SlideShare une entreprise Scribd logo
1  sur  6
2015
Intertidal variations in
populations of Hormosira Banksii
due to wave exposure
ABSTRACT
Intertidal areasprovide diversecommunities,andare influencedbymany
differentbioticandabioticfactors. Hormosira Banksiiisa dominantspecies
withinthese ecosystems,andhasa broad distributionthroughoutthe
temperate Australiana.We monitoredarange of factors(Percentage cover,
numberof individualsinpopulation,frondlength) of H.Banksiiin the intertidal
zone,samplingfromtwodistinctive areasof shelteredfromorexposedto
waves,withthe aimto determineif there isasignificantdifferencein
populations.We foundthatthere washighermeasuresof frondlengthand
abundance inshelteredareasincomparison toexposedareas,witha
significantdifference(p<0.05) recordedacross all three variables.These
resultsserve tohighlight H.Banksii’s abilitytoadapttomicroclimates,and
distinctivelyhighlight differencesinphysiologyandabundance between
sample populationsindifferentmicroclimates.
JACK DAVIS: 698625
Word Count:1870
Introduction
Intertidal rockymarine environmentsprovide ecologistswiththe opportunitytostudyspecies
distributionpatterns,andcanleadto a comprehensive understandingof environmentalprocesses.A
varietyof differentbiological andphysical processesinteract withcommunitiesof species
populationsresulting inquite distinctdistributionpatterns.Intertidal algae canbe effectedbya
myriadof differentprocesses,includingwave exposure,lightexposure andtemperature of the
water,and isimportantas intertidal algae are the largestprimary producersinthe intertidal
communitywiththeirbiomassdominatingecosystemsinturnprovidinghabitatandfoodfor
numerousaquaticspecies (Harvey,1860) (Taylor,2002). The effectof wave exposure isknowntobe
importantfornumerousaquaticorganisms (Underwood&Jernakoff,1984) (Westerbom&Jattu,
2006), but wasprovenby McKenzie,PrudenceandBellgrove(2009) to be an importantmechanism
inthe dispersal of fertile Hormosira Banksiitissue.
H. Banksii,also knownas‘Neptune’sNecklace’orby‘Necklace Seaweed’, isamonotypicbrownalga
native totemperate watersaroundthe Australianmainland,Tasmania,NorfolkIsland,LordHowe
IslandandNewZealand (Osborn,1948). The speciesinhabitsexposedrockplatformswithin
intertidal regions,andisknowntobe fertile all yearroundchieflydue toitsdioeciousnature. H.
Banksii isalsoextremelydroughttolerant,and itsphysiologyisknowntochange due todifferent
environmental factors (Harvey,1860).The effectof wave exposure hasbeenstudiedextensively,
and the physiologyof the planthasbeennotedtovarywhendependingonwave exposure (Osborn,
1948) (Taylor,2002) (McKenzie &Bellgrove,2009).However,the hasbeennosignificantresearch
conductedondetailingthe effectof wave exposure on Hormosira Banksii,andwhetherthere’sa
significantdifferencebetweenorganismsize andabundance betweenshelteredpopulationsin
comparisontospeciespopulationsexposedtowaves.
Method
Data for Hormosira Banksiiwas monitoredinthe fieldatPointGellibrandCoastal HeritagePark,
Victoria(37°52’ S,144°54’), in one site visitatthe endof winter(23rd
of August,2015). Withinthe
site data onorganismabundance andfrondlength wascollectedfromthe rockyintertidal zone
alongthe foreshore reserve,fromapproximately11am throughto 1pm as the tide receded(High
tide:8:22 am, Low tide;2:05 pm),withthe dayreachingan maximumtemperatureof 15.5 °C during
the day withSoutherlywindgustsof upto11 km/hour (Bureauof Meteorology,2015)
(WillyWeather,2015).Data was sampledattwo replicate sitesalongthe foreshorereserve,witha
significantdistancebetweeneach site.
To define the twomicroclimates,shelteredandexposed,itwasagreedthata shelteredarea
consistedof the presence of arock barrier(10 cm above or below the waterlevel) thatwasvisually
observedtodisturbthe movementof the wavesbetweenthe barrierandthe shore,withthe
exposedareabeing the rockbarrierandintothe PortPhilliparea. 24 replicateswere collectedfrom
the shelteredareas,usinga50cm by 50cm quadrat.Withinthe quadrat 3 differentfactorswere
recorded:abundance,numberof individualswithinthe quadratandfrondlength.Abundance was
recordedas the percentage of coverage,andestimatedbytwoindividualsunanimously. Frond
lengthwasrecordedbymeasuringfromthe holdfasttothe endof the longestfrondonthe organism
usinga clearplasticruler.Whilstmeasuringfrondlengthof individualswithinaquadratthe number
of individualsinthe quadratwere recorded. 135 individualreplicate measuresof frondlengthwere
collectedfrombothshelteredpopulationsand exposedpopulation,howevermore quadratdatahad
to be collectedfromexposedareastosample 135 individualswithinthe exposedpopulations.
Replicatesof the quadratswere randomlytakenfromboththe shelteredandexposedareas,
howeverreplicateswereonlytakenfrom H.Banksiihabitat,predominatelyrockyseafloorswhere it
attachesto.
Results
Figure 1 presentsthe meannumberof individualplantscountedwithin asample populationat
eithersite.There isasignificantdifference(p value <0.05) betweenthe numberof individual
organismswithinthe populationata shelteredsite incomparisonto apopulationwithinan exposed
site,withonaverage there beingapproximately4more organismswithina H. Banksiipopulation
withinashelteredsite than atan exposedsite. Figure 2indicates thatH. Banksiihas a significantly
higherpercentage coverwithinashelteredsite (mean=35.6, n=24, SE = 4.875) than at an exposed
site (mean= 14.67, n = 24, SE = 2.51, df = 23, p value < 0.05; Fig.2), whereas percentage coverwas
≈21% inshelteredpopulations.Thesetwovariablesboth indicate thatwithinashelteredsitethere is
a higherabundance of H. Banksii.No otherspecies were observedateitherthe shelteredorexposed
site,leavingthe percentage notcoveredby H.Banksiiseafloor.
Figure 1: Mean (± Standard Error) number of individuals, sampled from in exposed and sheltered areas. N = 24
7.25
3
0
1
2
3
4
5
6
7
8
9
Sheltered Exposed
Numberofindividuals
Sample Area
Qty
Figure 3 displaysthe mean(±s.e.) frondlengthwithinpopulationsateithershelteredorexposed
sites.Frondlength withinpopulationsatshelteredsitesare significantlydifferent(n= 135, df = 134,
p value < 0.05) fromlengthsinexposedpopulations. The frondlengthforshelteredpopulations
(mean= 18.5, n = 135, SE = 0.55) ison average significantlyhigherthan exposedpopulations(mean=
10.42, n = 135, SE = 0.62, df = 134, p < 0.05).
Figure 3: Mean (± SE) frond length at sheltered and exposed sites. N = 135
Discussion
Data from Figures1, 2 and 3 prove that there’sasignificantdifferencein Hormosira Banksii
individualspecimensandspeciespopulationsdependingonwhetherthey’re shelteredbyarock
