SlideShare une entreprise Scribd logo
1  sur  7
Télécharger pour lire hors ligne
 
March 11, 2016 
 
Mark G. Anderson, PE, MBA 
RETECH Engineering, Inc. 
Senior Project Manager 
 
Dear Mark, 
 
The following report is an update of our Thermo­Chemical Method Waste­to­Energy 
(TCM­WTE) system, in partnership with ReTech Engineering. Included is an Aspen model of 
the main pyrolysis reactor after the biomass reactor. 
 
If you have any questions or concerns, please feel free to contact us. 
 
 
Sincerely, 
 
A02 ­ Team 13 
Project  #6 (TCM) 
 
 
 
 
 
Jinyoung Choi Alexander Nootens
 
 
 
 
 
 
Edwin Ramon Marie Samson  
 
 
 
 
 
Department of NanoEngineering; 
Chemical Engineering 
Introduction/Background 
Thermo Chemical Method Waste to Energy (TCM­WTE) system uses Municipal Solid 
Waste (MSW) and converts it into energy from the syngas product. This feed should be able to 
power a gas turbine or fuel cell to generate electricity. The inorganic components will be 
converted into cast metals and gravel. The innovative portion of the this system compared to a 
similar MSW­to­energy system is that it will lack an emission of hazardous gases, along with 
inorganic secondhand solid, viscous or liquid waste and ash. In addition, TCM­MSW to energy 
will be using >90% of carbon dioxide on­site. The TCM system will be able to produce its own 
electric and thermal energy needed for a continuous operation of the plant; therefore, no external 
energy sources will be used. However, the total power generated through the system will create a 
surplus of external power to provide to customers.  
This TCM­WTE system is to launch in Bristol, CT. The purpose of this system is to be 
able to provide clean and safe energy through reduction of harmful gases. This technology will 
be able to produce a positive impact on the environment. Another goal for this project is to create 
a lower costing energy source, as low as $0.04/kW­h, compared to electricity average retail price 
in Connecticut of $0.155/kW­h.  
Similar waste to energy systems are in operation today. One such system is the 
refuse­derived fuel (RDF) system used at the HPOWER facility on the Hawaiian island, Oahu. It 
is a commercial plant that has been operating since 1990 and takes up to 3,000 tons of MSW to 
generate up to 90 MW of energy, which is enough for about 8% of Oahu’s energy needs². In 
Australia, Ozmotech developed a pyrolysis chamber that takes undesirable plastics and produces 
over 19,000 liters of diesel fuel a day for less than $0.30 per liter³. The Department of Petroleum 
Technology and Petrochemistry at the Slovak University of Technology in Bratislava, Slovak 
Republic has done experiments of pyrolysis on plastics and biomass waste. Results had shown 
that increase of temperature favor gas and char products, and decreased liquid fraction and solid 
residue. When there’s an increase of reaction time, production of alkane and alkene content 
increase, while carbon monoxide and carbon dioxide decrease¹. 
 
Results/Discussion 
 
Figure 1:​ Updated pyrolysis reactor using multiple RStoic reactors. 
In this reactor model, four separate RStoic reactors were used to appropriately model the 
main four stage reactor comprised within the main TCM plant. This model replaced the biomass 
pyrolysis reactor setup used in the previously provided Aspen model because the exact reaction 
kinetics required to run it were not available in currently available literature. The first reactor 
operates at a temperature of 150​°​C, the second at 800​°​C, the third at 1300​°​C, and the fourth and 
final reactor at 1600​°​C. Each zone provides specific products which are then fed to the next stage 
in the reactor series. The third stage is mixed with the S+GREC which is comprised of the 
recycled hot steam and syngas mixture that provides the main heating energy for the total overall 
reactor. The final output stream is then deposited into a separator which will crudely separate the 
syngas, metal, and slurry byproducts.  
 
