SlideShare une entreprise Scribd logo
1  sur  30
Télécharger pour lire hors ligne
Acetil CoA e Ciclo de Krebs
Prof. Henning Ulrich
Glicose + Consumo de 2 ATP
2 Ácidos Pirúvicos + 4H+ + Produção de 4 ATP
(2C3H4O3)
2H+ são Transportados pelo NAD passando
Para o estado reduzido de NADH
Obs: Consumo de 2 ATP e Produção de 4ATP
(RENDIMENTO ENERGÉTICO: 2 ATP)
C6H12O6 + 2ADP + 2P + 2 NAD = 2C3H4O3 + 2ATP + 2NADH
EQUAÇÃO GERAL DA GLICÓLISE
Na mitocôndria
No citossol
3 NAD+ +FAD +GDP + Pi + acetil CoA + 2 H2O 3 NADH + 3H+ + FADH2 +GTP + CoA + 2CO2
Ciclo de Krebs:
A oxidação da acetil CoA fornece 8 elétrons para a redução de 3 NAD+ e de 1
FAD
Descarboxilação do piruvato:
Piruvato Coenzima A Acetil CoA
Redução de 1 NAD+
Formação de acetil CoA (rica em energia)
O poder redutor será usado para gerar um gradiente eletroquímico através da membrana da
mitocôndria
H3C-
+ H+
A energia química ganha na oxidação da glicose é utilizada para
reações endergônicas de síntese de moléculas estruturais da célula
Oxidação de glicose
O acetil CoA produzido através de piruvato, amino-
ácidos e ácidos graxos é oxidado no ciclo de
Krebs em CO2, obtendo-se como produtos
NADH, FADH2 e GTP (ATP).
Paralelamente a esta oxidação, o ciclo de Krebs
produz compostos utilizados como precursores
para biossíntese.
Como é um ciclo, uma molécula de oxalacetato
poderia, em principio, oxidar uma quantidade
indefinida de acetil CoA.
1. Complexo multi-enzimático piruvato desidrogenase
2. Ciclo de Krebs
3. Regulação do ciclo de Krebs
4. Reações anabólicas e transporte de metabólitos
Ciclo de Krebs (Ácido Cítrico)
A hidrólise da ligação de tioester (rico em energia; delta G0´= -34 KJ/mol)
Acetil-CoA (acetil-coenzima A)
CH3-COO- + CoASH CH3-CO-SCoA
ATP AMP + PPi
Dois complexos multi-enzimáticos
- Piruvato desidrogenase
(Piruvato acetil CoA)
a-cetoglutarato desidrogenase
(a-cetoglutarato succinil CoA)
Os dois são membros da família de 2-cetoácido desidrogenases
A acetil-CoA é formada a partir da descarboxilação oxidativa do piruvato,
realizada sequencialmente pela piruvato desidrogenase –PDH (complexo
multienzimático de 3 enzimas), na matriz mitocondrial:
Desidrogenase pirúvica (grupo prostético TPP)‫‏‬
Dihidrolipoiltranscetilase (grupo prostético Lipoamida)‫‏‬
Dihidrolipoildesidrogenase (grupo prostético FAD)‫‏‬
– …e 5 coenzimas:
Tiamina pirofosfato (TPP) – reage com o piruvato
Lipoamida – aceita grupo acetil e transfere-o para o CoA
CoA – aceita grupo acetil
FAD – aceita equivalentes redutores
NAD+ – aceita equivalentes redutores
Síntese de Acetil-CoA:
1-Descarboxilação oxidativa do piruvato
O complexo multi-enzimático de piruvato desidrogenase:
Formação de acetil-CoA
Piruvato + coenzima A + NAD+ AcetilCoA + NADH + CO2
Piruvato desidrogenase (E1)
Diidrolipoil transacetilase (E2)
Transferência do grupo
hidroxietil para E2 e oxidação
do hidroxietil carboniono para
um grupo acetil.
Dihidrolipoil
desidrogenase (E3)
E3 reducido é
oxidado por NAD+
Reacção global:
Os reagentes que iniciam o ciclo de Krebs são acetyl-CoA e oxalacetato.
O ciclo renova o oxaloacetato. A concentração de oxaloacetato determina a
velocidade do ciclo.
8 reações enzimáticas:
1. Citrato sintase: Acetil CoA + oxalo-acetato+ H2O Citrato + CoA-SH
(Condensação)
2. Aconitase: Citrato Isocitrato (Isomerização)
3. Isocitrato desidrogenase:
Isocitrato + NAD+ a-Cetoglutarato + CO2 + NADH + H+ (descarboxilação
oxidativa)
4. Complexo de a-Cetoglutarato desídrogenase:
a-Cetoglutarato + CoA-SH +NAD+ Sucinil CoA + CO2 + NADH + H+ (descarboxilação oxidativa)
5. Succinil CoA + GDP Sucinato + GTP + CoA-SH (Fosforilação
(succinil CoA sintase) ao nível de substrato)
6. Succinato +FAD Fumarato + FADH2
(succinato desidrogenase )
7. Fumarato + H2O Malato (Hidratação) fumarase
8. Malato + NAD+ Oxalacetato + NADH +H+ malato desidrogenase
3 NAD+ +FAD +GDP + Pi + acetil CoA + 2 H2O 3 NADH +H+ + FADH2 +GTP + CoA + 2CO2
Os passos do ciclo de Krebs
