SlideShare une entreprise Scribd logo
1  sur  15
v
Table of Contents
Certificate……………………………………………………………………………..........ii
Acknowledgment…………………………………………………………………..............iii
Abstract……………………………………………………………………………….......iv
1. Introduction............................................................................................................................1
2. Basic Principle ......................................................................................................................2
3. Block Diagram.....................................................................................................................2
4. Components ...........................................................................................................................3
4.1 Sensor:..............................................................................................................................3
4.2 Piezoelectric Sensor: ........................................................................................................3
4.3 Battery:...........................................................................................................................6
4.4 Voltage Regulator: ...........................................................................................................9
4.5 DC Generator ..................................................................................................................9
4.6 Inverter ............................................................................................................................9
5. Working ..............................................................................................................................11
6. Appications .........................................................................................................................11
7. Advantages..........................................................................................................................12
8. Disadvantages .....................................................................................................................12
9. Future Scope .......................................................................................................................13
9.1 Flooring Tiles .................................................................................................................13
9.2 Dance Floors .................................................................................................................13
10. Conclusion ........................................................................................................................14
1
1. INTRODUCTION
For an alternate method to generate electricity there are number of methods
by which electricity can be produced, out if such methods footstep energy generation can be
an effective method to generate electricity.
Walking is the most common activity in human life. When a person walks, he loses energy to
the road surface in the form of impact, vibration, sound etc, due to the transfer of his weight
on to the road surface, through foot falls on the ground during every step. This energy can be
tapped and converted in the usable form such as in electrical form. This device, if embedded
in the footpath, can convert foot impact energy into electrical form.
Human-powered transport has been in existence since time immemorial in the form of
walking, running and swimming. However modern technology has led to machines to
enhance the use of human-power in more efficient manner. In this context, pedal power is an
excellent source of energy and has been in use since the nineteenth century making use of the
most powerful muscles in the body. Ninety-five percent of the exertion put into pedal power
is converted into energy. Pedal power can be applied to a wide range of jobs and is a simple,
cheap, and convenient source of energy. However, human kinetic energy can be useful in a
number of ways but it can also be used to generate electricity based on different approaches
and many organizations are already implementing human powered technologies to generate
electricity to power small electronic appliances.
Figure 1 Foot Step
2
2. BASIC PRINCIPLE
 When a pedestrian steps on the top plate of the device, the plate will dip down
slightly.
 The downward movement of the plate results in rotation of the shaft of an electrical
alternator fitted in the device.
3. BLOCK DIAGRAM
3
4. COMPONENTS
4.1 SENSOR:
A sensor is a device that measures a physical quantity and converts it into a signal
which can be read by an observer or by an instrument. For example, mercury converts the
measured temperature into expansion and contraction of a liquid which can be read on a
calibrated glass tube. At thermocouple converts temperature to an output voltage which can
be read by a voltmeter. For accuracy, most sensors are calibrated against known standards.
4.2 PIEZOELECTRIC SENSOR:
A piezoelectric sensor is a device that uses the piezoelectric effect to measure
pressure, acceleration, strain or force by converting them to an electrical signal.
Piezoelectric sensors have proven to be versatile tools for the measurement of various
processes. They are used for quality assurance, process control and for research and
development in many different industries it was only in the 1950s that the piezoelectric effect
started to be used for industrial sensing applications. Since then, this measuring principle has
been increasingly used and can be regarded as a mature technology with an outstanding
inherent reliability. It has been successfully used in various applications, such as in medical,
aerospace, nuclear instrumentation, and as a pressure sensor in the touch pads of mobile
phones. In the automotive industry, piezoelectric elements are used to monitor combustion
when developing internal combustion engines. The sensors are either directly mounted into
additional holes into the cylinder head or the spark/glow plug is equipped with a built in
