc
1
a b c = a b c
m
a b c a b c
Properties (Con.)
4. If each element of any row (or column) consists of
two or more terms, then the determinant can be
expressed as the sum of two or more determinants.
1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3
a +x b c a b c x b c
a +y b c = a b c + y b c
a +z b c a b c z b c
5. The value of a determinant is unchanged, if any row
(or column) is multiplied by a number and then added
to any other row (or column).
[ ]
1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 1 1 2 3
3 3 3 3 3 3 3 3
a b c a +mb - nc b c
a b c = a +mb - nc b c C C + mC -nC
a b c a +mb - nc b c
Applying →
Properties (Con.)
6. If any two rows (or columns) of a determinant are
identical, then its value is zero.
2 2 2
3 3 3
0 0 0
a b c = 0
a b c
7. If each element of a row (or column) of a determinant is zero,
then its value is zero.
1 1 1
2 2 2
1 1 1
a b c
a b c = 0
a b c
Properties (Con.)
( )
a 0 0
8 Let A = 0 b 0 be a diagonal matrix, then
0 0 c
 
 
 
  
a 0 0
= 0 b 0
0 0 c
A abc=
Row(Column) Operations
Following are the notations to evaluate a determinant:
Similar notations can be used to denote column
operations by replacing R with C.
(i) Ri to denote ith row
(ii) Ri Rj to denote the interchange of ith and jth
rows.
(iii) Ri Ri + λRj to denote the addition of λ times the
elements of jth row to the corresponding elements
of ith row.
(iv) λRi to denote the multiplication of all elements of
ith row by λ.
↔
↔
Evaluation of Determinants
If a determinant becomes zero on putting
is the factor of the determinant.( )x = , then x -α α
2
3
x 5 2
For example, ifΔ = x 9 4 , then at x =2
x 16 8
, because C1 and C2 are identical at x = 2
Hence, (x – 2) is a factor of determinant .
∆ = 0
∆
Sign System for Expansion of
Determinant
Sign System for order 2 and order 3 are
given by
+ – +
+ –
, – + –
– +
+ – +
( )
42 1 6 6×7 1 6
i 28 7 4 = 4×7 7 4
14 3 2 2×7 3 2
[ ]1
6 1 6
=7 4 7 4 Taking out 7 common from C
2 3 2
Example-1
6 -3 2
2 -1 2
-10 5 2
42 1 6
28 7 4
14 3 2
Find the value of the following determinants
(i) (ii)
Solution :
1 3= 7 × 0 C and C are identical
= 0
  Q
Example –1 (ii)
6 -3 2
2 -1 2
-10 5 2
(ii)
( )
( )
( )
− × − −
= − × − −
× −
3 2 3 2
1 2 1 2
5 2 5 2
− −
= − − − −  
= − ×   
=
1
1 2
3 3 2
( 2) 1 1 2 Taking out 2 common from C
5 5 2
( 2) 0 C and C are identical
0
Q
Evaluate the determinant
1 a b+c
1 b c+a
1 c a+b
Solution :
[ ]3 2 3
1 a b+c 1 a a+b+c
1 b c+a = 1 b a+b+c Applying c c +c
1 c a+b 1 c a+b+c
→
( ) ( ) 3
1 a 1
= a+b+c 1 b 1 Taking a+b+c common from C
1 c 1
  
Example - 2
( ) 1 3= a + b + c × 0 C and C are identical
= 0
  Q
2 2 2
a b c
We have a b c
bc ca ab
[ ]2
1 1 2 2 2 3
(a-b) b-c c
= (a-b)(a+b) (b-c)(b+c) c Applying C C -C and C C -C
-c(a-b) -a(b-c) ab
→ →
( ) ( )2
1 2
1 1 c
Taking a-b and b-c common
=(a-b)(b-c) a+b b+c c
from C and C respectively
-c -a ab
 
 
 
Example - 3
bc
2 2 2
a b c
a b c
ca ab
Evaluate the determinant:
Solution:
[ ]2
1 1 2
0 1 c
=(a-b)(b-c) -(c-a) b+c c Applying c c -c
-(c-a) -a ab
→
2
0 1 c
=-(a-b)(b-c)(c-a) 1 b+c c
1 -a ab
[ ]2
2 2 3
0 1 c
= -(a-b)(b-c)(c-a) 0 a+b+c c -ab Applying R R -R
1 -a ab
→
Now expanding along C1 , we get
(a-b) (b-c) (c-a) [- (c2
– ab – ac – bc – c2
)]
= (a-b) (b-c) (c-a) (ab + bc + ac)
Solution Cont.
Without expanding the determinant,
prove that
3
3x+y 2x x
4x+3y 3x 3x =x
5x+6y 4x 6x
3x+y 2x x 3x 2x x y 2x x
L.H.S= 4x+3y 3x 3x = 4x 3x 3x + 3y 3x 3x
5x+6y 4x 6x 5x 4x 6x 6y 4x 6x
3 2
3 2 1 1 2 1
= x 4 3 3 + x y 3 3 3
5 4 6 6 4 6
Example-4
Solution :
[ ]3 2
1 2
3 2 1
= x 4 3 3 +x y×0 C and C are identical in II determinant
5 4 6
Q
Solution Cont.
[ ]3
1 1 2
1 2 1
= x 1 3 3 Applying C C -C
1 4 6
→
[ ]3
2 2 1 3 3 2
1 2 1
= x 0 1 2 ApplyingR R -R and R R -R
0 1 3
→ →
[ ]3
1
3
= x ×(3-2) Expanding along C
=x = R.H.S.
3
3 2 1
=x 4 3 3
5 4 6
Prove that : = 0 , where ω is cube root of unity.
3 5
3 4
5 5
1ω ω
ω 1 ω
ω ω 1
3 5 3 3 2
3 4 3 3
5 5 3 2 3 2
1ω ω 1 ω ω .ω
L.H.S =ω 1 ω = ω 1 ω .ω
ω ω 1 ω .ω ω .ω 1
[ ]
2
3
2 2
1 2
1 1ω
= 1 1ω ω =1
ω ω 1
=0=R.H.S. C and C are identical
  Q
Q
Example -5
Solution :
Example-6
2
x+a b c
a x+b c =x (x+a+b+c)
a b x+C
Prove that :
[ ]1 1 2 3
x+a b c x+a+b+c b c
L.H.S= a x+b c = x+a+b+c x+b c
a b x+C x+a+b+c b x+c
Applying C C +C +C→
Solution :
( )
( ) 1
1 b c
= x+a+b+c 1 x+b c
1 b x+c
Taking x+a+b+c commonfrom C  
Solution cont.
[ ]2 2 1 3 3 1
1 b c
=(x+a+b+c) 0 x 0
0 0 x
Applying R R -R and R R -R→ →
Expanding along C1 , we get
(x + a + b + c) [1(x2
)] = x2
(x + a + b + c)
= R.H.S
[ ]1 1 2 3
2(a+b+c) 2(a+b+c) 2(a+b+c)
= c+a a+b b+c Applying R R +R +R
a+b b+c c+a
→
1 1 1
=2(a+b+c) c+a a+b b+c
a+b b+c c+a
Example -7
Solution :
Using properties of determinants, prove that
2 2 2
b+c c+a a+b
c+a a+b b+c =2(a+b+c)(ab+bc+ca-a -b -c ).
a+b b+c c+a
b+c c+a a+b
L.H.S= c+a a+b b+c
a+b b+c c+a
[ ]1 1 2 2 2 3
0 0 1
=2(a+b+c) (c-b) (a-c) b+c Applying C C -C and C C - C
(a-c) (b-a) c+a
→ →
Now expanding along R1 , we get
2
2(a+b+c) (c-b)(b-a)-(a-c)  
2 2 2
=2(a+b+c) bc -b - ac+ab -(a +c -2ac)  
Solution Cont.
2 2 2
=2(a+b+c) ab+bc+ac-a -b -c
=R.H.S
  
