SlideShare une entreprise Scribd logo
1  sur  52
PrPrøveforelesning, Oppgittøveforelesning, Oppgitt
EmneEmne
Water Phases (Solid, Liquid andWater Phases (Solid, Liquid and
Vapor)Vapor)
on Mars: Theoretical andon Mars: Theoretical and
ObservationalObservational
Evidence for Their Past and PresentEvidence for Their Past and Present
Distribution, Including Global InventoryDistribution, Including Global Inventory
joern@jernsletten.namejoern@jernsletten.name
http://joern.jernsletten.name/http://joern.jernsletten.name/
Mandag, 14. Juni 2004Mandag, 14. Juni 2004
Universitetet i BergenUniversitetet i Bergen
Det Matematisk-Naturvitenskapelige FakultetDet Matematisk-Naturvitenskapelige Fakultet
Institutt for GeovitenskapInstitutt for Geovitenskap
DoctorDoctor
PhilosophiaePhilosophiae
JJøørn Atlern Atle
JernslettenJernsletten
OutlineOutline
• Chronology
• Vapor
– Theoretical evidence
= Past & present distribution
– Observational evidence
= Past & present distribution
• Solid
– (same structure as Vapor section)
– Earth / Mars analogs
• Liquid
– (same structure as Vapor section)
– Earth / Mars analogs
• Global inventory
• Summary
• References Cited
Chronology Based on Crater CountsChronology Based on Crater Counts
( Adapted from McKee, 2003, after: Hartman and Neukum, 2001;
Jakosky and Phillips, 2001; Zuber, 2001; Tanaka et al., 1992 )
[Vapor]:[Vapor]: Early ObservationsEarly Observations
• No separable water vapor signal
= Sling psychrometer (Campbell, 1910)
• Water vapor ~3% of Earth atmosphere
= Prismatic spectrograph (Adams and St. John, 1926)
• Early obs. around λ7200 using large grating spectrograph
= No evidence for water vapor (Adams and Dunham, 1937)
• Partial pressure of water in Martian atmosphere
= Based on dissociation pressure of goethite (Adamcik, 1963)
[Vapor]:[Vapor]: Observational EvidenceObservational Evidence
• <1 – ~100 pr µm in atmosphere (Carr, 1996)
= Average ~10 pr µm; close to saturation
• First shown by Earth-based telescopic observations in the
1960s
• Viking Mars Atmospheric Water Detector (MAWD)
= Small amounts in the Martian atmosphere (Farmer et al., 1976)
= Global vapor content ~ 1.3 cu km water ice (Farmer et al., 1977)
• European Space Agency (ESA), Infrared Space
Observatory (ISO) (Burgdorf et al., 2000)
= Two complimentary spectrometers
 Infrared
= Total column density 12 ± 3.5 pr µm
• TES observations (Smith, 2002)
= ~100 pr µm north high lat.s, ~50 pr µm south, midsummer
= <5 pr µm, middle & high lat.s, fall & winter both hemispheres
• Some H2O–bearing minerals invisible (Kirkland et al., 2003)
[Vapor]:[Vapor]: TES vs. Synthetic SpectrumTES vs. Synthetic Spectrum
( Adapted from Smith, 2002 )
[Vapor]:[Vapor]: Temporal and Spatial VariabilityTemporal and Spatial Variability
• Seasonal max. 45-50 pr µm (Barker et al., 1970)
• Obs. at McDonald Observatory 1972–1974 (Barker, 1976)
= 469 individual photoelectric scans of Doppler-shifted H2
O lines
= Almost 1 full Martian year (Ls
= 118−269° and 301−80°)
= Planetwide abundance 5−15 pr µm
= Maximum abundance ~40 pr µm
 After solstice at about 40° latitude in each hemisphere
= Max. amount precedes max. insolation by 10–20° latitude
= During the "drier" seasons (5–20 pr µm) near the equinoxes on
Mars, the atmospheric water vapor changes by a factor of 2–
3x over a diurnal cycle with the maximum near local noon
= The effects of the 1973 dust storm during the southern summer
reduced the amount of water vapor over the southern
hemisphere regions to 3–8 pr µm
• Lat. of max. pr µm northern polar area => equatorial lat.s
= From northern summer through northern fall (Farmer et al., 1977)
= Not confirmed by TES (Smith, 2002)
• Deuterium cold trap u. atm. (Bertaux and Montmessin, 2001)
[Vapor]:[Vapor]: TES & MAWD TemporalTES & MAWD Temporal
VariationsVariations
( Adapted from Smith, 2002 )
[Vapor]:[Vapor]: TES Geographic DistributionTES Geographic Distribution
( Adapted from Smith, 2002 )
Divided by (psurf/6.1):
[Solid]:[Solid]: Calculated Possible Depths to theCalculated Possible Depths to the
Base of the Martian CryosphereBase of the Martian Cryosphere
( Adapted from tabular data, Clifford, 1993 ). The thermal model
used Equation 3.1, and with the following values for parameters:
Minimum: Qg
= 45 mW m-2
, K = 1.0 W m-1
K-1
, and Tmp
= 210 K;
Nominal: Qg
= 30 mW m-2
, K = 2.0 W m-1
K-1
, and Tmp
= 252 K;
Maximum: Qg
= 15 mW m-2
, K = 3.0 W m-1
K-1
, and Tmp
= 273 K
[Solid]:[Solid]: Constitutive Relation forConstitutive Relation for
IceIce
Glen's Flow Law is widely accepted as the constitutive relation
for ice when shear stress acts on its basal plane:
where έ is the strain rate; A is a temperature-dependent constant; τb
is the basal shear stress; and n is a power law exponent (Glen, 1958)
έ = A τb
n
Equation 4.15
 Regards ice as a plastic substance with a yield stress τ of 1 bar
(Paterson, 1981)
 Value of n generally taken as 3 (Paterson 1981; Johnston, 1981)
 Shear strain rate (flow velocity) is lower for colder ice as a
function of A
 A varies with temperature, and is equal, for example, to 6.8 x 10 -15
s-1
kPa-3
at 273 K, 4.9 x 10-16
at 263 K, 1.7 x 10-16
at 253 K, and 5.1
x 10-17
at 243 K
 n varies with applied stress, taking a value of 1 for Newtonian
deformation, and 3 for non-Newtonian deformation (Paterson, 1994)
 Available evidence indicates that n = 3 for most situations
(Russell-Head and Budd, 1979)
[Solid]:[Solid]: Deformation of FrozenDeformation of Frozen
GroundGround
The total strain in deforming frozen ground is the sum of an
instantaneous strain, ε(i)
, and a creep strain, ε(c)
. The primary
creep of frozen ground (and ice) in a state of constant stress
can be described by the creep law (Andersland et al., 1978):
ε(c)
= Kσn
tb
Equation 4.17
where K, n, and b are temperature-dependent material constants
The steady state creep strain is governed by the creep law
(Hult, 1966):
έ(c)
= G(σ, T) Equation 4.18
where έ(c)
is the steady state (secondary) creep rate; and the
function G(σ,T) is found by plotting the slope dε(c)
/dt against
the applied stress for various temperatures
[Solid]:[Solid]: Temperature DependenceTemperature Dependence
inin
the Creep Lawthe Creep Law
where έc
is the creep rate selected for the laboratory experiment
- for frozen soils is often taken as 10-5
min-1
(Andersland et al.,
1978); σc
is the uniaxial stress for the selected creep rate; σc
(T) and n(T) are
temperature-dependent creep parameters
The creep law can be rewritten in the form of a power expression
(Hult, 1966; Ladanyi, 1972):
έ(c)
= έc
[σ/σc
(T)]n(T)
Equation 4.19
 The equations for both primary and secondary creep emphasize the
temperature-dependence of creep deformation
[Solid]:[Solid]: Map of the Deformation MechanismsMap of the Deformation Mechanisms
of Iceof Ice
As a function of temperature, applied stress, and strain rate
( from Carr, 1996, after Shoji and Higashi, 1978 )
[Solid]:[Solid]: Debris-Ice Feature TerminologyDebris-Ice Feature Terminology
( Adapted from Whalley and Azizi, 2003 )
[Solid]:[Solid]: Typical Rock Glaciers inTypical Rock Glaciers in
Wrangell Mountains, AlaskaWrangell Mountains, Alaska
Rock glacier “a” has a single lobe, and rock glacier “b”
has a second lobe that appears to have advanced on
top of another lobe that advanced at an earlier time
( Adapted from Whalley and Azizi, 2003 )
[Solid]:[Solid]: Two Possible Rock-Ice SystemsTwo Possible Rock-Ice Systems
in Candor Chasma, Marsin Candor Chasma, Mars
Feature “A” resembles a rock glacier, and feature
“B” resembles a protalus rampart
( Adapted from Whalley and Azizi, 2003;
After Malin et al., 2000 )
[Solid]:[Solid]: Enlargements of CandorEnlargements of Candor
Chasma FeaturesChasma Features
Feature “A” resembles a rock glacier, and feature
“B” resembles a protalus rampart
( Adapted from Whalley and Azizi, 2003;
After Malin et al., 2000 )
Enlargement of feature A Enlargement of feature B
[Solid]:[Solid]: Degradation of Ice-rich MaterialDegradation of Ice-rich Material
• Insolation asymmetries → slope asymmetries
– Differential sublimation erosion
(Howard et al., 1982; Fenton and Herkenhoff, 2000 )
– Differential ground ice melting
(Kreslavsky and Head, 2003 )
• Sublimation erosion in degradation of slopes
– Mars
(Squyres, 1979; Howard et al., 1982; Moore et al., 1996; Fenton and Herkenhoff,
2000;
Kreslavsky and Head, 2003 )
– Moons; including Triton, Io, and Ganymede
(Smith et al., 1989; Moore et al., 1996, 1997, 1998 )
[Solid]:[Solid]: Profiles of Trough inProfiles of Trough in
Northern Polar Layered DepositsNorthern Polar Layered Deposits
(Adapted from Fenton and Herkenhoff, 2000)
[Solid]:[Solid]: Profiles of Trough inProfiles of Trough in
Northern Polar Layered DepositsNorthern Polar Layered Deposits
(Adapted from Fenton and Herkenhoff, 2000)
[Solid]: North-South Components of[Solid]: North-South Components of
SlopeSlope
AngleAngle > 5°> 5°
Equatorward Slopes Poleward Slopes
[Solid]:[Solid]: North-South Components ofNorth-South Components of
Slope Angle vs. LatitudeSlope Angle vs. Latitude
[Solid]:[Solid]: Equatorward and PolewardEquatorward and Poleward
CountsCounts
[Solid]:[Solid]: Correlations of Poleward N-SCorrelations of Poleward N-S
Components of Slope AngleComponents of Slope Angle
[Solid]:[Solid]: Correlations of Equatorward N-SCorrelations of Equatorward N-S
Components of Slope AngleComponents of Slope Angle
[Solid]:[Solid]: Equatorward-Poleward SlopeEquatorward-Poleward Slope
Angle DifferencesAngle Differences
101-pt. centered moving average smoothing101-pt. centered moving average smoothing
• Average difference 0.25º ± 0.04º
– Equatorward slopes steeper than poleward slopes
• Northern hemisphere 0.29º ± 0.06º
• Southern hemisphere 0.20º ± 0.03º
[Solid]:[Solid]: Quantified Equatorward-PolewardQuantified Equatorward-Poleward
Slope Angle DifferencesSlope Angle Differences
[Solid]:[Solid]: Correlations of Equatorward-Correlations of Equatorward-
Poleward Slope Angle DifferencePoleward Slope Angle Difference
[Solid]:[Solid]: N-S Components of Slope AngleN-S Components of Slope Angle
at 30at 30°°-- 6060°° LatitudesLatitudes
• Average difference 0.16º ± 0.04º
– Equatorward slopes steeper than poleward slopes
• Northern hemisphere 0.11º ± 0.08º
• Southern hemisphere 0.22º ± 0.03º
[Solid]:[Solid]: Incidence AnglesIncidence Angles
[Solid]:[Solid]: North-South Components ofNorth-South Components of
Slope Angle vs. TemperatureSlope Angle vs. Temperature
[Solid]:[Solid]: Depth below the Surface at whichDepth below the Surface at which
Ground Ice is StableGround Ice is Stable
(Adapted from Carr, 1996; after Farmer and Doms, 1979)
[Solid]:[Solid]: Map of Epithermal Neutron FluxMap of Epithermal Neutron Flux
from the Neutron Spectrometer of the GRSfrom the Neutron Spectrometer of the GRS
Source: Boynton et al. (2002). Low values of epithermal flux indicate high hydrogen concentration (8). Contours (in white)
show the regions where water ice is predicted to be stable at 0.8 meters depth as predicted by the model of Mellon and
Jakosky (1993) (note that no predictions were made poleward of 60° latitude as no thermal inertia data were available)
[Solid]:[Solid]: Residual Polar Ice CapsResidual Polar Ice Caps
( Images courtesy of NASA/JPL/Malin Space Science
Systems )
[Solid]:[Solid]: Polar Layered DepositsPolar Layered Deposits
Mars Orbiter Camera
image No. 46103;
( Images courtesy of
NASA/JPL/Malin Space
Science Systems )
[Solid]:[Solid]: Polygonal GroundPolygonal Ground
Mars Orbiter Camera image No. E09-00029;
( Image courtesy of NASA/JPL/Malin Space Science
Systems )
LiquidLiquid
• Current atmospheric temperature and pressure
conditions preclude the existence of liquid water on
the surface of Mars
= 154-218 K, diurnal range 170-290 K at lower latitudes
= 6-10 mbar
 Past & present distribution
[Liquid]:[Liquid]: Coprates Chasma LayeringCoprates Chasma Layering
andand
Spur-and-Gully MorphologySpur-and-Gully Morphology
b. This close-up is centered at 14.5° South, 55.8° West;
Image covers an area of approximately 9.8 km by 17.3
km;
North is up ( MOC images courtesy of NASA/JPL/Malin
Space Science Systems )
a. Context image b. Central ridge close-up
[Liquid]:[Liquid]: Floor Deposits in ParallelFloor Deposits in Parallel
Trough South of Coprates ChasmaTrough South of Coprates Chasma
Mars Orbiter Camera image No. MOC2-
420;
center of image is at 60.1º West
longitude, 15.2º South latitude
( Image courtesy of NASA/JPL/Malin
Space
Science Systems )
[Liquid]:[Liquid]: Layered Floor Deposits in FarLayered Floor Deposits in Far
Western Candor ChasmaWestern Candor Chasma
Right image is 1.5 km wide, 2.9 km tall;
Mars Orbiter Camera image No. FHA-01278;
Context image Mars Orbiter Camera image No. FHA-01275;
( Images courtesy of NASA/JPL/Malin Space Science Systems
)
a. Context image b. Layered floor deposits