miniature piezoelectric sensor.
4
Figure 2
The rise of piezoelectric technology is directly related to a set of inherent advantages. The
high modulus of elasticity of many piezoelectric materials is comparable to that of many
metals and goes up to 10e6 N/m²[Even though piezoelectric sensors are electromechanical
systems that react to compression, the sensing elements show almost zero deflection. This is
the reason why piezoelectric sensors are so rugged, have an extremely high natural frequency
and an excellent linearity over a wide amplitude range. Additionally, piezoelectric technology
is insensitive to electromagnetic fields and radiation, enabling measurements under harsh
conditions. Some materials used (especially gallium phosphate or tourmaline) have an
extreme stability even at high temperature, enabling sensors to have a working range of up to
1000°C. Tourmaline shows pyroelectricity in addition to the piezoelectric effect; this is the
ability to generate an electrical signal when the temperature of the crystal changes. This
effect is also common to piezoceramic materials.
One disadvantage of piezoelectric sensors is that they cannot be used for truly static
measurements. A static force will result in a fixed amount of charges on the piezoelectric
material. While working with conventional readout electronics, imperfect insulating
5
materials, and reduction in internal sensor resistance will result in a constant loss of electrons,
and yield a decreasing signal.
Figure 3
Elevated temperatures cause an additional drop in internal resistance and sensitivity. The
main effect on the piezoelectric effect is that with increasing pressure loads and temperature,
the sensitivity is reduced due to twin-formation. While quartz sensors need to be cooled
during measurements at temperatures above 300°C, special types of crystals like GaPO4
gallium phosphate do not show any twin formation up to the melting point of the material .
6
4.3 BATTERY:
Battery (electricity), an array of electrochemical cells for electricity storage, either
individually linked or individually linked and housed in a single unit. An electrical battery is
a combination of one or more electrochemical cells, used to convert stored chemical energy
into electrical energy. Batteries may be used once and discarded, or recharged for years as in
standby power applications. Miniature cells are used to power devices such as hearing aids
and wristwatches; larger batteries provide standby power for telephone exchanges or
computer data centers.
Figure 4
Lead-acid batteries are the most common in PV systems because their initial cost is lower
and because they are readily available nearly everywhere in the world. There are many
different sizes and designs of lead-acid batteries, but the most important designation is that
they are deep cycle batteries. Lead-acid batteries are available in both wet-cell (requires
maintenance) and sealed no-maintenance versions.
Lead acid batteries are reliable and cost effective with an exceptionally long life. The Lead
acid batteries have high reliability because of their ability to withstand overcharge, over
discharge vibration and shock. The use of special sealing techniques ensures that our batteries
are leak proof and non-spoilable. The batteries have exceptional charge acceptance, large
7
electrolyte volume and low self-discharge, Which make them ideal as zero- maintenance
batteries lead acid batteries
Are manufactured/ tested using CAD (Computer Aided Design). These batteries are used in
Inverter & UPS Systems and have the proven ability to perform under extreme conditions.
The batteries have electrolyte volume, use PE Separators and are sealed in sturdy containers,
which give them excellent protection against leakage and corrosion.
Features:
 Manufactured/tested using CAD
 Electrolyte volume
 PE Separators
 Protection against leakage
Battery Connections:
Lead-acid batteries are normally available in blocks of 2V, 6V or 12V. In most
cases, to generate the necessary operating voltage and the capacity of the batteries for the
Solar Inverter, many batteries have to be connected together in parallel and/or in series.
Following three examples are shown:
8
Figure 5 Parallel Connection
Figure 6 Series Connection
9
4.4 VOLTAGE REGULATOR:
As the name itself implies, it regulates the input applied to it. A voltage
regulator is an electrical regulator designed to automatically maintain a constant voltage
level.
In this project, power supply of 5V and 12V are required. In order to obtain these voltage
levels, 7805 and 7812 voltage regulators are to be used. The first number 78 represents
positive supply and the numbers 05, 12 represent the required output voltage levels. These
regulators can provide local on-card regulation, eliminating the distribution problems
associated with single point regulation. Each type employs internal current limiting, thermal
shut-down and safe area protection, making it essentially indestrucible.
If adequate heat sinking is provided, they can deliver over 1 A outputcurrent. Although
designed primarily as fixed voltage regulators, these devices can be used with external
components to obtain adjustable voltage and currents.
4.5 DC GENERATOR
 It is an electrical device which is used to convert mechanical energy into electrical
energy.
 In this footstep generation 30 volts DC has been used
4.6 INVERTER
An inverter is an electrical device that converts direct current (DC) to alternating
current (AC); the converted AC can be at any required voltage and frequency with the use of
appropriate transformers, switching, and control circuits.
Solid-state inverters have no moving parts and are used in a wide range of applications, from
small switching power supplies in computers, to large electric utility high-voltage direct
current applications that transport bulk power. Inverters are commonly used to supply AC
power from DC sources such as solar panels or batteries.
10
There are two main types of inverter. The output of a modified sine wave inverter is similar