Using properties of determinants prove that
2
x+4 2x 2x
2x x+4 2x =(5x+4)(4-x)
2x 2x x+4
Example - 8
1 2x 2x
=(5x+4)1 x+4 2x
1 2x x+4
Solution :
[ ]1 1 2 3
x+4 2x 2x 5x+4 2x 2x
L.H.S= 2x x+4 2x =5x+4 x+4 2x Applying C C +C +C
2x 2x x+4 5x+4 2x x+4
→
Solution Cont.
[ ]2 2 1 3 3 2
1 2x 2x
=(5x+4) 0 -(x- 4) 0 ApplyingR R -R and R R -R
0 x- 4 -(x- 4)
→ →
Now expanding along C1 , we get
2
(5x+4) 1(x-4) -0  
2
=(5x+4)(4-x)
=R.H.S
Example -9
Using properties of determinants, prove that
x+9 x x
x x+9 x =243 (x+3)
x x x+9
x+9 x x
L.H.S= x x+9 x
x x x+9
[ ]1 1 2 3
3x+9 x x
= 3x+9 x+9 x Applying C C +C +C
3x+9 x x+9
→
Solution :
[ ]1=3(x+3) 81 Expanding along C
=243(x+3)
=R.H.S.
×
1 x x
=(3x+9)1 x+9 x
1 x x+9
Solution Cont.
( ) 2 2 1 3 3 2
1 x x
=3 x+3 0 9 0 Applying R R -R and R R -R
0 -9 9
 → → 
Example -10
Solution :
2 2 2 2 2
2 2 2 2 2
1 1 3
2 2 2 2 2
(b+c) a bc b +c a bc
L.H.S.= (c+a) b ca = c +a b ca Applying C C -2C
(a+b) c ab a +b c ab
 → 
[ ]
2 2 2 2
2 2 2 2
1 1 2
2 2 2 2
a +b +c a bc
a +b +c b ca Applying C C +C
a +b +c c ab
= →
2
2 2 2 2
2
1 a bc
=(a +b +c )1 b ca
1 c ab
2 2
2 2 2 2 2
2 2
(b+c) a bc
(c+a) b ca =(a +b +c )(a-b)(b-c)(c-a)(a+b+c)
(a+b) c ab
Show that
Solution Cont.
[ ]
2
2 2 2
2 2 1 3 3 2
1 a bc
=(a +b +c ) 0 (b-a)(b+a) c(a-b) Applying R R -R and R R -R
0 (c-b)(c+b) a(b-c)
→ →
[ ]2 2 2 2 2
1=(a +b +c )(a-b)(b-c)(-ab-a +bc+c ) Expanding along C
2 2 2
=(a +b +c )(a-b)(b-c)(c-a)(a+b+c)=R.H.S.
2
2 2 2
1 a bc
=(a +b +c )(a-b)(b-c) 0 -(b+a) c
0 -(b+c) a
( ) ( ) ( )2 2 2
=(a +b +c )(a-b)(b-c) b c-a + c-a c+a  
Determinants (Area of a
Triangle)
The area of a triangle whose vertices are
is given by the expression1 1 2 2 3 3(x , y ), (x , y ) and (x , y )
1 1
2 2
3 3
x y 1
1
Δ= x y 1
2
x y 1
1 2 3 2 3 1 3 1 2
1
= [x (y - y ) + x (y - y )+ x (y - y )]
2
Example
Find the area of a triangle whose
vertices are (-1, 8), (-2, -3) and (3, 2).
Solution :
1 1
2 2
3 3
x y 1 -1 8 1
1 1
Area of triangle= x y 1 = -2 -3 1
2 2
x y 1 3 2 1
[ ]
1
= -1(-3-2)- 8(-2-3)+1(-4+9)
2
[ ]
1
= 5+40+5 =25 sq.units
2
Condition of Collinearity of
Three Points
If are three points,
then A, B, C are collinear
1 1 2 2 3 3A (x , y ), B (x , y ) and C (x , y )
1 1 1 1
2 2 2 2
3 3 3 3
Area of triangle ABC = 0
x y 1 x y 1
1
x y 1 = 0 x y 1 = 0
2
x y 1 x y 1
⇔
⇔ ⇔
If the points (x, -2) , (5, 2), (8, 8) are collinear,
find x , using determinants.
Example
Solution :
x -2 1
5 2 1 =0
8 8 1
∴
( ) ( ) ( ) ( )x 2-8 - -2 5-8 +1 40-16 =0⇒
-6x-6+24=0⇒
6x =18 x =3⇒ ⇒
Since the given points are collinear.
Linear Equations (Cramer’s
Rule)
Let the system of linear equations be
( )2 2 2a x +b y = c ... ii
( )1 1 1a x +b y = c ... i
1 2D D
Then x = , y = provided D 0,
D D
≠
1 1 1 1 1 1
1 2
2 2 2 2 2 2
a b c b a c
where D = , D = and D =
a b c b a c
Cramer’s Rule (Con.)
then the system is consistent and has infinitely many
solutions.
( ) 1 22 If D = 0 and D = D = 0,
then the system is inconsistent and has no solution.
( )1 If D 0
Note :
,≠
then the system is consistent and has unique solution.
( ) 1 23 If D = 0 and one of D , D 0,≠
Example
2 -3
D= =2+9=11 0
3 1
≠
1
7 -3
D = =7+15=22
5 1
2
2 7
D = =10-21=-11
3 5
Solution :
1 2
D 0
D D22 -11
By Cramer's Rule x = = =2 and y = = =-1
D 11 D 11
≠
∴
Q
Using Cramer's rule , solve the following
system of equations 2x-3y=7, 3x+y=5
Linear Equations (Cramer’s
Rule)
Let the system of linear equations be
( )2 2 2 2a x +b y+ c z = d ... ii
( )1 1 1 1a x +b y + c z = d ... i
( )3 3 3 3a x +b y + c z = d ... iii
31 2 DD D
Then x = , y = z = provided D 0,
D D D
, ≠
1 1 1 1 1 1 1 1 1
2 2 2 1 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3
a b c d b c a d c
where D = a b c , D = d b c , D = a d c
a b c d b c a d c
1 1 1
3 2 2 2
3 3 3
a b d
and D = a b d
a b d
Cramer’s Rule (Con.)
Note:
(1) If D ≠ 0, then the system is consistent and has a unique
solution.
(2) If D=0 and D1 = D2 = D3 = 0, then the system has infinite
solutions or no solution.
(3) If D = 0 and one of D1, D2, D3 ≠ 0, then the system
is inconsistent and has no solution.
(4) If d1 = d2 = d3 = 0, then the system is called the system of
homogeneous linear equations.
(i) If D ≠ 0, then the system has only trivial solution x = y = z = 0.
(ii) If D = 0, then the system has infinite solutions.
Example
Using Cramer's rule , solve the following
system of equations
5x - y+ 4z = 5
2x + 3y+ 5z = 2
5x - 2y + 6z = -1
Solution :
5 -1 4
D= 2 3 5
5 -2 6
1
5 -1 4
D = 2 3 5
-1 -2 6
= 5(18+10)+1(12+5)+4(-4 +3)
= 140 +17 –4
= 153
= 5(18+10) + 1(12-25)+4(-4 -15)
= 140 –13 –76 =140 - 89
= 51 0≠
3
5 -1 5
D = 2 3 2
5 -2 -1
= 5(-3 +4)+1(-2 - 10)+5(-4-15)
= 5 – 12 – 95 = 5 - 107
= - 102
Solution Cont.
1 2
3
D 0
D D153 102
By Cramer's Rule x = = =3, y = = =2
D 51 D 51
D -102
and z= = =-2
D 51
≠
∴
Q
2
5 5 4
D = 2 2 5
5 -1 6
= 5(12 +5)+5(12 - 25)+ 4(-2 - 10)
= 85 + 65 – 48 = 150 - 48
= 102
Example
Solve the following system of homogeneous linear equations:
x + y – z = 0, x – 2y + z = 0, 3x + 6y + -5z = 0
Solution:
( ) ( ) ( )
1 1 - 1
We have D = 1 - 2 1 = 1 10 - 6 - 1 -5 - 3 - 1 6 + 6
3 6 - 5
= 4 + 8 - 12 = 0
 
