SlideShare une entreprise Scribd logo
1  sur  8
Télécharger pour lire hors ligne
TECNICAS GEOESTADISTICAS APLICADAS EN LA DISTRIBUCIÓN ESPACIAL DE
PARAMETROS GEOTECNICOS
Msc. José E. Gutiérrez Ramírez Msc. Betzabé Y. Tafur Borjas Ing. Miguel Zulueta T.
egutierrez@mibsac.com btafur@svsingenieros.com mzuluetatorres@hotmail.com

RESUMEN
El presente trabajo describe una metodología desarrollada con la finalidad de tomar en
consideración la variabilidad espacial de las propiedades de los materiales geológicos. Son mostrados los
elementos de geoestadística, comúnmente usados para la evaluación de yacimientos minerales, como una
herramienta importante en la caracterización de las propiedades mecánicas de los materiales.
Presentamos una aplicación en la que hemos desarrollado una metodología que integre conceptos
geológicos, geoestadísticos y geotécnicos en el estudio de los depósitos cuaternarios del subsuelo de la
Planta Nuclear Angra 2, ubicada en el estado de Río de Janeiro en el Brasil.
INTRODUCCION
La formación de materiales geológicos es un fenómeno natural complejo, donde varios factores
físicos y químicos se integran simultáneamente. En consecuencia la previsión de la continuidad de los
parámetros geotécnicos (en este caso obtenidos a partir del número de golpes SPT) es bastante difícil de
realizar, salvo en los caso en que se tomen supuestos (como la hipótesis de homogeneidad) que faciliten el
desarrollo de un modelo analítico.
Tanto en las obras civiles como en la minería es importante definir la distribución espacial de las
propiedades de las litologías que conforman un depósito, el propósito, es mejorar el flujo de información
entre las áreas de geología e ingeniería, tornando más eficiente el análisis desde el punto de vista técnico,
operacional y económico.
CASO DE ESTUDIO: VARIABILIDAD ESPACIAL DE LOS PARAMETROS DE RESISTENCIA
MECANICA EN EL SUBSUELO DE LA PLANTA NUCLEAR ANGRA 2 - RJ
Para la caracterización del subsuelo en el área de estudio fueron realizados 111 sondajes para
realizar los ensayos de penetración estándar SPT, a cada 1m de profundidad en un área de 400x400m2 en
la región de Angra de los Reyes, estado de Rio de Janeiro, Brasil.
UBICACIÓN
La Planta Nuclear Angra 2 está localizada en la Latitud 23°00’30,2’’ S y la longitud 44°27’26,3’’
W, a menos de medio grado al norte del trópico de Capricornio.
Situado en la playa de Itaorna, en la Bahía de Isla Grande, está distante en línea recta, de 14Km de
la ciudad de Angra de los Reyes y 130Km de la ciudad de Río de Janeiro. En la Figura 1 se presenta el
mapa índice de Brasil, en el cual se localiza el estado de Río de Janeiro, donde se ubica la ciudad Angra de
los Reyes - Isla Grande, que es la ciudad donde tenemos la actual ubicación de la Planta Nuclear Angra 2.
Fig. 1 Mapa Índice de Brasil, donde se localiza el área de estudio.
GEOLOGIA
La playa de Itaorna es una estrecha faja de arena, 2 a 4m encima del nivel del mar. De modo
general el basamento rocoso está constituido predominantemente por gneis, migmatitas y granitos precambrianos con características intrusivas y reciben los nombres de Mambucaba, Angra y Mangarativa.
La roca sana se sitúa entre 20-30m debajo de la superficie del terreno, estando recubierta por suelo
residual, entre 10-20m de profundidad. Encima, el paquete sedimentario compuesto de arena media
intercalada con lentes de arena fina, limo y arcilla. La parte superior del paquete sedimentario está
compuesto de arenas, y el número de horizontes de arena y arcilla en la columna sedimentaria crece en
dirección a la línea de la costa. La porción central del área de Itaorna es la más profunda del paquete (más
de 20m de espesor).
MODELAMIENTO GEOLOGICO (GEOMETRICO Y NUMERICO)
La metodología de modelaje geológico e geotécnico es una modificación de la metodología de
Houlding (1994) y está dividida en modelamiento geométrico y numérico.
El modelamiento geométrico debe dar un espacio tridimensional a partir del cual se podrá producir
un modelo de bloques y se podrá evaluar la variabilidad espacial con métodos geoestadísticos. Según
Gutiérrez (2009), se recomienda un proceso o conjunto de criterios que evalúe toda la información en
unidades geológicas geotécnicas homogéneas.
En la Figura 2 se presenta el flujo del modelaje utilizado en este trabajo de investigación
modificado a partir de la metodología de Houlding. Donde las perforaciones realizadas para conocer el
número de golpes SPT, serán utilizadas para determinar la geometría del depósito cuaternario.

Fig. 2 Diagrama de Flujo del Modelaje.
Se realizaron 111 sondajes para la toma del número de golpes SPT, la Figura 3 (lado izquierdo)
muestra la ubicación de las perforaciones. Estas perforaciones contienen la siguiente información:
Coordenadas de la boca del pozo, profundidad, litología, número de golpes SPT y nivel freático.

Fig. 3 Ubicación de sondajes.
Los depósitos cuaternarios estudiados se clasifican geotécnicamente según el Sistema Unificado de
Clasificación de Suelos (SUCS) como (Tabla1):
Código

Clasificación

litológico

Geotécnica (SUCS)

A-F-M-PC-MC

SW

ASAR-PC-MC

SM

ARORG-M-MM

OH

Descripción
Arena limpias con pocos finos o sin ellos. Arenas
bien graduadas.
Arena limosas, arenas con cantidad de finos
apreciable. Mezcla de arena y limo mal graduado.
Arcilla orgánica de plasticidad media a alta.