to a square wave output except that the output goes to zero volts for a time before switching
positive or negative. It is simple and low cost and is compatible with most electronic devices,
except for sensitive or specialized equipment, for example certain laser printers.
A pure sine wave inverter produces a nearly perfect sine wave output (<3% total harmonic
distortion) that is essentially the same as utility-supplied grid power. Thus it is compatible
with all AC electronic devices. This is the type used in grid-tie inverters. Its design is more
complex, and costs 5 or 10 times more per unit power.
The electrical inverter is a high-power electronic oscillator. It is so named because early
mechanical AC to DC converters was made to work in reverse, and thus were "inverted", to
convert DC to AC. The inverter performs the opposite function of a rectifier.
Figure 7
The IC1 Cd4047 wired as an Astablemultivibrator produces two 180 degree out of phase 1/50
Hz pulse trains. These pulse trains are preamplifiers by the two TIP122 transistors. The out
puts of the TIP 122 transistors are amplified by four 2N 3055 transistors (two transistors for
each half cycle) to drive the inverter transformer. The 220V AC will be available at the
secondary of the transformer.
Nothing complex just the elementary inverter principle and the circuit works great for small
loads like a few bulbs or fans.
11
5. WORKING
When ever force is applied on piezo electric crystals that force is converted to
Electrical energy is used to drive DC loads. And that minute voltage Which is stored in the
Lead Acid battery. The battery is connected to the inverter. This inverter is used to convert
the 12 Volt D.C to the 230 Volt A.C. This 230 Volt A.C voltage is used to activate the loads.
We are using conventional battery charging unit also for giving supply to the circuitry.
The piezoelectric placed under insulating material like hard rubber and pressure created
by foot step and water fall pressure will produce electrical energy which can be stored and
used for domestic purpose. The property of Piezoelectric Material is to generate electricity
when we apply pressure. It has two axis, mechanical axis & electrical axis. When we apply
pressure in mechanical axis, it generates power in its electrical axis. Piezo means the
generation of the electrical polarization of a material as a response to mechanical strain. This
phenomenon is known as direct effect or generator effect and is applied fundamentally in the
manufacture of sensors (mobile phone vibrators, lighters, etc.). In these cases piezoelectric
materials, also used in actuators, undergo an inverse or motor effect, i.e. a mechanical
deformation due to the application of an electrical signal.
6. APPICATIONS
 Foot step generated power can be used for agricultural, home applications, street-
lighting.
 Foot step power generation can be used in emergency power failure situations.
 This can be implemented on railway station to generate electric power
 Matros, rural applications etc.
12
Figure 8
7. ADVANTAGES
 Power generation simply walking on steps.
 Power also generated by running.
 No need fuel input.
 This is a conventional system.
 Battery is used to store the generated electricity.
8. DISADVANTAGES
 Only applicable for Particular places.
 Initial cost of this arrangement is high.
 Mechanical moving part is high
 Care should be taken for batteries
13
9. FUTURE SCOPE
Utilization of wasted energy is very much relevant and important for highly
populated countries in future
9.1 FLOORING TILES
Japan has already started experimenting the use of piezoelectric effect for
energy generation. They implement piezoelectric effect on the stairs of the bus. Thus every
time passenger steps on the tiles; they trigger a small vibration that can be stored as energy.
The flooring tiles are made up of rubber which can absorb the vibration. This vibration
generates when running or walking on it. Under these tiles piezoelectric material are placed.
When the movement is felt by the material they can generate the electricity. This generated
energy is simultaneously stored into the battery. Generated electricity we can use the
lightning of lamp or street light. Energy is generated by step of one human being is too less
but if number of steps increases ultimately energy production also increases.
9.2 DANCE FLOORS
Europe is another one of the country which started experimenting use of
piezoelectric crystal for energy generation in night clubs. Floor is compressed by the dancer’s
feet and piezoelectric materials makes contact and generate electricity. Generated electricity
is nothing but 2-20 watt. It depends on impact of the dancer’s feet. If constant compression of
piezoelectric crystal causes a huge amount of energy. Europe is another one of the country
which started experimenting use of piezoelectric crystal for energy generation in night clubs.
Floor is compressed by the dancer’s feet and piezoelectric materials makes contact and
generate electricity. Generated electricity is nothing but 2-20 watt. It depends on impact of
the dancer’s feet. If constant compression of piezoelectric crystal causes a huge amount of
energy.
14
10. CONCLUSION
In concluding the words of our project, since the power generation using foot step
get its energy requirements from the Non-renewable source of energy. It is very useful to the
places all roads and as well as all kind of foot step which is used to generate the non
conventional energy like electricity. It is able to extend this project by using same
arrangement and construct in the foot steps/speed breaker so that increase the power
production rate by fixing school and colleges, highways etc.
This can be used for many applications in rural areas where power availability
is less or totally absence As India is a developing country where energy management is a big
challenge for huge population. By using this project we can drive both A.C. as well as D.C
loads according to the force we applied on the piezo electric sensor.