 
 
  
The system has infinitely many solutions.∴
Putting z = k, in first two equations, we get
x + y = k, x – 2y = -k
Solution (Con.)
1
k 1
D -k - 2 -2k + k k
By Cramer's rule x = = = =
D -2 - 1 31 1
1 - 2
∴
2
1 k
D 1 - k -k - k 2k
y = = = =
D -2 - 1 31 1
1 - 2
k 2k
x = , y = , z = k , where k R
3 3
∴ ∈
These values of x, y and z = k satisfy (iii) equation.
Thank you

Contenu connexe

Tendances

Matrices & determinants
Matrices & determinantsMatrices & determinants
Matrices & determinants
indu thakur
 
Cramer’s Rule OF Matrix
Cramer’s Rule OF MatrixCramer’s Rule OF Matrix
Cramer’s Rule OF Matrix
Abi Malik
 
Indefinite and Definite Integrals Using the Substitution Method
Indefinite and Definite Integrals Using the Substitution MethodIndefinite and Definite Integrals Using the Substitution Method
Indefinite and Definite Integrals Using the Substitution Method
Scott Bailey
 
Graphing Quadratics
Graphing QuadraticsGraphing Quadratics
Graphing Quadratics
swartzje
 
Trig substitution
Trig substitutionTrig substitution
Trig substitution
dynx24
 

Tendances (20)

1 3 d coordinate system
1 3 d coordinate system1 3 d coordinate system
1 3 d coordinate system
 
Matrices & determinants
Matrices & determinantsMatrices & determinants
Matrices & determinants
 
Cramer’s Rule OF Matrix
Cramer’s Rule OF MatrixCramer’s Rule OF Matrix
Cramer’s Rule OF Matrix
 
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
 
Indefinite and Definite Integrals Using the Substitution Method
Indefinite and Definite Integrals Using the Substitution MethodIndefinite and Definite Integrals Using the Substitution Method
Indefinite and Definite Integrals Using the Substitution Method
 
11.1 Circumference and Area of Circles
11.1 Circumference and Area of Circles11.1 Circumference and Area of Circles
11.1 Circumference and Area of Circles
 
Determinants
DeterminantsDeterminants
Determinants
 
graph theory
graph theory graph theory
graph theory
 
Graphing Quadratics
Graphing QuadraticsGraphing Quadratics
Graphing Quadratics
 
Set Operations Topic Including Union , Intersection, Disjoint etc De Morgans ...
Set Operations Topic Including Union , Intersection, Disjoint etc De Morgans ...Set Operations Topic Including Union , Intersection, Disjoint etc De Morgans ...
Set Operations Topic Including Union , Intersection, Disjoint etc De Morgans ...
 