[Liquid]:[Liquid]: Nirgal Vallis Sand WavesNirgal Vallis Sand Waves
Mars Orbiter Camera
image No. E02-02651;
( Image courtesy of
NASA/JPL/Malin Space
Science Systems )
[Liquid]:[Liquid]: Nanedi Vallis ChannelNanedi Vallis Channel
Mars Orbiter Camera
image No. 8704;
( Image courtesy of
NASA/JPL/Malin Space
Science Systems )
[Liquid]:[Liquid]: Liquidized Debris FlowLiquidized Debris Flow
(Adapted from Baratoux et al., 2002)
[Liquid]:[Liquid]: Water FlowsWater Flows
Mars Orbiter Camera
image No. M09-03004;
( Image courtesy of
NASA/JPL/Malin Space
Science Systems )
[Liquid]:[Liquid]: Oceans?Oceans?
(Adapted from Clifford and Parker, 2001) (Adapted from Carr and Head, 2003)
[Liquid]:[Liquid]: Peña de Hierro, Main SourcePeña de Hierro, Main Source
AreaArea
Morris et al., 2004Morris et al., 2004
Kargel and Marion, 2004Kargel and Marion, 2004
Stoker et al., 2004Stoker et al., 2004
Fernández-Remolar et al., 2003, 2004Fernández-Remolar et al., 2003, 2004
Jernsletten and Heggy, 2004a,bJernsletten and Heggy, 2004a,b
A.k.a. MER-B in the Late Hesperian?A.k.a. MER-B in the Late Hesperian?
Jarosite =Jarosite = KFeKFe3+3+
33 (SO(SO44 ))22 (OH)(OH)66
 Basic hydrous potassium iron sulfate
 Yellow-brown, brown, orange-brown
 Light yellow streaks
[Global inventory]:[Global inventory]: Estimates for major HEstimates for major H22 OO
Reservoirs and TotalReservoirs and Total
Present-Day Inventory of Water on MarsPresent-Day Inventory of Water on Mars
( Sources: 1Farmer and Doms, 1979; 2Carr, 1987; 3Smith et al., 1999;
4Johnson et al., 2000; 5Clifford, 1993 )
SummarySummary
• 10-12 pr µm water vapor in Martian atmosphere
= Always close to saturation
= Direct observational evidence from MAWD, TES, telescopic obs.
• Presence of water ice evidenced by
= Polar ice caps
= Polar layered terrain
= Terrain deformation
 Analogs to terrestrial rock glaciers & protalus ramparts
 Poleward / equatorward slope assymmetries
= Direct observational evidence from Odyssey / GRS / HEND
 Gamma Ray Spectrometer / High Energy Neutron Detector
• Past presence of liquid water evidenced by
= Layering / apparent sedimentation
= Morphologic evidence
 Apparent river channels / lake beds / shore lines
 Apparent signatures of water flow
= Direct observational evidence from MER-B Opportunity (!)
 Jarocite, “blueberries”
 Analog to acidic metal-rich brine pools in Rio Tinto, Spain
• Equivalent ocean 100’s m global inventory
=> Abundant evidence for water on Mars
Adamcik, J. A. (1963),Adamcik, J. A. (1963), The water vapor content of the Martian atmosphere as a problem of chemical equilibrium,The water vapor content of the Martian atmosphere as a problem of chemical equilibrium, Planet. Space Sci., 11Planet. Space Sci., 11(4),(4), 355-359.355-359.
Adams, W. S., and C. E. St. John (1926), An attempt to detect water-vapor and oxygen lines in the spectrum of Mars with theAdams, W. S., and C. E. St. John (1926), An attempt to detect water-vapor and oxygen lines in the spectrum of Mars with the
registering microphotometer,registering microphotometer, Astrophys. J., 63Astrophys. J., 63, 133-137., 133-137.
Adams, W. S., and T. Dunham (1937), Water-vapor lines in the spectrum of Mars,Adams, W. S., and T. Dunham (1937), Water-vapor lines in the spectrum of Mars, Publ. Astron. Soc. Pacific, 49Publ. Astron. Soc. Pacific, 49(290), 209-211.(290), 209-211.
Andersland, O. B., F. H. Sayles, and B. Ladanyi (1978), Mechanical properties of frozen ground, Chapter 5 inAndersland, O. B., F. H. Sayles, and B. Ladanyi (1978), Mechanical properties of frozen ground, Chapter 5 in Geotechnical engineeringGeotechnical engineering
for cold regionsfor cold regions, edited by O. B. Andersland and D. M. Anderson, pp. 216-275, McGraw-Hill, New York, New York., edited by O. B. Andersland and D. M. Anderson, pp. 216-275, McGraw-Hill, New York, New York.
Baratoux, D., N. Mangold, C. Delacourt, and P. Allemand (2002), Evidence of liquid water in recent debris avalanche on Mars,Baratoux, D., N. Mangold, C. Delacourt, and P. Allemand (2002), Evidence of liquid water in recent debris avalanche on Mars,
Geophys. Res. Lett., 29Geophys. Res. Lett., 29(7), 60-1 – 60-4.(7), 60-1 – 60-4.
Barker, E. S. (1976), Mars: Detection of atmospheric water vapor during the southern hemisphere spring and summer season,Barker, E. S. (1976), Mars: Detection of atmospheric water vapor during the southern hemisphere spring and summer season, Icarus,Icarus,
2828(2), 247-268.(2), 247-268.
Barker, E. S., R. A. Schorn, A. Woszczyk, R. G. Tull, and S. J. Little (1970), Mars: Detection of atmospheric water vapor during theBarker, E. S., R. A. Schorn, A. Woszczyk, R. G. Tull, and S. J. Little (1970), Mars: Detection of atmospheric water vapor during the
southern hemisphere spring and summer season,southern hemisphere spring and summer season, Science, 170Science, 170, 1308-1310., 1308-1310.
Bertaux, J.-L., and F. Montmessin (2001),Bertaux, J.-L., and F. Montmessin (2001), Isotopic fractionation through water vapor condensation: The Deuteropause, a cold trap forIsotopic fractionation through water vapor condensation: The Deuteropause, a cold trap for
deuterium in the atmosphere of Marsdeuterium in the atmosphere of Mars ,, J. Geophys. Res., 106J. Geophys. Res., 106(E12),(E12), 32879-32884.32879-32884.
Boynton, W. V., W. C. Feldman, S. W. Squyres, T. H. Prettyman, J. Brückner, L. G. Evans, R. C. Reedy, R. Starr, J. R. Arnold, D. M. Drake, P. A. J.Boynton, W. V., W. C. Feldman, S. W. Squyres, T. H. Prettyman, J. Brückner, L. G. Evans, R. C. Reedy, R. Starr, J. R. Arnold, D. M. Drake, P. A. J.
Englert, A. E. Metzger, I. G. Mitrofanov, J. I. Trombka, C. d’Uston, H. Wänke, O. Gasnault, D. K. Hamara, D. M. Janes, R. L. Marcialis, S.Englert, A. E. Metzger, I. G. Mitrofanov, J. I. Trombka, C. d’Uston, H. Wänke, O. Gasnault, D. K. Hamara, D. M. Janes, R. L. Marcialis, S.
Maurice, I. Mikheeva, G. J. Taylor, R. L. Tokar, and C. Shinohara (2002), Distribution of hydrogen in the near surface of Mars: Evidence forMaurice, I. Mikheeva, G. J. Taylor, R. L. Tokar, and C. Shinohara (2002), Distribution of hydrogen in the near surface of Mars: Evidence for
subsurface ice deposits,subsurface ice deposits, Science, 297Science, 297, 81-85., 81-85.
Burgdorf, M. J., T. Encrenaz, E. Lellouch, H. Feuchtgruber, G. R. Davis, B. M. Swinyard, T. de Graauw, P. W. Morris, S. D. Sidher, M. J. Griffin, F.Burgdorf, M. J., T. Encrenaz, E. Lellouch, H. Feuchtgruber, G. R. Davis, B. M. Swinyard, T. de Graauw, P. W. Morris, S. D. Sidher, M. J. Griffin, F.
Forget, and T. L. Lim (2000), ISO observations of Mars: An estimate of the water vapor vertical distribution and the surface emissivity,Forget, and T. L. Lim (2000), ISO observations of Mars: An estimate of the water vapor vertical distribution and the surface emissivity, Icarus,Icarus,
145145, 79-90., 79-90.
Campbell, W. W. (1910), Water vapor on Mars,Campbell, W. W. (1910), Water vapor on Mars, J. Royal Astron. Soc. Canada, 4J. Royal Astron. Soc. Canada, 4, 212-213., 212-213.
Carr, M. H. (1987), Mars: A water-rich planet?, inCarr, M. H. (1987), Mars: A water-rich planet?, in MECA symposium on Mars: evolution of its climate and atmosphereMECA symposium on Mars: evolution of its climate and atmosphere, edited by V. Baker et al., hosted, edited by V. Baker et al., hosted
by National air and space museum, Smithsonian institution, Washington, D. C., July 17-19, 1986,by National air and space museum, Smithsonian institution, Washington, D. C., July 17-19, 1986, LPI Technical Report 87-01LPI Technical Report 87-01, pp. 23-25,, pp. 23-25,
Lunar and Planetary Institute, Houston, Texas.Lunar and Planetary Institute, Houston, Texas.
Carr, M. H. (1996),Carr, M. H. (1996), Water on MarsWater on Mars. Oxford University Press, New York, New York.. Oxford University Press, New York, New York.
Carr, M. H., and J. W. Head (2003), Oceans on Mars: An assessment of the observational evidence and possible fate,Carr, M. H., and J. W. Head (2003), Oceans on Mars: An assessment of the observational evidence and possible fate, J. Geophys. Res., 108J. Geophys. Res., 108(E5), 8-1 –(E5), 8-1 –
8-28.8-28.
Clifford, S. M. (1993), A model for the hydrologic and climatic behavior of water on Mars,Clifford, S. M. (1993), A model for the hydrologic and climatic behavior of water on Mars, J. Geophys. Res., 98J. Geophys. Res., 98(E6), 10973-11016.(E6), 10973-11016.
Clifford, S. M., and T. J. Parker (2001), The evolution of the Martian hydrosphere: Implications for the fate of a primordial ocean and the current state ofClifford, S. M., and T. J. Parker (2001), The evolution of the Martian hydrosphere: Implications for the fate of a primordial ocean and the current state of
the northern plains,the northern plains, Icarus, 154Icarus, 154, 40-79., 40-79.
Farmer, C. B., and P. E. Doms (1979), Global and seasonal water vapor on Mars and implications for permafrost,Farmer, C. B., and P. E. Doms (1979), Global and seasonal water vapor on Mars and implications for permafrost, J. Geophys. Res., 84J. Geophys. Res., 84(B6), 2881-2888.(B6), 2881-2888.
Farmer, C. B., D. W. Davies, and D. D. LaPorte (1976), Mars: Northern summer ice cap – water vapor observations from Viking 2,Farmer, C. B., D. W. Davies, and D. D. LaPorte (1976), Mars: Northern summer ice cap – water vapor observations from Viking 2, Science, 194Science, 194, 1339-, 1339-
1341.1341.
Farmer, C. B., D. W. Davies, A. L. Holland, D. D. LaPorte, and P. E. Doms (1977),Farmer, C. B., D. W. Davies, A. L. Holland, D. D. LaPorte, and P. E. Doms (1977), Mars: Water vapor observations from the Viking orbitersMars: Water vapor observations from the Viking orbiters,, Science,Science,
194194, 1339-1341., 1339-1341.
References Cited – 1 of 3References Cited – 1 of 3
Fenton, L. K., and K. E. Herkenhoff (2000), Topography and stratigraphy of the northern Martian polar layered deposits using photoclinometry,Fenton, L. K., and K. E. Herkenhoff (2000), Topography and stratigraphy of the northern Martian polar layered deposits using photoclinometry,
stereogrammetry, and MOLA altimetry,stereogrammetry, and MOLA altimetry, Icarus, 147Icarus, 147, 433-443., 433-443.
Fernández-Remolar, D. C., N. Rodriguez, F. Gómez, and R. Amils (2003), Geological record of an acidic environment driven by iron hydrochemistry:Fernández-Remolar, D. C., N. Rodriguez, F. Gómez, and R. Amils (2003), Geological record of an acidic environment driven by iron hydrochemistry:
The Tinto River system, J. Geophys. Res., 108(E7), 16-1 – 16-15.The Tinto River system, J. Geophys. Res., 108(E7), 16-1 – 16-15.
Fernández-Remolar, D. C., O. Prietos-Ballesteros, and C. R. Stoker (2004), Searching for an acidic aquifer in the Rio Tinto basin, first geobiologyFernández-Remolar, D. C., O. Prietos-Ballesteros, and C. R. Stoker (2004), Searching for an acidic aquifer in the Rio Tinto basin, first geobiology
results of MARTE project, Abstract no. 1766, 35.th Lunar and Planetary Science Conference, Houston, Texas, March 15-19.results of MARTE project, Abstract no. 1766, 35.th Lunar and Planetary Science Conference, Houston, Texas, March 15-19.
Glen, J. W. (1958), The flow law of ice, in Physique du mouvement de la Glace / Physics of the movement of ice, Symposium de Chamonix, 16-24Glen, J. W. (1958), The flow law of ice, in Physique du mouvement de la Glace / Physics of the movement of ice, Symposium de Chamonix, 16-24
September, pp. 171-183,September, pp. 171-183, International Association of Hydrological Sciences Publication 47International Association of Hydrological Sciences Publication 47..
Hartmann, W. K., and G. Neukum (2001), Cratering chronology and the evolution of Mars,Hartmann, W. K., and G. Neukum (2001), Cratering chronology and the evolution of Mars, Space Science Reviews, 96Space Science Reviews, 96, 165-194., 165-194.
Howard, A. D., J. A. Cutts, and K. R. Blasius (1982), Stratigraphic relationships within Martian polar cap deposits,Howard, A. D., J. A. Cutts, and K. R. Blasius (1982), Stratigraphic relationships within Martian polar cap deposits, Icarus, 50Icarus, 50, 161-215., 161-215.
Hult, J. A. H. (1966),Hult, J. A. H. (1966), Creep in Engineering StructuresCreep in Engineering Structures, Blaisdell, Waltham, Massachussetts., Blaisdell, Waltham, Massachussetts.
Jakosky, B. M., and R. J. Phillips (2001), Mars' volatile and climate history,Jakosky, B. M., and R. J. Phillips (2001), Mars' volatile and climate history, Nature, 412Nature, 412, 237-244., 237-244.
Jernsletten, J. A., and E. Heggy (2004a), Sounding of subsurface water through conductive media in Mars analog environments using transientJernsletten, J. A., and E. Heggy (2004a), Sounding of subsurface water through conductive media in Mars analog environments using transient
