SlideShare une entreprise Scribd logo
1  sur  14
Télécharger pour lire hors ligne
Uncertainty Quantification
on Lorenz 96 model
Jongyoon Sohn
Advised by Professor John Harlim
Overview
 Uncertainty Quantification(UQ)
 The process of determining & analyzing outcomes of input uncertainties
 Reducing uncertainties in both computational and real world application
 How to Approach
 Stochastic Polynomial Chaos Expansion(Orthogonal polynomial basis)
 Galerkin method(ex: Lorenz 96)
 Monte Carlo method
Hilbert Space
Salient point: Orthogonality
Define 𝜑𝜑𝑛𝑛 𝑥𝑥 ∈ 𝐿𝐿2
𝑀𝑀, 𝑝𝑝 as a polynomial of degree n and 𝜑𝜑𝑛𝑛 𝑥𝑥
are orthogonal with respect to p(x) if
⟨ 𝜑𝜑𝑛𝑛, ⟩𝜑𝜑𝑚𝑚 𝑝𝑝 = �
𝑀𝑀
𝜑𝜑𝑛𝑛 𝜑𝜑𝑚𝑚 𝑝𝑝(𝑥𝑥)𝑑𝑑𝑑𝑑 = 𝜑𝜑𝑛𝑛 𝑝𝑝
2
𝛿𝛿𝑛𝑛𝑛𝑛
where
𝛿𝛿𝑛𝑛𝑛𝑛 is the Kronecker delta function
Polynomial Chaos Expansion(PCE)
Approximating a random distribution employing a linear
combination of corresponding orthogonal polynomials
𝑓𝑓 ≈ 𝑓𝑓𝑁𝑁 𝑥𝑥 = �
𝑘𝑘=0
𝑁𝑁
�𝑓𝑓𝑘𝑘 𝜑𝜑𝑘𝑘 𝑥𝑥
where the coefficients are
�𝑓𝑓𝑘𝑘 =
𝑓𝑓, 𝜑𝜑𝑘𝑘 𝑝𝑝
𝜑𝜑𝑘𝑘, 𝜑𝜑𝑘𝑘 𝑝𝑝
PCE Cont.
Distribution Polynomial Weight function
Gaussian (−∞, ∞) Hermite 1
2𝜋𝜋
𝑒𝑒
−𝑥𝑥2
2
Uniform [-1,1] Legendre 1
2
Beta [-1,1] Jacobi (1 − 𝑥𝑥)𝛼𝛼(1 + 𝑥𝑥)𝛽𝛽
2𝛼𝛼+𝛽𝛽+1 𝐵𝐵(𝛼𝛼 + 1, 𝛽𝛽 + 1)
Gamma [0, ∞) Laguerre 𝑥𝑥 𝛼𝛼
𝑒𝑒−𝑥𝑥
𝛾𝛾(𝛼𝛼 + 1)
Table 1: Random variables with corresponding orthogonal polynomials
Example