Trig substitution
Trig substitutionTrig substitution
Trig substitution
 
Rewriting Linear Equation from standard form to slope intercept form
Rewriting Linear Equation from standard form to slope intercept formRewriting Linear Equation from standard form to slope intercept form
Rewriting Linear Equation from standard form to slope intercept form
 
Group theory notes
Group theory notesGroup theory notes
Group theory notes
 
matrix algebra
matrix algebramatrix algebra
matrix algebra
 
Mathematics 9 Lesson 1-B: Solving Quadratic Equations using Quadratic Formula
Mathematics 9 Lesson 1-B: Solving Quadratic Equations using Quadratic FormulaMathematics 9 Lesson 1-B: Solving Quadratic Equations using Quadratic Formula
Mathematics 9 Lesson 1-B: Solving Quadratic Equations using Quadratic Formula
 
Matrix presentation By DHEERAJ KATARIA
Matrix presentation By DHEERAJ KATARIAMatrix presentation By DHEERAJ KATARIA
Matrix presentation By DHEERAJ KATARIA
 
Limit of functions
Limit of functionsLimit of functions
Limit of functions
 
Compound angle formulae intro
Compound angle formulae introCompound angle formulae intro
Compound angle formulae intro
 
Plane Geometry
Plane GeometryPlane Geometry
Plane Geometry
 
Algebraic Expressions PPT.pptx
Algebraic Expressions PPT.pptxAlgebraic Expressions PPT.pptx
Algebraic Expressions PPT.pptx
 

Similaire à matrices and determinantes

Notes and formulae mathematics
Notes and formulae mathematicsNotes and formulae mathematics
Notes and formulae mathematics
Zainonie Ma'arof
 
Partial fractions
Partial fractionsPartial fractions
Partial fractions
Thivagar
 
(Www.entrance exam.net)-sail placement sample paper 5
(Www.entrance exam.net)-sail placement sample paper 5(Www.entrance exam.net)-sail placement sample paper 5
(Www.entrance exam.net)-sail placement sample paper 5
SAMEER NAIK
 

Similaire à matrices and determinantes (20)

TABREZ KHAN.ppt
TABREZ KHAN.pptTABREZ KHAN.ppt
TABREZ KHAN.ppt
 
determinants-160504230830.pdf
determinants-160504230830.pdfdeterminants-160504230830.pdf
determinants-160504230830.pdf
 
determinants-160504230830_repaired.pdf
determinants-160504230830_repaired.pdfdeterminants-160504230830_repaired.pdf
determinants-160504230830_repaired.pdf
 
chp-1-matrices-determinants1.ppt
chp-1-matrices-determinants1.pptchp-1-matrices-determinants1.ppt
chp-1-matrices-determinants1.ppt
 
Introduction of determinant
Introduction of determinantIntroduction of determinant
Introduction of determinant
 
chp-1-matrices-determinants1 (2).ppt
chp-1-matrices-determinants1 (2).pptchp-1-matrices-determinants1 (2).ppt
chp-1-matrices-determinants1 (2).ppt
 
Determinants and matrices.ppt
Determinants and matrices.pptDeterminants and matrices.ppt
Determinants and matrices.ppt
 
Solucao_Marion_Thornton_Dinamica_Classic (1).pdf
Solucao_Marion_Thornton_Dinamica_Classic (1).pdfSolucao_Marion_Thornton_Dinamica_Classic (1).pdf
Solucao_Marion_Thornton_Dinamica_Classic (1).pdf
 
lemh2sm.pdf
lemh2sm.pdflemh2sm.pdf
lemh2sm.pdf
 
Lemh104
Lemh104Lemh104
Lemh104
 
Form 5 Additional Maths Note
Form 5 Additional Maths NoteForm 5 Additional Maths Note
Form 5 Additional Maths Note
 
Metrix[1]
Metrix[1]Metrix[1]
Metrix[1]
 
Gate mathematics chapter wise all gate questions of all branch
Gate mathematics chapter wise all gate questions of all branchGate mathematics chapter wise all gate questions of all branch
Gate mathematics chapter wise all gate questions of all branch
 
Class XII CBSE Mathematics Sample question paper with solution
Class XII CBSE Mathematics Sample question paper with solutionClass XII CBSE Mathematics Sample question paper with solution
Class XII CBSE Mathematics Sample question paper with solution
 
Notes and formulae mathematics
Notes and formulae mathematicsNotes and formulae mathematics
Notes and formulae mathematics
 
Partial fractions
Partial fractionsPartial fractions
Partial fractions
 
Sample question paper 2 with solution
Sample question paper 2 with solutionSample question paper 2 with solution
Sample question paper 2 with solution
 
Correlation & regression
Correlation & regression Correlation & regression
Correlation & regression
 
M112rev
M112revM112rev
M112rev
 
(Www.entrance exam.net)-sail placement sample paper 5
(Www.entrance exam.net)-sail placement sample paper 5(Www.entrance exam.net)-sail placement sample paper 5
(Www.entrance exam.net)-sail placement sample paper 5
 

Plus de gandhinagar

Led(light emitting diode)
Led(light emitting diode)Led(light emitting diode)
Led(light emitting diode)
gandhinagar
 

Plus de gandhinagar (20)

Introduction to gis and its application
Introduction to gis and its application Introduction to gis and its application
Introduction to gis and its application
 
Indian air force
Indian air forceIndian air force
Indian air force
 
Remote sensing by jitendra thakor
Remote sensing by jitendra thakorRemote sensing by jitendra thakor
Remote sensing by jitendra thakor
 
Kailash satyarthi
Kailash satyarthiKailash satyarthi
Kailash satyarthi
 
IAS
IASIAS
IAS
 
Eighan values and diagonalization
Eighan values and diagonalization Eighan values and diagonalization
Eighan values and diagonalization
 
Eighan values and diagonalization
Eighan values and diagonalization Eighan values and diagonalization
Eighan values and diagonalization
 
matrices and algbra
matrices and algbramatrices and algbra
matrices and algbra
 
Systemsof3 equations
Systemsof3 equationsSystemsof3 equations
Systemsof3 equations
 
Systems of linear equations
Systems of linear equationsSystems of linear equations
Systems of linear equations
 
Systems of linear equations
Systems of linear equationsSystems of linear equations
Systems of linear equations
 
Vikram batra
Vikram batraVikram batra
Vikram batra
 
Story about big success person
Story about big success personStory about big success person
Story about big success person
 
Chanakya
ChanakyaChanakya
Chanakya
 
Inverse of matrix
Inverse of matrixInverse of matrix
Inverse of matrix
 
The contributor’s vision of success.
The contributor’s vision of success.The contributor’s vision of success.
The contributor’s vision of success.
 