Tabla 1.- Características de los horizontes de suelo
Con los datos obtenidos de los ensayos, que están representados en la planilla de datos para el
ensayo SPT, fue creada una base de datos en Ms Access 2003 para la ejecución de los análisis estadísticos
y geoestadísticos.
La estructura de la base de datos está compuesta de dos tablas, la primera está compuesta de los siguientes
campos:
 Sondeo.- nombre del sondeo, identificado de la planilla del ensayo SPT.
 Norte.- coordenada norte en el sistema UTM.
 Este.- coordenada este en el sistema UTM.
 Elevación.- cota.
La segunda está compuesta por los siguientes campos:
 N(SPT).- número de golpes del ensayo SPT.
 Profundidad.- del punto central del intervalo ensayado.
 Litología.- tipo de material geológico o no geológico identificado en campo.
 Clasificación Geotécnica.- Código de clasificación de suelos según SUCS.
 Código de litología.- código numérico identificador de cada capa de suelos.
Se elaboraron 17 secciones con dirección Norte – Sur en el software Datamine y se realizó la
interpretación geológica de cada sección. El resultado fue la obtención de un sólido representativo de cada
material geológico (lado derecho Figura 3).
El Modelamiento numérico trata del proceso que subdivide los sólidos geológicos, elaborados en el
modelaje geométrico, en bloques de dimensiones constantes en cada dirección (norte-sur, este-oeste,
vertical). El conjunto de todos los bloques es llamado modelo de bloques y es muy utilizado en la
evaluación de yacimientos minerales. En este trabajo se utilizó un bloque unitario con las siguientes
dimensiones: 10 metros en la dirección Este-Oeste, 10 metros en la dirección Norte-Sur y 1 metro en la
dirección vertical.
El procedimiento para la evaluación numérica de los valores del número de golpes SPT se resume
en la Figura 4.

Fig.4 Diagrama de Procesos de Estimación.
El análisis estadístico del número de golpes SPT de los suelos de Angra de los Reyes esta resumido
en la tabla 2:
Código
Litológico

Variable

A-F-M-PC-MC
ASAR-PC-MC
ARORG-M-MM

N(SPT)
N(SPT)
N(SPT)

N°
Mínimo Máximo Media Mediana Moda Varianza
muestras
433
880
353

2
0
0

96
96
83

12.06
10
8.89

10
6
5

7
5
2

82.22
153
137.9

Desviación
Estándar
9.067
12
11.74

Coeficiente
de
Variación
75.18
124
132.1

En la Figura 5 podemos apreciar el bajo valor de los parámetros estadísticos de la litología con
mayor contenido de arcilla, lo que indica que la resistencia de este suelo es menor comparado con los
otros suelos. Esta característica es propia de las arcillas con contenido de materia orgánica, las cuales
presentan una menor resistencia a la penetración si la comparamos con suelos granulares o con suelos
argilosos sin contenido de materia orgánica. Para el análisis espacial de los datos también se elaboraron
gráficos Scatter Plot que nos permiten realizar la comparación entre número de golpes SPT versus la cota
(m).

Fig.5 Histograma de los horizontes de suelo.
El objetivo de la geoestadística es estimar o predecir el valor de una variable que no se conoce a
partir de escasa información conocida. En el presente trabajo, hemos utilizaremos los datos obtenidos de
los ensayos SPT efectuados en la zona de Angra para estimar el número de golpes SPT en zonas no
ensayadas. Para ello utilizamos la principal herramienta de la geoestadística: “El variograma”. Para el
cálculo de los variogramas fueron usados el Lag o espaciamientos diferenciados, en la horizontal el Lag
fue de 10 metros y en la vertical el Lag fue de 1 metro (debido a que el número de golpes SPT es medido
cada metro). Para determinar el valor del efecto pepita se realizó el cálculo y modelamiento de los
variogramas omnidireccionales de cada suelo (figura 6). Las direcciones horizontales en las que fueron
calculados los variogramas direccionales fueron cuatro (Norte-Sur, N 45°, Este-Oeste y N 135°).
Fig. 6 Variogramas Omnidireccionales de los Horizontes.
La siguiente tabla resume los parámetros obtenidos a partir del modelamiento de variogramas
direccionales de las capas de suelo:
Código
Litológico

Modelo

Meseta

Alcance (m)

Pepita

N
N45°
N90°
N135°

Esférico
Esférico
Esférico
Esférico

31.01
15.11
1285.2
2680.3

28.1
50
31.5
19.3

489.4
489.4
489.4
489.4

Vertical
N
N45°
N90°
N135°

Esférico
Esférico
Esférico
Esférico
Esférico

1460.4
106.2
151.1
151.1
129.8

1.2
20.9
13.5
34.4
21.2

489.4
61.2
61.2
61.2
61.2

Vertical
N
N45°
ARORG-M-MM N90°
N135°

Esférico
Esférico
Esférico
Esférico
Esférico

177.2
113
204.4
180.6
189.7

5.2
24.7
13.7
33.3
21.4

61.2
20.8
20.8
20.8
20.8

Vertical

Esférico

49.1

6.3

20.8

A-F-M-PC-MC

ASAR-PC-MC

Dirección
En la Figura 7 se observa las direcciones principales de los aportes de sedimentos en el proceso de
formación de las unidades geotécnicas, las cuales evidencian que los mayores aportes fueron dados por
material coluvial, aportados directamente de los taludes de rocas dando origen a la formación del depósito
arenoso A-F-MC-PC (la flecha roja dirigida hacia el mar indica la dirección de este aporte). Otro gran
agente de aporte de sedimentos es el mar, el cual invadió el continente en los procesos transgresión regresión marina que dieron origen a la formación de los depósitos arenosos-limosos y el depósito de
arcillas con contenido orgánico (la flecha amarilla). Los sedimentos marinos fueron depositados paralelos
a la línea de costa (las flechas amarillas indican aproximadamente la dirección de estos aportes). Cabe
recordar que estas direcciones principales fueron calculadas a partir del modelamiento variográfico y
coinciden con las características geológicas de estos depósitos.

Fig.7 Elipsoides de Influencia y direcciones principales de los horizontes.
ANALISIS E INTERPRETACION DE RESULTADOS
A partir de la distribución del número de golpes SPT y de correlaciones empíricas que relacionan
los ensayos SPT con los parámetros de resistencia del suelo, hemos podido determinar la distribución
espacial de las características de cada material geológico. En el horizonte de suelo denominado A- F-MPC-MC usamos la correlación de Hunt a fin de obtener la densidad relativa (Dr), y la correlación de
Meyerhof en el cálculo del ángulo de rozamiento interno (Φ’). Para el horizonte de suelo denominado
ASAR - PC - MC utilizamos la correlación propuesta por Parra y Ramos, a fin de obtener el ángulo de
rozamiento interno (Φ’) y la cohesión no drenada (Cu). Para el horizonte de suelo denominado ARORG M - MM utilizamos la correlación de Hunt, para el cálculo de la resistencia no drenada (qu ) y el peso
específico saturado (γsat).
Para A- F-M-PC-MC : Φ’ = 30 + 0.15 Dr (< 5% arena fina y limo) Hunt
Para ASAR - PC – MC: Φ’ = 5.35 lnN(SPT) + 14.44, Cu = 0,22 ln N(SPT) – 0,40 (Parra y Ramos)
Para ARORG - M – MM:
Consistencia