a-cetoglutarato desidrogenase complexo multi-enzimático funciona como
piruvato desidrogenase
a-cetoglutarato desidrogenase (E1) Piruvato desidrogenase (E1)
•Diidrolipoil transuccinilase (E2) Diidrolipoil transacetilase (E2)
•Diidrolipoil desidrogenase (E3) Diidrolipoil desidrogenase (E3)
1.
2.
3.
As reações exergônicas ajudam a catalisar reações endergônicas
Aumento da concentração de
citrato
Diminuição da concentração de
isocitrato (formação de a-
cetoglutarato)
K ([produto/reagente]) longe do
equilíbrio e reação acontece
Regulação da velocidade do ciclo de ácido cítrico
Por quê ?
Ciclo é acoplado a reoxidação do NADH + H+ e FADH2,
consumo de oxigênio e a produção de ATP.
Cadeia de transporte de elétrons é diretamente acoplada
ao ciclo de ácido cíclico.
Há 3 reações extremamente exergônicas, com DGo´ negativos, catalisadas por:
- Citrato sintase
- Isocitrato desidrogenase
a-cetogluatarato desidrogenase
que funcionam longe de equilíbrio.
Regulação da velocidade do ciclo de ácido cítrico
Regulação da velocidade do ciclo de ácido cítrico
Velocidade regulada por disponibilidade de acetil CoA, oxaloacetato e NAD+
Na mitocôndria, as concentrações desses substratos são menores que a concentração da
citrato sintase.
2. Inibição da reação pelo produto
O produto da reação catalisada pelo citrato sintase, o citrato é um inibidor competitivo pela
ligação do oxalacetato ao centro catalítico da enzima.
3. Inibição alostérica
Altas concentrações de ATP inibem a isocitrato desidrogenase.
4. Inibição do tipo feed-back:
Altas concentrações de succinil-CoA (“downstream” no ciclo) competem com acetil CoA
para ligação ao centro catalítico da piruvato desidrogenase.
5. Fosforilação ao nivel do substrato:
O complexo de piruvato desidrogenase é inativo quando fosforilado. A contração do
músculo é induzida pelo aumento de cálcio intracelular. O cálcio liberado ativa uma
fosfatase que desfosforila e ativa a enzima.
1. Disponibilidade de substrato
Regulação da atividade da piruvato desidrogenase por fosforilação
Inativo
Ativo
Inativo
Formação dos metabólitos do ciclo de Krebs
1. Aumento da concentração de oxaloacetato, aumento da velocidade, mais NADH + H+ e
FADH2 produzida, porém mais ganho de ATP.
2. Metabólitos utilizados para síntese de compostos de armazenamento de energia.
3. Síntese de elementos estruturais da célula, como ácidos nucleícos.
Alguns passos do ciclo são reversíveis
Reações reversíveis do ciclo de ácido cítrico
Funções anfibólicas do ciclo de Krebs
Vias anapleróticas fornecem intermediários do ciclo.
Vias anabólicas removem intermediários do ciclo para síntese de glicose, ácidos graxos,
aminoácidos e porfirinas.
Aumento da concentração dos reagentes do ciclo
• Piruvato carboxilase - converte piruvato para oxaloacetato
Piruvato + CO2 +ATP oxaloacetato + ADP + Pi
• PEP carboxiquinase (no musculo)
Piruvato + CO2 + GDP oxaloacetato + ADP + Pi
• PEP (fosfoenolpiruvato) carboxilase - converte PEP para
oxaloacetato (em plantas )
Fosfoenolpiruvato + CO2 oxaloacetato + Pi
• Enzima málica converte piruvato para malato
Piruvato + CO2 +NAD(P)H +H+ malato + NAD(P)+
Aumento da concentração de oxaloacetato
Transporte através da Membrana
Glicólise / gliconeogênese /
Síntese de ácidos graxos
Ciclo de Krebs /
b-oxidação
Aproveitamento do Lactato no ciclo
de Krebs e na gliconeogenese
Resumo
1. O complexo multienzimático de piruvato desidrogenase que contém três
enzimas e cinco cofatores que produz acetil-CoA a partir do piruvato.
2. O grupo acetato da acetil-CoA é oxidado a duas moléculas de CO2, com
geração de 3 NADH, 1 FADH2 e 1 GTP. A energia liberada quando as
coenzimas são reduzidas é armazenada na forma de ATP com redução do
oxigênio.
3. O ciclo é regulado nas 3 enzimas que catalisam reações exergônicas:
citrato sintase, isocitrato desidrogenase, e a-cetoglutarato desidrogenase.
(disponibilidade de substrato; inibição da reação enzimática pelo produto).
4. Ativação e inibição alostérica (NAD, NADH, ADP, ATP e cálcio).