Contenu connexe

Tendances

Foot step power generator
Foot step power generatorFoot step power generator
Foot step power generator
Deepa Rani
 
device generating elecricity by footstep using peizoelectic material
device generating elecricity by footstep using peizoelectic materialdevice generating elecricity by footstep using peizoelectic material
device generating elecricity by footstep using peizoelectic material
Nihir Agarwal
 
Footstep power generation using piezoelectric sensor (autosaved)
Footstep power generation using piezoelectric sensor (autosaved)Footstep power generation using piezoelectric sensor (autosaved)
Footstep power generation using piezoelectric sensor (autosaved)
MotichandPatel
 

Tendances (20)

Footstep power generation system Final year be project
Footstep power generation system   Final year be project Footstep power generation system   Final year be project
Footstep power generation system Final year be project
 
Foot step power generator
Foot step power generatorFoot step power generator
Foot step power generator
 
device generating elecricity by footstep using peizoelectic material
device generating elecricity by footstep using peizoelectic materialdevice generating elecricity by footstep using peizoelectic material
device generating elecricity by footstep using peizoelectic material
 
IRJET- Foot Step Power Generation
IRJET-  	  Foot Step Power GenerationIRJET-  	  Foot Step Power Generation
IRJET- Foot Step Power Generation
 
power generation by footstep
power generation by footstep power generation by footstep
power generation by footstep
 
Foot step-power-generation-using-piezoelectric-material
Foot step-power-generation-using-piezoelectric-materialFoot step-power-generation-using-piezoelectric-material
Foot step-power-generation-using-piezoelectric-material
 
Footsteppowergenerator 140707114713-phpapp01
Footsteppowergenerator 140707114713-phpapp01Footsteppowergenerator 140707114713-phpapp01
Footsteppowergenerator 140707114713-phpapp01
 
seminar on footsteps energy generation
 seminar on footsteps energy generation seminar on footsteps energy generation
seminar on footsteps energy generation
 
Footstep power generation using piezoelectric sensor (autosaved)
Footstep power generation using piezoelectric sensor (autosaved)Footstep power generation using piezoelectric sensor (autosaved)
Footstep power generation using piezoelectric sensor (autosaved)
 
Foot Step Power Generation Using Piezoelectric Sensors
Foot Step Power Generation Using Piezoelectric SensorsFoot Step Power Generation Using Piezoelectric Sensors
Foot Step Power Generation Using Piezoelectric Sensors
 
Report
ReportReport
Report
 
Power generation by piezo sensors
Power generation by piezo sensorsPower generation by piezo sensors
Power generation by piezo sensors
 
Solar Inverter Project Report
Solar Inverter Project ReportSolar Inverter Project Report
Solar Inverter Project Report
 
Piezoelectric Energy Harvester - Capstone Design
Piezoelectric Energy Harvester - Capstone DesignPiezoelectric Energy Harvester - Capstone Design
Piezoelectric Energy Harvester - Capstone Design
 
Project
ProjectProject
Project
 
Walk n charge (report)
Walk n charge (report)Walk n charge (report)
Walk n charge (report)
 
Power generation in footsteps by Piezoelectric materials
Power generation in footsteps by Piezoelectric materialsPower generation in footsteps by Piezoelectric materials
Power generation in footsteps by Piezoelectric materials
 
Foot step energy generator
Foot step energy generatorFoot step energy generator
Foot step energy generator
 
Foot step power generating system
Foot step power generating systemFoot step power generating system
Foot step power generating system
 
Footstep Power Generation
Footstep Power GenerationFootstep Power Generation
Footstep Power Generation
 

Similaire à Seminar report on foot step power generation

Automated Timer Socket using Arduino
Automated Timer Socket using ArduinoAutomated Timer Socket using Arduino
Automated Timer Socket using Arduino
ijtsrd
 
74485052-SMART-SENSOR-Seminar-Report.pdf
74485052-SMART-SENSOR-Seminar-Report.pdf74485052-SMART-SENSOR-Seminar-Report.pdf
74485052-SMART-SENSOR-Seminar-Report.pdf
sunadstar
 