Led(light emitting diode)
Led(light emitting diode)Led(light emitting diode)
Led(light emitting diode)
 
LED
LED LED
LED
 
Solar cell
Solar cellSolar cell
Solar cell
 
Lucid dreaming
Lucid  dreamingLucid  dreaming
Lucid dreaming
 

Dernier

Microkernel in Operating System | Operating System
Microkernel in Operating System | Operating SystemMicrokernel in Operating System | Operating System
Microkernel in Operating System | Operating System
Sampad Kar
 
Maher Othman Interior Design Portfolio..
Maher Othman Interior Design Portfolio..Maher Othman Interior Design Portfolio..
Maher Othman Interior Design Portfolio..
MaherOthman7
 

Dernier (20)

Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdfInstruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
 
Research Methodolgy & Intellectual Property Rights Series 2
Research Methodolgy & Intellectual Property Rights Series 2Research Methodolgy & Intellectual Property Rights Series 2
Research Methodolgy & Intellectual Property Rights Series 2
 
Filters for Electromagnetic Compatibility Applications
Filters for Electromagnetic Compatibility ApplicationsFilters for Electromagnetic Compatibility Applications
Filters for Electromagnetic Compatibility Applications
 
5G and 6G refer to generations of mobile network technology, each representin...
5G and 6G refer to generations of mobile network technology, each representin...5G and 6G refer to generations of mobile network technology, each representin...
5G and 6G refer to generations of mobile network technology, each representin...
 
Research Methodolgy & Intellectual Property Rights Series 1
Research Methodolgy & Intellectual Property Rights Series 1Research Methodolgy & Intellectual Property Rights Series 1
Research Methodolgy & Intellectual Property Rights Series 1
 
Insurance management system project report.pdf
Insurance management system project report.pdfInsurance management system project report.pdf
Insurance management system project report.pdf
 
Fabrication Of Automatic Star Delta Starter Using Relay And GSM Module By Utk...
Fabrication Of Automatic Star Delta Starter Using Relay And GSM Module By Utk...Fabrication Of Automatic Star Delta Starter Using Relay And GSM Module By Utk...
Fabrication Of Automatic Star Delta Starter Using Relay And GSM Module By Utk...
 
The battle for RAG, explore the pros and cons of using KnowledgeGraphs and Ve...
The battle for RAG, explore the pros and cons of using KnowledgeGraphs and Ve...The battle for RAG, explore the pros and cons of using KnowledgeGraphs and Ve...
The battle for RAG, explore the pros and cons of using KnowledgeGraphs and Ve...
 
Software Engineering - Modelling Concepts + Class Modelling + Building the An...
Software Engineering - Modelling Concepts + Class Modelling + Building the An...Software Engineering - Modelling Concepts + Class Modelling + Building the An...
Software Engineering - Modelling Concepts + Class Modelling + Building the An...
 
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdflitvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
 
Lab Manual Arduino UNO Microcontrollar.docx
Lab Manual Arduino UNO Microcontrollar.docxLab Manual Arduino UNO Microcontrollar.docx
Lab Manual Arduino UNO Microcontrollar.docx
 
Module-III Varried Flow.pptx GVF Definition, Water Surface Profile Dynamic Eq...
Module-III Varried Flow.pptx GVF Definition, Water Surface Profile Dynamic Eq...Module-III Varried Flow.pptx GVF Definition, Water Surface Profile Dynamic Eq...
Module-III Varried Flow.pptx GVF Definition, Water Surface Profile Dynamic Eq...
 
Lesson no16 application of Induction Generator in Wind.ppsx
Lesson no16 application of Induction Generator in Wind.ppsxLesson no16 application of Induction Generator in Wind.ppsx
Lesson no16 application of Induction Generator in Wind.ppsx
 
Microkernel in Operating System | Operating System
Microkernel in Operating System | Operating SystemMicrokernel in Operating System | Operating System
Microkernel in Operating System | Operating System
 
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas SachpazisSeismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
 
AI in Healthcare Innovative use cases and applications.pdf
AI in Healthcare Innovative use cases and applications.pdfAI in Healthcare Innovative use cases and applications.pdf
AI in Healthcare Innovative use cases and applications.pdf
 
Electrostatic field in a coaxial transmission line
Electrostatic field in a coaxial transmission lineElectrostatic field in a coaxial transmission line
Electrostatic field in a coaxial transmission line
 
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
 
Involute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdf
Involute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdfInvolute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdf
Involute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdf
 
Maher Othman Interior Design Portfolio..
Maher Othman Interior Design Portfolio..Maher Othman Interior Design Portfolio..
Maher Othman Interior Design Portfolio..
 