barrieror exposedtowaves.Figure 1and 2 suggestthatshelteredpopulationsare more abundant
35.58333333
14.66666667
0
5
10
15
20
25
30
35
40
45
Sheltered Exposed
PercentageCover(%)
Sample Area
Abundance
18.52222222
10.42222222
0
5
10
15
20
25
Sheltered Exposed
FrondLength(cm)
Sample Area
Frond Length
Figure 2: Mean (± SE.) percentage cover of populations in both exposed and sheltered
microclimates. N = 24
(meanpercentage cover[%± SE] = 35.6 ± 4.875, numberof specimen[#individuals±SE] ≈ 7 ± 0.75)
than exposedpopulations(meanpercentagecover[% ±SE] = 14.7 ± 2.5, numberof specimen[#
individuals±SE] ≈ 3 ± 0.4), whilstfigure 3 suggestsfrondlengthin shelteredpopulations (mean=
18.5, n = 135, SE = 0.55) issignificantlylongerthaninexposedpopulations (mean=10.42, n = 135,
SE = 0.62, df = 134, p < 0.05). H. Banksiirequiresarock platformforthe holdfasttoattach to,which
createsa fundamental niche inwhichthe speciescangrow in (Harvey,1860) (McKenzie &Bellgrove,
2009) (Osborn,1948) (Taylor,2002).
Thisfundamental niche wasalso,however,the realisedniche forthe speciesasthere wasobserved
competitionfromanyotherspeciesof intertidal algae. Thiscould be explainedif H.Banksiihad
colonisedasite withlittle tonocompetitionfromotherspeciesdue the effectof predationfrom
aquaticlife suchas fish speciesorinvertbrae grazers,as HBanksii has nosignificantpredators,or
poor recruitmentforsessile marinespeciesdue tostagantsedimentof rocksurfaces (Taylor,
2002)(Osborn,1948) (Underwood&Jernakoff,1984) (Westerbom&Jattu,2006). Taylor(2002)
foundthat H. Banksiiwas more abundantat wave protectedorshelteredsites,corelatingwiththe
data displayedin Figures1and 2. However, H.Banksii’abundance insheltered,intertidal rockyareas
couldalsobe attributtedtothe species resiliance todesication,asthe species’possessesinternal
waterreserveswhichrenderthe organismmore orless‘droughtresistant’ (Osborn,1948).This
internal waterreserve,coupledwithdioeciousnature,annual fertilityandlackof signicant
predators, couldpotentiallyallow H.Banksiito colonise intertidalareaoutside of otherspecies
realisedniches. Thiswouldalso corelatewiththe proposedinverse relationshipbetweenpredation
and speciescompetitioninintertidal areas,which ismostprominentin midandhighlevelsof the
intertidal area(Lubchenco&Menge,1978).
H. Banksii populations inexposedregionswere consistenlysmaller,withfewerindividualsina
sample population,smallerpercentage coveredforapopulationsample andsmallerfrondlength
measurements.Consideringthe niche H.Banksiirequirestogrow,smallercoverage sizesfrom
quadrat samplingmayreflectthe limitedavailibilityforthe holdfastof the organismtoattachto,
whilstthe lowcountof individaulorganismscouldbe attributedto H.Banksii’s tendenceytodisplay
a weakattachmentstrength,incomparisontootherintertidal algea (McKenzie &Bellgrove,2009).
The weakattachmentstrengthcouldexplainthe higherpercentagecovervs.numberof individuals
ina sampledpopulation,asthe organismstill needsthe frondcellstofunctionbutthereforemust
grow themina more spread,compact mannerthanthe organismsprotectedfromwave exposure.
Thismay alsobe due to the observeduniquecapabilitiesof the genecticof the organism, as H.
Banksii frondsare regularlybreakdislodgefromthe holdfastwhilstitremainsattachedtothe parent
rock, allowingunimpededvegative regeneration (Underwood&Jernakoff,1984).This,coupledwith
the organismsabilitytoregenerate adamagedholdfast,appearstobe an evolutionaryadaptionto
survivinginthisaparticularniche and hence the breakpointandfore describedregenative
capabilitiesare adaptionsthatallowthe speciestothrive inanexposedareaandfurthercolonise
the area throughtide drivenlongdistance dispersal mechanisms (McKenzie &Bellgrove,2009)
(Osborn,1948) (Underwood&Jernakoff,1984).
The sample populationsfrom shelteredandexposedareasdemosntrate significantdifferences
betweenthe twopoulations.However,the twodifferentpopulationsare andisplayof localised
adaptionstoenvironmental conditionswithsignificantspeculationfromearlydocumentersof the
spciesasto whetherthese localisedadaptionsare differentspecies,assummedupfirstbyHarvey
(1860) : “Whoeverhasseenandcarefullystudiedthisplantonit’snative coastswillfullyagree with
me inr educingtoone specieswiththe several synonymsenumerated……The differencesinsize and
shape of the vesiclesseemtoresultmerelyfrom local causes;eitherfromthe depthof the waterat
whichthe specimenwasgrown,orfromexposure tothe opensea,or shelterinenclosedharbours…
…Intermediate formsbetweenall the varieitiesmaybe readilyfound”.The speciesabilitytoadaptto
numerousenvironmental conditionsindicatesthat H.Banksii isboth a strongcompetitorinit’s
natural habitat. To betterformconclusionsabout H.Banksii’sinshelteredandexposedareas,and
understandthe ecological driversbehindthesedifferences, more comprehensive biodiversity
surveysshouldbe conducted tobetterunderstandgrazerssuchasgastropodsonthe communityas
well asa surveyof the percentage of niche requirementsinthe shelteredandexposedareas. This
studyservestohighlightthe difference betweenabundanceandphysiologyin H.Banksiisample
populationswithinshelteredandexposedareas.
References
Bureauof Meteorology.(2015,September21). Melbourne(OlympicPark),Victoria August2015
Daily Weather Observations. RetrievedfromBureauof Meteorology:
http://www.bom.gov.au/climate/dwo/201508/html/IDCJDW3033.201508.shtml
Harvey,W. H. (1860). Phycologia Australica,Vol.3. London.
Lubchenco,J.,& Menge,B. A.(1978). CommunityDevelopmentandPersistence inaLow Rocky
Intertidal Zone. EcologicalMonographs,67-94.
McKenzie,P.F.,& Bellgrove,A.(2009).Dislodgmentandattachmentstrengthof the intertidal
macroalgaHormosirabanksii (Fucales,Phaeophyceae). Phycologia,335-343.
Osborn,J.E. (1948). The Structure and Life Historyof HormosiraBanksii. Transactionsof theRoyal
Societyof NewZealand,47-71.
Taylor,D. I. (2002). Habitat-forming intertidalalgaeacrosswave-exposures:An experimental
evaluation of plantand herbivoreinteractions. Cristchurch:Universityof Canterbury.
Underwood,A.J.,& Jernakoff,P.(1984). The effectsof tidal height,wave-exposure,seasonalityand
rock-poolsongrazingand the distributionof intertidal macroalgae inNew SouthWales.
Journalof ExperimentalMarineBiology and Ecology,71-96.
Westerbom,M.,& Jattu,S. (2006). Effectsof wave exposure onthe sublittoral distributionof blue
musselsMytilusedulisinaheterogeneousarchipelago. Marien Ecology ProgressSeries,191-
200.
WillyWeather.(2015,October1). WillyWeather. RetrievedfromWilliamstownTide Timesand
Heights:http://tides.willyweather.com.au/vic/melbourne/williamstown.html