Q) Let’s approximate a lognormal distribution
𝑌𝑌 = 𝑓𝑓 𝑋𝑋 = 𝑒𝑒 𝜇𝜇+𝜎𝜎𝜎𝜎 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑋𝑋~𝑁𝑁(0,1) when 𝜇𝜇 = 1 and 𝜎𝜎 = .2
Note that
𝑓𝑓 ≈ 𝑓𝑓𝑁𝑁 𝑥𝑥 = ∑𝑘𝑘=0
𝑁𝑁 �𝑓𝑓𝑘𝑘 𝜑𝜑𝑘𝑘 𝑥𝑥 where �𝑓𝑓𝑘𝑘 =
𝑓𝑓,𝜑𝜑𝑘𝑘 𝑝𝑝
𝜑𝜑𝑘𝑘,𝜑𝜑𝑘𝑘 𝑝𝑝
Steps:
̂𝑓𝑓0 = �
ℝ
𝑒𝑒 𝜇𝜇+𝜎𝜎𝑥𝑥
𝑒𝑒−
𝑥𝑥2
2
2𝜋𝜋
𝑑𝑑𝑑𝑑 = 𝑒𝑒 𝜇𝜇+
𝜎𝜎2
2
̂𝑓𝑓1 = �
ℝ
𝑒𝑒 𝜇𝜇+𝜎𝜎𝑥𝑥
𝑥𝑥𝑒𝑒−
𝑥𝑥2
2
2𝜋𝜋
𝑑𝑑𝑑𝑑 = 𝜎𝜎𝑒𝑒 𝜇𝜇+
𝜎𝜎2
2
…
̂𝑓𝑓𝑘𝑘 =
1
𝑘𝑘!
�
ℝ
𝑒𝑒 𝜇𝜇+𝜎𝜎𝑥𝑥
𝜑𝜑𝑘𝑘(𝑥𝑥)𝑒𝑒−
𝑥𝑥2
2
2𝜋𝜋
𝑑𝑑𝑑𝑑 =
𝜎𝜎 𝑘𝑘
𝑘𝑘!
𝑒𝑒𝜇𝜇+
𝜎𝜎2
2
End up with
𝒀𝒀 ≈ 𝒀𝒀𝑵𝑵 𝑿𝑿 = 𝒆𝒆𝝁𝝁+
𝝈𝝈𝟐𝟐
𝟐𝟐 �
𝒌𝒌=𝟎𝟎
𝑵𝑵
𝝈𝝈𝒌𝒌
𝒌𝒌!
𝝋𝝋𝒌𝒌(𝑿𝑿)
Example cont.
Galerkin method
Approximating by specifying the coefficients �𝑢𝑢𝛼𝛼 𝑥𝑥, 𝑡𝑡 such that
the error of the approximation is orthogonal to the basis function
𝜙𝜙𝛼𝛼 𝑌𝑌
𝑢𝑢(𝑥𝑥, 𝑡𝑡, 𝑍𝑍) ≈ 𝑢𝑢𝑁𝑁(𝑥𝑥, 𝑡𝑡, 𝑍𝑍) = �
𝛼𝛼∈𝒥𝒥 𝑁𝑁
�𝑢𝑢𝛼𝛼(𝑥𝑥, 𝑡𝑡)𝜙𝜙𝛼𝛼 𝑌𝑌
where the multi-index is defined as
𝒥𝒥𝑁𝑁 = {𝛼𝛼 = (𝛼𝛼𝑖𝑖, 𝑖𝑖 ≥ 1|𝛼𝛼𝑖𝑖 ∈ ℤ+, 𝛼𝛼 = � 𝛼𝛼𝑖𝑖 ≤ 𝑁𝑁)}
and 𝜙𝜙𝛼𝛼 𝑌𝑌 forms an orthonormal basis of ℒ2(ℳ 𝑑𝑑, 𝑝𝑝𝑋𝑋)
Lorenz 96 model
Q) Approximate this model with one random parameter
̇𝑢𝑢𝑖𝑖 = 𝑢𝑢𝑖𝑖−1 𝑢𝑢𝑖𝑖+1 − 𝑢𝑢𝑖𝑖−2 − 𝑢𝑢𝑖𝑖 + 𝑍𝑍1
where 𝑢𝑢𝑖𝑖 is periodic, that is, 𝑢𝑢𝑖𝑖+𝑁𝑁 = 𝑢𝑢𝑖𝑖 and N is set to be 40, and
𝑍𝑍1~Uniform[6,16]
Lorenz Model cont.
1. Use the Monte Carlo method and show its plot
Lorenz 96 model cont.
2. Galerkin method
Randomness of 𝑍𝑍1~U[6,16] is equivalent to 11 − 5𝑍𝑍 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑍𝑍~𝑈𝑈[−1,1]