From nwokolo eric onyekachi(mini project 492)
From nwokolo eric onyekachi(mini project 492)From nwokolo eric onyekachi(mini project 492)
From nwokolo eric onyekachi(mini project 492)
Eric Brendan
 

Similaire à Seminar report on foot step power generation (20)

ILLUMINATION TESTING KIT
ILLUMINATION TESTING KITILLUMINATION TESTING KIT
ILLUMINATION TESTING KIT
 
Micro Electronic Pill Seminar Report
Micro Electronic Pill Seminar ReportMicro Electronic Pill Seminar Report
Micro Electronic Pill Seminar Report
 
ELECTRICITY GENERATED BY WASTE MATERIAL
ELECTRICITY GENERATED BY WASTE MATERIALELECTRICITY GENERATED BY WASTE MATERIAL
ELECTRICITY GENERATED BY WASTE MATERIAL
 
temp mesurement eng a_w
temp mesurement eng a_wtemp mesurement eng a_w
temp mesurement eng a_w
 
Electrochemistry Calculation User Guide Book: Metrohm
Electrochemistry Calculation User Guide Book: MetrohmElectrochemistry Calculation User Guide Book: Metrohm
Electrochemistry Calculation User Guide Book: Metrohm
 
WHO final
WHO  finalWHO  final
WHO final
 
piezoelectric source
piezoelectric sourcepiezoelectric source
piezoelectric source
 
IRJET- Heat Recovery from Commercial Kitchen using Thermoelectric Generator
IRJET- Heat Recovery from Commercial Kitchen using Thermoelectric GeneratorIRJET- Heat Recovery from Commercial Kitchen using Thermoelectric Generator
IRJET- Heat Recovery from Commercial Kitchen using Thermoelectric Generator
 
Safety and alarms in the home
Safety and alarms in the homeSafety and alarms in the home
Safety and alarms in the home
 
water technology guide
water technology guidewater technology guide
water technology guide
 
Testo Solar Panel - Practical Guide
Testo Solar Panel - Practical GuideTesto Solar Panel - Practical Guide
Testo Solar Panel - Practical Guide
 
IRJET- Production of Electricity through Micturation
IRJET- Production of Electricity through MicturationIRJET- Production of Electricity through Micturation
IRJET- Production of Electricity through Micturation
 
DESIGN AND FABRICATION OF AN EFFICIENT COLD CONTAINER FOR MEDICINE WHICH CAN ...
DESIGN AND FABRICATION OF AN EFFICIENT COLD CONTAINER FOR MEDICINE WHICH CAN ...DESIGN AND FABRICATION OF AN EFFICIENT COLD CONTAINER FOR MEDICINE WHICH CAN ...
DESIGN AND FABRICATION OF AN EFFICIENT COLD CONTAINER FOR MEDICINE WHICH CAN ...
 
Fluke 62 MAX Plus IR Thermometer User Manual
Fluke 62 MAX Plus IR Thermometer User ManualFluke 62 MAX Plus IR Thermometer User Manual
Fluke 62 MAX Plus IR Thermometer User Manual
 
IRJET- Generation of Electrical Energy from Sound Energy
IRJET- Generation of Electrical Energy from Sound EnergyIRJET- Generation of Electrical Energy from Sound Energy
IRJET- Generation of Electrical Energy from Sound Energy
 
The Elektrotipp - Circuit - Breaker Boxes
The Elektrotipp - Circuit - Breaker BoxesThe Elektrotipp - Circuit - Breaker Boxes
The Elektrotipp - Circuit - Breaker Boxes
 
Automated Timer Socket using Arduino
Automated Timer Socket using ArduinoAutomated Timer Socket using Arduino
Automated Timer Socket using Arduino
 
74485052-SMART-SENSOR-Seminar-Report.pdf
74485052-SMART-SENSOR-Seminar-Report.pdf74485052-SMART-SENSOR-Seminar-Report.pdf
74485052-SMART-SENSOR-Seminar-Report.pdf
 
ritesh (2)
ritesh (2)ritesh (2)
ritesh (2)
 
From nwokolo eric onyekachi(mini project 492)
From nwokolo eric onyekachi(mini project 492)From nwokolo eric onyekachi(mini project 492)
From nwokolo eric onyekachi(mini project 492)
 

Dernier

Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
vu2urc
 

Dernier (20)

Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
HTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation StrategiesHTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation Strategies
 
Tech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdfTech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdf
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
Developing An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of BrazilDeveloping An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of Brazil
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 