Contenu connexe

Tendances

Dissertation: Modelling fish dispersal in catchments affect by multiple anthr...
Dissertation: Modelling fish dispersal in catchments affect by multiple anthr...Dissertation: Modelling fish dispersal in catchments affect by multiple anthr...
Dissertation: Modelling fish dispersal in catchments affect by multiple anthr...jradinger
 
2015 11 - peter henderson
2015   11 - peter henderson2015   11 - peter henderson
2015 11 - peter hendersonSevernEstuary
 
Global erosion of ecosystem services
Global erosion of ecosystem servicesGlobal erosion of ecosystem services
Global erosion of ecosystem servicesFlinders University
 
LAUER DenmanPosterFINAL
LAUER DenmanPosterFINALLAUER DenmanPosterFINAL
LAUER DenmanPosterFINALMarissa Lauer
 
Writing up a scientific paper
Writing up a scientific paperWriting up a scientific paper
Writing up a scientific paperCharlotte Barton
 
Challenges and adaptations to persistence in dynamic environments: Tidewater ...
Challenges and adaptations to persistence in dynamic environments: Tidewater ...Challenges and adaptations to persistence in dynamic environments: Tidewater ...
Challenges and adaptations to persistence in dynamic environments: Tidewater ...FISHBIO
 
Marine Ecology lab report sample
Marine Ecology lab report sampleMarine Ecology lab report sample
Marine Ecology lab report sampleBenjamin Gibson
 