Contenu connexe

Tendances (20)

Aula Proteinas
Aula ProteinasAula Proteinas
Aula Proteinas
 
Lipidios
LipidiosLipidios
Lipidios
 
aula 9- PROTEINAS simplificada
aula 9- PROTEINAS simplificadaaula 9- PROTEINAS simplificada
aula 9- PROTEINAS simplificada
 
Digestão e absorção de nutrientes
Digestão e absorção de nutrientesDigestão e absorção de nutrientes
Digestão e absorção de nutrientes
 
Carboidratos
CarboidratosCarboidratos
Carboidratos
 
Proteínas
Proteínas   Proteínas
Proteínas
 
Proteínas aminoácidos
Proteínas  aminoácidosProteínas  aminoácidos
Proteínas aminoácidos
 
Lipídios
LipídiosLipídios
Lipídios
 
Introdução à bioquímica
Introdução à bioquímicaIntrodução à bioquímica
Introdução à bioquímica
 
Mitocondrias
MitocondriasMitocondrias
Mitocondrias
 
Carboidratos
CarboidratosCarboidratos
Carboidratos
 
Proteínas composição e estrutura
Proteínas composição e estruturaProteínas composição e estrutura
Proteínas composição e estrutura
 
Carboidratos e Lipídios
Carboidratos e LipídiosCarboidratos e Lipídios
Carboidratos e Lipídios
 
Lisossomos
LisossomosLisossomos
Lisossomos
 
Carboidratos
CarboidratosCarboidratos
Carboidratos
 
Organelas Celulares I
Organelas Celulares IOrganelas Celulares I
Organelas Celulares I
 
Aula 2 - B
Aula 2 - BAula 2 - B
Aula 2 - B
 
Aula respiração celular
Aula respiração celularAula respiração celular
Aula respiração celular
 
Bioquimica proteinas e-vitaminas
Bioquimica proteinas e-vitaminasBioquimica proteinas e-vitaminas
Bioquimica proteinas e-vitaminas
 
Introdução à bioquímica
Introdução à bioquímicaIntrodução à bioquímica
Introdução à bioquímica
 

Similaire à Ciclo de krebs iq usp

Livro de bioquímica cap. 7 - 9
Livro de bioquímica cap. 7 - 9Livro de bioquímica cap. 7 - 9
Livro de bioquímica cap. 7 - 9Felipe Cavalcante
 
Metabolismo energético
Metabolismo energéticoMetabolismo energético
Metabolismo energéticoMARCIAMP
 
bioenergética no metabolismo das plantas
bioenergética no metabolismo das plantasbioenergética no metabolismo das plantas
bioenergética no metabolismo das plantasJeanMarcelo21
 
Aula 4 ciclo de krebs
Aula 4   ciclo de krebsAula 4   ciclo de krebs
Aula 4 ciclo de krebsInara Rocha
 
Metabolismo De Lipídios Veterinária
Metabolismo De Lipídios    VeterináriaMetabolismo De Lipídios    Veterinária
Metabolismo De Lipídios VeterináriaAdriana Quevedo
 