Seminar report on foot step power generation

  • 1. v Table of Contents Certificate……………………………………………………………………………..........ii Acknowledgment…………………………………………………………………..............iii Abstract……………………………………………………………………………….......iv 1. Introduction............................................................................................................................1 2. Basic Principle ......................................................................................................................2 3. Block Diagram.....................................................................................................................2 4. Components ...........................................................................................................................3 4.1 Sensor:..............................................................................................................................3 4.2 Piezoelectric Sensor: ........................................................................................................3 4.3 Battery:...........................................................................................................................6 4.4 Voltage Regulator: ...........................................................................................................9 4.5 DC Generator ..................................................................................................................9 4.6 Inverter ............................................................................................................................9 5. Working ..............................................................................................................................11 6. Appications .........................................................................................................................11 7. Advantages..........................................................................................................................12 8. Disadvantages .....................................................................................................................12 9. Future Scope .......................................................................................................................13 9.1 Flooring Tiles .................................................................................................................13 9.2 Dance Floors .................................................................................................................13 10. Conclusion ........................................................................................................................14
  • 2. 1 1. INTRODUCTION For an alternate method to generate electricity there are number of methods by which electricity can be produced, out if such methods footstep energy generation can be an effective method to generate electricity. Walking is the most common activity in human life. When a person walks, he loses energy to the road surface in the form of impact, vibration, sound etc, due to the transfer of his weight on to the road surface, through foot falls on the ground during every step. This energy can be tapped and converted in the usable form such as in electrical form. This device, if embedded in the footpath, can convert foot impact energy into electrical form. Human-powered transport has been in existence since time immemorial in the form of walking, running and swimming. However modern technology has led to machines to enhance the use of human-power in more efficient manner. In this context, pedal power is an excellent source of energy and has been in use since the nineteenth century making use of the most powerful muscles in the body. Ninety-five percent of the exertion put into pedal power is converted into energy. Pedal power can be applied to a wide range of jobs and is a simple, cheap, and convenient source of energy. However, human kinetic energy can be useful in a number of ways but it can also be used to generate electricity based on different approaches and many organizations are already implementing human powered technologies to generate electricity to power small electronic appliances. Figure 1 Foot Step
  • 3. 2 2. BASIC PRINCIPLE  When a pedestrian steps on the top plate of the device, the plate will dip down slightly.  The downward movement of the plate results in rotation of the shaft of an electrical alternator fitted in the device. 3. BLOCK DIAGRAM
  • 4. 3 4. COMPONENTS 4.1 SENSOR: A sensor is a device that measures a physical quantity and converts it into a signal which can be read by an observer or by an instrument. For example, mercury converts the measured temperature into expansion and contraction of a liquid which can be read on a calibrated glass tube. At thermocouple converts temperature to an output voltage which can be read by a voltmeter. For accuracy, most sensors are calibrated against known standards. 4.2 PIEZOELECTRIC SENSOR: A piezoelectric sensor is a device that uses the piezoelectric effect to measure pressure, acceleration, strain or force by converting them to an electrical signal. Piezoelectric sensors have proven to be versatile tools for the measurement of various processes. They are used for quality assurance, process control and for research and development in many different industries it was only in the 1950s that the piezoelectric effect started to be used for industrial sensing applications. Since then, this measuring principle has been increasingly used and can be regarded as a mature technology with an outstanding inherent reliability. It has been successfully used in various applications, such as in medical, aerospace, nuclear instrumentation, and as a pressure sensor in the touch pads of mobile phones. In the automotive industry, piezoelectric elements are used to monitor combustion when developing internal combustion engines. The sensors are either directly mounted into additional holes into the cylinder head or the spark/glow plug is equipped with a built in miniature piezoelectric sensor.