Are South Hills Crossbills declining with increasing temperatures?
Are South Hills Crossbills declining with increasing temperatures?Are South Hills Crossbills declining with increasing temperatures?
Are South Hills Crossbills declining with increasing temperatures?Julie Hart
 
Reef fish, newcomers to macro-ecology
Reef fish, newcomers to macro-ecologyReef fish, newcomers to macro-ecology
Reef fish, newcomers to macro-ecologyAlison Specht
 
Terrill_Sean_Poster_Final
Terrill_Sean_Poster_FinalTerrill_Sean_Poster_Final
Terrill_Sean_Poster_FinalSean Terrill
 
biodiversity indices
 biodiversity indices biodiversity indices
biodiversity indicesArun Konduri
 
Turtle Nest Predation Poster
Turtle Nest Predation PosterTurtle Nest Predation Poster
Turtle Nest Predation PosterShelby Does
 
Summer Poster good 7-22-Vfinal
Summer Poster good 7-22-VfinalSummer Poster good 7-22-Vfinal
Summer Poster good 7-22-VfinalKyle Rose
 

Tendances (19)

Dissertation: Modelling fish dispersal in catchments affect by multiple anthr...
Dissertation: Modelling fish dispersal in catchments affect by multiple anthr...Dissertation: Modelling fish dispersal in catchments affect by multiple anthr...
Dissertation: Modelling fish dispersal in catchments affect by multiple anthr...
 
2015 11 - peter henderson
2015   11 - peter henderson2015   11 - peter henderson
2015 11 - peter henderson
 
Research Poster
Research PosterResearch Poster
Research Poster
 
Global erosion of ecosystem services
Global erosion of ecosystem servicesGlobal erosion of ecosystem services
Global erosion of ecosystem services
 
LAUER DenmanPosterFINAL
LAUER DenmanPosterFINALLAUER DenmanPosterFINAL
LAUER DenmanPosterFINAL
 
Modelling Water & Life
Modelling Water & LifeModelling Water & Life
Modelling Water & Life
 
Tang_Sedgwick_Paper
Tang_Sedgwick_PaperTang_Sedgwick_Paper
Tang_Sedgwick_Paper
 
Lisbon genome diversity
Lisbon genome diversityLisbon genome diversity
Lisbon genome diversity
 
Writing up a scientific paper
Writing up a scientific paperWriting up a scientific paper
Writing up a scientific paper
 
Arthropod poster
Arthropod posterArthropod poster
Arthropod poster
 
Challenges and adaptations to persistence in dynamic environments: Tidewater ...
Challenges and adaptations to persistence in dynamic environments: Tidewater ...Challenges and adaptations to persistence in dynamic environments: Tidewater ...
Challenges and adaptations to persistence in dynamic environments: Tidewater ...
 
Marine Ecology lab report sample
Marine Ecology lab report sampleMarine Ecology lab report sample
Marine Ecology lab report sample
 
Are South Hills Crossbills declining with increasing temperatures?
Are South Hills Crossbills declining with increasing temperatures?Are South Hills Crossbills declining with increasing temperatures?
Are South Hills Crossbills declining with increasing temperatures?
 
Reef fish, newcomers to macro-ecology
Reef fish, newcomers to macro-ecologyReef fish, newcomers to macro-ecology
Reef fish, newcomers to macro-ecology
 
Terrill_Sean_Poster_Final
Terrill_Sean_Poster_FinalTerrill_Sean_Poster_Final
Terrill_Sean_Poster_Final
 
Bottle
BottleBottle
Bottle
 
biodiversity indices
 biodiversity indices biodiversity indices
biodiversity indices
 
Turtle Nest Predation Poster
Turtle Nest Predation PosterTurtle Nest Predation Poster
Turtle Nest Predation Poster
 
Summer Poster good 7-22-Vfinal
Summer Poster good 7-22-VfinalSummer Poster good 7-22-Vfinal
Summer Poster good 7-22-Vfinal
 

En vedette

herguan course
herguan courseherguan course
herguan courseJie Yu
 
Petro Cohen Petro Matarazzo
Petro Cohen Petro MatarazzoPetro Cohen Petro Matarazzo
Petro Cohen Petro MatarazzoStinaSandberg1
 
Resum: Canvis polítics en la història d'Espanya
Resum: Canvis polítics en la història d'EspanyaResum: Canvis polítics en la història d'Espanya
Resum: Canvis polítics en la història d'Espanyamsantillana
 
Noncash Contributions for Non Profits Form 990
Noncash Contributions for Non Profits Form 990Noncash Contributions for Non Profits Form 990
Noncash Contributions for Non Profits Form 990Robert Hutt
 
IT service transformation with hybrid cloud: Buy or build?
IT service transformation with hybrid cloud: Buy or build?IT service transformation with hybrid cloud: Buy or build?
IT service transformation with hybrid cloud: Buy or build?Principled Technologies
 

En vedette (12)

herguan course
herguan courseherguan course
herguan course
 
Petro Cohen Petro Matarazzo
Petro Cohen Petro MatarazzoPetro Cohen Petro Matarazzo
Petro Cohen Petro Matarazzo
 
C.V MOHAMED ABD EL-HAMID EL-SHAARAWY
C.V MOHAMED ABD EL-HAMID EL-SHAARAWYC.V MOHAMED ABD EL-HAMID EL-SHAARAWY
C.V MOHAMED ABD EL-HAMID EL-SHAARAWY
 
Act.1.8 aminta
Act.1.8 amintaAct.1.8 aminta
Act.1.8 aminta
 
Resum: Canvis polítics en la història d'Espanya
Resum: Canvis polítics en la història d'EspanyaResum: Canvis polítics en la història d'Espanya
Resum: Canvis polítics en la història d'Espanya
 
Noncash Contributions for Non Profits Form 990
Noncash Contributions for Non Profits Form 990Noncash Contributions for Non Profits Form 990
Noncash Contributions for Non Profits Form 990
 
El psicoanálisis
El psicoanálisisEl psicoanálisis
El psicoanálisis
 
IT service transformation with hybrid cloud: Buy or build?
IT service transformation with hybrid cloud: Buy or build?IT service transformation with hybrid cloud: Buy or build?
IT service transformation with hybrid cloud: Buy or build?
 