N° de golpes
(SPT)

Identificación
manual

γsat
g/cm3

Resistencia a la
compresión simple qu
(Kg/cm2)

Dura

> 30

> 2,0

> 4,0

Muy rígida

15-30

Se marca
difícilmente
Se marca con la uña
del pulgar

2,08-2,24

2,0-4,0

Rígida

8-15

Se marca con el
pulgar

1,92-2,08

1,0-2,0

Media (firme)

4-8

Moldeable bajo
presiones fuertes

1,76-1,92

0,5-1,0

Blanda

2-4

Moldeable bajo
presiones débiles

1,60-1,76

0,25-0,5

Muy blanda

<2

Se deshace entre los
dedos

1,44-1,60

0-0,25

Cabe indicar que han sido considerados parámetros efectivos porque se há supuesto que todos los
horizontes están bajo el nivel freático (de esta manera trabajamos a favor de la seguridad).
A partir de los resultados obtenidos con las correlaciones encontramos que el área (alrededor 8,500m2) con
los mejores parámetros de resistencia, está delimitada por los siguientes puntos: 7455374N/555659E,
7455453N/555659E, 7455453N/555555E y 7455374N/555555E.
CONCLUSIONES
La aplicación de la variografia y del método del inverso cuadrado de la distancia nos permitió
realizar la previsión del valor de Número de Golpes N(SPT) en lugares no ensayados y a través de
correlaciones empíricas determinar los parámetros de resistencia del suelo.
La aplicación de las técnicas de modelamiento tridimensional han mostrado su gran utilidad en Geo
- Ingeniería, en el caso expuesto nos han ayudado a determinar la ubicación de las capas con las mejores
condiciones de resistencia, además dentro de estas capas hemos podido determinar cómo los parámetros
de resistencia se distribuyen (basados en características geológicas innatas en cada uno de los materiales).
REFERENCIAS
Folle D.; Leite J.; Renard D.; Koppe J.; Zingano A.(2008), 3-D soil-resistance maps in the presence of a
strong vertical trend. Engineering Geology Journal.
Gutiérrez, J. (2009). Variabilidade Espacial do Parâmetro Geomêcanico RQD no Depósito Mineral
Animas-Peru, Dissertação de Mestrado. PUC-RIO.
Lambe, W.; Whitman R (2001), Mecánica de suelos. Limusa.
Mendes R.; Lorandi R. (2008), Analysis of spatial variability of SPT penetration resistance in collapsible
soils considering water table depth. Engineering Geology Journal.
Parra, F. & Ramos, L Obtención de Parámetros Geomecánicos a partir de Ensayos a Penetración
Dinámica continua en Suelos Mixtos Cohesivos- Granulares. ASG – Geotecnia.
Rodrigues, S (1999). Estudo Geoestatístico do Subsolo da Usina Nuclear Angra 2, RJ. Dissertação de
Mestrado. PUC-RIO.

Contenu connexe

Tendances

Geomodelamiento 3D de las formaciones palegreda - Pariñas en el yacimiento Br...
Geomodelamiento 3D de las formaciones palegreda - Pariñas en el yacimiento Br...Geomodelamiento 3D de las formaciones palegreda - Pariñas en el yacimiento Br...
Geomodelamiento 3D de las formaciones palegreda - Pariñas en el yacimiento Br...Portal de Ingeniería /SlideShare
 
Estimación de Recursos
Estimación de RecursosEstimación de Recursos
Estimación de RecursosMarcelo Godoy
 
Análisis de la amplificación sísmica en el subsuelo de concepción
Análisis de la amplificación sísmica en el subsuelo de concepciónAnálisis de la amplificación sísmica en el subsuelo de concepción
Análisis de la amplificación sísmica en el subsuelo de concepciónAdolfo Valenzuela Bustos
 
GEOESTADISTICA APLICADA V - EUGENIA ESPINOZA
GEOESTADISTICA APLICADA V - EUGENIA ESPINOZAGEOESTADISTICA APLICADA V - EUGENIA ESPINOZA
GEOESTADISTICA APLICADA V - EUGENIA ESPINOZAEduardo Mera
 
2.modelo.geologico.geofisico
2.modelo.geologico.geofisico2.modelo.geologico.geofisico
2.modelo.geologico.geofisicoRicardo Romero
 
Análisis de incertidumbre geológica para definir objetivos de perforación de ...
Análisis de incertidumbre geológica para definir objetivos de perforación de ...Análisis de incertidumbre geológica para definir objetivos de perforación de ...
Análisis de incertidumbre geológica para definir objetivos de perforación de ...José Enrique Gutiérrez Ramírez
 
Docim tema2 investigacion_geotecnica
Docim tema2 investigacion_geotecnicaDocim tema2 investigacion_geotecnica
Docim tema2 investigacion_geotecnicaedisonquilla
 
Arbol de regresion para determinar el potencial de licuacion
Arbol de regresion para determinar el potencial de licuacionArbol de regresion para determinar el potencial de licuacion
Arbol de regresion para determinar el potencial de licuacionGeovani Garcia Guillen
 
Determinacion de la_presion
Determinacion de la_presionDeterminacion de la_presion
Determinacion de la_presionYanine Salaz
 
GEOESTADISTICA APLICADA - HIDROGEOLOGIA
GEOESTADISTICA APLICADA - HIDROGEOLOGIAGEOESTADISTICA APLICADA - HIDROGEOLOGIA
GEOESTADISTICA APLICADA - HIDROGEOLOGIAEduardo Mera
 
Perforabilidad
PerforabilidadPerforabilidad
PerforabilidadNinguna
 
Análisis de riesgo de un proyecto minero considerando la incertidumbre de var...
Análisis de riesgo de un proyecto minero considerando la incertidumbre de var...Análisis de riesgo de un proyecto minero considerando la incertidumbre de var...
Análisis de riesgo de un proyecto minero considerando la incertidumbre de var...José Enrique Gutiérrez Ramírez
 
Presentación Método Pentaédrico de RecMin IUTEB
Presentación Método Pentaédrico de RecMin  IUTEB Presentación Método Pentaédrico de RecMin  IUTEB
Presentación Método Pentaédrico de RecMin IUTEB Jose Gregorio Freites
 

Tendances (20)

Geomodelamiento 3D de las formaciones palegreda - Pariñas en el yacimiento Br...
Geomodelamiento 3D de las formaciones palegreda - Pariñas en el yacimiento Br...Geomodelamiento 3D de las formaciones palegreda - Pariñas en el yacimiento Br...
Geomodelamiento 3D de las formaciones palegreda - Pariñas en el yacimiento Br...
 
