SlideShare une entreprise Scribd logo
1  sur  13
Télécharger pour lire hors ligne
1
Water Treatment Plant Design
CE 484 Final Project
Fall
2014
Alex
Waite, Jenny Yu, Jonathan Damora, Cy Maroofian
2
Table of Contents
Introduction…………………………………………………………..3
The Proposal………………………………………………………...3
The Conditions/Chemicals…………………………………...3
Costs and Calculations…………………………………………..6
Construction Costs…………………………………….…6
Land
Pipes
Facilities
Storage
Permitting
Operating/Maintenance…………………….……....7
Chemicals
Oxidation
Filtration
Ultrafiltration/Reverse Osmosis
Decarbonation
Waste/Sludge Disposal
Labor
Conclusion…………………………………………..............12
References…………………………………………………………..14
3
Introduction
We are a private consulting company that is responsible for designing a water
treatment facility. Our client is A Water Agency, who relies on the State Project Water as a
source of drinking water for a city with a population for 5,000. The city is in Southern
California, therefore the regulations are all based on California Regulations. Our goal is to
create a functioning and affordable water treatment facility using state of the art treatment
processes, including Oxidation, Granular Activated Carbon filtration, Ultrafiltration, Reverse
Osmosis, Decarbonation, and Disinfection.
The Proposal
Due to the population of 5,000 people, we calculated the effluent flow rate for this
facility to be approximately 600,000 gallons-per-day (GPD), which is equal to 416.67 gallons-
per-min (GPM). This value includes a 20% contingency and an average water consumption of
100 GPD per person. Using a recovery rate of 85% for Ultrafiltration and Reverse Osmosis, as
well as a 95% recovery rate for filter backwash, our influent flow rate was calculated to be
707,120.80 GPD = 491.05 GPM.
Based on the groundwater analysis provided, the most efficient process to produce
potable and regulation compliant water involves oxidation, dual media filtration with GAC
and sand, ultrafiltration and reverse osmosis, and lastly decarbonation. After the dual media
filtration, there will be sludge that is produced and must be sent out for disposal. The flow
after filtration will drop down to 705,882.4 GPD, meaning that 1,238.4 GPD is backwash
water. However we are not planning to perform a backwash daily, and instead plan on doing
it once a month. Meaning that monthly approximately 37,151.7 gallons per month. This will
cost us approximately $1,857.59 per day. After reverse osmosis there is brine that is lost. The
calculated flow after the RO is 600,000 GPD, meaning that there is 105,882.4 GPD of brine,
which must be sent to a wastewater treatment facility. Given the value of 5 cent per gallon
of waste, we calculated that the total cost of brine removal will be $5,294.12 per day. We
must also plan for the land that we need to use which is priced at $300 per square foot. Also,
piping, chemicals for disinfection, and labor fees must also be considered.
The Conditions
- Average Turbidity = 1 NTU
Target: 0.1 NTU
- Very Low TOC
- TDS 1000 mg/L
Target: 500 mg/L
- Nitrate 50 mg/L (Ion Exchange or Reverse Osmosis)
Target: 10 mg/L
- Soluble Manganese 0.8 mg/L (use oxidation to remove )
Target: 0.05 mg/L
4
- 1,4 dioxane 10 ppb (use advanced oxidation process = UV + H2O2 or O3 + H2O2) or (use
GAC)
Target: < 3 ppb
- pH = 6.8 (Ideal)
- Alkalinity 100 mg/L as CaCO3
Target: 60-80 mg/L as CaCO3
- Brackish Water
- Assume Hydrogen Sulfide Concentration is negligible
Table 1: List of Contaminants with treatment options
Contaminant MCLG MCL Level
Present
Treatment
Process
Source Post-
treatment
Change
Turbidity N/A <1
NTU
1 NTU Filtration/
UF
high TSS 0.1 NTU 0.9 NTU
TDS N/A 500
mg/L
1000
mg/L
RO Soil
Leaching
500 mg/L 500 mg/L
Nitrate 10
mg/L
10
mg/L
50 mg/L RO Agricultur
e Runoff,
Waste
water
<10 mg/L 40 mg/L
Soluble
Manganese
N/A 0.05
mg/L
0.8 mg/L Oxidation/
Filtration
rocks,
industrial
effluent,
sewage &
landfill
leachate
<0.05 mg/L 0.75 mg/L
1,4 Dioxane N/A <3
ppb
10 ppb GAC Industrial
Waste
<1 ppb 9 ppb
pH N/A 6.5-
8.5
6.8 N/A N/A 7.1-7.3 -0.2
Alkalinity N/A Ideal
60-80
mg/L
100
mg/L
Lime
Softening
Limestone 60 mg/L 40 mg/L
Based on the contaminants given, we had to determine the most cost effective and
efficient treatment processes, which can be seen in Figure 1. During oxidation, we will be
using chlorine to oxidize the Manganese. However, this creates Manganese Dioxide (MnO2).
Also, chlorine, when reacting with NOMs can produced DBPs such as THMs and HAA5, which
are very harmful to humans. Therefore, after oxidation, we add lime softening to remove the
some of the water hardness so to avoid scaling in the reverse osmosis process later on. The
water now travels through a dual filter of GAC, granular activated carbon, and sand. The GAC
is responsible for removing 1,4 Dioxane as well as the HAA5 by product of oxidation. The
5
MnO2 is removed in the sand filter. After filtration, the water will be distributed to 2
Ultrafiltration/Reverse Osmosis self containing tanks. The reason for using 2 tanks is due to
the backwash, in which we still need at least one of the tanks to be functioning. The
ultrafiltration is used to remove the last of the turbidity as well as ensure that the water will
not clog the reverse osmosis process. Reverse osmosis can remove not only THMs produced by
oxidation, but also Total Dissolved Solids (TDS), and nitrate. Following reverse osmosis, the
water enters a decarbonator, which removes CO2, thus increasing pH. We then add Sodium
Bicarbonate to not only stabilize the pH but also recover some of the alkalinity. The water is
now disinfected using chlorine and then sent out to be distributed.
Table 2: Equipment and Sizing
Process Equipment Sizing
Oxidation / Disinfection 1 tank: V=130 gal
In-line static mixer 3-element, 6” Diameter, with injection port
Dual Media Filtration (GAC and Sand) 2 Filter Beds: V= 650ft³ each W×H×L=10’ * 5’ * 13’
UF and RO 2 Self Contained Units
GE PROPAK-300-NA
Tanks 10.6’ x 8’ x 14.75’
Filters 8.4’ x 6.3’ x 23’
Decarbonator LxWxH =14” x 11.7” x 57.6”
Backwash Storage LxWxH = 20’ x 20’ x 25’
80,000 gallon tank = 10,694.44 cubic ft
Water Tower 40,000 Gallon
Height = 100 ft
Oxidation
(with
Chlorine)
Dual
Media
Reve
rse
Osm
Decarbon
ator
Disinfect
Byprodu
cts:
MnO2,
Slud
Ultrafiltr
Lime
Remove
s: 1,4
Dioxane
Dispo
Add
Remo
ves:
CO2
Ultrafiltr
Reve
rse
Osm
Remo
ves:
TDS,
Distribut
6
Costs and Calculations
Capital and Equipment Costs
Table 3: Capital and Equipment Cost Estimations
Capital Cost ($)
Land $9,139,343.51
Pipe $572.09
Facilities $19,256.67
Treatment Processes $14,483,069.00
Storage
(Water, Backwash, Chlorine)
$111,266.67
Permitting $278,113.17
Total $24,031,621.11
Land Costs
Considering an average per capita water consumption of 100 gpd and a 20% contingency, the
estimate required flowrate of the treatment facility is 0.9284 ft3/sec. The volume needed to
be delivered to the residents is 600,000 gpd.
Q= 5,000 people x (100 gallons/day) x(1.2) = 600,000 gpd
600,000 gallons/day x (ft3/7.48 gallons) x (day/86400 sec) = 0.9284 ft3/sec