𝑑𝑑𝑢𝑢𝑖𝑖
𝑑𝑑𝑑𝑑
= 𝑢𝑢𝑖𝑖−1 𝑢𝑢𝑖𝑖+1 − 𝑢𝑢𝑖𝑖−2 − 𝑢𝑢𝑖𝑖 + 11 − 5𝑍𝑍
−11 𝜑𝜑0(𝑍𝑍), 𝜑𝜑𝑚𝑚(𝑍𝑍) − 5 𝜑𝜑1 𝑍𝑍 , 𝜑𝜑𝑚𝑚 𝑍𝑍
𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑘𝑘=0
𝑁𝑁
�𝑢𝑢𝑘𝑘,𝑖𝑖 𝜑𝜑𝑘𝑘 𝑍𝑍 , 𝜑𝜑𝑚𝑚(𝑍𝑍)
= �
𝑘𝑘=0
𝑁𝑁
�𝑢𝑢𝑘𝑘,𝑖𝑖−1 �
𝑙𝑙=0
𝑁𝑁
�𝑢𝑢𝑙𝑙,𝑖𝑖+1 𝜑𝜑𝑘𝑘 𝑍𝑍 𝜑𝜑𝑙𝑙 𝑍𝑍 , 𝜑𝜑𝑚𝑚(𝑍𝑍) − �
𝑘𝑘=0
𝑁𝑁
�𝑢𝑢𝑘𝑘,𝑖𝑖−1 �
𝑙𝑙=0
𝑁𝑁
�𝑢𝑢𝑙𝑙,𝑖𝑖−2 𝜑𝜑𝑘𝑘 𝑍𝑍 𝜑𝜑𝑙𝑙 𝑍𝑍 , 𝜑𝜑𝑚𝑚 𝑍𝑍 − �
𝑘𝑘=0
𝑁𝑁
�𝑢𝑢𝑘𝑘,𝑖𝑖 𝜑𝜑𝑘𝑘 𝑍𝑍 , 𝜑𝜑𝑚𝑚(𝑍𝑍)
𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑘𝑘=0
𝑁𝑁
�𝑢𝑢𝑘𝑘,𝑖𝑖 𝜑𝜑𝑘𝑘 𝑍𝑍 , 𝜑𝜑𝑚𝑚(𝑍𝑍)
= �
𝑘𝑘=0
𝑁𝑁
�𝑢𝑢𝑘𝑘,𝑖𝑖−1 𝜑𝜑𝑘𝑘 𝑍𝑍 �
𝑙𝑙=0
𝑁𝑁
�𝑢𝑢𝑙𝑙,𝑖𝑖+1 𝜑𝜑𝑙𝑙 𝑍𝑍 , 𝜑𝜑𝑚𝑚(𝑍𝑍) − �
𝑘𝑘=0
𝑁𝑁
�𝑢𝑢𝑘𝑘,𝑖𝑖−1 𝜑𝜑𝑘𝑘 𝑍𝑍 �
𝑙𝑙=0
𝑁𝑁
�𝑢𝑢𝑙𝑙,𝑖𝑖−2 𝜑𝜑𝑙𝑙 𝑍𝑍 , 𝜑𝜑𝑚𝑚 𝑍𝑍 − �
𝑘𝑘=0
𝑁𝑁
�𝑢𝑢𝑘𝑘,𝑖𝑖 𝜑𝜑𝑘𝑘 𝑍𝑍 , 𝜑𝜑𝑚𝑚(𝑍𝑍)
−11 𝜑𝜑0(𝑍𝑍), 𝜑𝜑𝑚𝑚(𝑍𝑍) − 5 𝜑𝜑1 𝑍𝑍 , 𝜑𝜑𝑚𝑚 𝑍𝑍
Lorenz 96 model cont.
𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑢𝑢 𝑚𝑚,𝑖𝑖
= �
𝑘𝑘=0
𝑁𝑁
�𝑢𝑢𝑘𝑘,𝑖𝑖−1 �
𝑙𝑙=0
𝑁𝑁
�𝑢𝑢𝑙𝑙,𝑖𝑖+1
𝜑𝜑𝑘𝑘 𝜑𝜑𝑙𝑙, 𝜑𝜑𝑚𝑚
𝜑𝜑𝑚𝑚, 𝜑𝜑𝑚𝑚
− �
𝑘𝑘=0
𝑁𝑁
�𝑢𝑢𝑘𝑘,𝑖𝑖−1 �
𝑙𝑙=0
𝑁𝑁
�𝑢𝑢𝑙𝑙,𝑖𝑖−2
𝜑𝜑𝑘𝑘 𝜑𝜑𝑙𝑙, 𝜑𝜑𝑚𝑚
𝜑𝜑𝑚𝑚, 𝜑𝜑𝑚𝑚
− �𝑢𝑢 𝑚𝑚,𝑖𝑖 + 11𝛿𝛿𝑚𝑚,0
𝜑𝜑0, 𝜑𝜑𝑚𝑚
𝜑𝜑𝑚𝑚, 𝜑𝜑𝑚𝑚
− 5𝛿𝛿𝑚𝑚,1
𝜑𝜑1, 𝜑𝜑𝑚𝑚
𝜑𝜑𝑚𝑚, 𝜑𝜑𝑚𝑚
Solve a system of ODEs using RK4
𝑘𝑘1 = ℎ𝑓𝑓 𝑥𝑥𝑛𝑛, 𝑦𝑦𝑛𝑛
𝑘𝑘2 = ℎ𝑓𝑓(𝑥𝑥𝑛𝑛 +
1
2
ℎ, 𝑦𝑦𝑛𝑛 +
1
2
𝑘𝑘1)
𝑘𝑘3 = ℎ𝑓𝑓(𝑥𝑥𝑛𝑛 +
1
2
ℎ, 𝑦𝑦𝑛𝑛 +
1
2
𝑘𝑘2)
𝑘𝑘4 = ℎ𝑓𝑓 𝑥𝑥𝑛𝑛 + ℎ, 𝑦𝑦𝑛𝑛 + 𝑘𝑘3
𝑦𝑦𝑛𝑛+1 = 𝑦𝑦𝑛𝑛 +
1
6
𝑘𝑘1 + 2𝑘𝑘2 + 2𝑘𝑘3 + 𝑘𝑘4
Lorenz Model Cont.
N=1 N=5
N=20N=15
Lorenz Model Cont.
N=3 N=5
N=15N=10