electromagnetics and low frequency ground penetrating radar, oral presentation, Abstract no. 2089, 35.th Lunar and Planetary Scienceelectromagnetics and low frequency ground penetrating radar, oral presentation, Abstract no. 2089, 35.th Lunar and Planetary Science
Conference, Houston, Texas, March 15-19.Conference, Houston, Texas, March 15-19.
Jernsletten, J. A., and E. Heggy (2004b), Sounding of groundwater through conductive media in Mars analog environments using transientJernsletten, J. A., and E. Heggy (2004b), Sounding of groundwater through conductive media in Mars analog environments using transient
electromagnetics and low frequency GPR,electromagnetics and low frequency GPR, Eos Trans. AGU, 85Eos Trans. AGU, 85(17), Jt. Assem. Suppl., Abstract no. P53A-01, poster presentation, AGU 2004(17), Jt. Assem. Suppl., Abstract no. P53A-01, poster presentation, AGU 2004
Joint Assembly, Montreal, Canada, May 17-21.Joint Assembly, Montreal, Canada, May 17-21.
Johnson, C. L., S. C. Solomon, J. W. Head, R. J. Phillips, D. E. Smith, and M. T. Zuber (2000), Lithospheric loading by the northern polar cap of Mars,Johnson, C. L., S. C. Solomon, J. W. Head, R. J. Phillips, D. E. Smith, and M. T. Zuber (2000), Lithospheric loading by the northern polar cap of Mars,
Icarus, 144Icarus, 144, 313-328., 313-328.
Johnston, G. H. (1981), editor,Johnston, G. H. (1981), editor, Permafrost engineering design and constructionPermafrost engineering design and construction, John Wiley and Sons, Inc., Toronto, Canada., John Wiley and Sons, Inc., Toronto, Canada.
Kargel, J. S., and G. M. Marion (2004), Mars as a salt-, acid-, and gas-hydrate world, Abstract no. 1965, 35.th Lunar and Planetary Science Conference,Kargel, J. S., and G. M. Marion (2004), Mars as a salt-, acid-, and gas-hydrate world, Abstract no. 1965, 35.th Lunar and Planetary Science Conference,
Houston, Texas, March 15-19.Houston, Texas, March 15-19.
Kirkland, L. E., K. C. Herr, and P. M. Adams (2003), Infrared stealthy surfaces: Why TES and THEMIS may miss some substantial mineral deposits onKirkland, L. E., K. C. Herr, and P. M. Adams (2003), Infrared stealthy surfaces: Why TES and THEMIS may miss some substantial mineral deposits on
Mars and implications for remote sensing of planetary surface,Mars and implications for remote sensing of planetary surface, J. Geophys. Res., 108J. Geophys. Res., 108(E12), 11-1 – 11-11.(E12), 11-1 – 11-11.
Kreslavsky, M. A., and J. W. Head (2003), North-south topographic slope asymmetry on Mars: Evidence for insolation-related erosion at high obliquity,Kreslavsky, M. A., and J. W. Head (2003), North-south topographic slope asymmetry on Mars: Evidence for insolation-related erosion at high obliquity,
Geophys. Res. Lett., 30Geophys. Res. Lett., 30(15), PLA 1-1 – PLA 1-4.(15), PLA 1-1 – PLA 1-4.
Ladanyi, B. (1972), In situ determination of undrained stress-strain behavior of sensitive clays with the pressuremeter,Ladanyi, B. (1972), In situ determination of undrained stress-strain behavior of sensitive clays with the pressuremeter, Canadian Geotech. J., 9Canadian Geotech. J., 9, 313–, 313–
319.319.
Malin, M. C., K. S. Edgett, S. D. Davis, M. A. Caplinger, E. Jensen, K. D. Supulver, J. Sandoval, L. Posiolova, and R. Zimdar (2000), image FHA01275,Malin, M. C., K. S. Edgett, S. D. Davis, M. A. Caplinger, E. Jensen, K. D. Supulver, J. Sandoval, L. Posiolova, and R. Zimdar (2000), image FHA01275,
Malin Space Science Systems Mars Orbiter Camera Image Gallery,Malin Space Science Systems Mars Orbiter Camera Image Gallery, http://www.msss.com/moc_gallery/ab1_m04/images/FHA01275.htmlhttp://www.msss.com/moc_gallery/ab1_m04/images/FHA01275.html..
McKee, M. (2003), Martian timeline,McKee, M. (2003), Martian timeline, http://astronomy.com/content/dynamic/articles/ 000/000/001/357xsrza.asphttp://astronomy.com/content/dynamic/articles/ 000/000/001/357xsrza.asp..
Mellon, M. T., and B. M. Jakosky (1993), Geographic variations in the thermal and diffusive stability of ground ice on Mars,Mellon, M. T., and B. M. Jakosky (1993), Geographic variations in the thermal and diffusive stability of ground ice on Mars, J.J.
Geophys. Res., 98Geophys. Res., 98(E2), 3345-3364.(E2), 3345-3364.
Moore, J. M., M. T. Mellon, and A. P. Zent (1996), Mass wasting and ground collapse in terrains of volatile-rich deposits as a solarMoore, J. M., M. T. Mellon, and A. P. Zent (1996), Mass wasting and ground collapse in terrains of volatile-rich deposits as a solar
system-wide geological process: The pre-Gallileo view,system-wide geological process: The pre-Gallileo view, Icarus, 122Icarus, 122, 63-78., 63-78.
References Cited – 2 of 3References Cited – 2 of 3
Moore, J. M., E. Asphaug, D. Morrison, K. C. Bender, R. J. Sullivan, R. Greeley, P. E. Geissler, C. R. Chapman, and C. B. PilcherMoore, J. M., E. Asphaug, D. Morrison, K. C. Bender, R. J. Sullivan, R. Greeley, P. E. Geissler, C. R. Chapman, and C. B. Pilcher
(1997), Landform degradation and mass wasting on the icy Galilean satellites, Abstract no. 1407, 28.th Lunar and(1997), Landform degradation and mass wasting on the icy Galilean satellites, Abstract no. 1407, 28.th Lunar and
Planetary Science Conference, Houston, Texas, March 17-21.Planetary Science Conference, Houston, Texas, March 17-21.
Moore, J. M., J. R. Spencer, E. Asphaug, D. Morrison, J. E. Klemaszewski, R. J. Sullivan, F. C. Chuang, R. Greeley, K. C. Bender, P.Moore, J. M., J. R. Spencer, E. Asphaug, D. Morrison, J. E. Klemaszewski, R. J. Sullivan, F. C. Chuang, R. Greeley, K. C. Bender, P.
E. Geissler, C. R. Chapman, C. B. Pilcher, and the Galileo SSI Team (1998), Mass movement and landform degradation onE. Geissler, C. R. Chapman, C. B. Pilcher, and the Galileo SSI Team (1998), Mass movement and landform degradation on
Callisto and Ganymede as observed during the Galileo nominal mission: The role of sublimation, Abstract no. 1553, 29.thCallisto and Ganymede as observed during the Galileo nominal mission: The role of sublimation, Abstract no. 1553, 29.th
Lunar and Planetary Science Conference, Houston, Texas, March 16-20.Lunar and Planetary Science Conference, Houston, Texas, March 16-20.
Morris, R. V., S. Squyres, R. E. Arvidson, J. F. Bell, P. C. Christensen, S. Gorevan, K. Herkenhoff, G. Klingelhöfer, R. Rieder, W.Morris, R. V., S. Squyres, R. E. Arvidson, J. F. Bell, P. C. Christensen, S. Gorevan, K. Herkenhoff, G. Klingelhöfer, R. Rieder, W.
Farrand, A. Ghosh, T. Glotch, J. R. Johnson, M. Lemmon, H. Y. McSween, D. W. Ming, C. Schroeder, P. de Souza, M. Wyatt,Farrand, A. Ghosh, T. Glotch, J. R. Johnson, M. Lemmon, H. Y. McSween, D. W. Ming, C. Schroeder, P. de Souza, M. Wyatt,
and the Athena Science Team (2004), A first look at the mineralogy and geochemistry of the MER-B landing site inand the Athena Science Team (2004), A first look at the mineralogy and geochemistry of the MER-B landing site in
Meridiani Planum, Abstract no. 2179, 35.th Lunar and Planetary Science Conference, Houston, Texas, March 15-19.Meridiani Planum, Abstract no. 2179, 35.th Lunar and Planetary Science Conference, Houston, Texas, March 15-19.
Paterson, W. S. B. (1981),Paterson, W. S. B. (1981), The Physics of GlaciersThe Physics of Glaciers, 2.nd Edition, Pergamon Press, New York, New York., 2.nd Edition, Pergamon Press, New York, New York.
Paterson, W. S. B. (1994),Paterson, W. S. B. (1994), The Physics of GlaciersThe Physics of Glaciers, 3.rd Edition, Pergamon Press, Oxford, England., 3.rd Edition, Pergamon Press, Oxford, England.
Russell-Head, D. S., and W. F. Budd (1979), Ice-sheet flow properties derived from bore-hole shear measurements combined withRussell-Head, D. S., and W. F. Budd (1979), Ice-sheet flow properties derived from bore-hole shear measurements combined with
ice-core studies,ice-core studies, J. Glac., 24J. Glac., 24, 117-130., 117-130.
Shoji, H. and A. Higashi (1978), A deformation mechanism map of ice,Shoji, H. and A. Higashi (1978), A deformation mechanism map of ice, J. Glac., 85J. Glac., 85, 419-427., 419-427.
Smith, M. D. (2002), The annual cycle of water vapor on Mars as observed by the Thermal Emission SpectrometerSmith, M. D. (2002), The annual cycle of water vapor on Mars as observed by the Thermal Emission Spectrometer,, J. Geophys. Res.,J. Geophys. Res.,
107107(E11), 25-1 – 25-19.(E11), 25-1 – 25-19.
Smith, B. A., L. A. Soderblom, D. Banfield, C. Barnet, A. T. Basilevksy, R. F. Beebe, K. Bollinger, J. M. Boyce, A. Brahic, G. A. Briggs, R. H. Brown, C.Smith, B. A., L. A. Soderblom, D. Banfield, C. Barnet, A. T. Basilevksy, R. F. Beebe, K. Bollinger, J. M. Boyce, A. Brahic, G. A. Briggs, R. H. Brown, C.
Chyba, S. A. Collins, T. Colvin, A. F. Cook, D. Crisp, S. K. Croft, D. Cruikshank, J. N. Cuzzi, G. E. Danielson, M. E. Davies, E. De Jong, L.Chyba, S. A. Collins, T. Colvin, A. F. Cook, D. Crisp, S. K. Croft, D. Cruikshank, J. N. Cuzzi, G. E. Danielson, M. E. Davies, E. De Jong, L.
Dones, D. Godfrey, J. Goguen, I. Grenier, V. R. Haemmerle, H. Hammel, C. J. Hansen, C. P. Helfenstein, C. Howell, G. E. Hunt, A. P.Dones, D. Godfrey, J. Goguen, I. Grenier, V. R. Haemmerle, H. Hammel, C. J. Hansen, C. P. Helfenstein, C. Howell, G. E. Hunt, A. P.
Ingersoll, T. V. Johnson, J. Kargel, R. Kirk, D. I. Kuehn, S. Limaye, H. Masursky, A. McEwen, D. Morrison, T. Owen, W. Owen, J. B. Pollack,Ingersoll, T. V. Johnson, J. Kargel, R. Kirk, D. I. Kuehn, S. Limaye, H. Masursky, A. McEwen, D. Morrison, T. Owen, W. Owen, J. B. Pollack,
C. C. Porco, K. Rages, P. Rogers, D. Rudy, C. Sagan, J. Schwartz, E. M. Shoemaker, M. Showalter, B. Sicardy, D. Simonelli, J. Spencer, L.C. C. Porco, K. Rages, P. Rogers, D. Rudy, C. Sagan, J. Schwartz, E. M. Shoemaker, M. Showalter, B. Sicardy, D. Simonelli, J. Spencer, L.
A. Sromovsky, C. Stoker, R. G. Strom, V. E. Suomi, S. P. Synott, R. J. Terrile, P. Thomas, W. R. Thompson, A. Verbiscer, and J. VeverkaA. Sromovsky, C. Stoker, R. G. Strom, V. E. Suomi, S. P. Synott, R. J. Terrile, P. Thomas, W. R. Thompson, A. Verbiscer, and J. Veverka
(1989), Voyager 2 at Neptune: Imaging science results,(1989), Voyager 2 at Neptune: Imaging science results, Science, 246Science, 246, 1422-1449., 1422-1449.
Smith, D. E., M. T. Zuber, S. C. Solomon, R. J. Phillips, J. W. Head, J. B. Garvin, W. B. Banerdt, D. O. Muhlerman, G. H. Pettengill, G. A. Neumann, F.Smith, D. E., M. T. Zuber, S. C. Solomon, R. J. Phillips, J. W. Head, J. B. Garvin, W. B. Banerdt, D. O. Muhlerman, G. H. Pettengill, G. A. Neumann, F.
G. Lemoine, J. B. Abshire, O. Aharonson, C. D. Brown, S. A. Hauck, A. B. Ivanov, P. J. McGovern, H. J. Zwally, and T. C. Duxbury (1999),G. Lemoine, J. B. Abshire, O. Aharonson, C. D. Brown, S. A. Hauck, A. B. Ivanov, P. J. McGovern, H. J. Zwally, and T. C. Duxbury (1999),
The global topography of Mars and implications for surface evolution,The global topography of Mars and implications for surface evolution, Science, 284Science, 284, 1495-1503., 1495-1503.
Squyres, S. W. (1979), The evolution of dust deposits in the Martian north polar region,Squyres, S. W. (1979), The evolution of dust deposits in the Martian north polar region, Icarus, 40Icarus, 40, 244-261., 244-261.
Stoker, C. R., S. Dunagan, T. Stevens, R. Amils, J. Gómez-Elvira, D. C. Fernández-Remolar, J. Hall, K. Lynch, H. Cannon, J. Zavaleta, B. Glass, and L.Stoker, C. R., S. Dunagan, T. Stevens, R. Amils, J. Gómez-Elvira, D. C. Fernández-Remolar, J. Hall, K. Lynch, H. Cannon, J. Zavaleta, B. Glass, and L.
Lemke (2004), Mars analog Rio Tinto experiment (MARTE): 2003 drilling campaign to search for a subsurface biosphere at Rio Tinto Spain,Lemke (2004), Mars analog Rio Tinto experiment (MARTE): 2003 drilling campaign to search for a subsurface biosphere at Rio Tinto Spain,
Abstract no. 1766, 35.th Lunar and Planetary Science Conference, Houston, Texas, March 15-19.Abstract no. 1766, 35.th Lunar and Planetary Science Conference, Houston, Texas, March 15-19.
Tanaka, K. L., D. H. Scott, and R. Greeley (1992), Global stratigraphy, inTanaka, K. L., D. H. Scott, and R. Greeley (1992), Global stratigraphy, in MarsMars, edited by H. H. Kieffer et al., pp. 345-382, The University of Arizona, edited by H. H. Kieffer et al., pp. 345-382, The University of Arizona
Press, Tucson, Arizona.Press, Tucson, Arizona.
Whalley, W. B., and F. Azizi (2003), Rock glaciers and protalus landforms: Analogous forms and ice sources on Earth and Mars,Whalley, W. B., and F. Azizi (2003), Rock glaciers and protalus landforms: Analogous forms and ice sources on Earth and Mars, J. Geophys. Res.,J. Geophys. Res.,
108108(E4), GDS 13-1 – GDS 13-17.(E4), GDS 13-1 – GDS 13-17.
Zuber, M. T. (2001), The crust and mantle of Mars,Zuber, M. T. (2001), The crust and mantle of Mars, Nature, 412Nature, 412, 220-227., 220-227.
References Cited – 3 of 3References Cited – 3 of 3