The approximate acreage of the facility is 0.699 acres, and the cost of the land assuming it is
valued at $300/sf is $9,139,343.51.
Area= (0.6)^(0.7) = 0.699 acres
Cost of land = 0.699 acres x (43,560 ft2/acre) x ($300/ft2) = $9,139,343.51
Pipe Costs
PVC pipes are the most cost effective option with a total cost of : $ 572.09
Even though PVC pipes are less durable than steel or concrete pipes, they are lightweight,
easy to assemble, and have a long lifespan which lower maintenance costs. Assuming a pipe
grade of DIN 2448 and pipe length of 10 ft for each section of the water treatment system,
the pipe diameter needed is 6 in.
Using a Charlotte Pipe 6-in x 10-ft Sch 40 PVC DWV Pipe: $47.28 x 11 = $520.08 + 10%
contingency = $572.09
Facility Costs
7
Administration, laboratory, and maintenance building: CC = 235.66(Q)^0.5613 + 1220 =
$19,256.67
Storage
Backwash storage:
Tank: 80,000 gal = 10,694.44 ft3
10,000ft3 = 20 x 20 x 25
Area= 20 x 20 = 400 ft2 = $120,000
Assume price of concrete per ft3= $4.25
Total backwash storage = $6800
Water Tower:
Assuming 40,000 gallons of water for backwash, total cost is $104,266.67.
Permit
Apply for a permit through AQMD and CA EPA Water Board. Permitting accounts for 3% of total
costs of equipment and offices.
Operating and Maintenance Costs
Table 4: Operating Cost Estimations
Capital Cost O&M Cost Daily Cost Monthly Cost Yearly Cost
Oxidation N/A $239.17 +
$9,565.95
$0.56 $16.89 $9,805.12
GAC + Sand
Filtration
$40,350.99 +
$1,259,558
$5,210.00 $14.27 $434.17 $5,210.00
Ultrafiltration +
Reverse Osmosis
$8,045,582
+ $4,728,917.87
$565,096.79
+
$442,246.40
$2798.18 $83,945.27 $1,007,343.19
Decarbonation $8660 $2,871.20 $7.73 $231.77 $2,781.20
Disinfection N/A $200.37 $0.66 $19.75 $200.37
Waste Disposal N/A $1,955,008.80 $5,356.19 $160,685.65 $1,955,008.80
Instrumentation $400,000 $2,000.00 $5.56 $166.67 $2,000.00
Labor N/A $137,280 $381.33 $11,440 $137,280
Total $14,483,069.00 $3,119,718.68 $8,862.77 $265,883.00 $3,119,718.68
Chemical Costs
Table 5: Cost Estimates for Chemicals
8
Chemicals Usage Prices Transportation Consumed Total Yearly Cost
Chlorine (Cl2) Oxidation /
Disinfection
$0.12/gal 15% of total cost 125.3 gal / 2
weeks
$439.54
Lime Slack Lime
softening
$120 / ton 15% of total cost 3.052 tons /
2 weeks
$11,000.84
Sodium
Bicarbonate
Alkalinity
recovery
$200 / ton 15% of total cost 0.468 tons /
2 weeks
$2,803.93
Total $14,244.31
Treatment Process Costs
Influent:
707,120.8 GPD (Considering the loss of water during RO and backwash)
Oxidation/Chlorination:
Oxidation of Mn2+:
Mn2+ standard: 0.05 mg/L
Soluble Mn: 0.8 mg/L
Removal amount of manganese:
Mn2+ influent: 707,120.8 gal/day *3.785 L/gal *0.8*10^-6 kg/L= 2.1 kg/day Mn2+
Cl2 needed to remove Mn:
2.1 kg/day * 1 mol/54.938 g Mg2+ * 1 mol Mg2+/ 1 mol Cl2+ * 70.906 g/mol Cl2+ = 2.763
kg/day * 2.205 lb/kg = 6.1 lb/day Cl2 pure
Vendor assumption:
$0.12/gal of solution (15% w/v), 15% total cost added for delivery
gal of solution = 2.8 kg/day * (100 L sol / 15 kg) * (1 gal/ 3.785 L) = 4.9 gal / day = 1777.6 gal
/ yr of solution
Cost for Cl2 = 1777.6 * $0.12 = $207.97 / yr
Total cost with transportation = $207.97 * 1.15 = $239.17 / yr
Use 6” Flanged Static Mixer with Injection Point, 3 - Element = $1300
Sludge disposal:
Sludge is produced from the GAC and UF/RO:
MnO2 produced=2.141 kg Mn/day×87÷55=3.4 kg/day
Dewatering power needed:
2 kw output of the motor for 24/7.
Yearly power cost=2*24*365*0.02=$350/year
9
Water in the sludge after dewatering:
50% in weight, wastewater send back to raw water flow
Total sludge= 3.4*2=6.8 kg/day= 0.56 ton/year
Disposal of sludge cost=0.56 ton/year * ($25/ton) = $14/year
Decarbonator:
Using Liquid-Cel Industrial
Dimensions: 14” x 11.7” x 57.6”
Liquid flow guidelines: 70-550 gpm (16-125 m3/hr)
Estimated Cost: $8,660 + 5% Maintenance = $9093
Dual Media Filtration/Backwash:
Due to the contaminants present in the influent, designing the filters ourselves
seemed the most viable option. This allows us to size the tanks specifically to our flowrate,
thereby reducing capital costs, as well as reducing operating costs. The approximate costs
for the filtration facilities and materials include a capital cost of $1.3 million dollars and
operations and management costs of $112,500. These were derived from equations given by
the paper “Estimating Costs for Treatment Plant Construction” by Qasim et al. The values
were estimated using our given filter area, filter media, design, and adjusting for inflation
and property costs.
Our proposed filtration system is 2 gravity driven dual media declining rate filters.
The media chosen are sand and Granular Activated Carbon, with the smaller diameter sand on
the bottom and GAC on top. Using 2 filters allows us to provide continuous filtration while
one filter is undergoing backwashing or maintenance. Given that we must provide upwards of
500 gallons per minute, and assuming a filter loading rate of 5 gpm/sqft, we must have 100
square feet of filter surface area. Thus, each filter must be 50 square feet in surface area.
This is achieved with tank dimensions of 10’ x 5’ x 13’. The depth is 13 feet in order to
accommodate the 4 feet of media layers, the backwash troughs, and the submerged influent
inlet while allowing for bed expansion during backwashing.
The filters are declining rate gravity fed due to the low capital costs, low operator
supervision requirement, and low maintenance due to simplicity of design. The underdrain
will be a nozzle type due to the increased media fluidization when backwashing and the fact
that no drainage material is required. The backwash troughs will be located 12 feet from the
bottom of the bed, with two troughs per filter. There will also be surface wash nozzles in
place along the troughs in order to increase fluidization of the media and break the mud
balls.
The media layers are sized with a depth of 30 cm for the GAC layer on top and a
depth of 90 cm for the sand layer. This ratio was taken from a study showing the highest
removal of TOC using beds the same depth.. The diameter of the particles is given by
relating the L/D ratio to the ratios of particle diameters given by the equations below.
10
From the first equation we get that the diameter of the sand particles are equal
to .772 times the diameter of the granular activated carbon particles. The density of GAC
was found to be 130 lb/cft while the density of sand was taken to be 162 lb/cft. The L/D
ratio was taken to be 1000. Inputting these values into the above equations result in a
diameter of 0.045 inches or less for the sand particles, and a diameter of 0.06 inches or less
for the GAC particles. The volume of media required for each filter is approximately 50 cubic
feet of GAC and 150 cubic feet of sand.
The backwash water will come from a water tower located next to the filtration
basin. The tower will be 100 feet tall with a storage volume of 40,000 gallons and providing
43 psi of pressure at the filter underdrain.. This will be sufficient for one backwash