matrices and determinantes

  • 3. Session Objectives  Determinant of a Square Matrix  Minors and Cofactors  Properties of Determinants  Applications of Determinants Area of a Triangle Solution of System of Linear Equations (Cramer’s Rule)  Class Exercise
  • 4. Determinants If is a square matrix of order 1, then |A| = | a11 | = a11 ijA = a    If is a square matrix of order 2, then 11 12 21 22 a a A = a a       |A| = = a11a22 – a21a12 a a a a 1 1 1 2 2 1 2 2
  • 5. Example 4 - 3 Evaluate the determinant : 2 5 ( ) 4 - 3 Solution : = 4 ×5 - 2 × -3 = 20 + 6 = 26 2 5
  • 6. Solution If A = is a square matrix of order 3, then 11 12 13 21 22 23 31 32 33 a a a a a a a a a          [Expanding along first row] 11 12 13 22 23 21 23 21 22 21 22 23 11 12 13 32 33 31 33 31 32 31 32 33 a a a a a a a a a | A |= a a a = a - a + a a a a a a a a a a ( ) ( ) ( )11 22 33 32 23 12 21 33 31 23 13 21 32 31 22= a a a - a a - a a a - a a + a a a - a a ( ) ( )11 22 33 12 31 23 13 21 32 11 23 32 12 21 33 13 31 22a a a a a a a a a a a a a a a a a a= + + − + +
  • 7. Example 2 3 - 5 Evaluate the determinant : 7 1 - 2 -3 4 1 ( ) 2 3 - 5 1 - 2 7 - 2 7 1 7 1 - 2 = 2 - 3 + -5 4 1 -3 1 -3 4 -3 4 1 ( ) ( ) ( )= 2 1 + 8 - 3 7 - 6 - 5 28 + 3 = 18 - 3 - 155 = -140 [Expanding along first row] Solution :
  • 8. Minors -1 4 If A = , then 2 3       21 21 22 22M = Minor of a = 4, M = Minor of a = -1 11 11 12 12M = Minor of a = 3, M = Minor of a = 2
  • 9. Minors 4 7 8 If A = -9 0 0 , then 2 3 4          M11 = Minor of a11 = determinant of the order 2 × 2 square sub-matrix is obtained by leaving first row and first column of A 0 0 = = 0 3 4 Similarly, M23 = Minor of a23 4 7 = =12-14=-2 2 3 M32 = Minor of a32 etc. 4 8 = = 0+72 =72 -9 0
  • 10. Cofactors ( )i+ j ij ij ijC = Cofactor of a in A = -1 M , ij ijwhere M is minor of a in A
  • 11. Cofactors (Con.) C11 = Cofactor of a11 = (–1)1 + 1 M11 = (–1)1 +1 0 0 = 0 3 4 C23 = Cofactor of a23 = (–1)2 + 3 M23 = − = 4 7 2 2 3 C32 = Cofactor of a32 = (–1)3 + 2 M32 = etc. 4 8 - =-72 -9 0 4 7 8 A = -9 0 0 2 3 4         
  • 12. Value of Determinant in Terms of Minors and Cofactors 11 12 13 21 22 23 31 32 33 a a a If A = a a a , then a a a          ( ) 3 3 i j ij ij ij ij j 1 j 1 A 1 a M a C + = = = − =∑ ∑ i1 i1 i2 i2 i3 i3= a C +a C + a C , for i =1 or i = 2 or i = 3
  • 13. Properties of Determinants 1. The value of a determinant remains unchanged, if its rows and columns are interchanged. 1 1 1 1 2 3 2 2 2 1 2 3 3 3 3 1 2 3 a b c a a a a b c = b b b a b c c c c i e A A=. . ' 2. If any two rows (or columns) of a determinant are interchanged, then the value of the determinant is changed by minus sign. [ ] 1 1 1 2 2 2 2 2 2 1 1 1 2 1 3 3 3 3 3 3 a b c a b c a b c = - a b c R R a b c a b c Applying ↔
  • 14. Properties (Con.) 3. If all the elements of a row (or column) is multiplied by a non-zero number k, then the value of the new determinant is k times the value of the original determinant. 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 ka kb kc a b c a b c = k a b c a b c a b c which also implies 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 a b c ma mb mc 1 a b c = a b c m a b c a b c
  • 15. Properties (Con.) 4. If each element of any row (or column) consists of two or more terms, then the determinant can be expressed as the sum of two or more determinants. 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 a +x b c a b c x b c a +y b c = a b c + y b c a +z b c a b c z b c 5. The value of a determinant is unchanged, if any row (or column) is multiplied by a number and then added to any other row (or column). [ ] 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 2 3 3 3 3 3 3 3 3 3 a b c a +mb - nc b c a b c = a +mb - nc b c C C + mC -nC a b c a +mb - nc b c Applying →
  • 16. Properties (Con.) 6. If any two rows (or columns) of a determinant are identical, then its value is zero. 2 2 2 3 3 3 0 0 0 a b c = 0 a b c 7. If each element of a row (or column) of a determinant is zero, then its value is zero. 1 1 1 2 2 2 1 1 1 a b c a b c = 0 a b c
  • 17. Properties (Con.) ( ) a 0 0 8 Let A = 0 b 0 be a diagonal matrix, then 0 0 c          a 0 0 = 0 b 0 0 0 c A abc=
  • 18. Row(Column) Operations Following are the notations to evaluate a determinant: Similar notations can be used to denote column operations by replacing R with C. (i) Ri to denote ith row (ii) Ri Rj to denote the interchange of ith and jth rows. (iii) Ri Ri + λRj to denote the addition of λ times the elements of jth row to the corresponding elements of ith row. (iv) λRi to denote the multiplication of all elements of ith row by λ. ↔ ↔