Ambientes de aprendizajes
Ambientes de aprendizajesAmbientes de aprendizajes
Ambientes de aprendizajes
 
Instinto
InstintoInstinto
Instinto
 
BPM для всех
BPM для всехBPM для всех
BPM для всех
 
Davinci Virtual Office Solutions Guide
Davinci Virtual Office Solutions GuideDavinci Virtual Office Solutions Guide
Davinci Virtual Office Solutions Guide
 

Similaire à Intertidal variations in populations of Hormosira Banksii due to wave exposure

Evan's Africa Paper
Evan's Africa PaperEvan's Africa Paper
Evan's Africa PaperEvan Firl
 
fish population dynamics, Population structure
fish population dynamics, Population structurefish population dynamics, Population structure
fish population dynamics, Population structureDegonto Islam
 
Chapter 8.3 presentation
Chapter 8.3 presentationChapter 8.3 presentation
Chapter 8.3 presentationAngela Huey
 
Characterization of Distribution of insects- Indices of Dispersion, Taylor's ...
Characterization of Distribution of insects- Indices of Dispersion, Taylor's ...Characterization of Distribution of insects- Indices of Dispersion, Taylor's ...
Characterization of Distribution of insects- Indices of Dispersion, Taylor's ...Aaliya Afroz
 
Population dynamics presentation
Population dynamics presentationPopulation dynamics presentation
Population dynamics presentationJackieAndrews
 
populationdynamicspresentation-130313073741-phpapp02.pdf
populationdynamicspresentation-130313073741-phpapp02.pdfpopulationdynamicspresentation-130313073741-phpapp02.pdf
populationdynamicspresentation-130313073741-phpapp02.pdfKifleLentiro1
 
Sweet et al._LTER-ver5-2015
Sweet et al._LTER-ver5-2015Sweet et al._LTER-ver5-2015
Sweet et al._LTER-ver5-2015Shannan Sweet
 
PopulationEcology52.ppt
PopulationEcology52.pptPopulationEcology52.ppt
PopulationEcology52.pptJake933493
 
GEOGRAPHY Population Ecology HSC MAHARASHTRA
GEOGRAPHY Population Ecology HSC MAHARASHTRAGEOGRAPHY Population Ecology HSC MAHARASHTRA
GEOGRAPHY Population Ecology HSC MAHARASHTRATwinsIT2
 
Effect of development on environment and population ecology
Effect of development on environment and population ecologyEffect of development on environment and population ecology
Effect of development on environment and population ecologyMegha Majoe
 
Sweet et al._LTER-ver5-2015
Sweet et al._LTER-ver5-2015Sweet et al._LTER-ver5-2015
Sweet et al._LTER-ver5-2015Shannan Sweet
 
Goldy ABRCMS Poster Final
Goldy ABRCMS Poster FinalGoldy ABRCMS Poster Final
Goldy ABRCMS Poster FinalGoldy Landau
 
, 20130104, published 27 March 20139 2013 Biol. Lett. Matt.docx
, 20130104, published 27 March 20139 2013 Biol. Lett. Matt.docx, 20130104, published 27 March 20139 2013 Biol. Lett. Matt.docx
, 20130104, published 27 March 20139 2013 Biol. Lett. Matt.docxmercysuttle
 

Similaire à Intertidal variations in populations of Hormosira Banksii due to wave exposure (20)

Evan's Africa Paper
Evan's Africa PaperEvan's Africa Paper
Evan's Africa Paper
 
CAMP Symposium Poster 2015
CAMP Symposium Poster 2015CAMP Symposium Poster 2015
CAMP Symposium Poster 2015
 
Population structures
Population structuresPopulation structures
Population structures
 
fish population dynamics, Population structure
fish population dynamics, Population structurefish population dynamics, Population structure
fish population dynamics, Population structure
 
Chapter 8.3 presentation
Chapter 8.3 presentationChapter 8.3 presentation
Chapter 8.3 presentation
 
069
069069
069
 
Characterization of Distribution of insects- Indices of Dispersion, Taylor's ...
Characterization of Distribution of insects- Indices of Dispersion, Taylor's ...Characterization of Distribution of insects- Indices of Dispersion, Taylor's ...
Characterization of Distribution of insects- Indices of Dispersion, Taylor's ...
 