Metabolismo energético das células
Metabolismo energético das célulasMetabolismo energético das células
Metabolismo energético das célulaspereira159
 
Transformação e utilização da energia
Transformação e utilização da energiaTransformação e utilização da energia
Transformação e utilização da energiaspondias
 
Respiração celular e fermentação
Respiração celular e fermentaçãoRespiração celular e fermentação
Respiração celular e fermentaçãoProfessora Raquel
 
2ª e 3ª etapas da Respiração Celular
2ª e 3ª etapas da Respiração Celular2ª e 3ª etapas da Respiração Celular
2ª e 3ª etapas da Respiração CelularAdriana Quevedo
 
0001 respiração celualr
0001   respiração celualr0001   respiração celualr
0001 respiração celualrdescompliBIO
 
0001 respiração celualr
0001   respiração celualr0001   respiração celualr
0001 respiração celualrdescompliBIO
 
Apostila i bioquímica iii
Apostila i   bioquímica iiiApostila i   bioquímica iii
Apostila i bioquímica iiiLeonardo Duarte
 

Similaire à Ciclo de krebs iq usp (20)

Livro de bioquímica cap. 7 - 9
Livro de bioquímica cap. 7 - 9Livro de bioquímica cap. 7 - 9
Livro de bioquímica cap. 7 - 9
 
Metabolismo energético
Metabolismo energéticoMetabolismo energético
Metabolismo energético
 
Krebs alunos
Krebs  alunosKrebs  alunos
Krebs alunos
 
Ciclo de Krebs.pdf
Ciclo de Krebs.pdfCiclo de Krebs.pdf
Ciclo de Krebs.pdf
 
bioenergética no metabolismo das plantas
bioenergética no metabolismo das plantasbioenergética no metabolismo das plantas
bioenergética no metabolismo das plantas
 
Aula 4 ciclo de krebs
Aula 4   ciclo de krebsAula 4   ciclo de krebs
Aula 4 ciclo de krebs
 
Metabolismo De Lipídios Veterinária
Metabolismo De Lipídios    VeterináriaMetabolismo De Lipídios    Veterinária
Metabolismo De Lipídios Veterinária
 
Bioenergética do 3 ano
Bioenergética do 3 anoBioenergética do 3 ano
Bioenergética do 3 ano
 
Metabolismo energético das células
Metabolismo energético das célulasMetabolismo energético das células
Metabolismo energético das células
 
1°Série Respiracao
1°Série Respiracao 1°Série Respiracao
1°Série Respiracao
 
Beta oxidação 2017.pdf
Beta oxidação 2017.pdfBeta oxidação 2017.pdf
Beta oxidação 2017.pdf
 
002 glicolise
002 glicolise002 glicolise
002 glicolise
 
Respiração celular
Respiração celularRespiração celular
Respiração celular
 
Transformação e utilização da energia
Transformação e utilização da energiaTransformação e utilização da energia
Transformação e utilização da energia
 
Respiração celular e fermentação
Respiração celular e fermentaçãoRespiração celular e fermentação
Respiração celular e fermentação
 
2ª e 3ª etapas da Respiração Celular
2ª e 3ª etapas da Respiração Celular2ª e 3ª etapas da Respiração Celular
2ª e 3ª etapas da Respiração Celular
 
Ciclo de Krebs
Ciclo de KrebsCiclo de Krebs
Ciclo de Krebs
 
0001 respiração celualr
0001   respiração celualr0001   respiração celualr
0001 respiração celualr
 
0001 respiração celualr
0001   respiração celualr0001   respiração celualr
0001 respiração celualr
 
Apostila i bioquímica iii
Apostila i   bioquímica iiiApostila i   bioquímica iii
Apostila i bioquímica iii
 

Dernier

CURSO TÉCNICO DE ENFERMAGEM..........pptx
CURSO TÉCNICO DE ENFERMAGEM..........pptxCURSO TÉCNICO DE ENFERMAGEM..........pptx
CURSO TÉCNICO DE ENFERMAGEM..........pptxKarineRibeiro57
 
SDR - síndrome do desconforto respiratorio
SDR - síndrome do desconforto respiratorioSDR - síndrome do desconforto respiratorio
SDR - síndrome do desconforto respiratoriolaissacardoso16
 