Figure 2:​ MSW input stream components represented as individual monomers  
In Figure 2, the main plastics are modeled using vinyl­chloride, furion (the main 
monomer of PET), styrene (the main monomer of PS), ethylene (the main monomer of HDPE), 
and propylene (the main monomer of PP). Metal is typically a small component of MSW so only 
a few of the most common components were used. Those used were aluminum, copper, and zinc, 
respectively. A common monomer in many food products is butyric­acid, which is typically in 
many cheese and dairy products commonly found within the organic portion of MSW. In order 
to model the food portion of the MSW more accurately, the addition of the starch monomer 
amylose was used in large quantity as it accurately represents any breaded food products. The 
final product included with the main feedstock was cellulose, one of the main structural 
components of varying plant life. This component was used to model the percentage of yard 
waste typically found in samples of MSW.  
The original Aspen model, represented in Figure 3, was only changed to the extent of 
how the pyrolysis reactor was modeled. The remaining separation, cleaning of the syngas, and 
systems used to provide the recycled syngas are to remain the same. A few of the main 
remaining problems involve the phases of the materials at the particular temperatures. For 
example, when all of the reactors are combined into one reactor of different stages, the 
separation inside the reactor is based on the weight of the material during the phase change. 
Some of the plastic material have phase changes in a pinched temperature region, keeping them 
from properly exiting the reactor.  
The following tables were used to determine the physical volumetric parameters needed 
to properly model the four separate reactors. We used the total volume and broke it into four 
smaller volumes using the system patent.   
Table 1:​ Column Reactor 
Description  MSW Inlet  Steam/ 
Syngas Inlet 
Steam/ 
Syngas Outlet 
Melted Slag 
Outlet 
Melted Alloy 
Outlet 
Pressure 
(atm) 
1  6  4  1  1 
Temperature 
(℃) 
70  1850  200  1500  1500 
Mass Flow 
Rate (ton/hr) 
10  4.9  ~9.0  1.5  0.40 
 
Table 2:​ Column Reactor Dimension [m] Plus Clearance 
Total Required Clearance Height  18+5 m 
Diameter Clearance   
Base  1.8 m 
Belt (@ 6 m)  2.4 m 
Top (MSW Inlet)  1.2 m 
Steam / Syngas Inlet  0.2032 m 
Steam / Syngas Outlet  0.2032 m 
 
Future Work/Plan of Action 
At the halfway mark of the project, there is still much to be done. Calculations for 
optimizing the recycle stream and the reboiler are underway to maximize the produced energy. 
Plans to convert the produced chemical energy of the reactor to electrical energy will be done 
with a fuel cell. The fuel cell used is FuelCell Energy’s 2.8 MW DFC3000 system. There will be 
five of these fuel cells stacked in series in order to produce up to 15MW. The fuel cell has high 
efficiency and low environmental impact perfect for the desired design. The Aspen model is still 
being designed to accurately accept the different components of MSW that the pyrolysis reactor 
will be fed. In addition, we are researching the components of MSW that is specific to Bristol, 
CT.  
Self­teaching of COMSOL Multiphysics Simulation Software is ongoing as COMSOL 
will be used to model the reactor and optimize the design solutions. Specifically, learning how to 
model the decomposition of the MSW is occurring. With COMSOL, the major and 
non­commercial components of the reactor can be modeled.  
After designing and simulating our prototype through Aspen and COMSOL, an 
economic, environmental and safety evaluation will need to be done. The economic evaluation 
will have a comparative economic analysis and economic comparison between different virtual 
systems. Research will be done to look up the environmental and economic impact the system 
will have once built, as an environmentally safe and overall profitable system is desired. In 
addition, Connecticut's regulation codes and permitting requirements for the system needs to be 
found, as plans are set to have this system built in Bristol, CT. 
 
References 
[1] Bajus, Martin. "Thermal Cracking of Mixtures of Plastics and Woody Material." ​Petroleum 
& Coal​53.1 (2011): 1­7. ​VÚRUP, A.s​. VÚRUP, A.s, 1 Feb. 2011. Web. 
[2] "Energy­from­Waste Facility." ​Covanta​. Covanta, n.d. Web. 9 Mar. 2016. 
[3] Smith, Melanie. "Recycling and Pyrolysis of Plastic." ​Whole Systems Foundation​. Whole 
Systems Foundation, n.d. Web. 9 Mar. 2016. 
 