  • 5. 4 Figure 2 The rise of piezoelectric technology is directly related to a set of inherent advantages. The high modulus of elasticity of many piezoelectric materials is comparable to that of many metals and goes up to 10e6 N/m²[Even though piezoelectric sensors are electromechanical systems that react to compression, the sensing elements show almost zero deflection. This is the reason why piezoelectric sensors are so rugged, have an extremely high natural frequency and an excellent linearity over a wide amplitude range. Additionally, piezoelectric technology is insensitive to electromagnetic fields and radiation, enabling measurements under harsh conditions. Some materials used (especially gallium phosphate or tourmaline) have an extreme stability even at high temperature, enabling sensors to have a working range of up to 1000°C. Tourmaline shows pyroelectricity in addition to the piezoelectric effect; this is the ability to generate an electrical signal when the temperature of the crystal changes. This effect is also common to piezoceramic materials. One disadvantage of piezoelectric sensors is that they cannot be used for truly static measurements. A static force will result in a fixed amount of charges on the piezoelectric material. While working with conventional readout electronics, imperfect insulating
  • 6. 5 materials, and reduction in internal sensor resistance will result in a constant loss of electrons, and yield a decreasing signal. Figure 3 Elevated temperatures cause an additional drop in internal resistance and sensitivity. The main effect on the piezoelectric effect is that with increasing pressure loads and temperature, the sensitivity is reduced due to twin-formation. While quartz sensors need to be cooled during measurements at temperatures above 300°C, special types of crystals like GaPO4 gallium phosphate do not show any twin formation up to the melting point of the material .
  • 7. 6 4.3 BATTERY: Battery (electricity), an array of electrochemical cells for electricity storage, either individually linked or individually linked and housed in a single unit. An electrical battery is a combination of one or more electrochemical cells, used to convert stored chemical energy into electrical energy. Batteries may be used once and discarded, or recharged for years as in standby power applications. Miniature cells are used to power devices such as hearing aids and wristwatches; larger batteries provide standby power for telephone exchanges or computer data centers. Figure 4 Lead-acid batteries are the most common in PV systems because their initial cost is lower and because they are readily available nearly everywhere in the world. There are many different sizes and designs of lead-acid batteries, but the most important designation is that they are deep cycle batteries. Lead-acid batteries are available in both wet-cell (requires maintenance) and sealed no-maintenance versions. Lead acid batteries are reliable and cost effective with an exceptionally long life. The Lead acid batteries have high reliability because of their ability to withstand overcharge, over discharge vibration and shock. The use of special sealing techniques ensures that our batteries are leak proof and non-spoilable. The batteries have exceptional charge acceptance, large
  • 8. 7 electrolyte volume and low self-discharge, Which make them ideal as zero- maintenance batteries lead acid batteries Are manufactured/ tested using CAD (Computer Aided Design). These batteries are used in Inverter & UPS Systems and have the proven ability to perform under extreme conditions. The batteries have electrolyte volume, use PE Separators and are sealed in sturdy containers, which give them excellent protection against leakage and corrosion. Features:  Manufactured/tested using CAD  Electrolyte volume  PE Separators  Protection against leakage Battery Connections: Lead-acid batteries are normally available in blocks of 2V, 6V or 12V. In most cases, to generate the necessary operating voltage and the capacity of the batteries for the Solar Inverter, many batteries have to be connected together in parallel and/or in series. Following three examples are shown:
  • 9. 8 Figure 5 Parallel Connection Figure 6 Series Connection
  • 10. 9 4.4 VOLTAGE REGULATOR: As the name itself implies, it regulates the input applied to it. A voltage regulator is an electrical regulator designed to automatically maintain a constant voltage level. In this project, power supply of 5V and 12V are required. In order to obtain these voltage levels, 7805 and 7812 voltage regulators are to be used. The first number 78 represents positive supply and the numbers 05, 12 represent the required output voltage levels. These regulators can provide local on-card regulation, eliminating the distribution problems associated with single point regulation. Each type employs internal current limiting, thermal shut-down and safe area protection, making it essentially indestrucible. If adequate heat sinking is provided, they can deliver over 1 A outputcurrent. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltage and currents. 4.5 DC GENERATOR  It is an electrical device which is used to convert mechanical energy into electrical energy.  In this footstep generation 30 volts DC has been used 4.6 INVERTER An inverter is an electrical device that converts direct current (DC) to alternating current (AC); the converted AC can be at any required voltage and frequency with the use of appropriate transformers, switching, and control circuits. Solid-state inverters have no moving parts and are used in a wide range of applications, from small switching power supplies in computers, to large electric utility high-voltage direct current applications that transport bulk power. Inverters are commonly used to supply AC power from DC sources such as solar panels or batteries.