8 - O Teste de sentar e levantar em 1 minuto como indicador de resultado nos ...
8 - O Teste de sentar e levantar em 1 minuto como indicador de resultado nos ...8 - O Teste de sentar e levantar em 1 minuto como indicador de resultado nos ...
8 - O Teste de sentar e levantar em 1 minuto como indicador de resultado nos ...Leila Fortes
 
Psicologia Hospitalar (apresentação de slides)
Psicologia Hospitalar (apresentação de slides)Psicologia Hospitalar (apresentação de slides)
Psicologia Hospitalar (apresentação de slides)a099601
 
Avanços da Telemedicina em dados | Regiane Spielmann
Avanços da Telemedicina em dados | Regiane SpielmannAvanços da Telemedicina em dados | Regiane Spielmann
Avanços da Telemedicina em dados | Regiane SpielmannRegiane Spielmann
 
700740332-0601-TREINAMENTO-LAVIEEN-2021-1.pdf
700740332-0601-TREINAMENTO-LAVIEEN-2021-1.pdf700740332-0601-TREINAMENTO-LAVIEEN-2021-1.pdf
700740332-0601-TREINAMENTO-LAVIEEN-2021-1.pdfMichele Carvalho
 

Dernier (7)

CURSO TÉCNICO DE ENFERMAGEM..........pptx
CURSO TÉCNICO DE ENFERMAGEM..........pptxCURSO TÉCNICO DE ENFERMAGEM..........pptx
CURSO TÉCNICO DE ENFERMAGEM..........pptx
 
SDR - síndrome do desconforto respiratorio
SDR - síndrome do desconforto respiratorioSDR - síndrome do desconforto respiratorio
SDR - síndrome do desconforto respiratorio
 
apresentacao-NR 12 2024.ppt
apresentacao-NR                        12 2024.pptapresentacao-NR                        12 2024.ppt
apresentacao-NR 12 2024.ppt
 
8 - O Teste de sentar e levantar em 1 minuto como indicador de resultado nos ...
8 - O Teste de sentar e levantar em 1 minuto como indicador de resultado nos ...8 - O Teste de sentar e levantar em 1 minuto como indicador de resultado nos ...
8 - O Teste de sentar e levantar em 1 minuto como indicador de resultado nos ...
 
Psicologia Hospitalar (apresentação de slides)
Psicologia Hospitalar (apresentação de slides)Psicologia Hospitalar (apresentação de slides)
Psicologia Hospitalar (apresentação de slides)
 
Avanços da Telemedicina em dados | Regiane Spielmann
Avanços da Telemedicina em dados | Regiane SpielmannAvanços da Telemedicina em dados | Regiane Spielmann
Avanços da Telemedicina em dados | Regiane Spielmann
 
700740332-0601-TREINAMENTO-LAVIEEN-2021-1.pdf
700740332-0601-TREINAMENTO-LAVIEEN-2021-1.pdf700740332-0601-TREINAMENTO-LAVIEEN-2021-1.pdf
700740332-0601-TREINAMENTO-LAVIEEN-2021-1.pdf
 