Contenu connexe

Tendances

Interactives Methods
Interactives MethodsInteractives Methods
Interactives MethodsUIS
 
Sampling method : MCMC
Sampling method : MCMCSampling method : MCMC
Sampling method : MCMCSEMINARGROOT
 
Jacobi iteration method
Jacobi iteration methodJacobi iteration method
Jacobi iteration methodMONIRUL ISLAM
 
Hawkinrad a source_notes ii _secured
Hawkinrad a source_notes ii _securedHawkinrad a source_notes ii _secured
Hawkinrad a source_notes ii _securedfoxtrot jp R
 
Adaptive filtersfinal
Adaptive filtersfinalAdaptive filtersfinal
Adaptive filtersfinalWiw Miu
 
Parallel Numerical Methods for Ordinary Differential Equations: a Survey
Parallel Numerical Methods for Ordinary Differential Equations: a SurveyParallel Numerical Methods for Ordinary Differential Equations: a Survey
Parallel Numerical Methods for Ordinary Differential Equations: a SurveyUral-PDC
 
Learning group em - 20171025 - copy
Learning group   em - 20171025 - copyLearning group   em - 20171025 - copy
Learning group em - 20171025 - copyShuai Zhang
 
Iterativos Methods
Iterativos MethodsIterativos Methods
Iterativos MethodsJeannie
 
Solution of equations for methods iterativos
Solution of equations for methods iterativosSolution of equations for methods iterativos
Solution of equations for methods iterativosDUBAN CASTRO
 
Gaussian Process Regression
Gaussian Process Regression  Gaussian Process Regression
Gaussian Process Regression SEMINARGROOT
 
Geometry of Continuous Time Markov Chains
Geometry of Continuous Time Markov ChainsGeometry of Continuous Time Markov Chains
Geometry of Continuous Time Markov ChainsShuchang Zhang
 
A lambda calculus for density matrices with classical and probabilistic controls
A lambda calculus for density matrices with classical and probabilistic controlsA lambda calculus for density matrices with classical and probabilistic controls
A lambda calculus for density matrices with classical and probabilistic controlsAlejandro Díaz-Caro
 
Cauchy riemann equations
Cauchy riemann equationsCauchy riemann equations
Cauchy riemann equationsHanpenRobot
 
Direct Methods For The Solution Of Systems Of
Direct Methods For The Solution Of Systems OfDirect Methods For The Solution Of Systems Of
Direct Methods For The Solution Of Systems OfMarcela Carrillo
 
Line integral,Strokes and Green Theorem
Line integral,Strokes and Green TheoremLine integral,Strokes and Green Theorem
Line integral,Strokes and Green TheoremHassan Ahmed
 

Tendances (20)

Interactives Methods
Interactives MethodsInteractives Methods
Interactives Methods
 
Sampling method : MCMC
Sampling method : MCMCSampling method : MCMC
Sampling method : MCMC
 
Jacobi iteration method
Jacobi iteration methodJacobi iteration method
Jacobi iteration method
 
Hawkinrad a source_notes ii _secured
Hawkinrad a source_notes ii _securedHawkinrad a source_notes ii _secured
Hawkinrad a source_notes ii _secured
 
Adaptive filtersfinal
Adaptive filtersfinalAdaptive filtersfinal
Adaptive filtersfinal
 
Parallel Numerical Methods for Ordinary Differential Equations: a Survey
Parallel Numerical Methods for Ordinary Differential Equations: a SurveyParallel Numerical Methods for Ordinary Differential Equations: a Survey
Parallel Numerical Methods for Ordinary Differential Equations: a Survey
 
Learning group em - 20171025 - copy
Learning group   em - 20171025 - copyLearning group   em - 20171025 - copy
Learning group em - 20171025 - copy
 
Iterativos Methods
Iterativos MethodsIterativos Methods
Iterativos Methods
 
Solution of equations for methods iterativos
Solution of equations for methods iterativosSolution of equations for methods iterativos
Solution of equations for methods iterativos
 
Gaussian Process Regression
Gaussian Process Regression  Gaussian Process Regression
Gaussian Process Regression
 
Chapter 5
Chapter 5Chapter 5
Chapter 5
 
Geometry of Continuous Time Markov Chains
Geometry of Continuous Time Markov ChainsGeometry of Continuous Time Markov Chains
Geometry of Continuous Time Markov Chains
 
A lambda calculus for density matrices with classical and probabilistic controls
A lambda calculus for density matrices with classical and probabilistic controlsA lambda calculus for density matrices with classical and probabilistic controls
A lambda calculus for density matrices with classical and probabilistic controls
 
I0744347
I0744347I0744347
I0744347
 
Av 738- Adaptive Filtering - Background Material
Av 738- Adaptive Filtering - Background MaterialAv 738- Adaptive Filtering - Background Material
Av 738- Adaptive Filtering - Background Material
 
Dimensional analysis
Dimensional analysisDimensional analysis
Dimensional analysis
 
Cauchy riemann equations
Cauchy riemann equationsCauchy riemann equations
Cauchy riemann equations
 
Direct Methods For The Solution Of Systems Of
Direct Methods For The Solution Of Systems OfDirect Methods For The Solution Of Systems Of
Direct Methods For The Solution Of Systems Of
 
Tensor analysis
Tensor analysisTensor analysis
Tensor analysis
 
Line integral,Strokes and Green Theorem
Line integral,Strokes and Green TheoremLine integral,Strokes and Green Theorem
Line integral,Strokes and Green Theorem
 

Similaire à REU Research Project_Final

Intro to Quant Trading Strategies (Lecture 2 of 10)
Intro to Quant Trading Strategies (Lecture 2 of 10)Intro to Quant Trading Strategies (Lecture 2 of 10)
Intro to Quant Trading Strategies (Lecture 2 of 10)Adrian Aley
 