cycle,which will last approximately 20 minutes at an average flow rate of 2000 GPM . It will
be filled by influent water pumped into the tower. The backwash will be sent to a basin
designed to hold 80,000 gallons, two backwash cycles, until it can be discharged to a
treatment facility. Each filter will undergo backwashing once a month, never on the same
day, in order to provide continuous flow. Immediately following the backwash cycle the
filters will run filter to waste until turbidity stabilizes, in order to maintain stability in
effluent.
Ultrafiltration/Reverse Osmosis:
Capital Costs: -0.0007Q^2 + 1203.1Q +2000000 = $4,728,917.87
O&M Costs = 391189Q+207533 = $442,246.40
The water leaves the filtration basin and it enters a 1650 gallon multipurpose storage
tank connected to one of the 2 vendor supplied PROPAK-300-NA combination uF/RO filtration
systems. The benefits of purchasing a packaged system are numerous. The largest benefits
include the high efficiency of the PROPAK design (including the optional Integral Concentrate
Recovery system that increases recovery to 85%) vendor equipment support, ease of
installation, increased distribution of the treatment process (allowing for treatment to
continue even if one is down for repair), and the ease of a single source for replacement parts
and consumables. We have included the vendor supplied fact sheet that lists the components
included in the system as well as technical specifications used to connect them to our plant.
We have 2 individual platforms, with each including a compact multifunctional tank:
break, 27 modules for ultrafiltration with a 0.02 micron nominal pore diameter, 500 micron
automated pre-screening, instruments to measure flow, conductivity, pH, Pressure, Chlorine,
Temperature, and Turbidity. This will provide our reverse osmosis with sufficient protection
from harmful influent variations as well as provide the Quality Assurance for our final effluent
quality.
11
Ultrafiltration:
Capital Cost = 0.0003 x^3 – 0.8109 x^2 + 2016.9 x + 38246 = $8,045,582
Operations and Maintenance Cost = 241.28 x + 17092 = $565,096.79
Disinfection/Chlorination:
Assume: y= 0.35x - 0.85
Need residual of 0.5 mg/L
0.5=0.35x-0.85 → x = 3.857 mg/L Cl-
3.857mg/L*1 kg/10^6mg*3.78541L/gal*600,000 gal/day*365 day/yr = 5.12 lb/day Cl2
Use same vendor as oxidation:
2.31 kg * (100 L / 15 kg) * (1 gal / 3.785 L) = 4.1 gal/day solution = 1489.2 gal / yr solution
Cost = 1489.2 gal/yr * ($0.12 / gal) = $174.24 / yr
Cost with transportation = $200.37 / yr
Total chlorine (from oxidation and disinfection):
Total chlorine needed in chlorination from oxidation and disinfection steps:
T=3266.8 gal / yr
Total Cost=$439.54/year
Static Inline Mixer: 1 @ $1300 = $1300
Chlorine Container:
Use Chem-Tainer 130 Gallon Vertical Bulk Storage Tank (23” D x 76” H) = $200.00
Waste-stream Disposal:
Waste stream is mainly from backwash from dual-media filters and RO’s reject water. Total
amount is 37151.7 gallons per month for backwash and 105882.4 GPD for RO. All water is sent
through the pipes.
Disposal costs for backwash: $0.05/gal*37151.7 gal/month * 12 months = $22,291 /year
Disposal costs for brine: $0.05/gal * 105882.4 gal/day = $5294.12 / day
= $1,932,353.80 / year
Total waste-stream disposal = $1,954,644.80 / year
Labor Costs:
If we assume a total of 3 workers for a 24/7 operation, this would be impossible to
achieve legally. If we assume that there are 2080 workable hours in a year and that these
workers are paid hourly at $22/hour, the total cost would be $22/hour x 2080 hours/year x 3
workers = $137,280. If we account for the lack of workers and have a minimum of 5 workers
working 8 hour shifts at $22 per hour, total cost would be 22 x 8 x 7 x 52 x 5 = $320,320.
Electronic Monitoring System (SCADA):
Implementing an electronic monitoring system (SCADA) costs ≈$400,000
Assume yearly O&M of $2,000/yr for maintenance and repairs.
12
Cost of Water Produced
Capital Cost = $24,031,621.11
O&M Cost =$3,119,718.68
NPV = $24,031,621.11 + $3,119,718.68 (P/A, 0.07, 30)
= $24,031,621.11 + $3,119,718.68*((1.07)^30 - 1)/(0.07*(1.07)^30))
= $62,744,338.69
Cost of Water Produced = $62,744,338.69/ (600,000 gal/day x 365 days/year x 30 years)
= $0.00955/gal = $9.55/1000 gal
Conclusion
Through our data and calculations, it is apparent this project is a competitive design
for a water treatment facility. We tried to utilize the most effective treatment processes
without spending large amounts of money on chemical dosing and storage. For example, we
decided against UV radiation because of the high capital and operating cost, and since nitrate
will have to be removed prior to UV treatment or nitrate will be reduced into the much more
toxic form of nitrite. The only viable options for nitrite removal in drinking water are reverse
osmosis and ion exchange.
Taking into account the other contaminants present in the groundwater, such as 1,4-
dioxane, we decided against any advanced oxidation process in favor of having GAC filtration
for dioxane removal and reverse osmosis for nitrate. We determined that this would provide
the highest quality water for the cheapest price. We were fortunate to find a General Electric
manufactured RO Unit bundled with ultrafiltration, not only saving you money compared to
designing and manufacturing a system ourselves, but also made the process more efficient
due to the proprietary technology contained within.
The largest obstacles that we ran into were the pricing for the equipment, both
operating and construction. Our numerous attempts to contact General Electric produced no
information, thus we had to estimate the cost based on other Reverse Osmosis Facilities.
Many of the formulas that we used were from 20-30 years ago, therefore the values given for
pricing are rough estimations. To make up for this we made sure that we rigorously
investigated and accounted for the assumptions and default values used in creating the
equations, such as adjusting for our own property cost. We also included inflation rates to
adjust the pricing accordingly.
We calculated the plants revenue to be $8.6 million/yr with a profit of $5.48
million/yr. To recover all the capital costs, we would need 3 years of operation. So that
makes our Internal Rate of Return (IRR) ≈ 3. Meaning, that for 30 years of operation, that
total estimated profits would be: (30-3)*5.48=$148 million.
13
References
http://www.lenntech.com/processes/iron-manganese/manganese/manganese-removal-
physical-chemical-way.htm
http://www.ecs.umass.edu/cee/reckhow/courses/370/Lab4/Qasim%201992.pdf
http://www.lix.polytechnique.fr/~touati/abstracts-bios/Palmeri.pdf
http://www.liquicel.com/product-information/data-sheets.cfm
Sharma, Jwala Raj. (2010, May). Development of a Preliminary
Cost Estimation Method for Water Treatment Plants. University of Texas at Arlington.
https://www.gewater.com/kcpguest/documents/Customer%20Benefits_Cust/Americas/Englis
h/CB1258EN.pdf
Lecture Notes and Slides CE - 484 Dr. Arturo Burbano