Genetic drift
Genetic driftGenetic drift
Genetic drift
 
Population Ecology
Population EcologyPopulation Ecology
Population Ecology
 
Population dynamics presentation
Population dynamics presentationPopulation dynamics presentation
Population dynamics presentation
 
POPULATION GROWTH
POPULATION GROWTHPOPULATION GROWTH
POPULATION GROWTH
 
populationdynamicspresentation-130313073741-phpapp02.pdf
populationdynamicspresentation-130313073741-phpapp02.pdfpopulationdynamicspresentation-130313073741-phpapp02.pdf
populationdynamicspresentation-130313073741-phpapp02.pdf
 
Sweet et al._LTER-ver5-2015
Sweet et al._LTER-ver5-2015Sweet et al._LTER-ver5-2015
Sweet et al._LTER-ver5-2015
 
PopulationEcology52.ppt
PopulationEcology52.pptPopulationEcology52.ppt
PopulationEcology52.ppt
 
GEOGRAPHY Population Ecology HSC MAHARASHTRA
GEOGRAPHY Population Ecology HSC MAHARASHTRAGEOGRAPHY Population Ecology HSC MAHARASHTRA
GEOGRAPHY Population Ecology HSC MAHARASHTRA
 
Effect of development on environment and population ecology
Effect of development on environment and population ecologyEffect of development on environment and population ecology
Effect of development on environment and population ecology
 
Population.ppt
Population.pptPopulation.ppt
Population.ppt
 
Sweet et al._LTER-ver5-2015
Sweet et al._LTER-ver5-2015Sweet et al._LTER-ver5-2015
Sweet et al._LTER-ver5-2015
 
Goldy ABRCMS Poster Final
Goldy ABRCMS Poster FinalGoldy ABRCMS Poster Final
Goldy ABRCMS Poster Final
 
, 20130104, published 27 March 20139 2013 Biol. Lett. Matt.docx
, 20130104, published 27 March 20139 2013 Biol. Lett. Matt.docx, 20130104, published 27 March 20139 2013 Biol. Lett. Matt.docx
, 20130104, published 27 March 20139 2013 Biol. Lett. Matt.docx
 