A Fifth-Order Iterative Method for Solving Nonlinear Equations
A Fifth-Order Iterative Method for Solving Nonlinear EquationsA Fifth-Order Iterative Method for Solving Nonlinear Equations
A Fifth-Order Iterative Method for Solving Nonlinear Equationsinventionjournals
 
Application of the Monte-Carlo Method to Nonlinear Stochastic Optimization wi...
Application of the Monte-Carlo Method to Nonlinear Stochastic Optimization wi...Application of the Monte-Carlo Method to Nonlinear Stochastic Optimization wi...
Application of the Monte-Carlo Method to Nonlinear Stochastic Optimization wi...SSA KPI
 
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...mathsjournal
 
QTML2021 UAP Quantum Feature Map
QTML2021 UAP Quantum Feature MapQTML2021 UAP Quantum Feature Map
QTML2021 UAP Quantum Feature MapHa Phuong
 
Numerical
NumericalNumerical
Numerical1821986
 
Time series Modelling Basics
Time series Modelling BasicsTime series Modelling Basics
Time series Modelling BasicsAshutosh Kumar
 
Markov chain Monte Carlo methods and some attempts at parallelizing them
Markov chain Monte Carlo methods and some attempts at parallelizing themMarkov chain Monte Carlo methods and some attempts at parallelizing them
Markov chain Monte Carlo methods and some attempts at parallelizing themPierre Jacob
 
Replica exchange MCMC
Replica exchange MCMCReplica exchange MCMC
Replica exchange MCMC. .
 
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix MappingDual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mappinginventionjournals
 
02 - Discrete-Time Markov Models - incomplete.pptx
02 - Discrete-Time Markov Models - incomplete.pptx02 - Discrete-Time Markov Models - incomplete.pptx
02 - Discrete-Time Markov Models - incomplete.pptxAntonioDapporto1
 
Approximate Nearest Neighbour in Higher Dimensions
Approximate Nearest Neighbour in Higher DimensionsApproximate Nearest Neighbour in Higher Dimensions
Approximate Nearest Neighbour in Higher DimensionsShrey Verma
 
Solution of equations and eigenvalue problems
Solution of equations and eigenvalue problemsSolution of equations and eigenvalue problems
Solution of equations and eigenvalue problemsSanthanam Krishnan
 

Similaire à REU Research Project_Final (20)

Metric space
Metric spaceMetric space
Metric space
 
Intro to Quant Trading Strategies (Lecture 2 of 10)
Intro to Quant Trading Strategies (Lecture 2 of 10)Intro to Quant Trading Strategies (Lecture 2 of 10)
Intro to Quant Trading Strategies (Lecture 2 of 10)
 
A Fifth-Order Iterative Method for Solving Nonlinear Equations
A Fifth-Order Iterative Method for Solving Nonlinear EquationsA Fifth-Order Iterative Method for Solving Nonlinear Equations
A Fifth-Order Iterative Method for Solving Nonlinear Equations
 
Application of the Monte-Carlo Method to Nonlinear Stochastic Optimization wi...
Application of the Monte-Carlo Method to Nonlinear Stochastic Optimization wi...Application of the Monte-Carlo Method to Nonlinear Stochastic Optimization wi...
Application of the Monte-Carlo Method to Nonlinear Stochastic Optimization wi...
 
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
 
QTML2021 UAP Quantum Feature Map
QTML2021 UAP Quantum Feature MapQTML2021 UAP Quantum Feature Map
QTML2021 UAP Quantum Feature Map
 
A0280106
A0280106A0280106
A0280106
 
Numerical
NumericalNumerical
Numerical
 
Time series Modelling Basics
Time series Modelling BasicsTime series Modelling Basics
Time series Modelling Basics
 
Markov chain Monte Carlo methods and some attempts at parallelizing them
Markov chain Monte Carlo methods and some attempts at parallelizing themMarkov chain Monte Carlo methods and some attempts at parallelizing them
Markov chain Monte Carlo methods and some attempts at parallelizing them
 
Replica exchange MCMC
Replica exchange MCMCReplica exchange MCMC
Replica exchange MCMC
 
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix MappingDual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
 
lec23.ppt
lec23.pptlec23.ppt
lec23.ppt
 
PhysicsSIG2008-01-Seneviratne
PhysicsSIG2008-01-SeneviratnePhysicsSIG2008-01-Seneviratne
PhysicsSIG2008-01-Seneviratne
 
02 - Discrete-Time Markov Models - incomplete.pptx
02 - Discrete-Time Markov Models - incomplete.pptx02 - Discrete-Time Markov Models - incomplete.pptx
02 - Discrete-Time Markov Models - incomplete.pptx
 
Approximate Nearest Neighbour in Higher Dimensions
Approximate Nearest Neighbour in Higher DimensionsApproximate Nearest Neighbour in Higher Dimensions
Approximate Nearest Neighbour in Higher Dimensions
 
AJMS_482_23.pdf
AJMS_482_23.pdfAJMS_482_23.pdf
AJMS_482_23.pdf
 
On the Analysis of the Finite Element Solutions of Boundary Value Problems Us...
On the Analysis of the Finite Element Solutions of Boundary Value Problems Us...On the Analysis of the Finite Element Solutions of Boundary Value Problems Us...
On the Analysis of the Finite Element Solutions of Boundary Value Problems Us...
 