Contenu connexe

Tendances

Effluent treatment plant - design, operation and analysis of waste water trea...
Effluent treatment plant - design, operation and analysis of waste water trea...Effluent treatment plant - design, operation and analysis of waste water trea...
Effluent treatment plant - design, operation and analysis of waste water trea...Shubham Hydrosys Pvt. Ltd
 
Design of 210 Mld Sewage Treatment Plant
Design of 210 Mld Sewage Treatment PlantDesign of 210 Mld Sewage Treatment Plant
Design of 210 Mld Sewage Treatment PlantARUN KUMAR
 
L5 - ESTIMATION OF SEWAGE.pptx
L5 - ESTIMATION OF SEWAGE.pptxL5 - ESTIMATION OF SEWAGE.pptx
L5 - ESTIMATION OF SEWAGE.pptxPRACHI DESSAI
 
waste water treatment by bikash
waste water treatment by bikashwaste water treatment by bikash
waste water treatment by bikashbikash8280
 
Wastewater and Drinking Water Treatment -Theoretical and Legal Aspects
Wastewater and Drinking Water Treatment -Theoretical and Legal AspectsWastewater and Drinking Water Treatment -Theoretical and Legal Aspects
Wastewater and Drinking Water Treatment -Theoretical and Legal AspectsJelena Rozova
 
Design Concept of Water Treatment Plant
Design Concept of Water Treatment PlantDesign Concept of Water Treatment Plant
Design Concept of Water Treatment PlantSachin Kulkarni
 
DESIGN OF A SEWAGE TREATMENT PLANT
DESIGN OF A SEWAGE TREATMENT PLANTDESIGN OF A SEWAGE TREATMENT PLANT
DESIGN OF A SEWAGE TREATMENT PLANTRatnesh Kushwaha
 
Design of reverse osmosis process plant
Design of reverse osmosis process plantDesign of reverse osmosis process plant
Design of reverse osmosis process plantsandeep atukuri
 
Collection and estimation of sewage
Collection and estimation of sewageCollection and estimation of sewage
Collection and estimation of sewageBibhabasu Mohanty
 
Water Treatment Plant Design CEE157B
Water Treatment Plant Design CEE157BWater Treatment Plant Design CEE157B
Water Treatment Plant Design CEE157BAdam Richardson, EIT
 
05 - Volume & Strength Reduction.pptx
05 - Volume & Strength Reduction.pptx05 - Volume & Strength Reduction.pptx
05 - Volume & Strength Reduction.pptxPRACHI DESSAI
 
Sewage Treatment Plant Treatment For Wastewater
Sewage Treatment Plant Treatment For WastewaterSewage Treatment Plant Treatment For Wastewater
Sewage Treatment Plant Treatment For WastewaterKaleem
 
L 12 contaminent concentration reduction
L 12  contaminent concentration reductionL 12  contaminent concentration reduction
L 12 contaminent concentration reductionDr. shrikant jahagirdar
 

Tendances (20)

Stp presentation
Stp presentationStp presentation
Stp presentation
 
Effluent treatment plant - design, operation and analysis of waste water trea...
Effluent treatment plant - design, operation and analysis of waste water trea...Effluent treatment plant - design, operation and analysis of waste water trea...
Effluent treatment plant - design, operation and analysis of waste water trea...
 
Design of 210 Mld Sewage Treatment Plant
Design of 210 Mld Sewage Treatment PlantDesign of 210 Mld Sewage Treatment Plant
Design of 210 Mld Sewage Treatment Plant
 
Water Treatment Plant
Water Treatment PlantWater Treatment Plant
Water Treatment Plant
 
L5 - ESTIMATION OF SEWAGE.pptx
L5 - ESTIMATION OF SEWAGE.pptxL5 - ESTIMATION OF SEWAGE.pptx
L5 - ESTIMATION OF SEWAGE.pptx
 
waste water treatment by bikash
waste water treatment by bikashwaste water treatment by bikash
waste water treatment by bikash
 
Wastewater and Drinking Water Treatment -Theoretical and Legal Aspects
Wastewater and Drinking Water Treatment -Theoretical and Legal AspectsWastewater and Drinking Water Treatment -Theoretical and Legal Aspects
Wastewater and Drinking Water Treatment -Theoretical and Legal Aspects
 
Design Concept of Water Treatment Plant
Design Concept of Water Treatment PlantDesign Concept of Water Treatment Plant
Design Concept of Water Treatment Plant
 
DESIGN OF A SEWAGE TREATMENT PLANT
DESIGN OF A SEWAGE TREATMENT PLANTDESIGN OF A SEWAGE TREATMENT PLANT
DESIGN OF A SEWAGE TREATMENT PLANT
 
Design of reverse osmosis process plant
Design of reverse osmosis process plantDesign of reverse osmosis process plant
Design of reverse osmosis process plant
 
Construction details of septic tank (rkg)
Construction details of septic tank (rkg)Construction details of septic tank (rkg)
Construction details of septic tank (rkg)
 
L 8 equalization and proportioning
L  8 equalization and proportioningL  8 equalization and proportioning
L 8 equalization and proportioning
 
Collection and estimation of sewage
Collection and estimation of sewageCollection and estimation of sewage
Collection and estimation of sewage
 
Water treatment
Water treatmentWater treatment
Water treatment
 
Water Treatment Plant Design CEE157B
Water Treatment Plant Design CEE157BWater Treatment Plant Design CEE157B
Water Treatment Plant Design CEE157B
 
Grey Water Recycling
Grey Water RecyclingGrey Water Recycling
Grey Water Recycling
 
05 - Volume & Strength Reduction.pptx
05 - Volume & Strength Reduction.pptx05 - Volume & Strength Reduction.pptx
05 - Volume & Strength Reduction.pptx
 
Sewage Treatment Plant Treatment For Wastewater
Sewage Treatment Plant Treatment For WastewaterSewage Treatment Plant Treatment For Wastewater
Sewage Treatment Plant Treatment For Wastewater
 
L 12 contaminent concentration reduction
L 12  contaminent concentration reductionL 12  contaminent concentration reduction
L 12 contaminent concentration reduction
 
Anaerobic ponds
Anaerobic pondsAnaerobic ponds
Anaerobic ponds
 

Similaire à Water Treatment Plant Design by Damora, Waite, Yu, Maroofian

Shale Canada Water Recycling and Reuse 2015 Congress
Shale Canada Water Recycling and Reuse 2015 Congress Shale Canada Water Recycling and Reuse 2015 Congress
Shale Canada Water Recycling and Reuse 2015 Congress Krzysztof (Kris) Palka
 