Intertidal variations in populations of Hormosira Banksii due to wave exposure

  • 1. 2015 Intertidal variations in populations of Hormosira Banksii due to wave exposure ABSTRACT Intertidal areasprovide diversecommunities,andare influencedbymany differentbioticandabioticfactors. Hormosira Banksiiisa dominantspecies withinthese ecosystems,andhasa broad distributionthroughoutthe temperate Australiana.We monitoredarange of factors(Percentage cover, numberof individualsinpopulation,frondlength) of H.Banksiiin the intertidal zone,samplingfromtwodistinctive areasof shelteredfromorexposedto waves,withthe aimto determineif there isasignificantdifferencein populations.We foundthatthere washighermeasuresof frondlengthand abundance inshelteredareasincomparison toexposedareas,witha significantdifference(p<0.05) recordedacross all three variables.These resultsserve tohighlight H.Banksii’s abilitytoadapttomicroclimates,and distinctivelyhighlight differencesinphysiologyandabundance between sample populationsindifferentmicroclimates. JACK DAVIS: 698625 Word Count:1870
  • 2. Introduction Intertidal rockymarine environmentsprovide ecologistswiththe opportunitytostudyspecies distributionpatterns,andcanleadto a comprehensive understandingof environmentalprocesses.A varietyof differentbiological andphysical processesinteract withcommunitiesof species populationsresulting inquite distinctdistributionpatterns.Intertidal algae canbe effectedbya myriadof differentprocesses,includingwave exposure,lightexposure andtemperature of the water,and isimportantas intertidal algae are the largestprimary producersinthe intertidal communitywiththeirbiomassdominatingecosystemsinturnprovidinghabitatandfoodfor numerousaquaticspecies (Harvey,1860) (Taylor,2002). The effectof wave exposure isknowntobe importantfornumerousaquaticorganisms (Underwood&Jernakoff,1984) (Westerbom&Jattu, 2006), but wasprovenby McKenzie,PrudenceandBellgrove(2009) to be an importantmechanism inthe dispersal of fertile Hormosira Banksiitissue. H. Banksii,also knownas‘Neptune’sNecklace’orby‘Necklace Seaweed’, isamonotypicbrownalga native totemperate watersaroundthe Australianmainland,Tasmania,NorfolkIsland,LordHowe IslandandNewZealand (Osborn,1948). The speciesinhabitsexposedrockplatformswithin intertidal regions,andisknowntobe fertile all yearroundchieflydue toitsdioeciousnature. H. Banksii isalsoextremelydroughttolerant,and itsphysiologyisknowntochange due todifferent environmental factors (Harvey,1860).The effectof wave exposure hasbeenstudiedextensively, and the physiologyof the planthasbeennotedtovarywhendependingonwave exposure (Osborn, 1948) (Taylor,2002) (McKenzie &Bellgrove,2009).However,the hasbeennosignificantresearch conductedondetailingthe effectof wave exposure on Hormosira Banksii,andwhetherthere’sa significantdifferencebetweenorganismsize andabundance betweenshelteredpopulationsin comparisontospeciespopulationsexposedtowaves. Method Data for Hormosira Banksiiwas monitoredinthe fieldatPointGellibrandCoastal HeritagePark, Victoria(37°52’ S,144°54’), in one site visitatthe endof winter(23rd of August,2015). Withinthe site data onorganismabundance andfrondlength wascollectedfromthe rockyintertidal zone alongthe foreshore reserve,fromapproximately11am throughto 1pm as the tide receded(High tide:8:22 am, Low tide;2:05 pm),withthe dayreachingan maximumtemperatureof 15.5 °C during the day withSoutherlywindgustsof upto11 km/hour (Bureauof Meteorology,2015) (WillyWeather,2015).Data was sampledattwo replicate sitesalongthe foreshorereserve,witha significantdistancebetweeneach site. To define the twomicroclimates,shelteredandexposed,itwasagreedthata shelteredarea consistedof the presence of arock barrier(10 cm above or below the waterlevel) thatwasvisually observedtodisturbthe movementof the wavesbetweenthe barrierandthe shore,withthe exposedareabeing the rockbarrierandintothe PortPhilliparea. 24 replicateswere collectedfrom the shelteredareas,usinga50cm by 50cm quadrat.Withinthe quadrat 3 differentfactorswere recorded:abundance,numberof individualswithinthe quadratandfrondlength.Abundance was recordedas the percentage of coverage,andestimatedbytwoindividualsunanimously. Frond lengthwasrecordedbymeasuringfromthe holdfasttothe endof the longestfrondonthe organism usinga clearplasticruler.Whilstmeasuringfrondlengthof individualswithinaquadratthe number of individualsinthe quadratwere recorded. 135 individualreplicate measuresof frondlengthwere collectedfrombothshelteredpopulationsand exposedpopulation,howevermore quadratdatahad to be collectedfromexposedareastosample 135 individualswithinthe exposedpopulations.
  • 3. Replicatesof the quadratswere randomlytakenfromboththe shelteredandexposedareas, howeverreplicateswereonlytakenfrom H.Banksiihabitat,predominatelyrockyseafloorswhere it attachesto. Results Figure 1 presentsthe meannumberof individualplantscountedwithin asample populationat eithersite.There isasignificantdifference(p value <0.05) betweenthe numberof individual organismswithinthe populationata shelteredsite incomparisonto apopulationwithinan exposed site,withonaverage there beingapproximately4more organismswithina H. Banksiipopulation withinashelteredsite than atan exposedsite. Figure 2indicates thatH. Banksiihas a significantly higherpercentage coverwithinashelteredsite (mean=35.6, n=24, SE = 4.875) than at an exposed site (mean= 14.67, n = 24, SE = 2.51, df = 23, p value < 0.05; Fig.2), whereas percentage coverwas ≈21% inshelteredpopulations.Thesetwovariablesboth indicate thatwithinashelteredsitethere is a higherabundance of H. Banksii.No otherspecies were observedateitherthe shelteredorexposed site,leavingthe percentage notcoveredby H.Banksiiseafloor. Figure 1: Mean (± Standard Error) number of individuals, sampled from in exposed and sheltered areas. N = 24 7.25 3 0 1 2 3 4 5 6 7 8 9 Sheltered Exposed Numberofindividuals Sample Area Qty
  • 4. Figure 3 displaysthe mean(±s.e.) frondlengthwithinpopulationsateithershelteredorexposed sites.Frondlength withinpopulationsatshelteredsitesare significantlydifferent(n= 135, df = 134, p value < 0.05) fromlengthsinexposedpopulations. The frondlengthforshelteredpopulations (mean= 18.5, n = 135, SE = 0.55) ison average significantlyhigherthan exposedpopulations(mean= 10.42, n = 135, SE = 0.62, df = 134, p < 0.05). Figure 3: Mean (± SE) frond length at sheltered and exposed sites. N = 135 Discussion Data from Figures1, 2 and 3 prove that there’sasignificantdifferencein Hormosira Banksii individualspecimensandspeciespopulationsdependingonwhetherthey’re shelteredbyarock barrieror exposedtowaves.Figure 1and 2 suggestthatshelteredpopulationsare more abundant 35.58333333 14.66666667 0 5 10 15 20 25 30 35 40 45 Sheltered Exposed PercentageCover(%) Sample Area Abundance 18.52222222 10.42222222 0 5 10 15 20 25 Sheltered Exposed FrondLength(cm) Sample Area Frond Length Figure 2: Mean (± SE.) percentage cover of populations in both exposed and sheltered microclimates. N = 24