E04 06 3943
E04 06 3943E04 06 3943
E04 06 3943
 
Solution of equations and eigenvalue problems
Solution of equations and eigenvalue problemsSolution of equations and eigenvalue problems
Solution of equations and eigenvalue problems
 

REU Research Project_Final

  • 1. Uncertainty Quantification on Lorenz 96 model Jongyoon Sohn Advised by Professor John Harlim
  • 2. Overview  Uncertainty Quantification(UQ)  The process of determining & analyzing outcomes of input uncertainties  Reducing uncertainties in both computational and real world application  How to Approach  Stochastic Polynomial Chaos Expansion(Orthogonal polynomial basis)  Galerkin method(ex: Lorenz 96)  Monte Carlo method
  • 3. Hilbert Space Salient point: Orthogonality Define 𝜑𝜑𝑛𝑛 𝑥𝑥 ∈ 𝐿𝐿2 𝑀𝑀, 𝑝𝑝 as a polynomial of degree n and 𝜑𝜑𝑛𝑛 𝑥𝑥 are orthogonal with respect to p(x) if ⟨ 𝜑𝜑𝑛𝑛, ⟩𝜑𝜑𝑚𝑚 𝑝𝑝 = � 𝑀𝑀 𝜑𝜑𝑛𝑛 𝜑𝜑𝑚𝑚 𝑝𝑝(𝑥𝑥)𝑑𝑑𝑑𝑑 = 𝜑𝜑𝑛𝑛 𝑝𝑝 2 𝛿𝛿𝑛𝑛𝑛𝑛 where 𝛿𝛿𝑛𝑛𝑛𝑛 is the Kronecker delta function
  • 4. Polynomial Chaos Expansion(PCE) Approximating a random distribution employing a linear combination of corresponding orthogonal polynomials 𝑓𝑓 ≈ 𝑓𝑓𝑁𝑁 𝑥𝑥 = � 𝑘𝑘=0 𝑁𝑁 �𝑓𝑓𝑘𝑘 𝜑𝜑𝑘𝑘 𝑥𝑥 where the coefficients are �𝑓𝑓𝑘𝑘 = 𝑓𝑓, 𝜑𝜑𝑘𝑘 𝑝𝑝 𝜑𝜑𝑘𝑘, 𝜑𝜑𝑘𝑘 𝑝𝑝