Ciclo de krebs iq usp

  • 1. Acetil CoA e Ciclo de Krebs Prof. Henning Ulrich
  • 2. Glicose + Consumo de 2 ATP 2 Ácidos Pirúvicos + 4H+ + Produção de 4 ATP (2C3H4O3) 2H+ são Transportados pelo NAD passando Para o estado reduzido de NADH Obs: Consumo de 2 ATP e Produção de 4ATP (RENDIMENTO ENERGÉTICO: 2 ATP)
  • 3. C6H12O6 + 2ADP + 2P + 2 NAD = 2C3H4O3 + 2ATP + 2NADH EQUAÇÃO GERAL DA GLICÓLISE
  • 5.
  • 6. 3 NAD+ +FAD +GDP + Pi + acetil CoA + 2 H2O 3 NADH + 3H+ + FADH2 +GTP + CoA + 2CO2 Ciclo de Krebs: A oxidação da acetil CoA fornece 8 elétrons para a redução de 3 NAD+ e de 1 FAD Descarboxilação do piruvato: Piruvato Coenzima A Acetil CoA Redução de 1 NAD+ Formação de acetil CoA (rica em energia) O poder redutor será usado para gerar um gradiente eletroquímico através da membrana da mitocôndria H3C- + H+
  • 7. A energia química ganha na oxidação da glicose é utilizada para reações endergônicas de síntese de moléculas estruturais da célula
  • 9. O acetil CoA produzido através de piruvato, amino- ácidos e ácidos graxos é oxidado no ciclo de Krebs em CO2, obtendo-se como produtos NADH, FADH2 e GTP (ATP). Paralelamente a esta oxidação, o ciclo de Krebs produz compostos utilizados como precursores para biossíntese. Como é um ciclo, uma molécula de oxalacetato poderia, em principio, oxidar uma quantidade indefinida de acetil CoA. 1. Complexo multi-enzimático piruvato desidrogenase 2. Ciclo de Krebs 3. Regulação do ciclo de Krebs 4. Reações anabólicas e transporte de metabólitos Ciclo de Krebs (Ácido Cítrico)
  • 10. A hidrólise da ligação de tioester (rico em energia; delta G0´= -34 KJ/mol) Acetil-CoA (acetil-coenzima A) CH3-COO- + CoASH CH3-CO-SCoA ATP AMP + PPi
  • 11. Dois complexos multi-enzimáticos - Piruvato desidrogenase (Piruvato acetil CoA) a-cetoglutarato desidrogenase (a-cetoglutarato succinil CoA) Os dois são membros da família de 2-cetoácido desidrogenases
  • 12. A acetil-CoA é formada a partir da descarboxilação oxidativa do piruvato, realizada sequencialmente pela piruvato desidrogenase –PDH (complexo multienzimático de 3 enzimas), na matriz mitocondrial: Desidrogenase pirúvica (grupo prostético TPP)‫‏‬ Dihidrolipoiltranscetilase (grupo prostético Lipoamida)‫‏‬ Dihidrolipoildesidrogenase (grupo prostético FAD)‫‏‬ – …e 5 coenzimas: Tiamina pirofosfato (TPP) – reage com o piruvato Lipoamida – aceita grupo acetil e transfere-o para o CoA CoA – aceita grupo acetil FAD – aceita equivalentes redutores NAD+ – aceita equivalentes redutores Síntese de Acetil-CoA: 1-Descarboxilação oxidativa do piruvato
  • 13. O complexo multi-enzimático de piruvato desidrogenase: Formação de acetil-CoA Piruvato + coenzima A + NAD+ AcetilCoA + NADH + CO2 Piruvato desidrogenase (E1) Diidrolipoil transacetilase (E2) Transferência do grupo hidroxietil para E2 e oxidação do hidroxietil carboniono para um grupo acetil. Dihidrolipoil desidrogenase (E3) E3 reducido é oxidado por NAD+
  • 15. Os reagentes que iniciam o ciclo de Krebs são acetyl-CoA e oxalacetato. O ciclo renova o oxaloacetato. A concentração de oxaloacetato determina a velocidade do ciclo. 8 reações enzimáticas: 1. Citrato sintase: Acetil CoA + oxalo-acetato+ H2O Citrato + CoA-SH (Condensação) 2. Aconitase: Citrato Isocitrato (Isomerização) 3. Isocitrato desidrogenase: Isocitrato + NAD+ a-Cetoglutarato + CO2 + NADH + H+ (descarboxilação oxidativa) 4. Complexo de a-Cetoglutarato desídrogenase: a-Cetoglutarato + CoA-SH +NAD+ Sucinil CoA + CO2 + NADH + H+ (descarboxilação oxidativa) 5. Succinil CoA + GDP Sucinato + GTP + CoA-SH (Fosforilação (succinil CoA sintase) ao nível de substrato) 6. Succinato +FAD Fumarato + FADH2 (succinato desidrogenase ) 7. Fumarato + H2O Malato (Hidratação) fumarase 8. Malato + NAD+ Oxalacetato + NADH +H+ malato desidrogenase 3 NAD+ +FAD +GDP + Pi + acetil CoA + 2 H2O 3 NADH +H+ + FADH2 +GTP + CoA + 2CO2
  • 16. Os passos do ciclo de Krebs