Modelo geologico
Modelo geologicoModelo geologico
Modelo geologico
 
Estimación de Recursos
Estimación de RecursosEstimación de Recursos
Estimación de Recursos
 
Miyp
MiypMiyp
Miyp
 
Modelos de Corto y Mediano Plazo en Minería Subterránea
Modelos de Corto y Mediano Plazo en Minería SubterráneaModelos de Corto y Mediano Plazo en Minería Subterránea
Modelos de Corto y Mediano Plazo en Minería Subterránea
 
Análisis de la amplificación sísmica en el subsuelo de concepción
Análisis de la amplificación sísmica en el subsuelo de concepciónAnálisis de la amplificación sísmica en el subsuelo de concepción
Análisis de la amplificación sísmica en el subsuelo de concepción
 
Cg9 old
Cg9 oldCg9 old
Cg9 old
 
GEOESTADISTICA APLICADA V - EUGENIA ESPINOZA
GEOESTADISTICA APLICADA V - EUGENIA ESPINOZAGEOESTADISTICA APLICADA V - EUGENIA ESPINOZA
GEOESTADISTICA APLICADA V - EUGENIA ESPINOZA
 
2.modelo.geologico.geofisico
2.modelo.geologico.geofisico2.modelo.geologico.geofisico
2.modelo.geologico.geofisico
 
Análisis de incertidumbre geológica para definir objetivos de perforación de ...
Análisis de incertidumbre geológica para definir objetivos de perforación de ...Análisis de incertidumbre geológica para definir objetivos de perforación de ...
Análisis de incertidumbre geológica para definir objetivos de perforación de ...
 
Docim tema2 investigacion_geotecnica
Docim tema2 investigacion_geotecnicaDocim tema2 investigacion_geotecnica
Docim tema2 investigacion_geotecnica
 
Arbol de regresion para determinar el potencial de licuacion
Arbol de regresion para determinar el potencial de licuacionArbol de regresion para determinar el potencial de licuacion
Arbol de regresion para determinar el potencial de licuacion
 
Determinacion de la_presion
Determinacion de la_presionDeterminacion de la_presion
Determinacion de la_presion
 
GEOESTADISTICA APLICADA - HIDROGEOLOGIA
GEOESTADISTICA APLICADA - HIDROGEOLOGIAGEOESTADISTICA APLICADA - HIDROGEOLOGIA
GEOESTADISTICA APLICADA - HIDROGEOLOGIA
 
Perforabilidad
PerforabilidadPerforabilidad
Perforabilidad
 
Análisis de riesgo de un proyecto minero considerando la incertidumbre de var...
Análisis de riesgo de un proyecto minero considerando la incertidumbre de var...Análisis de riesgo de un proyecto minero considerando la incertidumbre de var...
Análisis de riesgo de un proyecto minero considerando la incertidumbre de var...
 
21 veiga
21 veiga21 veiga
21 veiga
 
Memoria estructura
Memoria estructuraMemoria estructura
Memoria estructura
 
Presentación Método Pentaédrico de RecMin IUTEB
Presentación Método Pentaédrico de RecMin  IUTEB Presentación Método Pentaédrico de RecMin  IUTEB
Presentación Método Pentaédrico de RecMin IUTEB
 
Beam system jm
Beam system jmBeam system jm
Beam system jm
 

En vedette

GEOLOGIA Y EXPLORACION DEL YACIMINETO EPITERMAL DE CHIPMO - ORCOPAMPA
GEOLOGIA Y EXPLORACION DEL YACIMINETO EPITERMAL DE CHIPMO - ORCOPAMPAGEOLOGIA Y EXPLORACION DEL YACIMINETO EPITERMAL DE CHIPMO - ORCOPAMPA
GEOLOGIA Y EXPLORACION DEL YACIMINETO EPITERMAL DE CHIPMO - ORCOPAMPAFIREHACK
 
Conciliacion en Minería Subterranea: Procedimientos y Aplicaciones
Conciliacion en Minería Subterranea: Procedimientos y AplicacionesConciliacion en Minería Subterranea: Procedimientos y Aplicaciones
Conciliacion en Minería Subterranea: Procedimientos y AplicacionesJosé Enrique Gutiérrez Ramírez
 
TENDENCIAS Y PROYECCIONES DEL PRECIO MUNDIAL DEL ORO
TENDENCIAS Y PROYECCIONES DEL PRECIO MUNDIAL DEL OROTENDENCIAS Y PROYECCIONES DEL PRECIO MUNDIAL DEL ORO
TENDENCIAS Y PROYECCIONES DEL PRECIO MUNDIAL DEL ORORodrigo Regalsky
 
Mineria ilegal de oro en Peru
Mineria ilegal de oro en PeruMineria ilegal de oro en Peru
Mineria ilegal de oro en PeruJaime Ortiz
 
Mineria a rajo abierto
Mineria a rajo abiertoMineria a rajo abierto
Mineria a rajo abiertoCarlos Nova
 
Geoestadistica UNAM, CLASE
Geoestadistica UNAM, CLASE Geoestadistica UNAM, CLASE
Geoestadistica UNAM, CLASE cristiam paul
 
Calculo matematico de los parametros de voladura
Calculo matematico de los parametros de voladuraCalculo matematico de los parametros de voladura
Calculo matematico de los parametros de voladuramirrochan
 
Geoestadistica lineal
Geoestadistica linealGeoestadistica lineal
Geoestadistica linealIngemmet Peru
 

En vedette (20)

GEOLOGIA Y EXPLORACION DEL YACIMINETO EPITERMAL DE CHIPMO - ORCOPAMPA
GEOLOGIA Y EXPLORACION DEL YACIMINETO EPITERMAL DE CHIPMO - ORCOPAMPAGEOLOGIA Y EXPLORACION DEL YACIMINETO EPITERMAL DE CHIPMO - ORCOPAMPA
GEOLOGIA Y EXPLORACION DEL YACIMINETO EPITERMAL DE CHIPMO - ORCOPAMPA
 
Estimación de Reservas en Vetas
Estimación de Reservas en VetasEstimación de Reservas en Vetas
Estimación de Reservas en Vetas
 
Conciliacion en Minería Subterranea: Procedimientos y Aplicaciones
Conciliacion en Minería Subterranea: Procedimientos y AplicacionesConciliacion en Minería Subterranea: Procedimientos y Aplicaciones
Conciliacion en Minería Subterranea: Procedimientos y Aplicaciones
 