Future of Wastewater
Future of WastewaterFuture of Wastewater
Future of Wastewaterbwenzlau
 
P&U Operations Review Presentation_14032019.pptx
P&U Operations Review Presentation_14032019.pptxP&U Operations Review Presentation_14032019.pptx
P&U Operations Review Presentation_14032019.pptxAastharaj16
 
Mark Killar, Western Pennsylvania Conservancy, “Sewickley Creek Cost/Benefit ...
Mark Killar, Western Pennsylvania Conservancy, “Sewickley Creek Cost/Benefit ...Mark Killar, Western Pennsylvania Conservancy, “Sewickley Creek Cost/Benefit ...
Mark Killar, Western Pennsylvania Conservancy, “Sewickley Creek Cost/Benefit ...Michael Hewitt, GISP
 
CERAMIC MEMBRANE TECHNOLOGY FOR PRODUCED WATER TREATMENT
CERAMIC MEMBRANE TECHNOLOGY FOR PRODUCED WATER TREATMENTCERAMIC MEMBRANE TECHNOLOGY FOR PRODUCED WATER TREATMENT
CERAMIC MEMBRANE TECHNOLOGY FOR PRODUCED WATER TREATMENTiQHub
 
TREATING AND REUSING PRODUCED WATER IN ABU DHABI EMIRATE
TREATING AND REUSING PRODUCED WATER IN ABU DHABI EMIRATETREATING AND REUSING PRODUCED WATER IN ABU DHABI EMIRATE
TREATING AND REUSING PRODUCED WATER IN ABU DHABI EMIRATEiQHub
 
Circulating water treatment project
Circulating water treatment projectCirculating water treatment project
Circulating water treatment projectMolla Morshad
 
ReverseOsmosis recent trends.pptx
ReverseOsmosis recent trends.pptxReverseOsmosis recent trends.pptx
ReverseOsmosis recent trends.pptxrajasonalgecl
 
334529321 production-of-acetic-acid-pptx
334529321 production-of-acetic-acid-pptx334529321 production-of-acetic-acid-pptx
334529321 production-of-acetic-acid-pptxBatuhanKse1
 
Environmental Impact Assessment(EIA)
Environmental Impact Assessment(EIA) Environmental Impact Assessment(EIA)
Environmental Impact Assessment(EIA) Amit Raj
 
Membrane bio reactor- Waste water treatment
Membrane bio reactor- Waste water treatmentMembrane bio reactor- Waste water treatment
Membrane bio reactor- Waste water treatmentakalankar
 
water concepts in chlorine ind.
water concepts in chlorine ind.water concepts in chlorine ind.
water concepts in chlorine ind.Mohammad Abu Awwad
 
Water Analysis.pdf
Water Analysis.pdfWater Analysis.pdf
Water Analysis.pdfDr.Timy Jose
 

Similaire à Water Treatment Plant Design by Damora, Waite, Yu, Maroofian (20)

Lswtppt
LswtpptLswtppt
Lswtppt
 
Shale Canada Water Recycling and Reuse 2015 Congress
Shale Canada Water Recycling and Reuse 2015 Congress Shale Canada Water Recycling and Reuse 2015 Congress
Shale Canada Water Recycling and Reuse 2015 Congress
 
Future of Wastewater
Future of WastewaterFuture of Wastewater
Future of Wastewater
 
P&U Operations Review Presentation_14032019.pptx
P&U Operations Review Presentation_14032019.pptxP&U Operations Review Presentation_14032019.pptx
P&U Operations Review Presentation_14032019.pptx
 
Mark Killar, Western Pennsylvania Conservancy, “Sewickley Creek Cost/Benefit ...
Mark Killar, Western Pennsylvania Conservancy, “Sewickley Creek Cost/Benefit ...Mark Killar, Western Pennsylvania Conservancy, “Sewickley Creek Cost/Benefit ...
Mark Killar, Western Pennsylvania Conservancy, “Sewickley Creek Cost/Benefit ...
 
CERAMIC MEMBRANE TECHNOLOGY FOR PRODUCED WATER TREATMENT
CERAMIC MEMBRANE TECHNOLOGY FOR PRODUCED WATER TREATMENTCERAMIC MEMBRANE TECHNOLOGY FOR PRODUCED WATER TREATMENT
CERAMIC MEMBRANE TECHNOLOGY FOR PRODUCED WATER TREATMENT
 
TREATING AND REUSING PRODUCED WATER IN ABU DHABI EMIRATE
TREATING AND REUSING PRODUCED WATER IN ABU DHABI EMIRATETREATING AND REUSING PRODUCED WATER IN ABU DHABI EMIRATE
TREATING AND REUSING PRODUCED WATER IN ABU DHABI EMIRATE
 
Circulating water treatment project
Circulating water treatment projectCirculating water treatment project
Circulating water treatment project
 
Noh reverse osmosis
Noh reverse osmosisNoh reverse osmosis
Noh reverse osmosis
 
ReverseOsmosis recent trends.pptx
ReverseOsmosis recent trends.pptxReverseOsmosis recent trends.pptx
ReverseOsmosis recent trends.pptx
 
Final report cive 540 1
Final report cive 540 1Final report cive 540 1
Final report cive 540 1
 
334529321 production-of-acetic-acid-pptx
334529321 production-of-acetic-acid-pptx334529321 production-of-acetic-acid-pptx
334529321 production-of-acetic-acid-pptx
 
Environmental Impact Assessment(EIA)
Environmental Impact Assessment(EIA) Environmental Impact Assessment(EIA)
Environmental Impact Assessment(EIA)
 
Membrane bio reactor- Waste water treatment
Membrane bio reactor- Waste water treatmentMembrane bio reactor- Waste water treatment
Membrane bio reactor- Waste water treatment
 
Wastewater recycling plant
Wastewater recycling plantWastewater recycling plant
Wastewater recycling plant
 
Apas final presentation 08.08.2013
Apas final presentation 08.08.2013Apas final presentation 08.08.2013
Apas final presentation 08.08.2013
 
WATER Mgmt PPT for NSI 29.04.16
WATER Mgmt PPT for NSI 29.04.16WATER Mgmt PPT for NSI 29.04.16
WATER Mgmt PPT for NSI 29.04.16
 
water concepts in chlorine ind.
water concepts in chlorine ind.water concepts in chlorine ind.
water concepts in chlorine ind.
 