Contenu connexe

Tendances

ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICSÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICSAli Osman Öncel
 
Geophysics. GRAVIMETERY METHOD
Geophysics.  GRAVIMETERY METHOD Geophysics.  GRAVIMETERY METHOD
Geophysics. GRAVIMETERY METHOD fatemeh vejdani
 
Gravity, Expl.ravity
 Gravity, Expl.ravity Gravity, Expl.ravity
Gravity, Expl.ravityahmadraza05
 
One tenth solar_abundances_along_the_body_of-the_stream
One tenth solar_abundances_along_the_body_of-the_streamOne tenth solar_abundances_along_the_body_of-the_stream
One tenth solar_abundances_along_the_body_of-the_streamSérgio Sacani
 
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICSÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICSAli Osman Öncel
 
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICSÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICSAli Osman Öncel
 
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICSÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICSAli Osman Öncel
 
Technicalities about the LHAASO experiment
Technicalities about the LHAASO experimentTechnicalities about the LHAASO experiment
Technicalities about the LHAASO experimentOrchidea Maria Lecian
 
On the possibility of through passage of asteroid bodies across the Earth’s a...
On the possibility of through passage of asteroid bodies across the Earth’s a...On the possibility of through passage of asteroid bodies across the Earth’s a...
On the possibility of through passage of asteroid bodies across the Earth’s a...Sérgio Sacani
 
Unstable/Astatic Gravimeters and Marine Gravity Survey
Unstable/Astatic Gravimeters and Marine Gravity SurveyUnstable/Astatic Gravimeters and Marine Gravity Survey
Unstable/Astatic Gravimeters and Marine Gravity SurveyRaianIslamEvan
 
Stabilizing cloud feedback_dramatically_expands_the_habitable_zone_of_tidally...
Stabilizing cloud feedback_dramatically_expands_the_habitable_zone_of_tidally...Stabilizing cloud feedback_dramatically_expands_the_habitable_zone_of_tidally...
Stabilizing cloud feedback_dramatically_expands_the_habitable_zone_of_tidally...Sérgio Sacani
 
Exoplanet transit spectroscopy_using_wfc3
Exoplanet transit spectroscopy_using_wfc3Exoplanet transit spectroscopy_using_wfc3
Exoplanet transit spectroscopy_using_wfc3Sérgio Sacani
 
Very regular high-frequency pulsation modes in young intermediate-mass stars
Very regular high-frequency pulsation modes in young intermediate-mass starsVery regular high-frequency pulsation modes in young intermediate-mass stars
Very regular high-frequency pulsation modes in young intermediate-mass starsSérgio Sacani
 
Красное пятно на полюсе Харона
Красное пятно на полюсе ХаронаКрасное пятно на полюсе Харона
Красное пятно на полюсе ХаронаAnatol Alizar
 
Evidence for a_spectroscopic_direct_detection_of_reflected_light_from_51_peg_b
Evidence for a_spectroscopic_direct_detection_of_reflected_light_from_51_peg_bEvidence for a_spectroscopic_direct_detection_of_reflected_light_from_51_peg_b
Evidence for a_spectroscopic_direct_detection_of_reflected_light_from_51_peg_bSérgio Sacani
 
Radial velocity trail_from_the_giant_planet_orbiting_t_bootis
Radial velocity trail_from_the_giant_planet_orbiting_t_bootisRadial velocity trail_from_the_giant_planet_orbiting_t_bootis
Radial velocity trail_from_the_giant_planet_orbiting_t_bootisSérgio Sacani
 
Phys revlett.106.221101
Phys revlett.106.221101Phys revlett.106.221101
Phys revlett.106.221101Sérgio Sacani
 
High-resolution UV/Optical/IR Imaging of Jupiter in 2016–2019
High-resolution UV/Optical/IR Imaging of Jupiter in 2016–2019High-resolution UV/Optical/IR Imaging of Jupiter in 2016–2019
High-resolution UV/Optical/IR Imaging of Jupiter in 2016–2019Sérgio Sacani
 

Tendances (20)

ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICSÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
 
Geophysics. GRAVIMETERY METHOD
Geophysics.  GRAVIMETERY METHOD Geophysics.  GRAVIMETERY METHOD
Geophysics. GRAVIMETERY METHOD
 
Presentation
PresentationPresentation
Presentation
 
Gravity, Expl.ravity
 Gravity, Expl.ravity Gravity, Expl.ravity
Gravity, Expl.ravity
 
One tenth solar_abundances_along_the_body_of-the_stream
One tenth solar_abundances_along_the_body_of-the_streamOne tenth solar_abundances_along_the_body_of-the_stream
One tenth solar_abundances_along_the_body_of-the_stream
 
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICSÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
 
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICSÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
 
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICSÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
 
Technicalities about the LHAASO experiment
Technicalities about the LHAASO experimentTechnicalities about the LHAASO experiment
Technicalities about the LHAASO experiment
 
On the possibility of through passage of asteroid bodies across the Earth’s a...
On the possibility of through passage of asteroid bodies across the Earth’s a...On the possibility of through passage of asteroid bodies across the Earth’s a...
On the possibility of through passage of asteroid bodies across the Earth’s a...
 