LA NORMATIVA CANADIENSE NI 43-101
LA NORMATIVA CANADIENSE NI 43-101LA NORMATIVA CANADIENSE NI 43-101
LA NORMATIVA CANADIENSE NI 43-101
 
Geoestadistica
GeoestadisticaGeoestadistica
Geoestadistica
 
Diseño de pique de doble compartimiento
Diseño de pique de doble compartimientoDiseño de pique de doble compartimiento
Diseño de pique de doble compartimiento
 
Diseño de-instalaciones-mineras
Diseño de-instalaciones-minerasDiseño de-instalaciones-mineras
Diseño de-instalaciones-mineras
 
TENDENCIAS Y PROYECCIONES DEL PRECIO MUNDIAL DEL ORO
TENDENCIAS Y PROYECCIONES DEL PRECIO MUNDIAL DEL OROTENDENCIAS Y PROYECCIONES DEL PRECIO MUNDIAL DEL ORO
TENDENCIAS Y PROYECCIONES DEL PRECIO MUNDIAL DEL ORO
 
Mineria ilegal de oro en Peru
Mineria ilegal de oro en PeruMineria ilegal de oro en Peru
Mineria ilegal de oro en Peru
 
Mineria a rajo abierto
Mineria a rajo abiertoMineria a rajo abierto
Mineria a rajo abierto
 
The jorc code
The jorc codeThe jorc code
The jorc code
 
Geoestadistica UNAM, CLASE
Geoestadistica UNAM, CLASE Geoestadistica UNAM, CLASE
Geoestadistica UNAM, CLASE
 
Calculo variogramas
Calculo variogramasCalculo variogramas
Calculo variogramas
 
Tema 10 mg- labores mineras
Tema 10 mg- labores minerasTema 10 mg- labores mineras
Tema 10 mg- labores mineras
 
Definición de KPI
Definición de KPIDefinición de KPI
Definición de KPI
 
Calculo matematico de los parametros de voladura
Calculo matematico de los parametros de voladuraCalculo matematico de los parametros de voladura
Calculo matematico de los parametros de voladura
 
GEOLOGIA DEL ORO
GEOLOGIA DEL OROGEOLOGIA DEL ORO
GEOLOGIA DEL ORO
 
Geoestadistica lineal
Geoestadistica linealGeoestadistica lineal
Geoestadistica lineal
 
Estimación de reservas
Estimación de reservasEstimación de reservas
Estimación de reservas
 
Labores mineras
Labores minerasLabores mineras
Labores mineras
 

Similaire à Tecnicas geoestadisticas aplicadas par geotecnicos

Tarea No. 4, Refracción.pdf
Tarea No. 4, Refracción.pdfTarea No. 4, Refracción.pdf
Tarea No. 4, Refracción.pdfBrianPalma5
 
Petitorio jheferson hilario unt
Petitorio jheferson hilario untPetitorio jheferson hilario unt
Petitorio jheferson hilario untJhefer Hilario
 
Relocalización de sismicidad en el Valle Tectónico del Guadalentín, Zona de C...
Relocalización de sismicidad en el Valle Tectónico del Guadalentín, Zona de C...Relocalización de sismicidad en el Valle Tectónico del Guadalentín, Zona de C...
Relocalización de sismicidad en el Valle Tectónico del Guadalentín, Zona de C...JL_Sanchez
 
ESTIMACIÓN NÚMERICA DE LOS ESFUERZOS PRINCIPALES EN LAS ROCAS CRETÁCICAS DEL ...
ESTIMACIÓN NÚMERICA DE LOS ESFUERZOS PRINCIPALES EN LAS ROCAS CRETÁCICAS DEL ...ESTIMACIÓN NÚMERICA DE LOS ESFUERZOS PRINCIPALES EN LAS ROCAS CRETÁCICAS DEL ...
ESTIMACIÓN NÚMERICA DE LOS ESFUERZOS PRINCIPALES EN LAS ROCAS CRETÁCICAS DEL ...Francisco Bongiorno Ponzo
 
AEEET - Análisis de Emisiones Electromagnéticas Espontaneas de la Tierra
AEEET - Análisis de Emisiones Electromagnéticas Espontaneas de la TierraAEEET - Análisis de Emisiones Electromagnéticas Espontaneas de la Tierra
AEEET - Análisis de Emisiones Electromagnéticas Espontaneas de la TierraJcditmeyer
 
Caracterización geológica
Caracterización geológicaCaracterización geológica
Caracterización geológicaerick miquilena
 
DEFINICIÓN DE DISTRIBUCIONES DE CONOS EN CAMPOS VOLCANICOS, USANDO DATOS LAND...
DEFINICIÓN DE DISTRIBUCIONES DE CONOS EN CAMPOS VOLCANICOS, USANDO DATOS LAND...DEFINICIÓN DE DISTRIBUCIONES DE CONOS EN CAMPOS VOLCANICOS, USANDO DATOS LAND...
DEFINICIÓN DE DISTRIBUCIONES DE CONOS EN CAMPOS VOLCANICOS, USANDO DATOS LAND...Academia de Ingeniería de México
 
393 Flujo para caracterizacion
393 Flujo para caracterizacion393 Flujo para caracterizacion
393 Flujo para caracterizacionMarcelo Giusso
 
Erick Reyes Andrade, CARACTERIZACIÓN DEL SUELO Y MODELADO DE ESTRUCTURAS EN ...
Erick Reyes Andrade,  CARACTERIZACIÓN DEL SUELO Y MODELADO DE ESTRUCTURAS EN ...Erick Reyes Andrade,  CARACTERIZACIÓN DEL SUELO Y MODELADO DE ESTRUCTURAS EN ...
Erick Reyes Andrade, CARACTERIZACIÓN DEL SUELO Y MODELADO DE ESTRUCTURAS EN ...123apn1
 
Geofísica & Geotécnia
Geofísica & GeotécniaGeofísica & Geotécnia
Geofísica & GeotécniaLuis Yegres
 
Levantamiento superficial 2016 i
Levantamiento superficial  2016 iLevantamiento superficial  2016 i
Levantamiento superficial 2016 isaul huaman quispe
 

Similaire à Tecnicas geoestadisticas aplicadas par geotecnicos (20)

Tarea No. 4, Refracción.pdf
Tarea No. 4, Refracción.pdfTarea No. 4, Refracción.pdf
Tarea No. 4, Refracción.pdf
 
Ppt minería
Ppt mineríaPpt minería
Ppt minería
 
Petitorio jheferson hilario unt
Petitorio jheferson hilario untPetitorio jheferson hilario unt
Petitorio jheferson hilario unt
 
Relocalización de sismicidad en el Valle Tectónico del Guadalentín, Zona de C...
Relocalización de sismicidad en el Valle Tectónico del Guadalentín, Zona de C...Relocalización de sismicidad en el Valle Tectónico del Guadalentín, Zona de C...
Relocalización de sismicidad en el Valle Tectónico del Guadalentín, Zona de C...
 