Contenu connexe

Similaire à ProgressReport3

Nazeeruddin-2016-ChemSusChem
Nazeeruddin-2016-ChemSusChemNazeeruddin-2016-ChemSusChem
Nazeeruddin-2016-ChemSusChemMd. Nazeeruddin
 
IRJET- Rankine Cycle Coupled with Heliostat Solar Receiver; Modeling and Simu...
IRJET- Rankine Cycle Coupled with Heliostat Solar Receiver; Modeling and Simu...IRJET- Rankine Cycle Coupled with Heliostat Solar Receiver; Modeling and Simu...
IRJET- Rankine Cycle Coupled with Heliostat Solar Receiver; Modeling and Simu...IRJET Journal
 
Process Intensification
Process IntensificationProcess Intensification
Process IntensificationRohit Shinde
 
Practical Experiences with Smart-Homes Modeling and Simulation
Practical Experiences with Smart-Homes Modeling and SimulationPractical Experiences with Smart-Homes Modeling and Simulation
Practical Experiences with Smart-Homes Modeling and SimulationSimulationX
 
Eawc plasma assisted wt e overview
Eawc   plasma assisted wt e overviewEawc   plasma assisted wt e overview
Eawc plasma assisted wt e overviewaremband
 
NCAM_Seminar_Lukas_Skoufa_19-February-2015
NCAM_Seminar_Lukas_Skoufa_19-February-2015NCAM_Seminar_Lukas_Skoufa_19-February-2015
NCAM_Seminar_Lukas_Skoufa_19-February-2015Lucas Skoufa
 
Future train (electricity generated from heat loss) report
Future train (electricity generated from heat loss) reportFuture train (electricity generated from heat loss) report
Future train (electricity generated from heat loss) reportAjit Kumar
 
IRJET- Effect of Permanent Magnet on Fuel in 4-Stroke Engine
IRJET-  	  Effect of Permanent Magnet on Fuel in 4-Stroke EngineIRJET-  	  Effect of Permanent Magnet on Fuel in 4-Stroke Engine
IRJET- Effect of Permanent Magnet on Fuel in 4-Stroke EngineIRJET Journal
 
Research Statement
Research StatementResearch Statement
Research StatementJohn Sanders
 
Nano Watt fueling from Microbial fuel Cell using Black tea waste
Nano Watt fueling from Microbial fuel Cell using Black tea wasteNano Watt fueling from Microbial fuel Cell using Black tea waste
Nano Watt fueling from Microbial fuel Cell using Black tea wasteAman Anand
 
Components of pem_fuel_cells_an_overview
Components of pem_fuel_cells_an_overviewComponents of pem_fuel_cells_an_overview
Components of pem_fuel_cells_an_overviewtshankar20134
 
Components of pem_fuel_cells_an_overview
Components of pem_fuel_cells_an_overviewComponents of pem_fuel_cells_an_overview
Components of pem_fuel_cells_an_overviewmadlovescience
 
Components of pem_fuel_cells_an_overview
Components of pem_fuel_cells_an_overviewComponents of pem_fuel_cells_an_overview
Components of pem_fuel_cells_an_overviewmadlovescience
 
Low cost, high performance fuel cell energy conditioning system controlled by...
Low cost, high performance fuel cell energy conditioning system controlled by...Low cost, high performance fuel cell energy conditioning system controlled by...
Low cost, high performance fuel cell energy conditioning system controlled by...TELKOMNIKA JOURNAL
 
Modified moth swarm algorithm for optimal economic load dispatch problem
Modified moth swarm algorithm for optimal economic load dispatch problemModified moth swarm algorithm for optimal economic load dispatch problem
Modified moth swarm algorithm for optimal economic load dispatch problemTELKOMNIKA JOURNAL
 
- Caracol Waste-to-Energy System
- Caracol Waste-to-Energy System- Caracol Waste-to-Energy System
- Caracol Waste-to-Energy SystemWilliam Muzi
 
Recent Trends In Power Generation
Recent Trends In Power GenerationRecent Trends In Power Generation
Recent Trends In Power GenerationGowtham MG
 
WIND AND SOLAR MPPT IN HYBRID MICROGRID
WIND AND SOLAR MPPT IN HYBRID MICROGRID WIND AND SOLAR MPPT IN HYBRID MICROGRID
WIND AND SOLAR MPPT IN HYBRID MICROGRID ijiert bestjournal
 

Similaire à ProgressReport3 (20)

Nazeeruddin-2016-ChemSusChem
Nazeeruddin-2016-ChemSusChemNazeeruddin-2016-ChemSusChem
Nazeeruddin-2016-ChemSusChem
 
IRJET- Rankine Cycle Coupled with Heliostat Solar Receiver; Modeling and Simu...
IRJET- Rankine Cycle Coupled with Heliostat Solar Receiver; Modeling and Simu...IRJET- Rankine Cycle Coupled with Heliostat Solar Receiver; Modeling and Simu...
IRJET- Rankine Cycle Coupled with Heliostat Solar Receiver; Modeling and Simu...
 