Unstable/Astatic Gravimeters and Marine Gravity Survey
Unstable/Astatic Gravimeters and Marine Gravity SurveyUnstable/Astatic Gravimeters and Marine Gravity Survey
Unstable/Astatic Gravimeters and Marine Gravity Survey
 
Stabilizing cloud feedback_dramatically_expands_the_habitable_zone_of_tidally...
Stabilizing cloud feedback_dramatically_expands_the_habitable_zone_of_tidally...Stabilizing cloud feedback_dramatically_expands_the_habitable_zone_of_tidally...
Stabilizing cloud feedback_dramatically_expands_the_habitable_zone_of_tidally...
 
Exoplanet transit spectroscopy_using_wfc3
Exoplanet transit spectroscopy_using_wfc3Exoplanet transit spectroscopy_using_wfc3
Exoplanet transit spectroscopy_using_wfc3
 
Very regular high-frequency pulsation modes in young intermediate-mass stars
Very regular high-frequency pulsation modes in young intermediate-mass starsVery regular high-frequency pulsation modes in young intermediate-mass stars
Very regular high-frequency pulsation modes in young intermediate-mass stars
 
Красное пятно на полюсе Харона
Красное пятно на полюсе ХаронаКрасное пятно на полюсе Харона
Красное пятно на полюсе Харона
 
Geotermal 1
Geotermal 1Geotermal 1
Geotermal 1
 
Evidence for a_spectroscopic_direct_detection_of_reflected_light_from_51_peg_b
Evidence for a_spectroscopic_direct_detection_of_reflected_light_from_51_peg_bEvidence for a_spectroscopic_direct_detection_of_reflected_light_from_51_peg_b
Evidence for a_spectroscopic_direct_detection_of_reflected_light_from_51_peg_b
 
Radial velocity trail_from_the_giant_planet_orbiting_t_bootis
Radial velocity trail_from_the_giant_planet_orbiting_t_bootisRadial velocity trail_from_the_giant_planet_orbiting_t_bootis
Radial velocity trail_from_the_giant_planet_orbiting_t_bootis
 
Phys revlett.106.221101
Phys revlett.106.221101Phys revlett.106.221101
Phys revlett.106.221101
 
High-resolution UV/Optical/IR Imaging of Jupiter in 2016–2019
High-resolution UV/Optical/IR Imaging of Jupiter in 2016–2019High-resolution UV/Optical/IR Imaging of Jupiter in 2016–2019
High-resolution UV/Optical/IR Imaging of Jupiter in 2016–2019
 

En vedette (13)

RegionsQ Magazine Issue 1 Final.PDF
RegionsQ Magazine Issue 1 Final.PDFRegionsQ Magazine Issue 1 Final.PDF
RegionsQ Magazine Issue 1 Final.PDF
 
Jernsletten_2005_SEG_781_talk
Jernsletten_2005_SEG_781_talkJernsletten_2005_SEG_781_talk
Jernsletten_2005_SEG_781_talk
 
Jernsletten_SOSU_Transcript
Jernsletten_SOSU_TranscriptJernsletten_SOSU_Transcript
Jernsletten_SOSU_Transcript
 
Jernsletten_2006_AAS_06-256
Jernsletten_2006_AAS_06-256Jernsletten_2006_AAS_06-256
Jernsletten_2006_AAS_06-256
 
Sera cue vc 18.1.16
Sera cue vc 18.1.16Sera cue vc 18.1.16
Sera cue vc 18.1.16
 
Monique_Coune Resume
Monique_Coune ResumeMonique_Coune Resume
Monique_Coune Resume
 
2004JE002272_JGR-E_Vol._109_E12004,
2004JE002272_JGR-E_Vol._109_E12004,2004JE002272_JGR-E_Vol._109_E12004,
2004JE002272_JGR-E_Vol._109_E12004,
 
Jørn_Curriculum_Vitae_A4
Jørn_Curriculum_Vitae_A4Jørn_Curriculum_Vitae_A4
Jørn_Curriculum_Vitae_A4
 
Dr.Philos._Disputas
Dr.Philos._DisputasDr.Philos._Disputas
Dr.Philos._Disputas
 
Jernsletten_2005_AGU_Fall_P31C-0219_poster
Jernsletten_2005_AGU_Fall_P31C-0219_posterJernsletten_2005_AGU_Fall_P31C-0219_poster
Jernsletten_2005_AGU_Fall_P31C-0219_poster
 
Jernsletten_Rice_Transcript
Jernsletten_Rice_TranscriptJernsletten_Rice_Transcript
Jernsletten_Rice_Transcript
 
Dr.Philos._Trial_Lecture_Candidate_Chosen_Topic
Dr.Philos._Trial_Lecture_Candidate_Chosen_TopicDr.Philos._Trial_Lecture_Candidate_Chosen_Topic
Dr.Philos._Trial_Lecture_Candidate_Chosen_Topic
 
La historia del internet
La historia del internetLa historia del internet
La historia del internet
 

Similaire à Dr.Philos._Trial_Lecture_Committee_Given_Topic

Stability of Subsurface Ice on Planetary Bodies
Stability of Subsurface Ice on Planetary BodiesStability of Subsurface Ice on Planetary Bodies
Stability of Subsurface Ice on Planetary BodiesNorbert Schörghofer
 
MATHEMATICAL MODEL FOR HYDROTHERMAL CONVECTION AROUND A RADIOACTIVE WASTE DEP...
MATHEMATICAL MODEL FOR HYDROTHERMAL CONVECTION AROUND A RADIOACTIVE WASTE DEP...MATHEMATICAL MODEL FOR HYDROTHERMAL CONVECTION AROUND A RADIOACTIVE WASTE DEP...
MATHEMATICAL MODEL FOR HYDROTHERMAL CONVECTION AROUND A RADIOACTIVE WASTE DEP...Jean Belline
 
Sara Seager - Lecture1 - MIT
Sara Seager - Lecture1 - MITSara Seager - Lecture1 - MIT
Sara Seager - Lecture1 - MITAtner Yegorov
 
Proto-planetary disks and planetesimal accretion - Alessandro Morbidelli
Proto-planetary disks and planetesimal accretion - Alessandro MorbidelliProto-planetary disks and planetesimal accretion - Alessandro Morbidelli
Proto-planetary disks and planetesimal accretion - Alessandro MorbidelliLake Como School of Advanced Studies
 
Applications of Analogue Gravity Techniques
Applications of Analogue Gravity TechniquesApplications of Analogue Gravity Techniques
Applications of Analogue Gravity TechniquesPratik Tarafdar
 
1.Solar-Radiation.Energy.Temp-09.ppt
1.Solar-Radiation.Energy.Temp-09.ppt1.Solar-Radiation.Energy.Temp-09.ppt
1.Solar-Radiation.Energy.Temp-09.pptRasakumar Raj
 
1.Solar-Radiation.Energy.Temp-09.ppt
1.Solar-Radiation.Energy.Temp-09.ppt1.Solar-Radiation.Energy.Temp-09.ppt
1.Solar-Radiation.Energy.Temp-09.pptlakshmi sirisha
 
Climate Sensitivity, Forcings, And Feedbacks_2.pptx
Climate Sensitivity, Forcings, And Feedbacks_2.pptxClimate Sensitivity, Forcings, And Feedbacks_2.pptx
Climate Sensitivity, Forcings, And Feedbacks_2.pptxObulReddy61
 
Surface temperatures on_titan_during_northern_winter_and_spring
Surface temperatures on_titan_during_northern_winter_and_springSurface temperatures on_titan_during_northern_winter_and_spring
Surface temperatures on_titan_during_northern_winter_and_springSérgio Sacani
 
Hot Earth or Young Venus? A nearby transiting rocky planet mystery
Hot Earth or Young Venus? A nearby transiting rocky planet mysteryHot Earth or Young Venus? A nearby transiting rocky planet mystery
Hot Earth or Young Venus? A nearby transiting rocky planet mysterySérgio Sacani
 
ÖNCEL AKADEMİ: SOLID EARTH GEOPHYSICS
ÖNCEL AKADEMİ: SOLID EARTH GEOPHYSICSÖNCEL AKADEMİ: SOLID EARTH GEOPHYSICS
ÖNCEL AKADEMİ: SOLID EARTH GEOPHYSICSAli Osman Öncel
 
ÖNCEL AKADEMİ: SOLID EARTH GEOPHYSICS
ÖNCEL AKADEMİ: SOLID EARTH GEOPHYSICSÖNCEL AKADEMİ: SOLID EARTH GEOPHYSICS
ÖNCEL AKADEMİ: SOLID EARTH GEOPHYSICSAli Osman Öncel
 
Evidence for powerful winds and the associated reverse shock as the origin of...
Evidence for powerful winds and the associated reverse shock as the origin of...Evidence for powerful winds and the associated reverse shock as the origin of...
Evidence for powerful winds and the associated reverse shock as the origin of...Sérgio Sacani
 
Modes of energy transfer in soil
Modes  of energy  transfer  in soilModes  of energy  transfer  in soil
Modes of energy transfer in soilShaheenPraveen1
 
6th Year Department Talk
6th Year Department Talk6th Year Department Talk
6th Year Department Talktorloff
 

Similaire à Dr.Philos._Trial_Lecture_Committee_Given_Topic (20)

Crocus Melting on Mars
Crocus Melting on MarsCrocus Melting on Mars
Crocus Melting on Mars
 
Kiehl
KiehlKiehl
Kiehl
 
Brazil2
Brazil2Brazil2
Brazil2
 
Stability of Subsurface Ice on Planetary Bodies
Stability of Subsurface Ice on Planetary BodiesStability of Subsurface Ice on Planetary Bodies
Stability of Subsurface Ice on Planetary Bodies
 
MATHEMATICAL MODEL FOR HYDROTHERMAL CONVECTION AROUND A RADIOACTIVE WASTE DEP...
MATHEMATICAL MODEL FOR HYDROTHERMAL CONVECTION AROUND A RADIOACTIVE WASTE DEP...MATHEMATICAL MODEL FOR HYDROTHERMAL CONVECTION AROUND A RADIOACTIVE WASTE DEP...
MATHEMATICAL MODEL FOR HYDROTHERMAL CONVECTION AROUND A RADIOACTIVE WASTE DEP...
 
Sara Seager - Lecture1 - MIT
Sara Seager - Lecture1 - MITSara Seager - Lecture1 - MIT
Sara Seager - Lecture1 - MIT
 
Proto-planetary disks and planetesimal accretion - Alessandro Morbidelli
Proto-planetary disks and planetesimal accretion - Alessandro MorbidelliProto-planetary disks and planetesimal accretion - Alessandro Morbidelli
Proto-planetary disks and planetesimal accretion - Alessandro Morbidelli
 
Applications of Analogue Gravity Techniques
Applications of Analogue Gravity TechniquesApplications of Analogue Gravity Techniques
Applications of Analogue Gravity Techniques
 
1.Solar-Radiation.Energy.Temp-09.ppt
1.Solar-Radiation.Energy.Temp-09.ppt1.Solar-Radiation.Energy.Temp-09.ppt
1.Solar-Radiation.Energy.Temp-09.ppt
 
1.Solar-Radiation.Energy.Temp-09.ppt
1.Solar-Radiation.Energy.Temp-09.ppt1.Solar-Radiation.Energy.Temp-09.ppt
1.Solar-Radiation.Energy.Temp-09.ppt
 
Climate Sensitivity, Forcings, And Feedbacks_2.pptx
Climate Sensitivity, Forcings, And Feedbacks_2.pptxClimate Sensitivity, Forcings, And Feedbacks_2.pptx
Climate Sensitivity, Forcings, And Feedbacks_2.pptx
 
Surface temperatures on_titan_during_northern_winter_and_spring
Surface temperatures on_titan_during_northern_winter_and_springSurface temperatures on_titan_during_northern_winter_and_spring
Surface temperatures on_titan_during_northern_winter_and_spring
 
Hot Earth or Young Venus? A nearby transiting rocky planet mystery
Hot Earth or Young Venus? A nearby transiting rocky planet mysteryHot Earth or Young Venus? A nearby transiting rocky planet mystery
Hot Earth or Young Venus? A nearby transiting rocky planet mystery
 
Energy and Mass Exchanges
Energy and Mass ExchangesEnergy and Mass Exchanges
Energy and Mass Exchanges
 
06 Woods-Robinson&Paige2014
06 Woods-Robinson&Paige201406 Woods-Robinson&Paige2014
06 Woods-Robinson&Paige2014
 
ÖNCEL AKADEMİ: SOLID EARTH GEOPHYSICS
ÖNCEL AKADEMİ: SOLID EARTH GEOPHYSICSÖNCEL AKADEMİ: SOLID EARTH GEOPHYSICS
ÖNCEL AKADEMİ: SOLID EARTH GEOPHYSICS
 
ÖNCEL AKADEMİ: SOLID EARTH GEOPHYSICS
ÖNCEL AKADEMİ: SOLID EARTH GEOPHYSICSÖNCEL AKADEMİ: SOLID EARTH GEOPHYSICS
ÖNCEL AKADEMİ: SOLID EARTH GEOPHYSICS
 
Evidence for powerful winds and the associated reverse shock as the origin of...
Evidence for powerful winds and the associated reverse shock as the origin of...Evidence for powerful winds and the associated reverse shock as the origin of...
Evidence for powerful winds and the associated reverse shock as the origin of...
 