ESTIMACIÓN NÚMERICA DE LOS ESFUERZOS PRINCIPALES EN LAS ROCAS CRETÁCICAS DEL ...
ESTIMACIÓN NÚMERICA DE LOS ESFUERZOS PRINCIPALES EN LAS ROCAS CRETÁCICAS DEL ...ESTIMACIÓN NÚMERICA DE LOS ESFUERZOS PRINCIPALES EN LAS ROCAS CRETÁCICAS DEL ...
ESTIMACIÓN NÚMERICA DE LOS ESFUERZOS PRINCIPALES EN LAS ROCAS CRETÁCICAS DEL ...
 
Caracterizacion geotecnica
Caracterizacion geotecnicaCaracterizacion geotecnica
Caracterizacion geotecnica
 
AEEET - Análisis de Emisiones Electromagnéticas Espontaneas de la Tierra
AEEET - Análisis de Emisiones Electromagnéticas Espontaneas de la TierraAEEET - Análisis de Emisiones Electromagnéticas Espontaneas de la Tierra
AEEET - Análisis de Emisiones Electromagnéticas Espontaneas de la Tierra
 
Caracterización geológica
Caracterización geológicaCaracterización geológica
Caracterización geológica
 
407021834 estudio-de-mecanica-de-suelos-pdf
407021834 estudio-de-mecanica-de-suelos-pdf407021834 estudio-de-mecanica-de-suelos-pdf
407021834 estudio-de-mecanica-de-suelos-pdf
 
DEFINICIÓN DE DISTRIBUCIONES DE CONOS EN CAMPOS VOLCANICOS, USANDO DATOS LAND...
DEFINICIÓN DE DISTRIBUCIONES DE CONOS EN CAMPOS VOLCANICOS, USANDO DATOS LAND...DEFINICIÓN DE DISTRIBUCIONES DE CONOS EN CAMPOS VOLCANICOS, USANDO DATOS LAND...
DEFINICIÓN DE DISTRIBUCIONES DE CONOS EN CAMPOS VOLCANICOS, USANDO DATOS LAND...
 
Registro de rayos gamma (2)
Registro de rayos gamma (2)Registro de rayos gamma (2)
Registro de rayos gamma (2)
 
393 Flujo para caracterizacion
393 Flujo para caracterizacion393 Flujo para caracterizacion
393 Flujo para caracterizacion
 
Erick Reyes Andrade, CARACTERIZACIÓN DEL SUELO Y MODELADO DE ESTRUCTURAS EN ...
Erick Reyes Andrade,  CARACTERIZACIÓN DEL SUELO Y MODELADO DE ESTRUCTURAS EN ...Erick Reyes Andrade,  CARACTERIZACIÓN DEL SUELO Y MODELADO DE ESTRUCTURAS EN ...
Erick Reyes Andrade, CARACTERIZACIÓN DEL SUELO Y MODELADO DE ESTRUCTURAS EN ...
 
Se02
Se02Se02
Se02
 
Se02
Se02Se02
Se02
 
Informe de-estudio-topografico
Informe de-estudio-topograficoInforme de-estudio-topografico
Informe de-estudio-topografico
 
Informe geotectonica otuzco
Informe  geotectonica otuzcoInforme  geotectonica otuzco
Informe geotectonica otuzco
 
Geofísica & Geotécnia
Geofísica & GeotécniaGeofísica & Geotécnia
Geofísica & Geotécnia
 
Capit 01 2ºparte
Capit 01 2ºparteCapit 01 2ºparte
Capit 01 2ºparte
 
Levantamiento superficial 2016 i
Levantamiento superficial  2016 iLevantamiento superficial  2016 i
Levantamiento superficial 2016 i
 