Idp presentation
Idp presentationIdp presentation
Idp presentation
 
Water Analysis.pdf
Water Analysis.pdfWater Analysis.pdf
Water Analysis.pdf
 

Dernier

UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performancesivaprakash250
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptMsecMca
 
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELLPVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELLManishPatel169454
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . pptDineshKumar4165
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfRagavanV2
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...ranjana rawat
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptDineshKumar4165
 
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...tanu pandey
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Bookingdharasingh5698
 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Bookingroncy bisnoi
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapRishantSharmaFr
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdfKamal Acharya
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Bookingdharasingh5698
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringmulugeta48
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756dollysharma2066
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdfankushspencer015
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfJiananWang21
 

Dernier (20)

UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
 
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELLPVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
NFPA 5000 2024 standard .
NFPA 5000 2024 standard                                  .NFPA 5000 2024 standard                                  .
NFPA 5000 2024 standard .
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdf
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 

Water Treatment Plant Design by Damora, Waite, Yu, Maroofian

  • 1. 1 Water Treatment Plant Design CE 484 Final Project Fall 2014 Alex Waite, Jenny Yu, Jonathan Damora, Cy Maroofian
  • 2. 2 Table of Contents Introduction…………………………………………………………..3 The Proposal………………………………………………………...3 The Conditions/Chemicals…………………………………...3 Costs and Calculations…………………………………………..6 Construction Costs…………………………………….…6 Land Pipes Facilities Storage Permitting Operating/Maintenance…………………….……....7 Chemicals Oxidation Filtration Ultrafiltration/Reverse Osmosis Decarbonation Waste/Sludge Disposal Labor Conclusion…………………………………………..............12 References…………………………………………………………..14
  • 3. 3 Introduction We are a private consulting company that is responsible for designing a water treatment facility. Our client is A Water Agency, who relies on the State Project Water as a source of drinking water for a city with a population for 5,000. The city is in Southern California, therefore the regulations are all based on California Regulations. Our goal is to create a functioning and affordable water treatment facility using state of the art treatment processes, including Oxidation, Granular Activated Carbon filtration, Ultrafiltration, Reverse Osmosis, Decarbonation, and Disinfection. The Proposal Due to the population of 5,000 people, we calculated the effluent flow rate for this facility to be approximately 600,000 gallons-per-day (GPD), which is equal to 416.67 gallons- per-min (GPM). This value includes a 20% contingency and an average water consumption of 100 GPD per person. Using a recovery rate of 85% for Ultrafiltration and Reverse Osmosis, as well as a 95% recovery rate for filter backwash, our influent flow rate was calculated to be 707,120.80 GPD = 491.05 GPM. Based on the groundwater analysis provided, the most efficient process to produce potable and regulation compliant water involves oxidation, dual media filtration with GAC and sand, ultrafiltration and reverse osmosis, and lastly decarbonation. After the dual media filtration, there will be sludge that is produced and must be sent out for disposal. The flow after filtration will drop down to 705,882.4 GPD, meaning that 1,238.4 GPD is backwash water. However we are not planning to perform a backwash daily, and instead plan on doing it once a month. Meaning that monthly approximately 37,151.7 gallons per month. This will cost us approximately $1,857.59 per day. After reverse osmosis there is brine that is lost. The calculated flow after the RO is 600,000 GPD, meaning that there is 105,882.4 GPD of brine, which must be sent to a wastewater treatment facility. Given the value of 5 cent per gallon of waste, we calculated that the total cost of brine removal will be $5,294.12 per day. We must also plan for the land that we need to use which is priced at $300 per square foot. Also, piping, chemicals for disinfection, and labor fees must also be considered. The Conditions - Average Turbidity = 1 NTU Target: 0.1 NTU - Very Low TOC - TDS 1000 mg/L Target: 500 mg/L - Nitrate 50 mg/L (Ion Exchange or Reverse Osmosis) Target: 10 mg/L - Soluble Manganese 0.8 mg/L (use oxidation to remove ) Target: 0.05 mg/L
  • 4. 4 - 1,4 dioxane 10 ppb (use advanced oxidation process = UV + H2O2 or O3 + H2O2) or (use GAC) Target: < 3 ppb - pH = 6.8 (Ideal) - Alkalinity 100 mg/L as CaCO3 Target: 60-80 mg/L as CaCO3 - Brackish Water - Assume Hydrogen Sulfide Concentration is negligible Table 1: List of Contaminants with treatment options Contaminant MCLG MCL Level Present Treatment Process Source Post- treatment Change Turbidity N/A <1 NTU 1 NTU Filtration/ UF high TSS 0.1 NTU 0.9 NTU TDS N/A 500 mg/L 1000 mg/L RO Soil Leaching 500 mg/L 500 mg/L Nitrate 10 mg/L 10 mg/L 50 mg/L RO Agricultur e Runoff, Waste water <10 mg/L 40 mg/L Soluble Manganese N/A 0.05 mg/L 0.8 mg/L Oxidation/ Filtration rocks, industrial effluent, sewage & landfill leachate <0.05 mg/L 0.75 mg/L 1,4 Dioxane N/A <3 ppb 10 ppb GAC Industrial Waste <1 ppb 9 ppb pH N/A 6.5- 8.5 6.8 N/A N/A 7.1-7.3 -0.2 Alkalinity N/A Ideal 60-80 mg/L 100 mg/L Lime Softening Limestone 60 mg/L 40 mg/L Based on the contaminants given, we had to determine the most cost effective and efficient treatment processes, which can be seen in Figure 1. During oxidation, we will be using chlorine to oxidize the Manganese. However, this creates Manganese Dioxide (MnO2). Also, chlorine, when reacting with NOMs can produced DBPs such as THMs and HAA5, which are very harmful to humans. Therefore, after oxidation, we add lime softening to remove the some of the water hardness so to avoid scaling in the reverse osmosis process later on. The water now travels through a dual filter of GAC, granular activated carbon, and sand. The GAC is responsible for removing 1,4 Dioxane as well as the HAA5 by product of oxidation. The
  • 5. 5 MnO2 is removed in the sand filter. After filtration, the water will be distributed to 2 Ultrafiltration/Reverse Osmosis self containing tanks. The reason for using 2 tanks is due to the backwash, in which we still need at least one of the tanks to be functioning. The ultrafiltration is used to remove the last of the turbidity as well as ensure that the water will not clog the reverse osmosis process. Reverse osmosis can remove not only THMs produced by oxidation, but also Total Dissolved Solids (TDS), and nitrate. Following reverse osmosis, the water enters a decarbonator, which removes CO2, thus increasing pH. We then add Sodium Bicarbonate to not only stabilize the pH but also recover some of the alkalinity. The water is now disinfected using chlorine and then sent out to be distributed. Table 2: Equipment and Sizing Process Equipment Sizing Oxidation / Disinfection 1 tank: V=130 gal In-line static mixer 3-element, 6” Diameter, with injection port Dual Media Filtration (GAC and Sand) 2 Filter Beds: V= 650ft³ each W×H×L=10’ * 5’ * 13’ UF and RO 2 Self Contained Units GE PROPAK-300-NA Tanks 10.6’ x 8’ x 14.75’ Filters 8.4’ x 6.3’ x 23’ Decarbonator LxWxH =14” x 11.7” x 57.6” Backwash Storage LxWxH = 20’ x 20’ x 25’ 80,000 gallon tank = 10,694.44 cubic ft Water Tower 40,000 Gallon Height = 100 ft Oxidation (with Chlorine) Dual Media Reve rse Osm Decarbon ator Disinfect Byprodu cts: MnO2, Slud Ultrafiltr Lime Remove s: 1,4 Dioxane Dispo Add Remo ves: CO2 Ultrafiltr Reve rse Osm Remo ves: TDS, Distribut