Modes of energy transfer in soil
Modes  of energy  transfer  in soilModes  of energy  transfer  in soil
Modes of energy transfer in soil
 
6th Year Department Talk
6th Year Department Talk6th Year Department Talk
6th Year Department Talk
 

Plus de Jørn A. Jernsletten, Dr.Philos. (11)

Jørn_Curriculum_Vitae_A4
Jørn_Curriculum_Vitae_A4Jørn_Curriculum_Vitae_A4
Jørn_Curriculum_Vitae_A4
 
Jernsletten_SOSU_B.S._Diploma
Jernsletten_SOSU_B.S._DiplomaJernsletten_SOSU_B.S._Diploma
Jernsletten_SOSU_B.S._Diploma
 
Jernsletten_E-RAU_M.A.S._Diploma
Jernsletten_E-RAU_M.A.S._DiplomaJernsletten_E-RAU_M.A.S._Diploma
Jernsletten_E-RAU_M.A.S._Diploma
 
Jernsletten_E-RAU_Transcript
Jernsletten_E-RAU_TranscriptJernsletten_E-RAU_Transcript
Jernsletten_E-RAU_Transcript
 
Jernsletten_UN_Diploma
Jernsletten_UN_DiplomaJernsletten_UN_Diploma
Jernsletten_UN_Diploma
 
Jernsletten_UN_Diploma
Jernsletten_UN_DiplomaJernsletten_UN_Diploma
Jernsletten_UN_Diploma
 
Jernsletten_Rice_Transcript
Jernsletten_Rice_TranscriptJernsletten_Rice_Transcript
Jernsletten_Rice_Transcript
 
Jernsletten_SOSU_B.S._Diploma
Jernsletten_SOSU_B.S._DiplomaJernsletten_SOSU_B.S._Diploma
Jernsletten_SOSU_B.S._Diploma
 
Jernsletten_SOSU_Transcript
Jernsletten_SOSU_TranscriptJernsletten_SOSU_Transcript
Jernsletten_SOSU_Transcript
 
Jernsletten_E-RAU_M.A.S._Diploma
Jernsletten_E-RAU_M.A.S._DiplomaJernsletten_E-RAU_M.A.S._Diploma
Jernsletten_E-RAU_M.A.S._Diploma
 
Jernsletten_E-RAU_Transcript
Jernsletten_E-RAU_TranscriptJernsletten_E-RAU_Transcript
Jernsletten_E-RAU_Transcript
 