  • 19. Evaluation of Determinants If a determinant becomes zero on putting is the factor of the determinant.( )x = , then x -α α 2 3 x 5 2 For example, ifΔ = x 9 4 , then at x =2 x 16 8 , because C1 and C2 are identical at x = 2 Hence, (x – 2) is a factor of determinant . ∆ = 0 ∆
  • 20. Sign System for Expansion of Determinant Sign System for order 2 and order 3 are given by + – + + – , – + – – + + – +
  • 21. ( ) 42 1 6 6×7 1 6 i 28 7 4 = 4×7 7 4 14 3 2 2×7 3 2 [ ]1 6 1 6 =7 4 7 4 Taking out 7 common from C 2 3 2 Example-1 6 -3 2 2 -1 2 -10 5 2 42 1 6 28 7 4 14 3 2 Find the value of the following determinants (i) (ii) Solution : 1 3= 7 × 0 C and C are identical = 0   Q
  • 22. Example –1 (ii) 6 -3 2 2 -1 2 -10 5 2 (ii) ( ) ( ) ( ) − × − − = − × − − × − 3 2 3 2 1 2 1 2 5 2 5 2 − − = − − − −   = − ×    = 1 1 2 3 3 2 ( 2) 1 1 2 Taking out 2 common from C 5 5 2 ( 2) 0 C and C are identical 0 Q
  • 23. Evaluate the determinant 1 a b+c 1 b c+a 1 c a+b Solution : [ ]3 2 3 1 a b+c 1 a a+b+c 1 b c+a = 1 b a+b+c Applying c c +c 1 c a+b 1 c a+b+c → ( ) ( ) 3 1 a 1 = a+b+c 1 b 1 Taking a+b+c common from C 1 c 1    Example - 2 ( ) 1 3= a + b + c × 0 C and C are identical = 0   Q
  • 24. 2 2 2 a b c We have a b c bc ca ab [ ]2 1 1 2 2 2 3 (a-b) b-c c = (a-b)(a+b) (b-c)(b+c) c Applying C C -C and C C -C -c(a-b) -a(b-c) ab → → ( ) ( )2 1 2 1 1 c Taking a-b and b-c common =(a-b)(b-c) a+b b+c c from C and C respectively -c -a ab       Example - 3 bc 2 2 2 a b c a b c ca ab Evaluate the determinant: Solution:
  • 25. [ ]2 1 1 2 0 1 c =(a-b)(b-c) -(c-a) b+c c Applying c c -c -(c-a) -a ab → 2 0 1 c =-(a-b)(b-c)(c-a) 1 b+c c 1 -a ab [ ]2 2 2 3 0 1 c = -(a-b)(b-c)(c-a) 0 a+b+c c -ab Applying R R -R 1 -a ab → Now expanding along C1 , we get (a-b) (b-c) (c-a) [- (c2 – ab – ac – bc – c2 )] = (a-b) (b-c) (c-a) (ab + bc + ac) Solution Cont.
  • 26. Without expanding the determinant, prove that 3 3x+y 2x x 4x+3y 3x 3x =x 5x+6y 4x 6x 3x+y 2x x 3x 2x x y 2x x L.H.S= 4x+3y 3x 3x = 4x 3x 3x + 3y 3x 3x 5x+6y 4x 6x 5x 4x 6x 6y 4x 6x 3 2 3 2 1 1 2 1 = x 4 3 3 + x y 3 3 3 5 4 6 6 4 6 Example-4 Solution : [ ]3 2 1 2 3 2 1 = x 4 3 3 +x y×0 C and C are identical in II determinant 5 4 6 Q
  • 27. Solution Cont. [ ]3 1 1 2 1 2 1 = x 1 3 3 Applying C C -C 1 4 6 → [ ]3 2 2 1 3 3 2 1 2 1 = x 0 1 2 ApplyingR R -R and R R -R 0 1 3 → → [ ]3 1 3 = x ×(3-2) Expanding along C =x = R.H.S. 3 3 2 1 =x 4 3 3 5 4 6
  • 28. Prove that : = 0 , where ω is cube root of unity. 3 5 3 4 5 5 1ω ω ω 1 ω ω ω 1 3 5 3 3 2 3 4 3 3 5 5 3 2 3 2 1ω ω 1 ω ω .ω L.H.S =ω 1 ω = ω 1 ω .ω ω ω 1 ω .ω ω .ω 1 [ ] 2 3 2 2 1 2 1 1ω = 1 1ω ω =1 ω ω 1 =0=R.H.S. C and C are identical   Q Q Example -5 Solution :
  • 29. Example-6 2 x+a b c a x+b c =x (x+a+b+c) a b x+C Prove that : [ ]1 1 2 3 x+a b c x+a+b+c b c L.H.S= a x+b c = x+a+b+c x+b c a b x+C x+a+b+c b x+c Applying C C +C +C→ Solution : ( ) ( ) 1 1 b c = x+a+b+c 1 x+b c 1 b x+c Taking x+a+b+c commonfrom C  
  • 30. Solution cont. [ ]2 2 1 3 3 1 1 b c =(x+a+b+c) 0 x 0 0 0 x Applying R R -R and R R -R→ → Expanding along C1 , we get (x + a + b + c) [1(x2 )] = x2 (x + a + b + c) = R.H.S
  • 31. [ ]1 1 2 3 2(a+b+c) 2(a+b+c) 2(a+b+c) = c+a a+b b+c Applying R R +R +R a+b b+c c+a → 1 1 1 =2(a+b+c) c+a a+b b+c a+b b+c c+a Example -7 Solution : Using properties of determinants, prove that 2 2 2 b+c c+a a+b c+a a+b b+c =2(a+b+c)(ab+bc+ca-a -b -c ). a+b b+c c+a b+c c+a a+b L.H.S= c+a a+b b+c a+b b+c c+a
  • 32. [ ]1 1 2 2 2 3 0 0 1 =2(a+b+c) (c-b) (a-c) b+c Applying C C -C and C C - C (a-c) (b-a) c+a → → Now expanding along R1 , we get 2 2(a+b+c) (c-b)(b-a)-(a-c)   2 2 2 =2(a+b+c) bc -b - ac+ab -(a +c -2ac)   Solution Cont. 2 2 2 =2(a+b+c) ab+bc+ac-a -b -c =R.H.S   
  • 33. Using properties of determinants prove that 2 x+4 2x 2x 2x x+4 2x =(5x+4)(4-x) 2x 2x x+4 Example - 8 1 2x 2x =(5x+4)1 x+4 2x 1 2x x+4 Solution : [ ]1 1 2 3 x+4 2x 2x 5x+4 2x 2x L.H.S= 2x x+4 2x =5x+4 x+4 2x Applying C C +C +C 2x 2x x+4 5x+4 2x x+4 →
  • 34. Solution Cont. [ ]2 2 1 3 3 2 1 2x 2x =(5x+4) 0 -(x- 4) 0 ApplyingR R -R and R R -R 0 x- 4 -(x- 4) → → Now expanding along C1 , we get 2 (5x+4) 1(x-4) -0   2 =(5x+4)(4-x) =R.H.S
  • 35. Example -9 Using properties of determinants, prove that x+9 x x x x+9 x =243 (x+3) x x x+9 x+9 x x L.H.S= x x+9 x x x x+9 [ ]1 1 2 3 3x+9 x x = 3x+9 x+9 x Applying C C +C +C 3x+9 x x+9 → Solution :
  • 36. [ ]1=3(x+3) 81 Expanding along C =243(x+3) =R.H.S. × 1 x x =(3x+9)1 x+9 x 1 x x+9 Solution Cont. ( ) 2 2 1 3 3 2 1 x x =3 x+3 0 9 0 Applying R R -R and R R -R 0 -9 9  → → 
  • 37. Example -10 Solution : 2 2 2 2 2 2 2 2 2 2 1 1 3 2 2 2 2 2 (b+c) a bc b +c a bc L.H.S.= (c+a) b ca = c +a b ca Applying C C -2C (a+b) c ab a +b c ab  →  [ ] 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 a +b +c a bc a +b +c b ca Applying C C +C a +b +c c ab = → 2 2 2 2 2 2 1 a bc =(a +b +c )1 b ca 1 c ab 2 2 2 2 2 2 2 2 2 (b+c) a bc (c+a) b ca =(a +b +c )(a-b)(b-c)(c-a)(a+b+c) (a+b) c ab Show that