  • 11. 10 There are two main types of inverter. The output of a modified sine wave inverter is similar to a square wave output except that the output goes to zero volts for a time before switching positive or negative. It is simple and low cost and is compatible with most electronic devices, except for sensitive or specialized equipment, for example certain laser printers. A pure sine wave inverter produces a nearly perfect sine wave output (<3% total harmonic distortion) that is essentially the same as utility-supplied grid power. Thus it is compatible with all AC electronic devices. This is the type used in grid-tie inverters. Its design is more complex, and costs 5 or 10 times more per unit power. The electrical inverter is a high-power electronic oscillator. It is so named because early mechanical AC to DC converters was made to work in reverse, and thus were "inverted", to convert DC to AC. The inverter performs the opposite function of a rectifier. Figure 7 The IC1 Cd4047 wired as an Astablemultivibrator produces two 180 degree out of phase 1/50 Hz pulse trains. These pulse trains are preamplifiers by the two TIP122 transistors. The out puts of the TIP 122 transistors are amplified by four 2N 3055 transistors (two transistors for each half cycle) to drive the inverter transformer. The 220V AC will be available at the secondary of the transformer. Nothing complex just the elementary inverter principle and the circuit works great for small loads like a few bulbs or fans.
  • 12. 11 5. WORKING When ever force is applied on piezo electric crystals that force is converted to Electrical energy is used to drive DC loads. And that minute voltage Which is stored in the Lead Acid battery. The battery is connected to the inverter. This inverter is used to convert the 12 Volt D.C to the 230 Volt A.C. This 230 Volt A.C voltage is used to activate the loads. We are using conventional battery charging unit also for giving supply to the circuitry. The piezoelectric placed under insulating material like hard rubber and pressure created by foot step and water fall pressure will produce electrical energy which can be stored and used for domestic purpose. The property of Piezoelectric Material is to generate electricity when we apply pressure. It has two axis, mechanical axis & electrical axis. When we apply pressure in mechanical axis, it generates power in its electrical axis. Piezo means the generation of the electrical polarization of a material as a response to mechanical strain. This phenomenon is known as direct effect or generator effect and is applied fundamentally in the manufacture of sensors (mobile phone vibrators, lighters, etc.). In these cases piezoelectric materials, also used in actuators, undergo an inverse or motor effect, i.e. a mechanical deformation due to the application of an electrical signal. 6. APPICATIONS  Foot step generated power can be used for agricultural, home applications, street- lighting.  Foot step power generation can be used in emergency power failure situations.  This can be implemented on railway station to generate electric power  Matros, rural applications etc.
  • 13. 12 Figure 8 7. ADVANTAGES  Power generation simply walking on steps.  Power also generated by running.  No need fuel input.  This is a conventional system.  Battery is used to store the generated electricity. 8. DISADVANTAGES  Only applicable for Particular places.  Initial cost of this arrangement is high.  Mechanical moving part is high  Care should be taken for batteries
  • 14. 13 9. FUTURE SCOPE Utilization of wasted energy is very much relevant and important for highly populated countries in future 9.1 FLOORING TILES Japan has already started experimenting the use of piezoelectric effect for energy generation. They implement piezoelectric effect on the stairs of the bus. Thus every time passenger steps on the tiles; they trigger a small vibration that can be stored as energy. The flooring tiles are made up of rubber which can absorb the vibration. This vibration generates when running or walking on it. Under these tiles piezoelectric material are placed. When the movement is felt by the material they can generate the electricity. This generated energy is simultaneously stored into the battery. Generated electricity we can use the lightning of lamp or street light. Energy is generated by step of one human being is too less but if number of steps increases ultimately energy production also increases. 9.2 DANCE FLOORS Europe is another one of the country which started experimenting use of piezoelectric crystal for energy generation in night clubs. Floor is compressed by the dancer’s feet and piezoelectric materials makes contact and generate electricity. Generated electricity is nothing but 2-20 watt. It depends on impact of the dancer’s feet. If constant compression of piezoelectric crystal causes a huge amount of energy. Europe is another one of the country which started experimenting use of piezoelectric crystal for energy generation in night clubs. Floor is compressed by the dancer’s feet and piezoelectric materials makes contact and generate electricity. Generated electricity is nothing but 2-20 watt. It depends on impact of the dancer’s feet. If constant compression of piezoelectric crystal causes a huge amount of energy.
  • 15. 14 10. CONCLUSION In concluding the words of our project, since the power generation using foot step get its energy requirements from the Non-renewable source of energy. It is very useful to the places all roads and as well as all kind of foot step which is used to generate the non conventional energy like electricity. It is able to extend this project by using same arrangement and construct in the foot steps/speed breaker so that increase the power production rate by fixing school and colleges, highways etc. This can be used for many applications in rural areas where power availability is less or totally absence As India is a developing country where energy management is a big challenge for huge population. By using this project we can drive both A.C. as well as D.C loads according to the force we applied on the piezo electric sensor.