  • 5. PCE Cont. Distribution Polynomial Weight function Gaussian (−∞, ∞) Hermite 1 2𝜋𝜋 𝑒𝑒 −𝑥𝑥2 2 Uniform [-1,1] Legendre 1 2 Beta [-1,1] Jacobi (1 − 𝑥𝑥)𝛼𝛼(1 + 𝑥𝑥)𝛽𝛽 2𝛼𝛼+𝛽𝛽+1 𝐵𝐵(𝛼𝛼 + 1, 𝛽𝛽 + 1) Gamma [0, ∞) Laguerre 𝑥𝑥 𝛼𝛼 𝑒𝑒−𝑥𝑥 𝛾𝛾(𝛼𝛼 + 1) Table 1: Random variables with corresponding orthogonal polynomials
  • 6. Example Q) Let’s approximate a lognormal distribution 𝑌𝑌 = 𝑓𝑓 𝑋𝑋 = 𝑒𝑒 𝜇𝜇+𝜎𝜎𝜎𝜎 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑋𝑋~𝑁𝑁(0,1) when 𝜇𝜇 = 1 and 𝜎𝜎 = .2 Note that 𝑓𝑓 ≈ 𝑓𝑓𝑁𝑁 𝑥𝑥 = ∑𝑘𝑘=0 𝑁𝑁 �𝑓𝑓𝑘𝑘 𝜑𝜑𝑘𝑘 𝑥𝑥 where �𝑓𝑓𝑘𝑘 = 𝑓𝑓,𝜑𝜑𝑘𝑘 𝑝𝑝 𝜑𝜑𝑘𝑘,𝜑𝜑𝑘𝑘 𝑝𝑝 Steps: ̂𝑓𝑓0 = � ℝ 𝑒𝑒 𝜇𝜇+𝜎𝜎𝑥𝑥 𝑒𝑒− 𝑥𝑥2 2 2𝜋𝜋 𝑑𝑑𝑑𝑑 = 𝑒𝑒 𝜇𝜇+ 𝜎𝜎2 2 ̂𝑓𝑓1 = � ℝ 𝑒𝑒 𝜇𝜇+𝜎𝜎𝑥𝑥 𝑥𝑥𝑒𝑒− 𝑥𝑥2 2 2𝜋𝜋 𝑑𝑑𝑑𝑑 = 𝜎𝜎𝑒𝑒 𝜇𝜇+ 𝜎𝜎2 2 … ̂𝑓𝑓𝑘𝑘 = 1 𝑘𝑘! � ℝ 𝑒𝑒 𝜇𝜇+𝜎𝜎𝑥𝑥 𝜑𝜑𝑘𝑘(𝑥𝑥)𝑒𝑒− 𝑥𝑥2 2 2𝜋𝜋 𝑑𝑑𝑑𝑑 = 𝜎𝜎 𝑘𝑘 𝑘𝑘! 𝑒𝑒𝜇𝜇+ 𝜎𝜎2 2 End up with 𝒀𝒀 ≈ 𝒀𝒀𝑵𝑵 𝑿𝑿 = 𝒆𝒆𝝁𝝁+ 𝝈𝝈𝟐𝟐 𝟐𝟐 � 𝒌𝒌=𝟎𝟎 𝑵𝑵 𝝈𝝈𝒌𝒌 𝒌𝒌! 𝝋𝝋𝒌𝒌(𝑿𝑿)
  • 8. Galerkin method Approximating by specifying the coefficients �𝑢𝑢𝛼𝛼 𝑥𝑥, 𝑡𝑡 such that the error of the approximation is orthogonal to the basis function 𝜙𝜙𝛼𝛼 𝑌𝑌 𝑢𝑢(𝑥𝑥, 𝑡𝑡, 𝑍𝑍) ≈ 𝑢𝑢𝑁𝑁(𝑥𝑥, 𝑡𝑡, 𝑍𝑍) = � 𝛼𝛼∈𝒥𝒥 𝑁𝑁 �𝑢𝑢𝛼𝛼(𝑥𝑥, 𝑡𝑡)𝜙𝜙𝛼𝛼 𝑌𝑌 where the multi-index is defined as 𝒥𝒥𝑁𝑁 = {𝛼𝛼 = (𝛼𝛼𝑖𝑖, 𝑖𝑖 ≥ 1|𝛼𝛼𝑖𝑖 ∈ ℤ+, 𝛼𝛼 = � 𝛼𝛼𝑖𝑖 ≤ 𝑁𝑁)} and 𝜙𝜙𝛼𝛼 𝑌𝑌 forms an orthonormal basis of ℒ2(ℳ 𝑑𝑑, 𝑝𝑝𝑋𝑋)
  • 9. Lorenz 96 model Q) Approximate this model with one random parameter ̇𝑢𝑢𝑖𝑖 = 𝑢𝑢𝑖𝑖−1 𝑢𝑢𝑖𝑖+1 − 𝑢𝑢𝑖𝑖−2 − 𝑢𝑢𝑖𝑖 + 𝑍𝑍1 where 𝑢𝑢𝑖𝑖 is periodic, that is, 𝑢𝑢𝑖𝑖+𝑁𝑁 = 𝑢𝑢𝑖𝑖 and N is set to be 40, and 𝑍𝑍1~Uniform[6,16]
  • 10. Lorenz Model cont. 1. Use the Monte Carlo method and show its plot