Dr.Philos._Trial_Lecture_Committee_Given_Topic

  • 1. PrPrøveforelesning, Oppgittøveforelesning, Oppgitt EmneEmne Water Phases (Solid, Liquid andWater Phases (Solid, Liquid and Vapor)Vapor) on Mars: Theoretical andon Mars: Theoretical and ObservationalObservational Evidence for Their Past and PresentEvidence for Their Past and Present Distribution, Including Global InventoryDistribution, Including Global Inventory joern@jernsletten.namejoern@jernsletten.name http://joern.jernsletten.name/http://joern.jernsletten.name/ Mandag, 14. Juni 2004Mandag, 14. Juni 2004 Universitetet i BergenUniversitetet i Bergen Det Matematisk-Naturvitenskapelige FakultetDet Matematisk-Naturvitenskapelige Fakultet Institutt for GeovitenskapInstitutt for Geovitenskap DoctorDoctor PhilosophiaePhilosophiae JJøørn Atlern Atle JernslettenJernsletten
  • 2. OutlineOutline • Chronology • Vapor – Theoretical evidence = Past & present distribution – Observational evidence = Past & present distribution • Solid – (same structure as Vapor section) – Earth / Mars analogs • Liquid – (same structure as Vapor section) – Earth / Mars analogs • Global inventory • Summary • References Cited
  • 3. Chronology Based on Crater CountsChronology Based on Crater Counts ( Adapted from McKee, 2003, after: Hartman and Neukum, 2001; Jakosky and Phillips, 2001; Zuber, 2001; Tanaka et al., 1992 )
  • 4. [Vapor]:[Vapor]: Early ObservationsEarly Observations • No separable water vapor signal = Sling psychrometer (Campbell, 1910) • Water vapor ~3% of Earth atmosphere = Prismatic spectrograph (Adams and St. John, 1926) • Early obs. around λ7200 using large grating spectrograph = No evidence for water vapor (Adams and Dunham, 1937) • Partial pressure of water in Martian atmosphere = Based on dissociation pressure of goethite (Adamcik, 1963)
  • 5. [Vapor]:[Vapor]: Observational EvidenceObservational Evidence • <1 – ~100 pr µm in atmosphere (Carr, 1996) = Average ~10 pr µm; close to saturation • First shown by Earth-based telescopic observations in the 1960s • Viking Mars Atmospheric Water Detector (MAWD) = Small amounts in the Martian atmosphere (Farmer et al., 1976) = Global vapor content ~ 1.3 cu km water ice (Farmer et al., 1977) • European Space Agency (ESA), Infrared Space Observatory (ISO) (Burgdorf et al., 2000) = Two complimentary spectrometers  Infrared = Total column density 12 ± 3.5 pr µm • TES observations (Smith, 2002) = ~100 pr µm north high lat.s, ~50 pr µm south, midsummer = <5 pr µm, middle & high lat.s, fall & winter both hemispheres • Some H2O–bearing minerals invisible (Kirkland et al., 2003)
  • 6. [Vapor]:[Vapor]: TES vs. Synthetic SpectrumTES vs. Synthetic Spectrum ( Adapted from Smith, 2002 )
  • 7. [Vapor]:[Vapor]: Temporal and Spatial VariabilityTemporal and Spatial Variability • Seasonal max. 45-50 pr µm (Barker et al., 1970) • Obs. at McDonald Observatory 1972–1974 (Barker, 1976) = 469 individual photoelectric scans of Doppler-shifted H2 O lines = Almost 1 full Martian year (Ls = 118−269° and 301−80°) = Planetwide abundance 5−15 pr µm = Maximum abundance ~40 pr µm  After solstice at about 40° latitude in each hemisphere = Max. amount precedes max. insolation by 10–20° latitude = During the "drier" seasons (5–20 pr µm) near the equinoxes on Mars, the atmospheric water vapor changes by a factor of 2– 3x over a diurnal cycle with the maximum near local noon = The effects of the 1973 dust storm during the southern summer reduced the amount of water vapor over the southern hemisphere regions to 3–8 pr µm • Lat. of max. pr µm northern polar area => equatorial lat.s = From northern summer through northern fall (Farmer et al., 1977) = Not confirmed by TES (Smith, 2002) • Deuterium cold trap u. atm. (Bertaux and Montmessin, 2001)
  • 8. [Vapor]:[Vapor]: TES & MAWD TemporalTES & MAWD Temporal VariationsVariations ( Adapted from Smith, 2002 )
  • 9. [Vapor]:[Vapor]: TES Geographic DistributionTES Geographic Distribution ( Adapted from Smith, 2002 ) Divided by (psurf/6.1):
  • 10. [Solid]:[Solid]: Calculated Possible Depths to theCalculated Possible Depths to the Base of the Martian CryosphereBase of the Martian Cryosphere ( Adapted from tabular data, Clifford, 1993 ). The thermal model used Equation 3.1, and with the following values for parameters: Minimum: Qg = 45 mW m-2 , K = 1.0 W m-1 K-1 , and Tmp = 210 K; Nominal: Qg = 30 mW m-2 , K = 2.0 W m-1 K-1 , and Tmp = 252 K; Maximum: Qg = 15 mW m-2 , K = 3.0 W m-1 K-1 , and Tmp = 273 K
  • 11. [Solid]:[Solid]: Constitutive Relation forConstitutive Relation for IceIce Glen's Flow Law is widely accepted as the constitutive relation for ice when shear stress acts on its basal plane: where έ is the strain rate; A is a temperature-dependent constant; τb is the basal shear stress; and n is a power law exponent (Glen, 1958) έ = A τb n Equation 4.15  Regards ice as a plastic substance with a yield stress τ of 1 bar (Paterson, 1981)  Value of n generally taken as 3 (Paterson 1981; Johnston, 1981)  Shear strain rate (flow velocity) is lower for colder ice as a function of A  A varies with temperature, and is equal, for example, to 6.8 x 10 -15 s-1 kPa-3 at 273 K, 4.9 x 10-16 at 263 K, 1.7 x 10-16 at 253 K, and 5.1 x 10-17 at 243 K  n varies with applied stress, taking a value of 1 for Newtonian deformation, and 3 for non-Newtonian deformation (Paterson, 1994)  Available evidence indicates that n = 3 for most situations (Russell-Head and Budd, 1979)
  • 12. [Solid]:[Solid]: Deformation of FrozenDeformation of Frozen GroundGround The total strain in deforming frozen ground is the sum of an instantaneous strain, ε(i) , and a creep strain, ε(c) . The primary creep of frozen ground (and ice) in a state of constant stress can be described by the creep law (Andersland et al., 1978): ε(c) = Kσn tb Equation 4.17 where K, n, and b are temperature-dependent material constants The steady state creep strain is governed by the creep law (Hult, 1966): έ(c) = G(σ, T) Equation 4.18 where έ(c) is the steady state (secondary) creep rate; and the function G(σ,T) is found by plotting the slope dε(c) /dt against the applied stress for various temperatures
  • 13. [Solid]:[Solid]: Temperature DependenceTemperature Dependence inin the Creep Lawthe Creep Law where έc is the creep rate selected for the laboratory experiment - for frozen soils is often taken as 10-5 min-1 (Andersland et al., 1978); σc is the uniaxial stress for the selected creep rate; σc (T) and n(T) are temperature-dependent creep parameters The creep law can be rewritten in the form of a power expression (Hult, 1966; Ladanyi, 1972): έ(c) = έc [σ/σc (T)]n(T) Equation 4.19  The equations for both primary and secondary creep emphasize the temperature-dependence of creep deformation
  • 14. [Solid]:[Solid]: Map of the Deformation MechanismsMap of the Deformation Mechanisms of Iceof Ice As a function of temperature, applied stress, and strain rate ( from Carr, 1996, after Shoji and Higashi, 1978 )
  • 15. [Solid]:[Solid]: Debris-Ice Feature TerminologyDebris-Ice Feature Terminology ( Adapted from Whalley and Azizi, 2003 )
  • 16. [Solid]:[Solid]: Typical Rock Glaciers inTypical Rock Glaciers in Wrangell Mountains, AlaskaWrangell Mountains, Alaska Rock glacier “a” has a single lobe, and rock glacier “b” has a second lobe that appears to have advanced on top of another lobe that advanced at an earlier time ( Adapted from Whalley and Azizi, 2003 )
  • 17. [Solid]:[Solid]: Two Possible Rock-Ice SystemsTwo Possible Rock-Ice Systems in Candor Chasma, Marsin Candor Chasma, Mars Feature “A” resembles a rock glacier, and feature “B” resembles a protalus rampart ( Adapted from Whalley and Azizi, 2003; After Malin et al., 2000 )
  • 18. [Solid]:[Solid]: Enlargements of CandorEnlargements of Candor Chasma FeaturesChasma Features Feature “A” resembles a rock glacier, and feature “B” resembles a protalus rampart ( Adapted from Whalley and Azizi, 2003; After Malin et al., 2000 ) Enlargement of feature A Enlargement of feature B
  • 19. [Solid]:[Solid]: Degradation of Ice-rich MaterialDegradation of Ice-rich Material • Insolation asymmetries → slope asymmetries – Differential sublimation erosion (Howard et al., 1982; Fenton and Herkenhoff, 2000 ) – Differential ground ice melting (Kreslavsky and Head, 2003 ) • Sublimation erosion in degradation of slopes – Mars (Squyres, 1979; Howard et al., 1982; Moore et al., 1996; Fenton and Herkenhoff, 2000; Kreslavsky and Head, 2003 ) – Moons; including Triton, Io, and Ganymede (Smith et al., 1989; Moore et al., 1996, 1997, 1998 )
  • 20. [Solid]:[Solid]: Profiles of Trough inProfiles of Trough in Northern Polar Layered DepositsNorthern Polar Layered Deposits (Adapted from Fenton and Herkenhoff, 2000)
  • 21. [Solid]:[Solid]: Profiles of Trough inProfiles of Trough in Northern Polar Layered DepositsNorthern Polar Layered Deposits (Adapted from Fenton and Herkenhoff, 2000)
  • 22. [Solid]: North-South Components of[Solid]: North-South Components of SlopeSlope AngleAngle > 5°> 5° Equatorward Slopes Poleward Slopes
  • 23. [Solid]:[Solid]: North-South Components ofNorth-South Components of Slope Angle vs. LatitudeSlope Angle vs. Latitude
  • 24. [Solid]:[Solid]: Equatorward and PolewardEquatorward and Poleward CountsCounts
  • 25. [Solid]:[Solid]: Correlations of Poleward N-SCorrelations of Poleward N-S Components of Slope AngleComponents of Slope Angle
  • 26. [Solid]:[Solid]: Correlations of Equatorward N-SCorrelations of Equatorward N-S Components of Slope AngleComponents of Slope Angle
  • 27. [Solid]:[Solid]: Equatorward-Poleward SlopeEquatorward-Poleward Slope Angle DifferencesAngle Differences 101-pt. centered moving average smoothing101-pt. centered moving average smoothing
  • 28. • Average difference 0.25º ± 0.04º – Equatorward slopes steeper than poleward slopes • Northern hemisphere 0.29º ± 0.06º • Southern hemisphere 0.20º ± 0.03º [Solid]:[Solid]: Quantified Equatorward-PolewardQuantified Equatorward-Poleward Slope Angle DifferencesSlope Angle Differences
  • 29. [Solid]:[Solid]: Correlations of Equatorward-Correlations of Equatorward- Poleward Slope Angle DifferencePoleward Slope Angle Difference
  • 30. [Solid]:[Solid]: N-S Components of Slope AngleN-S Components of Slope Angle at 30at 30°°-- 6060°° LatitudesLatitudes • Average difference 0.16º ± 0.04º – Equatorward slopes steeper than poleward slopes • Northern hemisphere 0.11º ± 0.08º • Southern hemisphere 0.22º ± 0.03º
  • 32. [Solid]:[Solid]: North-South Components ofNorth-South Components of Slope Angle vs. TemperatureSlope Angle vs. Temperature
  • 33. [Solid]:[Solid]: Depth below the Surface at whichDepth below the Surface at which Ground Ice is StableGround Ice is Stable (Adapted from Carr, 1996; after Farmer and Doms, 1979)
  • 34. [Solid]:[Solid]: Map of Epithermal Neutron FluxMap of Epithermal Neutron Flux from the Neutron Spectrometer of the GRSfrom the Neutron Spectrometer of the GRS Source: Boynton et al. (2002). Low values of epithermal flux indicate high hydrogen concentration (8). Contours (in white) show the regions where water ice is predicted to be stable at 0.8 meters depth as predicted by the model of Mellon and Jakosky (1993) (note that no predictions were made poleward of 60° latitude as no thermal inertia data were available)
  • 35. [Solid]:[Solid]: Residual Polar Ice CapsResidual Polar Ice Caps ( Images courtesy of NASA/JPL/Malin Space Science Systems )
  • 36. [Solid]:[Solid]: Polar Layered DepositsPolar Layered Deposits Mars Orbiter Camera image No. 46103; ( Images courtesy of NASA/JPL/Malin Space Science Systems )
  • 37. [Solid]:[Solid]: Polygonal GroundPolygonal Ground Mars Orbiter Camera image No. E09-00029; ( Image courtesy of NASA/JPL/Malin Space Science Systems )
  • 38. LiquidLiquid • Current atmospheric temperature and pressure conditions preclude the existence of liquid water on the surface of Mars = 154-218 K, diurnal range 170-290 K at lower latitudes = 6-10 mbar  Past & present distribution
  • 39. [Liquid]:[Liquid]: Coprates Chasma LayeringCoprates Chasma Layering andand Spur-and-Gully MorphologySpur-and-Gully Morphology b. This close-up is centered at 14.5° South, 55.8° West; Image covers an area of approximately 9.8 km by 17.3 km; North is up ( MOC images courtesy of NASA/JPL/Malin Space Science Systems ) a. Context image b. Central ridge close-up
  • 40. [Liquid]:[Liquid]: Floor Deposits in ParallelFloor Deposits in Parallel Trough South of Coprates ChasmaTrough South of Coprates Chasma Mars Orbiter Camera image No. MOC2- 420; center of image is at 60.1º West longitude, 15.2º South latitude ( Image courtesy of NASA/JPL/Malin Space Science Systems )
  • 41. [Liquid]:[Liquid]: Layered Floor Deposits in FarLayered Floor Deposits in Far Western Candor ChasmaWestern Candor Chasma Right image is 1.5 km wide, 2.9 km tall; Mars Orbiter Camera image No. FHA-01278; Context image Mars Orbiter Camera image No. FHA-01275; ( Images courtesy of NASA/JPL/Malin Space Science Systems ) a. Context image b. Layered floor deposits
  • 42. [Liquid]:[Liquid]: Nirgal Vallis Sand WavesNirgal Vallis Sand Waves Mars Orbiter Camera image No. E02-02651; ( Image courtesy of NASA/JPL/Malin Space Science Systems )
  • 43. [Liquid]:[Liquid]: Nanedi Vallis ChannelNanedi Vallis Channel Mars Orbiter Camera image No. 8704; ( Image courtesy of NASA/JPL/Malin Space Science Systems )
  • 44. [Liquid]:[Liquid]: Liquidized Debris FlowLiquidized Debris Flow (Adapted from Baratoux et al., 2002)
  • 45. [Liquid]:[Liquid]: Water FlowsWater Flows Mars Orbiter Camera image No. M09-03004; ( Image courtesy of NASA/JPL/Malin Space Science Systems )
  • 46. [Liquid]:[Liquid]: Oceans?Oceans? (Adapted from Clifford and Parker, 2001) (Adapted from Carr and Head, 2003)
  • 47. [Liquid]:[Liquid]: Peña de Hierro, Main SourcePeña de Hierro, Main Source AreaArea Morris et al., 2004Morris et al., 2004 Kargel and Marion, 2004Kargel and Marion, 2004 Stoker et al., 2004Stoker et al., 2004 Fernández-Remolar et al., 2003, 2004Fernández-Remolar et al., 2003, 2004 Jernsletten and Heggy, 2004a,bJernsletten and Heggy, 2004a,b A.k.a. MER-B in the Late Hesperian?A.k.a. MER-B in the Late Hesperian? Jarosite =Jarosite = KFeKFe3+3+ 33 (SO(SO44 ))22 (OH)(OH)66  Basic hydrous potassium iron sulfate  Yellow-brown, brown, orange-brown  Light yellow streaks
  • 48. [Global inventory]:[Global inventory]: Estimates for major HEstimates for major H22 OO Reservoirs and TotalReservoirs and Total Present-Day Inventory of Water on MarsPresent-Day Inventory of Water on Mars ( Sources: 1Farmer and Doms, 1979; 2Carr, 1987; 3Smith et al., 1999; 4Johnson et al., 2000; 5Clifford, 1993 )