  • 6. 6 Costs and Calculations Capital and Equipment Costs Table 3: Capital and Equipment Cost Estimations Capital Cost ($) Land $9,139,343.51 Pipe $572.09 Facilities $19,256.67 Treatment Processes $14,483,069.00 Storage (Water, Backwash, Chlorine) $111,266.67 Permitting $278,113.17 Total $24,031,621.11 Land Costs Considering an average per capita water consumption of 100 gpd and a 20% contingency, the estimate required flowrate of the treatment facility is 0.9284 ft3/sec. The volume needed to be delivered to the residents is 600,000 gpd. Q= 5,000 people x (100 gallons/day) x(1.2) = 600,000 gpd 600,000 gallons/day x (ft3/7.48 gallons) x (day/86400 sec) = 0.9284 ft3/sec The approximate acreage of the facility is 0.699 acres, and the cost of the land assuming it is valued at $300/sf is $9,139,343.51. Area= (0.6)^(0.7) = 0.699 acres Cost of land = 0.699 acres x (43,560 ft2/acre) x ($300/ft2) = $9,139,343.51 Pipe Costs PVC pipes are the most cost effective option with a total cost of : $ 572.09 Even though PVC pipes are less durable than steel or concrete pipes, they are lightweight, easy to assemble, and have a long lifespan which lower maintenance costs. Assuming a pipe grade of DIN 2448 and pipe length of 10 ft for each section of the water treatment system, the pipe diameter needed is 6 in. Using a Charlotte Pipe 6-in x 10-ft Sch 40 PVC DWV Pipe: $47.28 x 11 = $520.08 + 10% contingency = $572.09 Facility Costs
  • 7. 7 Administration, laboratory, and maintenance building: CC = 235.66(Q)^0.5613 + 1220 = $19,256.67 Storage Backwash storage: Tank: 80,000 gal = 10,694.44 ft3 10,000ft3 = 20 x 20 x 25 Area= 20 x 20 = 400 ft2 = $120,000 Assume price of concrete per ft3= $4.25 Total backwash storage = $6800 Water Tower: Assuming 40,000 gallons of water for backwash, total cost is $104,266.67. Permit Apply for a permit through AQMD and CA EPA Water Board. Permitting accounts for 3% of total costs of equipment and offices. Operating and Maintenance Costs Table 4: Operating Cost Estimations Capital Cost O&M Cost Daily Cost Monthly Cost Yearly Cost Oxidation N/A $239.17 + $9,565.95 $0.56 $16.89 $9,805.12 GAC + Sand Filtration $40,350.99 + $1,259,558 $5,210.00 $14.27 $434.17 $5,210.00 Ultrafiltration + Reverse Osmosis $8,045,582 + $4,728,917.87 $565,096.79 + $442,246.40 $2798.18 $83,945.27 $1,007,343.19 Decarbonation $8660 $2,871.20 $7.73 $231.77 $2,781.20 Disinfection N/A $200.37 $0.66 $19.75 $200.37 Waste Disposal N/A $1,955,008.80 $5,356.19 $160,685.65 $1,955,008.80 Instrumentation $400,000 $2,000.00 $5.56 $166.67 $2,000.00 Labor N/A $137,280 $381.33 $11,440 $137,280 Total $14,483,069.00 $3,119,718.68 $8,862.77 $265,883.00 $3,119,718.68 Chemical Costs Table 5: Cost Estimates for Chemicals
  • 8. 8 Chemicals Usage Prices Transportation Consumed Total Yearly Cost Chlorine (Cl2) Oxidation / Disinfection $0.12/gal 15% of total cost 125.3 gal / 2 weeks $439.54 Lime Slack Lime softening $120 / ton 15% of total cost 3.052 tons / 2 weeks $11,000.84 Sodium Bicarbonate Alkalinity recovery $200 / ton 15% of total cost 0.468 tons / 2 weeks $2,803.93 Total $14,244.31 Treatment Process Costs Influent: 707,120.8 GPD (Considering the loss of water during RO and backwash) Oxidation/Chlorination: Oxidation of Mn2+: Mn2+ standard: 0.05 mg/L Soluble Mn: 0.8 mg/L Removal amount of manganese: Mn2+ influent: 707,120.8 gal/day *3.785 L/gal *0.8*10^-6 kg/L= 2.1 kg/day Mn2+ Cl2 needed to remove Mn: 2.1 kg/day * 1 mol/54.938 g Mg2+ * 1 mol Mg2+/ 1 mol Cl2+ * 70.906 g/mol Cl2+ = 2.763 kg/day * 2.205 lb/kg = 6.1 lb/day Cl2 pure Vendor assumption: $0.12/gal of solution (15% w/v), 15% total cost added for delivery gal of solution = 2.8 kg/day * (100 L sol / 15 kg) * (1 gal/ 3.785 L) = 4.9 gal / day = 1777.6 gal / yr of solution Cost for Cl2 = 1777.6 * $0.12 = $207.97 / yr Total cost with transportation = $207.97 * 1.15 = $239.17 / yr Use 6” Flanged Static Mixer with Injection Point, 3 - Element = $1300 Sludge disposal: Sludge is produced from the GAC and UF/RO: MnO2 produced=2.141 kg Mn/day×87÷55=3.4 kg/day Dewatering power needed: 2 kw output of the motor for 24/7. Yearly power cost=2*24*365*0.02=$350/year
  • 9. 9 Water in the sludge after dewatering: 50% in weight, wastewater send back to raw water flow Total sludge= 3.4*2=6.8 kg/day= 0.56 ton/year Disposal of sludge cost=0.56 ton/year * ($25/ton) = $14/year Decarbonator: Using Liquid-Cel Industrial Dimensions: 14” x 11.7” x 57.6” Liquid flow guidelines: 70-550 gpm (16-125 m3/hr) Estimated Cost: $8,660 + 5% Maintenance = $9093 Dual Media Filtration/Backwash: Due to the contaminants present in the influent, designing the filters ourselves seemed the most viable option. This allows us to size the tanks specifically to our flowrate, thereby reducing capital costs, as well as reducing operating costs. The approximate costs for the filtration facilities and materials include a capital cost of $1.3 million dollars and operations and management costs of $112,500. These were derived from equations given by the paper “Estimating Costs for Treatment Plant Construction” by Qasim et al. The values were estimated using our given filter area, filter media, design, and adjusting for inflation and property costs. Our proposed filtration system is 2 gravity driven dual media declining rate filters. The media chosen are sand and Granular Activated Carbon, with the smaller diameter sand on the bottom and GAC on top. Using 2 filters allows us to provide continuous filtration while one filter is undergoing backwashing or maintenance. Given that we must provide upwards of 500 gallons per minute, and assuming a filter loading rate of 5 gpm/sqft, we must have 100 square feet of filter surface area. Thus, each filter must be 50 square feet in surface area. This is achieved with tank dimensions of 10’ x 5’ x 13’. The depth is 13 feet in order to accommodate the 4 feet of media layers, the backwash troughs, and the submerged influent inlet while allowing for bed expansion during backwashing. The filters are declining rate gravity fed due to the low capital costs, low operator supervision requirement, and low maintenance due to simplicity of design. The underdrain will be a nozzle type due to the increased media fluidization when backwashing and the fact that no drainage material is required. The backwash troughs will be located 12 feet from the bottom of the bed, with two troughs per filter. There will also be surface wash nozzles in place along the troughs in order to increase fluidization of the media and break the mud balls. The media layers are sized with a depth of 30 cm for the GAC layer on top and a depth of 90 cm for the sand layer. This ratio was taken from a study showing the highest removal of TOC using beds the same depth.. The diameter of the particles is given by relating the L/D ratio to the ratios of particle diameters given by the equations below.