Process Intensification
Process IntensificationProcess Intensification
Process Intensification
 
Practical Experiences with Smart-Homes Modeling and Simulation
Practical Experiences with Smart-Homes Modeling and SimulationPractical Experiences with Smart-Homes Modeling and Simulation
Practical Experiences with Smart-Homes Modeling and Simulation
 
Steel Making Methods
Steel Making MethodsSteel Making Methods
Steel Making Methods
 
Eawc plasma assisted wt e overview
Eawc   plasma assisted wt e overviewEawc   plasma assisted wt e overview
Eawc plasma assisted wt e overview
 
NCAM_Seminar_Lukas_Skoufa_19-February-2015
NCAM_Seminar_Lukas_Skoufa_19-February-2015NCAM_Seminar_Lukas_Skoufa_19-February-2015
NCAM_Seminar_Lukas_Skoufa_19-February-2015
 
Future train (electricity generated from heat loss) report
Future train (electricity generated from heat loss) reportFuture train (electricity generated from heat loss) report
Future train (electricity generated from heat loss) report
 
IRJET- Effect of Permanent Magnet on Fuel in 4-Stroke Engine
IRJET-  	  Effect of Permanent Magnet on Fuel in 4-Stroke EngineIRJET-  	  Effect of Permanent Magnet on Fuel in 4-Stroke Engine
IRJET- Effect of Permanent Magnet on Fuel in 4-Stroke Engine
 
Research Statement
Research StatementResearch Statement
Research Statement
 
Nano Watt fueling from Microbial fuel Cell using Black tea waste
Nano Watt fueling from Microbial fuel Cell using Black tea wasteNano Watt fueling from Microbial fuel Cell using Black tea waste
Nano Watt fueling from Microbial fuel Cell using Black tea waste
 
Components of pem_fuel_cells_an_overview
Components of pem_fuel_cells_an_overviewComponents of pem_fuel_cells_an_overview
Components of pem_fuel_cells_an_overview
 
Components of pem_fuel_cells_an_overview
Components of pem_fuel_cells_an_overviewComponents of pem_fuel_cells_an_overview
Components of pem_fuel_cells_an_overview
 
Components of pem_fuel_cells_an_overview
Components of pem_fuel_cells_an_overviewComponents of pem_fuel_cells_an_overview
Components of pem_fuel_cells_an_overview
 
Low cost, high performance fuel cell energy conditioning system controlled by...
Low cost, high performance fuel cell energy conditioning system controlled by...Low cost, high performance fuel cell energy conditioning system controlled by...
Low cost, high performance fuel cell energy conditioning system controlled by...
 
Modified moth swarm algorithm for optimal economic load dispatch problem
Modified moth swarm algorithm for optimal economic load dispatch problemModified moth swarm algorithm for optimal economic load dispatch problem
Modified moth swarm algorithm for optimal economic load dispatch problem
 
6 MW DG Power Plant
6 MW DG Power Plant6 MW DG Power Plant
6 MW DG Power Plant
 
- Caracol Waste-to-Energy System
- Caracol Waste-to-Energy System- Caracol Waste-to-Energy System
- Caracol Waste-to-Energy System
 
Recent Trends In Power Generation
Recent Trends In Power GenerationRecent Trends In Power Generation
Recent Trends In Power Generation
 
WIND AND SOLAR MPPT IN HYBRID MICROGRID
WIND AND SOLAR MPPT IN HYBRID MICROGRID WIND AND SOLAR MPPT IN HYBRID MICROGRID
WIND AND SOLAR MPPT IN HYBRID MICROGRID
 

ProgressReport3