  • 17. a-cetoglutarato desidrogenase complexo multi-enzimático funciona como piruvato desidrogenase a-cetoglutarato desidrogenase (E1) Piruvato desidrogenase (E1) •Diidrolipoil transuccinilase (E2) Diidrolipoil transacetilase (E2) •Diidrolipoil desidrogenase (E3) Diidrolipoil desidrogenase (E3)
  • 18. 1. 2. 3. As reações exergônicas ajudam a catalisar reações endergônicas Aumento da concentração de citrato Diminuição da concentração de isocitrato (formação de a- cetoglutarato) K ([produto/reagente]) longe do equilíbrio e reação acontece
  • 19. Regulação da velocidade do ciclo de ácido cítrico Por quê ? Ciclo é acoplado a reoxidação do NADH + H+ e FADH2, consumo de oxigênio e a produção de ATP. Cadeia de transporte de elétrons é diretamente acoplada ao ciclo de ácido cíclico. Há 3 reações extremamente exergônicas, com DGo´ negativos, catalisadas por: - Citrato sintase - Isocitrato desidrogenase a-cetogluatarato desidrogenase que funcionam longe de equilíbrio.
  • 20. Regulação da velocidade do ciclo de ácido cítrico
  • 21. Regulação da velocidade do ciclo de ácido cítrico Velocidade regulada por disponibilidade de acetil CoA, oxaloacetato e NAD+ Na mitocôndria, as concentrações desses substratos são menores que a concentração da citrato sintase. 2. Inibição da reação pelo produto O produto da reação catalisada pelo citrato sintase, o citrato é um inibidor competitivo pela ligação do oxalacetato ao centro catalítico da enzima. 3. Inibição alostérica Altas concentrações de ATP inibem a isocitrato desidrogenase. 4. Inibição do tipo feed-back: Altas concentrações de succinil-CoA (“downstream” no ciclo) competem com acetil CoA para ligação ao centro catalítico da piruvato desidrogenase. 5. Fosforilação ao nivel do substrato: O complexo de piruvato desidrogenase é inativo quando fosforilado. A contração do músculo é induzida pelo aumento de cálcio intracelular. O cálcio liberado ativa uma fosfatase que desfosforila e ativa a enzima. 1. Disponibilidade de substrato
  • 22. Regulação da atividade da piruvato desidrogenase por fosforilação Inativo Ativo Inativo
  • 23. Formação dos metabólitos do ciclo de Krebs 1. Aumento da concentração de oxaloacetato, aumento da velocidade, mais NADH + H+ e FADH2 produzida, porém mais ganho de ATP. 2. Metabólitos utilizados para síntese de compostos de armazenamento de energia. 3. Síntese de elementos estruturais da célula, como ácidos nucleícos. Alguns passos do ciclo são reversíveis
  • 24. Reações reversíveis do ciclo de ácido cítrico
  • 25. Funções anfibólicas do ciclo de Krebs Vias anapleróticas fornecem intermediários do ciclo. Vias anabólicas removem intermediários do ciclo para síntese de glicose, ácidos graxos, aminoácidos e porfirinas.
  • 26. Aumento da concentração dos reagentes do ciclo • Piruvato carboxilase - converte piruvato para oxaloacetato Piruvato + CO2 +ATP oxaloacetato + ADP + Pi • PEP carboxiquinase (no musculo) Piruvato + CO2 + GDP oxaloacetato + ADP + Pi • PEP (fosfoenolpiruvato) carboxilase - converte PEP para oxaloacetato (em plantas ) Fosfoenolpiruvato + CO2 oxaloacetato + Pi • Enzima málica converte piruvato para malato Piruvato + CO2 +NAD(P)H +H+ malato + NAD(P)+
  • 27. Aumento da concentração de oxaloacetato
  • 28. Transporte através da Membrana Glicólise / gliconeogênese / Síntese de ácidos graxos Ciclo de Krebs / b-oxidação
  • 29. Aproveitamento do Lactato no ciclo de Krebs e na gliconeogenese
  • 30. Resumo 1. O complexo multienzimático de piruvato desidrogenase que contém três enzimas e cinco cofatores que produz acetil-CoA a partir do piruvato. 2. O grupo acetato da acetil-CoA é oxidado a duas moléculas de CO2, com geração de 3 NADH, 1 FADH2 e 1 GTP. A energia liberada quando as coenzimas são reduzidas é armazenada na forma de ATP com redução do oxigênio. 3. O ciclo é regulado nas 3 enzimas que catalisam reações exergônicas: citrato sintase, isocitrato desidrogenase, e a-cetoglutarato desidrogenase. (disponibilidade de substrato; inibição da reação enzimática pelo produto). 4. Ativação e inibição alostérica (NAD, NADH, ADP, ATP e cálcio).