  • 10. 10 From the first equation we get that the diameter of the sand particles are equal to .772 times the diameter of the granular activated carbon particles. The density of GAC was found to be 130 lb/cft while the density of sand was taken to be 162 lb/cft. The L/D ratio was taken to be 1000. Inputting these values into the above equations result in a diameter of 0.045 inches or less for the sand particles, and a diameter of 0.06 inches or less for the GAC particles. The volume of media required for each filter is approximately 50 cubic feet of GAC and 150 cubic feet of sand. The backwash water will come from a water tower located next to the filtration basin. The tower will be 100 feet tall with a storage volume of 40,000 gallons and providing 43 psi of pressure at the filter underdrain.. This will be sufficient for one backwash cycle,which will last approximately 20 minutes at an average flow rate of 2000 GPM . It will be filled by influent water pumped into the tower. The backwash will be sent to a basin designed to hold 80,000 gallons, two backwash cycles, until it can be discharged to a treatment facility. Each filter will undergo backwashing once a month, never on the same day, in order to provide continuous flow. Immediately following the backwash cycle the filters will run filter to waste until turbidity stabilizes, in order to maintain stability in effluent. Ultrafiltration/Reverse Osmosis: Capital Costs: -0.0007Q^2 + 1203.1Q +2000000 = $4,728,917.87 O&M Costs = 391189Q+207533 = $442,246.40 The water leaves the filtration basin and it enters a 1650 gallon multipurpose storage tank connected to one of the 2 vendor supplied PROPAK-300-NA combination uF/RO filtration systems. The benefits of purchasing a packaged system are numerous. The largest benefits include the high efficiency of the PROPAK design (including the optional Integral Concentrate Recovery system that increases recovery to 85%) vendor equipment support, ease of installation, increased distribution of the treatment process (allowing for treatment to continue even if one is down for repair), and the ease of a single source for replacement parts and consumables. We have included the vendor supplied fact sheet that lists the components included in the system as well as technical specifications used to connect them to our plant. We have 2 individual platforms, with each including a compact multifunctional tank: break, 27 modules for ultrafiltration with a 0.02 micron nominal pore diameter, 500 micron automated pre-screening, instruments to measure flow, conductivity, pH, Pressure, Chlorine, Temperature, and Turbidity. This will provide our reverse osmosis with sufficient protection from harmful influent variations as well as provide the Quality Assurance for our final effluent quality.
  • 11. 11 Ultrafiltration: Capital Cost = 0.0003 x^3 – 0.8109 x^2 + 2016.9 x + 38246 = $8,045,582 Operations and Maintenance Cost = 241.28 x + 17092 = $565,096.79 Disinfection/Chlorination: Assume: y= 0.35x - 0.85 Need residual of 0.5 mg/L 0.5=0.35x-0.85 → x = 3.857 mg/L Cl- 3.857mg/L*1 kg/10^6mg*3.78541L/gal*600,000 gal/day*365 day/yr = 5.12 lb/day Cl2 Use same vendor as oxidation: 2.31 kg * (100 L / 15 kg) * (1 gal / 3.785 L) = 4.1 gal/day solution = 1489.2 gal / yr solution Cost = 1489.2 gal/yr * ($0.12 / gal) = $174.24 / yr Cost with transportation = $200.37 / yr Total chlorine (from oxidation and disinfection): Total chlorine needed in chlorination from oxidation and disinfection steps: T=3266.8 gal / yr Total Cost=$439.54/year Static Inline Mixer: 1 @ $1300 = $1300 Chlorine Container: Use Chem-Tainer 130 Gallon Vertical Bulk Storage Tank (23” D x 76” H) = $200.00 Waste-stream Disposal: Waste stream is mainly from backwash from dual-media filters and RO’s reject water. Total amount is 37151.7 gallons per month for backwash and 105882.4 GPD for RO. All water is sent through the pipes. Disposal costs for backwash: $0.05/gal*37151.7 gal/month * 12 months = $22,291 /year Disposal costs for brine: $0.05/gal * 105882.4 gal/day = $5294.12 / day = $1,932,353.80 / year Total waste-stream disposal = $1,954,644.80 / year Labor Costs: If we assume a total of 3 workers for a 24/7 operation, this would be impossible to achieve legally. If we assume that there are 2080 workable hours in a year and that these workers are paid hourly at $22/hour, the total cost would be $22/hour x 2080 hours/year x 3 workers = $137,280. If we account for the lack of workers and have a minimum of 5 workers working 8 hour shifts at $22 per hour, total cost would be 22 x 8 x 7 x 52 x 5 = $320,320. Electronic Monitoring System (SCADA): Implementing an electronic monitoring system (SCADA) costs ≈$400,000 Assume yearly O&M of $2,000/yr for maintenance and repairs.
  • 12. 12 Cost of Water Produced Capital Cost = $24,031,621.11 O&M Cost =$3,119,718.68 NPV = $24,031,621.11 + $3,119,718.68 (P/A, 0.07, 30) = $24,031,621.11 + $3,119,718.68*((1.07)^30 - 1)/(0.07*(1.07)^30)) = $62,744,338.69 Cost of Water Produced = $62,744,338.69/ (600,000 gal/day x 365 days/year x 30 years) = $0.00955/gal = $9.55/1000 gal Conclusion Through our data and calculations, it is apparent this project is a competitive design for a water treatment facility. We tried to utilize the most effective treatment processes without spending large amounts of money on chemical dosing and storage. For example, we decided against UV radiation because of the high capital and operating cost, and since nitrate will have to be removed prior to UV treatment or nitrate will be reduced into the much more toxic form of nitrite. The only viable options for nitrite removal in drinking water are reverse osmosis and ion exchange. Taking into account the other contaminants present in the groundwater, such as 1,4- dioxane, we decided against any advanced oxidation process in favor of having GAC filtration for dioxane removal and reverse osmosis for nitrate. We determined that this would provide the highest quality water for the cheapest price. We were fortunate to find a General Electric manufactured RO Unit bundled with ultrafiltration, not only saving you money compared to designing and manufacturing a system ourselves, but also made the process more efficient due to the proprietary technology contained within. The largest obstacles that we ran into were the pricing for the equipment, both operating and construction. Our numerous attempts to contact General Electric produced no information, thus we had to estimate the cost based on other Reverse Osmosis Facilities. Many of the formulas that we used were from 20-30 years ago, therefore the values given for pricing are rough estimations. To make up for this we made sure that we rigorously investigated and accounted for the assumptions and default values used in creating the equations, such as adjusting for our own property cost. We also included inflation rates to adjust the pricing accordingly. We calculated the plants revenue to be $8.6 million/yr with a profit of $5.48 million/yr. To recover all the capital costs, we would need 3 years of operation. So that makes our Internal Rate of Return (IRR) ≈ 3. Meaning, that for 30 years of operation, that total estimated profits would be: (30-3)*5.48=$148 million.
  • 13. 13 References http://www.lenntech.com/processes/iron-manganese/manganese/manganese-removal- physical-chemical-way.htm http://www.ecs.umass.edu/cee/reckhow/courses/370/Lab4/Qasim%201992.pdf http://www.lix.polytechnique.fr/~touati/abstracts-bios/Palmeri.pdf http://www.liquicel.com/product-information/data-sheets.cfm Sharma, Jwala Raj. (2010, May). Development of a Preliminary Cost Estimation Method for Water Treatment Plants. University of Texas at Arlington. https://www.gewater.com/kcpguest/documents/Customer%20Benefits_Cust/Americas/Englis h/CB1258EN.pdf Lecture Notes and Slides CE - 484 Dr. Arturo Burbano