Tecnicas geoestadisticas aplicadas par geotecnicos

  • 1. TECNICAS GEOESTADISTICAS APLICADAS EN LA DISTRIBUCIÓN ESPACIAL DE PARAMETROS GEOTECNICOS Msc. José E. Gutiérrez Ramírez Msc. Betzabé Y. Tafur Borjas Ing. Miguel Zulueta T. egutierrez@mibsac.com btafur@svsingenieros.com mzuluetatorres@hotmail.com RESUMEN El presente trabajo describe una metodología desarrollada con la finalidad de tomar en consideración la variabilidad espacial de las propiedades de los materiales geológicos. Son mostrados los elementos de geoestadística, comúnmente usados para la evaluación de yacimientos minerales, como una herramienta importante en la caracterización de las propiedades mecánicas de los materiales. Presentamos una aplicación en la que hemos desarrollado una metodología que integre conceptos geológicos, geoestadísticos y geotécnicos en el estudio de los depósitos cuaternarios del subsuelo de la Planta Nuclear Angra 2, ubicada en el estado de Río de Janeiro en el Brasil. INTRODUCCION La formación de materiales geológicos es un fenómeno natural complejo, donde varios factores físicos y químicos se integran simultáneamente. En consecuencia la previsión de la continuidad de los parámetros geotécnicos (en este caso obtenidos a partir del número de golpes SPT) es bastante difícil de realizar, salvo en los caso en que se tomen supuestos (como la hipótesis de homogeneidad) que faciliten el desarrollo de un modelo analítico. Tanto en las obras civiles como en la minería es importante definir la distribución espacial de las propiedades de las litologías que conforman un depósito, el propósito, es mejorar el flujo de información entre las áreas de geología e ingeniería, tornando más eficiente el análisis desde el punto de vista técnico, operacional y económico. CASO DE ESTUDIO: VARIABILIDAD ESPACIAL DE LOS PARAMETROS DE RESISTENCIA MECANICA EN EL SUBSUELO DE LA PLANTA NUCLEAR ANGRA 2 - RJ Para la caracterización del subsuelo en el área de estudio fueron realizados 111 sondajes para realizar los ensayos de penetración estándar SPT, a cada 1m de profundidad en un área de 400x400m2 en la región de Angra de los Reyes, estado de Rio de Janeiro, Brasil. UBICACIÓN La Planta Nuclear Angra 2 está localizada en la Latitud 23°00’30,2’’ S y la longitud 44°27’26,3’’ W, a menos de medio grado al norte del trópico de Capricornio. Situado en la playa de Itaorna, en la Bahía de Isla Grande, está distante en línea recta, de 14Km de la ciudad de Angra de los Reyes y 130Km de la ciudad de Río de Janeiro. En la Figura 1 se presenta el mapa índice de Brasil, en el cual se localiza el estado de Río de Janeiro, donde se ubica la ciudad Angra de los Reyes - Isla Grande, que es la ciudad donde tenemos la actual ubicación de la Planta Nuclear Angra 2.
  • 2. Fig. 1 Mapa Índice de Brasil, donde se localiza el área de estudio. GEOLOGIA La playa de Itaorna es una estrecha faja de arena, 2 a 4m encima del nivel del mar. De modo general el basamento rocoso está constituido predominantemente por gneis, migmatitas y granitos precambrianos con características intrusivas y reciben los nombres de Mambucaba, Angra y Mangarativa. La roca sana se sitúa entre 20-30m debajo de la superficie del terreno, estando recubierta por suelo residual, entre 10-20m de profundidad. Encima, el paquete sedimentario compuesto de arena media intercalada con lentes de arena fina, limo y arcilla. La parte superior del paquete sedimentario está compuesto de arenas, y el número de horizontes de arena y arcilla en la columna sedimentaria crece en dirección a la línea de la costa. La porción central del área de Itaorna es la más profunda del paquete (más de 20m de espesor). MODELAMIENTO GEOLOGICO (GEOMETRICO Y NUMERICO) La metodología de modelaje geológico e geotécnico es una modificación de la metodología de Houlding (1994) y está dividida en modelamiento geométrico y numérico. El modelamiento geométrico debe dar un espacio tridimensional a partir del cual se podrá producir un modelo de bloques y se podrá evaluar la variabilidad espacial con métodos geoestadísticos. Según Gutiérrez (2009), se recomienda un proceso o conjunto de criterios que evalúe toda la información en unidades geológicas geotécnicas homogéneas. En la Figura 2 se presenta el flujo del modelaje utilizado en este trabajo de investigación modificado a partir de la metodología de Houlding. Donde las perforaciones realizadas para conocer el número de golpes SPT, serán utilizadas para determinar la geometría del depósito cuaternario. Fig. 2 Diagrama de Flujo del Modelaje.
  • 3. Se realizaron 111 sondajes para la toma del número de golpes SPT, la Figura 3 (lado izquierdo) muestra la ubicación de las perforaciones. Estas perforaciones contienen la siguiente información: Coordenadas de la boca del pozo, profundidad, litología, número de golpes SPT y nivel freático. Fig. 3 Ubicación de sondajes. Los depósitos cuaternarios estudiados se clasifican geotécnicamente según el Sistema Unificado de Clasificación de Suelos (SUCS) como (Tabla1): Código Clasificación litológico Geotécnica (SUCS) A-F-M-PC-MC SW ASAR-PC-MC SM ARORG-M-MM OH Descripción Arena limpias con pocos finos o sin ellos. Arenas bien graduadas. Arena limosas, arenas con cantidad de finos apreciable. Mezcla de arena y limo mal graduado. Arcilla orgánica de plasticidad media a alta. Tabla 1.- Características de los horizontes de suelo Con los datos obtenidos de los ensayos, que están representados en la planilla de datos para el ensayo SPT, fue creada una base de datos en Ms Access 2003 para la ejecución de los análisis estadísticos y geoestadísticos. La estructura de la base de datos está compuesta de dos tablas, la primera está compuesta de los siguientes campos:  Sondeo.- nombre del sondeo, identificado de la planilla del ensayo SPT.  Norte.- coordenada norte en el sistema UTM.  Este.- coordenada este en el sistema UTM.  Elevación.- cota. La segunda está compuesta por los siguientes campos:  N(SPT).- número de golpes del ensayo SPT.  Profundidad.- del punto central del intervalo ensayado.  Litología.- tipo de material geológico o no geológico identificado en campo.  Clasificación Geotécnica.- Código de clasificación de suelos según SUCS.
  • 4.  Código de litología.- código numérico identificador de cada capa de suelos. Se elaboraron 17 secciones con dirección Norte – Sur en el software Datamine y se realizó la interpretación geológica de cada sección. El resultado fue la obtención de un sólido representativo de cada material geológico (lado derecho Figura 3). El Modelamiento numérico trata del proceso que subdivide los sólidos geológicos, elaborados en el modelaje geométrico, en bloques de dimensiones constantes en cada dirección (norte-sur, este-oeste, vertical). El conjunto de todos los bloques es llamado modelo de bloques y es muy utilizado en la evaluación de yacimientos minerales. En este trabajo se utilizó un bloque unitario con las siguientes dimensiones: 10 metros en la dirección Este-Oeste, 10 metros en la dirección Norte-Sur y 1 metro en la dirección vertical. El procedimiento para la evaluación numérica de los valores del número de golpes SPT se resume en la Figura 4. Fig.4 Diagrama de Procesos de Estimación. El análisis estadístico del número de golpes SPT de los suelos de Angra de los Reyes esta resumido en la tabla 2: Código Litológico Variable A-F-M-PC-MC ASAR-PC-MC ARORG-M-MM N(SPT) N(SPT) N(SPT) N° Mínimo Máximo Media Mediana Moda Varianza muestras 433 880 353 2 0 0 96 96 83 12.06 10 8.89 10 6 5 7 5 2 82.22 153 137.9 Desviación Estándar 9.067 12 11.74 Coeficiente de Variación 75.18 124 132.1 En la Figura 5 podemos apreciar el bajo valor de los parámetros estadísticos de la litología con mayor contenido de arcilla, lo que indica que la resistencia de este suelo es menor comparado con los