  • 38. Solution Cont. [ ] 2 2 2 2 2 2 1 3 3 2 1 a bc =(a +b +c ) 0 (b-a)(b+a) c(a-b) Applying R R -R and R R -R 0 (c-b)(c+b) a(b-c) → → [ ]2 2 2 2 2 1=(a +b +c )(a-b)(b-c)(-ab-a +bc+c ) Expanding along C 2 2 2 =(a +b +c )(a-b)(b-c)(c-a)(a+b+c)=R.H.S. 2 2 2 2 1 a bc =(a +b +c )(a-b)(b-c) 0 -(b+a) c 0 -(b+c) a ( ) ( ) ( )2 2 2 =(a +b +c )(a-b)(b-c) b c-a + c-a c+a  
  • 39. Determinants (Area of a Triangle) The area of a triangle whose vertices are is given by the expression1 1 2 2 3 3(x , y ), (x , y ) and (x , y ) 1 1 2 2 3 3 x y 1 1 Δ= x y 1 2 x y 1 1 2 3 2 3 1 3 1 2 1 = [x (y - y ) + x (y - y )+ x (y - y )] 2
  • 40. Example Find the area of a triangle whose vertices are (-1, 8), (-2, -3) and (3, 2). Solution : 1 1 2 2 3 3 x y 1 -1 8 1 1 1 Area of triangle= x y 1 = -2 -3 1 2 2 x y 1 3 2 1 [ ] 1 = -1(-3-2)- 8(-2-3)+1(-4+9) 2 [ ] 1 = 5+40+5 =25 sq.units 2
  • 41. Condition of Collinearity of Three Points If are three points, then A, B, C are collinear 1 1 2 2 3 3A (x , y ), B (x , y ) and C (x , y ) 1 1 1 1 2 2 2 2 3 3 3 3 Area of triangle ABC = 0 x y 1 x y 1 1 x y 1 = 0 x y 1 = 0 2 x y 1 x y 1 ⇔ ⇔ ⇔
  • 42. If the points (x, -2) , (5, 2), (8, 8) are collinear, find x , using determinants. Example Solution : x -2 1 5 2 1 =0 8 8 1 ∴ ( ) ( ) ( ) ( )x 2-8 - -2 5-8 +1 40-16 =0⇒ -6x-6+24=0⇒ 6x =18 x =3⇒ ⇒ Since the given points are collinear.
  • 43. Linear Equations (Cramer’s Rule) Let the system of linear equations be ( )2 2 2a x +b y = c ... ii ( )1 1 1a x +b y = c ... i 1 2D D Then x = , y = provided D 0, D D ≠ 1 1 1 1 1 1 1 2 2 2 2 2 2 2 a b c b a c where D = , D = and D = a b c b a c
  • 44. Cramer’s Rule (Con.) then the system is consistent and has infinitely many solutions. ( ) 1 22 If D = 0 and D = D = 0, then the system is inconsistent and has no solution. ( )1 If D 0 Note : ,≠ then the system is consistent and has unique solution. ( ) 1 23 If D = 0 and one of D , D 0,≠
  • 45. Example 2 -3 D= =2+9=11 0 3 1 ≠ 1 7 -3 D = =7+15=22 5 1 2 2 7 D = =10-21=-11 3 5 Solution : 1 2 D 0 D D22 -11 By Cramer's Rule x = = =2 and y = = =-1 D 11 D 11 ≠ ∴ Q Using Cramer's rule , solve the following system of equations 2x-3y=7, 3x+y=5
  • 46. Linear Equations (Cramer’s Rule) Let the system of linear equations be ( )2 2 2 2a x +b y+ c z = d ... ii ( )1 1 1 1a x +b y + c z = d ... i ( )3 3 3 3a x +b y + c z = d ... iii 31 2 DD D Then x = , y = z = provided D 0, D D D , ≠ 1 1 1 1 1 1 1 1 1 2 2 2 1 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 a b c d b c a d c where D = a b c , D = d b c , D = a d c a b c d b c a d c 1 1 1 3 2 2 2 3 3 3 a b d and D = a b d a b d
  • 47. Cramer’s Rule (Con.) Note: (1) If D ≠ 0, then the system is consistent and has a unique solution. (2) If D=0 and D1 = D2 = D3 = 0, then the system has infinite solutions or no solution. (3) If D = 0 and one of D1, D2, D3 ≠ 0, then the system is inconsistent and has no solution. (4) If d1 = d2 = d3 = 0, then the system is called the system of homogeneous linear equations. (i) If D ≠ 0, then the system has only trivial solution x = y = z = 0. (ii) If D = 0, then the system has infinite solutions.
  • 48. Example Using Cramer's rule , solve the following system of equations 5x - y+ 4z = 5 2x + 3y+ 5z = 2 5x - 2y + 6z = -1 Solution : 5 -1 4 D= 2 3 5 5 -2 6 1 5 -1 4 D = 2 3 5 -1 -2 6 = 5(18+10)+1(12+5)+4(-4 +3) = 140 +17 –4 = 153 = 5(18+10) + 1(12-25)+4(-4 -15) = 140 –13 –76 =140 - 89 = 51 0≠
  • 49. 3 5 -1 5 D = 2 3 2 5 -2 -1 = 5(-3 +4)+1(-2 - 10)+5(-4-15) = 5 – 12 – 95 = 5 - 107 = - 102 Solution Cont. 1 2 3 D 0 D D153 102 By Cramer's Rule x = = =3, y = = =2 D 51 D 51 D -102 and z= = =-2 D 51 ≠ ∴ Q 2 5 5 4 D = 2 2 5 5 -1 6 = 5(12 +5)+5(12 - 25)+ 4(-2 - 10) = 85 + 65 – 48 = 150 - 48 = 102
  • 50. Example Solve the following system of homogeneous linear equations: x + y – z = 0, x – 2y + z = 0, 3x + 6y + -5z = 0 Solution: ( ) ( ) ( ) 1 1 - 1 We have D = 1 - 2 1 = 1 10 - 6 - 1 -5 - 3 - 1 6 + 6 3 6 - 5 = 4 + 8 - 12 = 0          The system has infinitely many solutions.∴ Putting z = k, in first two equations, we get x + y = k, x – 2y = -k
  • 51. Solution (Con.) 1 k 1 D -k - 2 -2k + k k By Cramer's rule x = = = = D -2 - 1 31 1 1 - 2 ∴ 2 1 k D 1 - k -k - k 2k y = = = = D -2 - 1 31 1 1 - 2 k 2k x = , y = , z = k , where k R 3 3 ∴ ∈ These values of x, y and z = k satisfy (iii) equation.

Notes de l'éditeur

  1. If A is the determinant of order 2, then its value can be easily found. But to evaluate determinants of square matrices of higher orders, we should always try to introduce zeros at maximum number of places in a particular row (column) by using properties of determinant.