  • 5. (meanpercentage cover[%± SE] = 35.6 ± 4.875, numberof specimen[#individuals±SE] ≈ 7 ± 0.75) than exposedpopulations(meanpercentagecover[% ±SE] = 14.7 ± 2.5, numberof specimen[# individuals±SE] ≈ 3 ± 0.4), whilstfigure 3 suggestsfrondlengthin shelteredpopulations (mean= 18.5, n = 135, SE = 0.55) issignificantlylongerthaninexposedpopulations (mean=10.42, n = 135, SE = 0.62, df = 134, p < 0.05). H. Banksiirequiresarock platformforthe holdfasttoattach to,which createsa fundamental niche inwhichthe speciescangrow in (Harvey,1860) (McKenzie &Bellgrove, 2009) (Osborn,1948) (Taylor,2002). Thisfundamental niche wasalso,however,the realisedniche forthe speciesasthere wasobserved competitionfromanyotherspeciesof intertidal algae. Thiscould be explainedif H.Banksiihad colonisedasite withlittle tonocompetitionfromotherspeciesdue the effectof predationfrom aquaticlife suchas fish speciesorinvertbrae grazers,as HBanksii has nosignificantpredators,or poor recruitmentforsessile marinespeciesdue tostagantsedimentof rocksurfaces (Taylor, 2002)(Osborn,1948) (Underwood&Jernakoff,1984) (Westerbom&Jattu,2006). Taylor(2002) foundthat H. Banksiiwas more abundantat wave protectedorshelteredsites,corelatingwiththe data displayedin Figures1and 2. However, H.Banksii’abundance insheltered,intertidal rockyareas couldalsobe attributtedtothe species resiliance todesication,asthe species’possessesinternal waterreserveswhichrenderthe organismmore orless‘droughtresistant’ (Osborn,1948).This internal waterreserve,coupledwithdioeciousnature,annual fertilityandlackof signicant predators, couldpotentiallyallow H.Banksiito colonise intertidalareaoutside of otherspecies realisedniches. Thiswouldalso corelatewiththe proposedinverse relationshipbetweenpredation and speciescompetitioninintertidal areas,which ismostprominentin midandhighlevelsof the intertidal area(Lubchenco&Menge,1978). H. Banksii populations inexposedregionswere consistenlysmaller,withfewerindividualsina sample population,smallerpercentage coveredforapopulationsample andsmallerfrondlength measurements.Consideringthe niche H.Banksiirequirestogrow,smallercoverage sizesfrom quadrat samplingmayreflectthe limitedavailibilityforthe holdfastof the organismtoattachto, whilstthe lowcountof individaulorganismscouldbe attributedto H.Banksii’s tendenceytodisplay a weakattachmentstrength,incomparisontootherintertidal algea (McKenzie &Bellgrove,2009). The weakattachmentstrengthcouldexplainthe higherpercentagecovervs.numberof individuals ina sampledpopulation,asthe organismstill needsthe frondcellstofunctionbutthereforemust grow themina more spread,compact mannerthanthe organismsprotectedfromwave exposure. Thismay alsobe due to the observeduniquecapabilitiesof the genecticof the organism, as H. Banksii frondsare regularlybreakdislodgefromthe holdfastwhilstitremainsattachedtothe parent rock, allowingunimpededvegative regeneration (Underwood&Jernakoff,1984).This,coupledwith the organismsabilitytoregenerate adamagedholdfast,appearstobe an evolutionaryadaptionto survivinginthisaparticularniche and hence the breakpointandfore describedregenative capabilitiesare adaptionsthatallowthe speciestothrive inanexposedareaandfurthercolonise the area throughtide drivenlongdistance dispersal mechanisms (McKenzie &Bellgrove,2009) (Osborn,1948) (Underwood&Jernakoff,1984). The sample populationsfrom shelteredandexposedareasdemosntrate significantdifferences betweenthe twopoulations.However,the twodifferentpopulationsare andisplayof localised adaptionstoenvironmental conditionswithsignificantspeculationfromearlydocumentersof the spciesasto whetherthese localisedadaptionsare differentspecies,assummedupfirstbyHarvey (1860) : “Whoeverhasseenandcarefullystudiedthisplantonit’snative coastswillfullyagree with me inr educingtoone specieswiththe several synonymsenumerated……The differencesinsize and shape of the vesiclesseemtoresultmerelyfrom local causes;eitherfromthe depthof the waterat
  • 6. whichthe specimenwasgrown,orfromexposure tothe opensea,or shelterinenclosedharbours… …Intermediate formsbetweenall the varieitiesmaybe readilyfound”.The speciesabilitytoadaptto numerousenvironmental conditionsindicatesthat H.Banksii isboth a strongcompetitorinit’s natural habitat. To betterformconclusionsabout H.Banksii’sinshelteredandexposedareas,and understandthe ecological driversbehindthesedifferences, more comprehensive biodiversity surveysshouldbe conducted tobetterunderstandgrazerssuchasgastropodsonthe communityas well asa surveyof the percentage of niche requirementsinthe shelteredandexposedareas. This studyservestohighlightthe difference betweenabundanceandphysiologyin H.Banksiisample populationswithinshelteredandexposedareas. References Bureauof Meteorology.(2015,September21). Melbourne(OlympicPark),Victoria August2015 Daily Weather Observations. RetrievedfromBureauof Meteorology: http://www.bom.gov.au/climate/dwo/201508/html/IDCJDW3033.201508.shtml Harvey,W. H. (1860). Phycologia Australica,Vol.3. London. Lubchenco,J.,& Menge,B. A.(1978). CommunityDevelopmentandPersistence inaLow Rocky Intertidal Zone. EcologicalMonographs,67-94. McKenzie,P.F.,& Bellgrove,A.(2009).Dislodgmentandattachmentstrengthof the intertidal macroalgaHormosirabanksii (Fucales,Phaeophyceae). Phycologia,335-343. Osborn,J.E. (1948). The Structure and Life Historyof HormosiraBanksii. Transactionsof theRoyal Societyof NewZealand,47-71. Taylor,D. I. (2002). Habitat-forming intertidalalgaeacrosswave-exposures:An experimental evaluation of plantand herbivoreinteractions. Cristchurch:Universityof Canterbury. Underwood,A.J.,& Jernakoff,P.(1984). The effectsof tidal height,wave-exposure,seasonalityand rock-poolsongrazingand the distributionof intertidal macroalgae inNew SouthWales. Journalof ExperimentalMarineBiology and Ecology,71-96. Westerbom,M.,& Jattu,S. (2006). Effectsof wave exposure onthe sublittoral distributionof blue musselsMytilusedulisinaheterogeneousarchipelago. Marien Ecology ProgressSeries,191- 200. WillyWeather.(2015,October1). WillyWeather. RetrievedfromWilliamstownTide Timesand Heights:http://tides.willyweather.com.au/vic/melbourne/williamstown.html