  • 5. otros suelos. Esta característica es propia de las arcillas con contenido de materia orgánica, las cuales presentan una menor resistencia a la penetración si la comparamos con suelos granulares o con suelos argilosos sin contenido de materia orgánica. Para el análisis espacial de los datos también se elaboraron gráficos Scatter Plot que nos permiten realizar la comparación entre número de golpes SPT versus la cota (m). Fig.5 Histograma de los horizontes de suelo. El objetivo de la geoestadística es estimar o predecir el valor de una variable que no se conoce a partir de escasa información conocida. En el presente trabajo, hemos utilizaremos los datos obtenidos de los ensayos SPT efectuados en la zona de Angra para estimar el número de golpes SPT en zonas no ensayadas. Para ello utilizamos la principal herramienta de la geoestadística: “El variograma”. Para el cálculo de los variogramas fueron usados el Lag o espaciamientos diferenciados, en la horizontal el Lag fue de 10 metros y en la vertical el Lag fue de 1 metro (debido a que el número de golpes SPT es medido cada metro). Para determinar el valor del efecto pepita se realizó el cálculo y modelamiento de los variogramas omnidireccionales de cada suelo (figura 6). Las direcciones horizontales en las que fueron calculados los variogramas direccionales fueron cuatro (Norte-Sur, N 45°, Este-Oeste y N 135°).
  • 6. Fig. 6 Variogramas Omnidireccionales de los Horizontes. La siguiente tabla resume los parámetros obtenidos a partir del modelamiento de variogramas direccionales de las capas de suelo: Código Litológico Modelo Meseta Alcance (m) Pepita N N45° N90° N135° Esférico Esférico Esférico Esférico 31.01 15.11 1285.2 2680.3 28.1 50 31.5 19.3 489.4 489.4 489.4 489.4 Vertical N N45° N90° N135° Esférico Esférico Esférico Esférico Esférico 1460.4 106.2 151.1 151.1 129.8 1.2 20.9 13.5 34.4 21.2 489.4 61.2 61.2 61.2 61.2 Vertical N N45° ARORG-M-MM N90° N135° Esférico Esférico Esférico Esférico Esférico 177.2 113 204.4 180.6 189.7 5.2 24.7 13.7 33.3 21.4 61.2 20.8 20.8 20.8 20.8 Vertical Esférico 49.1 6.3 20.8 A-F-M-PC-MC ASAR-PC-MC Dirección
  • 7. En la Figura 7 se observa las direcciones principales de los aportes de sedimentos en el proceso de formación de las unidades geotécnicas, las cuales evidencian que los mayores aportes fueron dados por material coluvial, aportados directamente de los taludes de rocas dando origen a la formación del depósito arenoso A-F-MC-PC (la flecha roja dirigida hacia el mar indica la dirección de este aporte). Otro gran agente de aporte de sedimentos es el mar, el cual invadió el continente en los procesos transgresión regresión marina que dieron origen a la formación de los depósitos arenosos-limosos y el depósito de arcillas con contenido orgánico (la flecha amarilla). Los sedimentos marinos fueron depositados paralelos a la línea de costa (las flechas amarillas indican aproximadamente la dirección de estos aportes). Cabe recordar que estas direcciones principales fueron calculadas a partir del modelamiento variográfico y coinciden con las características geológicas de estos depósitos. Fig.7 Elipsoides de Influencia y direcciones principales de los horizontes. ANALISIS E INTERPRETACION DE RESULTADOS A partir de la distribución del número de golpes SPT y de correlaciones empíricas que relacionan los ensayos SPT con los parámetros de resistencia del suelo, hemos podido determinar la distribución espacial de las características de cada material geológico. En el horizonte de suelo denominado A- F-MPC-MC usamos la correlación de Hunt a fin de obtener la densidad relativa (Dr), y la correlación de Meyerhof en el cálculo del ángulo de rozamiento interno (Φ’). Para el horizonte de suelo denominado ASAR - PC - MC utilizamos la correlación propuesta por Parra y Ramos, a fin de obtener el ángulo de rozamiento interno (Φ’) y la cohesión no drenada (Cu). Para el horizonte de suelo denominado ARORG M - MM utilizamos la correlación de Hunt, para el cálculo de la resistencia no drenada (qu ) y el peso específico saturado (γsat). Para A- F-M-PC-MC : Φ’ = 30 + 0.15 Dr (< 5% arena fina y limo) Hunt Para ASAR - PC – MC: Φ’ = 5.35 lnN(SPT) + 14.44, Cu = 0,22 ln N(SPT) – 0,40 (Parra y Ramos)
  • 8. Para ARORG - M – MM: Consistencia N° de golpes (SPT) Identificación manual γsat g/cm3 Resistencia a la compresión simple qu (Kg/cm2) Dura > 30 > 2,0 > 4,0 Muy rígida 15-30 Se marca difícilmente Se marca con la uña del pulgar 2,08-2,24 2,0-4,0 Rígida 8-15 Se marca con el pulgar 1,92-2,08 1,0-2,0 Media (firme) 4-8 Moldeable bajo presiones fuertes 1,76-1,92 0,5-1,0 Blanda 2-4 Moldeable bajo presiones débiles 1,60-1,76 0,25-0,5 Muy blanda <2 Se deshace entre los dedos 1,44-1,60 0-0,25 Cabe indicar que han sido considerados parámetros efectivos porque se há supuesto que todos los horizontes están bajo el nivel freático (de esta manera trabajamos a favor de la seguridad). A partir de los resultados obtenidos con las correlaciones encontramos que el área (alrededor 8,500m2) con los mejores parámetros de resistencia, está delimitada por los siguientes puntos: 7455374N/555659E, 7455453N/555659E, 7455453N/555555E y 7455374N/555555E. CONCLUSIONES La aplicación de la variografia y del método del inverso cuadrado de la distancia nos permitió realizar la previsión del valor de Número de Golpes N(SPT) en lugares no ensayados y a través de correlaciones empíricas determinar los parámetros de resistencia del suelo. La aplicación de las técnicas de modelamiento tridimensional han mostrado su gran utilidad en Geo - Ingeniería, en el caso expuesto nos han ayudado a determinar la ubicación de las capas con las mejores condiciones de resistencia, además dentro de estas capas hemos podido determinar cómo los parámetros de resistencia se distribuyen (basados en características geológicas innatas en cada uno de los materiales). REFERENCIAS Folle D.; Leite J.; Renard D.; Koppe J.; Zingano A.(2008), 3-D soil-resistance maps in the presence of a strong vertical trend. Engineering Geology Journal. Gutiérrez, J. (2009). Variabilidade Espacial do Parâmetro Geomêcanico RQD no Depósito Mineral Animas-Peru, Dissertação de Mestrado. PUC-RIO. Lambe, W.; Whitman R (2001), Mecánica de suelos. Limusa. Mendes R.; Lorandi R. (2008), Analysis of spatial variability of SPT penetration resistance in collapsible soils considering water table depth. Engineering Geology Journal. Parra, F. & Ramos, L Obtención de Parámetros Geomecánicos a partir de Ensayos a Penetración Dinámica continua en Suelos Mixtos Cohesivos- Granulares. ASG – Geotecnia. Rodrigues, S (1999). Estudo Geoestatístico do Subsolo da Usina Nuclear Angra 2, RJ. Dissertação de Mestrado. PUC-RIO.