  • 11. Lorenz 96 model cont. 2. Galerkin method Randomness of 𝑍𝑍1~U[6,16] is equivalent to 11 − 5𝑍𝑍 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑍𝑍~𝑈𝑈[−1,1] 𝑑𝑑𝑢𝑢𝑖𝑖 𝑑𝑑𝑑𝑑 = 𝑢𝑢𝑖𝑖−1 𝑢𝑢𝑖𝑖+1 − 𝑢𝑢𝑖𝑖−2 − 𝑢𝑢𝑖𝑖 + 11 − 5𝑍𝑍 −11 𝜑𝜑0(𝑍𝑍), 𝜑𝜑𝑚𝑚(𝑍𝑍) − 5 𝜑𝜑1 𝑍𝑍 , 𝜑𝜑𝑚𝑚 𝑍𝑍 𝑑𝑑 𝑑𝑑𝑑𝑑 � 𝑘𝑘=0 𝑁𝑁 �𝑢𝑢𝑘𝑘,𝑖𝑖 𝜑𝜑𝑘𝑘 𝑍𝑍 , 𝜑𝜑𝑚𝑚(𝑍𝑍) = � 𝑘𝑘=0 𝑁𝑁 �𝑢𝑢𝑘𝑘,𝑖𝑖−1 � 𝑙𝑙=0 𝑁𝑁 �𝑢𝑢𝑙𝑙,𝑖𝑖+1 𝜑𝜑𝑘𝑘 𝑍𝑍 𝜑𝜑𝑙𝑙 𝑍𝑍 , 𝜑𝜑𝑚𝑚(𝑍𝑍) − � 𝑘𝑘=0 𝑁𝑁 �𝑢𝑢𝑘𝑘,𝑖𝑖−1 � 𝑙𝑙=0 𝑁𝑁 �𝑢𝑢𝑙𝑙,𝑖𝑖−2 𝜑𝜑𝑘𝑘 𝑍𝑍 𝜑𝜑𝑙𝑙 𝑍𝑍 , 𝜑𝜑𝑚𝑚 𝑍𝑍 − � 𝑘𝑘=0 𝑁𝑁 �𝑢𝑢𝑘𝑘,𝑖𝑖 𝜑𝜑𝑘𝑘 𝑍𝑍 , 𝜑𝜑𝑚𝑚(𝑍𝑍) 𝑑𝑑 𝑑𝑑𝑑𝑑 � 𝑘𝑘=0 𝑁𝑁 �𝑢𝑢𝑘𝑘,𝑖𝑖 𝜑𝜑𝑘𝑘 𝑍𝑍 , 𝜑𝜑𝑚𝑚(𝑍𝑍) = � 𝑘𝑘=0 𝑁𝑁 �𝑢𝑢𝑘𝑘,𝑖𝑖−1 𝜑𝜑𝑘𝑘 𝑍𝑍 � 𝑙𝑙=0 𝑁𝑁 �𝑢𝑢𝑙𝑙,𝑖𝑖+1 𝜑𝜑𝑙𝑙 𝑍𝑍 , 𝜑𝜑𝑚𝑚(𝑍𝑍) − � 𝑘𝑘=0 𝑁𝑁 �𝑢𝑢𝑘𝑘,𝑖𝑖−1 𝜑𝜑𝑘𝑘 𝑍𝑍 � 𝑙𝑙=0 𝑁𝑁 �𝑢𝑢𝑙𝑙,𝑖𝑖−2 𝜑𝜑𝑙𝑙 𝑍𝑍 , 𝜑𝜑𝑚𝑚 𝑍𝑍 − � 𝑘𝑘=0 𝑁𝑁 �𝑢𝑢𝑘𝑘,𝑖𝑖 𝜑𝜑𝑘𝑘 𝑍𝑍 , 𝜑𝜑𝑚𝑚(𝑍𝑍) −11 𝜑𝜑0(𝑍𝑍), 𝜑𝜑𝑚𝑚(𝑍𝑍) − 5 𝜑𝜑1 𝑍𝑍 , 𝜑𝜑𝑚𝑚 𝑍𝑍
  • 12. Lorenz 96 model cont. 𝑑𝑑 𝑑𝑑𝑑𝑑 �𝑢𝑢 𝑚𝑚,𝑖𝑖 = � 𝑘𝑘=0 𝑁𝑁 �𝑢𝑢𝑘𝑘,𝑖𝑖−1 � 𝑙𝑙=0 𝑁𝑁 �𝑢𝑢𝑙𝑙,𝑖𝑖+1 𝜑𝜑𝑘𝑘 𝜑𝜑𝑙𝑙, 𝜑𝜑𝑚𝑚 𝜑𝜑𝑚𝑚, 𝜑𝜑𝑚𝑚 − � 𝑘𝑘=0 𝑁𝑁 �𝑢𝑢𝑘𝑘,𝑖𝑖−1 � 𝑙𝑙=0 𝑁𝑁 �𝑢𝑢𝑙𝑙,𝑖𝑖−2 𝜑𝜑𝑘𝑘 𝜑𝜑𝑙𝑙, 𝜑𝜑𝑚𝑚 𝜑𝜑𝑚𝑚, 𝜑𝜑𝑚𝑚 − �𝑢𝑢 𝑚𝑚,𝑖𝑖 + 11𝛿𝛿𝑚𝑚,0 𝜑𝜑0, 𝜑𝜑𝑚𝑚 𝜑𝜑𝑚𝑚, 𝜑𝜑𝑚𝑚 − 5𝛿𝛿𝑚𝑚,1 𝜑𝜑1, 𝜑𝜑𝑚𝑚 𝜑𝜑𝑚𝑚, 𝜑𝜑𝑚𝑚 Solve a system of ODEs using RK4 𝑘𝑘1 = ℎ𝑓𝑓 𝑥𝑥𝑛𝑛, 𝑦𝑦𝑛𝑛 𝑘𝑘2 = ℎ𝑓𝑓(𝑥𝑥𝑛𝑛 + 1 2 ℎ, 𝑦𝑦𝑛𝑛 + 1 2 𝑘𝑘1) 𝑘𝑘3 = ℎ𝑓𝑓(𝑥𝑥𝑛𝑛 + 1 2 ℎ, 𝑦𝑦𝑛𝑛 + 1 2 𝑘𝑘2) 𝑘𝑘4 = ℎ𝑓𝑓 𝑥𝑥𝑛𝑛 + ℎ, 𝑦𝑦𝑛𝑛 + 𝑘𝑘3 𝑦𝑦𝑛𝑛+1 = 𝑦𝑦𝑛𝑛 + 1 6 𝑘𝑘1 + 2𝑘𝑘2 + 2𝑘𝑘3 + 𝑘𝑘4
  • 13. Lorenz Model Cont. N=1 N=5 N=20N=15
  • 14. Lorenz Model Cont. N=3 N=5 N=15N=10