  • 49. SummarySummary • 10-12 pr µm water vapor in Martian atmosphere = Always close to saturation = Direct observational evidence from MAWD, TES, telescopic obs. • Presence of water ice evidenced by = Polar ice caps = Polar layered terrain = Terrain deformation  Analogs to terrestrial rock glaciers & protalus ramparts  Poleward / equatorward slope assymmetries = Direct observational evidence from Odyssey / GRS / HEND  Gamma Ray Spectrometer / High Energy Neutron Detector • Past presence of liquid water evidenced by = Layering / apparent sedimentation = Morphologic evidence  Apparent river channels / lake beds / shore lines  Apparent signatures of water flow = Direct observational evidence from MER-B Opportunity (!)  Jarocite, “blueberries”  Analog to acidic metal-rich brine pools in Rio Tinto, Spain • Equivalent ocean 100’s m global inventory => Abundant evidence for water on Mars
  • 50. Adamcik, J. A. (1963),Adamcik, J. A. (1963), The water vapor content of the Martian atmosphere as a problem of chemical equilibrium,The water vapor content of the Martian atmosphere as a problem of chemical equilibrium, Planet. Space Sci., 11Planet. Space Sci., 11(4),(4), 355-359.355-359. Adams, W. S., and C. E. St. John (1926), An attempt to detect water-vapor and oxygen lines in the spectrum of Mars with theAdams, W. S., and C. E. St. John (1926), An attempt to detect water-vapor and oxygen lines in the spectrum of Mars with the registering microphotometer,registering microphotometer, Astrophys. J., 63Astrophys. J., 63, 133-137., 133-137. Adams, W. S., and T. Dunham (1937), Water-vapor lines in the spectrum of Mars,Adams, W. S., and T. Dunham (1937), Water-vapor lines in the spectrum of Mars, Publ. Astron. Soc. Pacific, 49Publ. Astron. Soc. Pacific, 49(290), 209-211.(290), 209-211. Andersland, O. B., F. H. Sayles, and B. Ladanyi (1978), Mechanical properties of frozen ground, Chapter 5 inAndersland, O. B., F. H. Sayles, and B. Ladanyi (1978), Mechanical properties of frozen ground, Chapter 5 in Geotechnical engineeringGeotechnical engineering for cold regionsfor cold regions, edited by O. B. Andersland and D. M. Anderson, pp. 216-275, McGraw-Hill, New York, New York., edited by O. B. Andersland and D. M. Anderson, pp. 216-275, McGraw-Hill, New York, New York. Baratoux, D., N. Mangold, C. Delacourt, and P. Allemand (2002), Evidence of liquid water in recent debris avalanche on Mars,Baratoux, D., N. Mangold, C. Delacourt, and P. Allemand (2002), Evidence of liquid water in recent debris avalanche on Mars, Geophys. Res. Lett., 29Geophys. Res. Lett., 29(7), 60-1 – 60-4.(7), 60-1 – 60-4. Barker, E. S. (1976), Mars: Detection of atmospheric water vapor during the southern hemisphere spring and summer season,Barker, E. S. (1976), Mars: Detection of atmospheric water vapor during the southern hemisphere spring and summer season, Icarus,Icarus, 2828(2), 247-268.(2), 247-268. Barker, E. S., R. A. Schorn, A. Woszczyk, R. G. Tull, and S. J. Little (1970), Mars: Detection of atmospheric water vapor during theBarker, E. S., R. A. Schorn, A. Woszczyk, R. G. Tull, and S. J. Little (1970), Mars: Detection of atmospheric water vapor during the southern hemisphere spring and summer season,southern hemisphere spring and summer season, Science, 170Science, 170, 1308-1310., 1308-1310. Bertaux, J.-L., and F. Montmessin (2001),Bertaux, J.-L., and F. Montmessin (2001), Isotopic fractionation through water vapor condensation: The Deuteropause, a cold trap forIsotopic fractionation through water vapor condensation: The Deuteropause, a cold trap for deuterium in the atmosphere of Marsdeuterium in the atmosphere of Mars ,, J. Geophys. Res., 106J. Geophys. Res., 106(E12),(E12), 32879-32884.32879-32884. Boynton, W. V., W. C. Feldman, S. W. Squyres, T. H. Prettyman, J. Brückner, L. G. Evans, R. C. Reedy, R. Starr, J. R. Arnold, D. M. Drake, P. A. J.Boynton, W. V., W. C. Feldman, S. W. Squyres, T. H. Prettyman, J. Brückner, L. G. Evans, R. C. Reedy, R. Starr, J. R. Arnold, D. M. Drake, P. A. J. Englert, A. E. Metzger, I. G. Mitrofanov, J. I. Trombka, C. d’Uston, H. Wänke, O. Gasnault, D. K. Hamara, D. M. Janes, R. L. Marcialis, S.Englert, A. E. Metzger, I. G. Mitrofanov, J. I. Trombka, C. d’Uston, H. Wänke, O. Gasnault, D. K. Hamara, D. M. Janes, R. L. Marcialis, S. Maurice, I. Mikheeva, G. J. Taylor, R. L. Tokar, and C. Shinohara (2002), Distribution of hydrogen in the near surface of Mars: Evidence forMaurice, I. Mikheeva, G. J. Taylor, R. L. Tokar, and C. Shinohara (2002), Distribution of hydrogen in the near surface of Mars: Evidence for subsurface ice deposits,subsurface ice deposits, Science, 297Science, 297, 81-85., 81-85. Burgdorf, M. J., T. Encrenaz, E. Lellouch, H. Feuchtgruber, G. R. Davis, B. M. Swinyard, T. de Graauw, P. W. Morris, S. D. Sidher, M. J. Griffin, F.Burgdorf, M. J., T. Encrenaz, E. Lellouch, H. Feuchtgruber, G. R. Davis, B. M. Swinyard, T. de Graauw, P. W. Morris, S. D. Sidher, M. J. Griffin, F. Forget, and T. L. Lim (2000), ISO observations of Mars: An estimate of the water vapor vertical distribution and the surface emissivity,Forget, and T. L. Lim (2000), ISO observations of Mars: An estimate of the water vapor vertical distribution and the surface emissivity, Icarus,Icarus, 145145, 79-90., 79-90. Campbell, W. W. (1910), Water vapor on Mars,Campbell, W. W. (1910), Water vapor on Mars, J. Royal Astron. Soc. Canada, 4J. Royal Astron. Soc. Canada, 4, 212-213., 212-213. Carr, M. H. (1987), Mars: A water-rich planet?, inCarr, M. H. (1987), Mars: A water-rich planet?, in MECA symposium on Mars: evolution of its climate and atmosphereMECA symposium on Mars: evolution of its climate and atmosphere, edited by V. Baker et al., hosted, edited by V. Baker et al., hosted by National air and space museum, Smithsonian institution, Washington, D. C., July 17-19, 1986,by National air and space museum, Smithsonian institution, Washington, D. C., July 17-19, 1986, LPI Technical Report 87-01LPI Technical Report 87-01, pp. 23-25,, pp. 23-25, Lunar and Planetary Institute, Houston, Texas.Lunar and Planetary Institute, Houston, Texas. Carr, M. H. (1996),Carr, M. H. (1996), Water on MarsWater on Mars. Oxford University Press, New York, New York.. Oxford University Press, New York, New York. Carr, M. H., and J. W. Head (2003), Oceans on Mars: An assessment of the observational evidence and possible fate,Carr, M. H., and J. W. Head (2003), Oceans on Mars: An assessment of the observational evidence and possible fate, J. Geophys. Res., 108J. Geophys. Res., 108(E5), 8-1 –(E5), 8-1 – 8-28.8-28. Clifford, S. M. (1993), A model for the hydrologic and climatic behavior of water on Mars,Clifford, S. M. (1993), A model for the hydrologic and climatic behavior of water on Mars, J. Geophys. Res., 98J. Geophys. Res., 98(E6), 10973-11016.(E6), 10973-11016. Clifford, S. M., and T. J. Parker (2001), The evolution of the Martian hydrosphere: Implications for the fate of a primordial ocean and the current state ofClifford, S. M., and T. J. Parker (2001), The evolution of the Martian hydrosphere: Implications for the fate of a primordial ocean and the current state of the northern plains,the northern plains, Icarus, 154Icarus, 154, 40-79., 40-79. Farmer, C. B., and P. E. Doms (1979), Global and seasonal water vapor on Mars and implications for permafrost,Farmer, C. B., and P. E. Doms (1979), Global and seasonal water vapor on Mars and implications for permafrost, J. Geophys. Res., 84J. Geophys. Res., 84(B6), 2881-2888.(B6), 2881-2888. Farmer, C. B., D. W. Davies, and D. D. LaPorte (1976), Mars: Northern summer ice cap – water vapor observations from Viking 2,Farmer, C. B., D. W. Davies, and D. D. LaPorte (1976), Mars: Northern summer ice cap – water vapor observations from Viking 2, Science, 194Science, 194, 1339-, 1339- 1341.1341. Farmer, C. B., D. W. Davies, A. L. Holland, D. D. LaPorte, and P. E. Doms (1977),Farmer, C. B., D. W. Davies, A. L. Holland, D. D. LaPorte, and P. E. Doms (1977), Mars: Water vapor observations from the Viking orbitersMars: Water vapor observations from the Viking orbiters,, Science,Science, 194194, 1339-1341., 1339-1341. References Cited – 1 of 3References Cited – 1 of 3
  • 51. Fenton, L. K., and K. E. Herkenhoff (2000), Topography and stratigraphy of the northern Martian polar layered deposits using photoclinometry,Fenton, L. K., and K. E. Herkenhoff (2000), Topography and stratigraphy of the northern Martian polar layered deposits using photoclinometry, stereogrammetry, and MOLA altimetry,stereogrammetry, and MOLA altimetry, Icarus, 147Icarus, 147, 433-443., 433-443. Fernández-Remolar, D. C., N. Rodriguez, F. Gómez, and R. Amils (2003), Geological record of an acidic environment driven by iron hydrochemistry:Fernández-Remolar, D. C., N. Rodriguez, F. Gómez, and R. Amils (2003), Geological record of an acidic environment driven by iron hydrochemistry: The Tinto River system, J. Geophys. Res., 108(E7), 16-1 – 16-15.The Tinto River system, J. Geophys. Res., 108(E7), 16-1 – 16-15. Fernández-Remolar, D. C., O. Prietos-Ballesteros, and C. R. Stoker (2004), Searching for an acidic aquifer in the Rio Tinto basin, first geobiologyFernández-Remolar, D. C., O. Prietos-Ballesteros, and C. R. Stoker (2004), Searching for an acidic aquifer in the Rio Tinto basin, first geobiology results of MARTE project, Abstract no. 1766, 35.th Lunar and Planetary Science Conference, Houston, Texas, March 15-19.results of MARTE project, Abstract no. 1766, 35.th Lunar and Planetary Science Conference, Houston, Texas, March 15-19. Glen, J. W. (1958), The flow law of ice, in Physique du mouvement de la Glace / Physics of the movement of ice, Symposium de Chamonix, 16-24Glen, J. W. (1958), The flow law of ice, in Physique du mouvement de la Glace / Physics of the movement of ice, Symposium de Chamonix, 16-24 September, pp. 171-183,September, pp. 171-183, International Association of Hydrological Sciences Publication 47International Association of Hydrological Sciences Publication 47.. Hartmann, W. K., and G. Neukum (2001), Cratering chronology and the evolution of Mars,Hartmann, W. K., and G. Neukum (2001), Cratering chronology and the evolution of Mars, Space Science Reviews, 96Space Science Reviews, 96, 165-194., 165-194. Howard, A. D., J. A. Cutts, and K. R. Blasius (1982), Stratigraphic relationships within Martian polar cap deposits,Howard, A. D., J. A. Cutts, and K. R. Blasius (1982), Stratigraphic relationships within Martian polar cap deposits, Icarus, 50Icarus, 50, 161-215., 161-215. Hult, J. A. H. (1966),Hult, J. A. H. (1966), Creep in Engineering StructuresCreep in Engineering Structures, Blaisdell, Waltham, Massachussetts., Blaisdell, Waltham, Massachussetts. Jakosky, B. M., and R. J. Phillips (2001), Mars' volatile and climate history,Jakosky, B. M., and R. J. Phillips (2001), Mars' volatile and climate history, Nature, 412Nature, 412, 237-244., 237-244. Jernsletten, J. A., and E. Heggy (2004a), Sounding of subsurface water through conductive media in Mars analog environments using transientJernsletten, J. A., and E. Heggy (2004a), Sounding of subsurface water through conductive media in Mars analog environments using transient electromagnetics and low frequency ground penetrating radar, oral presentation, Abstract no. 2089, 35.th Lunar and Planetary Scienceelectromagnetics and low frequency ground penetrating radar, oral presentation, Abstract no. 2089, 35.th Lunar and Planetary Science Conference, Houston, Texas, March 15-19.Conference, Houston, Texas, March 15-19. Jernsletten, J. A., and E. Heggy (2004b), Sounding of groundwater through conductive media in Mars analog environments using transientJernsletten, J. A., and E. Heggy (2004b), Sounding of groundwater through conductive media in Mars analog environments using transient electromagnetics and low frequency GPR,electromagnetics and low frequency GPR, Eos Trans. AGU, 85Eos Trans. AGU, 85(17), Jt. Assem. Suppl., Abstract no. P53A-01, poster presentation, AGU 2004(17), Jt. Assem. Suppl., Abstract no. P53A-01, poster presentation, AGU 2004 Joint Assembly, Montreal, Canada, May 17-21.Joint Assembly, Montreal, Canada, May 17-21. Johnson, C. L., S. C. Solomon, J. W. Head, R. J. Phillips, D. E. Smith, and M. T. Zuber (2000), Lithospheric loading by the northern polar cap of Mars,Johnson, C. L., S. C. Solomon, J. W. Head, R. J. Phillips, D. E. Smith, and M. T. Zuber (2000), Lithospheric loading by the northern polar cap of Mars, Icarus, 144Icarus, 144, 313-328., 313-328. Johnston, G. H. (1981), editor,Johnston, G. H. (1981), editor, Permafrost engineering design and constructionPermafrost engineering design and construction, John Wiley and Sons, Inc., Toronto, Canada., John Wiley and Sons, Inc., Toronto, Canada. Kargel, J. S., and G. M. Marion (2004), Mars as a salt-, acid-, and gas-hydrate world, Abstract no. 1965, 35.th Lunar and Planetary Science Conference,Kargel, J. S., and G. M. Marion (2004), Mars as a salt-, acid-, and gas-hydrate world, Abstract no. 1965, 35.th Lunar and Planetary Science Conference, Houston, Texas, March 15-19.Houston, Texas, March 15-19. Kirkland, L. E., K. C. Herr, and P. M. Adams (2003), Infrared stealthy surfaces: Why TES and THEMIS may miss some substantial mineral deposits onKirkland, L. E., K. C. Herr, and P. M. Adams (2003), Infrared stealthy surfaces: Why TES and THEMIS may miss some substantial mineral deposits on Mars and implications for remote sensing of planetary surface,Mars and implications for remote sensing of planetary surface, J. Geophys. Res., 108J. Geophys. Res., 108(E12), 11-1 – 11-11.(E12), 11-1 – 11-11. Kreslavsky, M. A., and J. W. Head (2003), North-south topographic slope asymmetry on Mars: Evidence for insolation-related erosion at high obliquity,Kreslavsky, M. A., and J. W. Head (2003), North-south topographic slope asymmetry on Mars: Evidence for insolation-related erosion at high obliquity, Geophys. Res. Lett., 30Geophys. Res. Lett., 30(15), PLA 1-1 – PLA 1-4.(15), PLA 1-1 – PLA 1-4. Ladanyi, B. (1972), In situ determination of undrained stress-strain behavior of sensitive clays with the pressuremeter,Ladanyi, B. (1972), In situ determination of undrained stress-strain behavior of sensitive clays with the pressuremeter, Canadian Geotech. J., 9Canadian Geotech. J., 9, 313–, 313– 319.319. Malin, M. C., K. S. Edgett, S. D. Davis, M. A. Caplinger, E. Jensen, K. D. Supulver, J. Sandoval, L. Posiolova, and R. Zimdar (2000), image FHA01275,Malin, M. C., K. S. Edgett, S. D. Davis, M. A. Caplinger, E. Jensen, K. D. Supulver, J. Sandoval, L. Posiolova, and R. Zimdar (2000), image FHA01275, Malin Space Science Systems Mars Orbiter Camera Image Gallery,Malin Space Science Systems Mars Orbiter Camera Image Gallery, http://www.msss.com/moc_gallery/ab1_m04/images/FHA01275.htmlhttp://www.msss.com/moc_gallery/ab1_m04/images/FHA01275.html.. McKee, M. (2003), Martian timeline,McKee, M. (2003), Martian timeline, http://astronomy.com/content/dynamic/articles/ 000/000/001/357xsrza.asphttp://astronomy.com/content/dynamic/articles/ 000/000/001/357xsrza.asp.. Mellon, M. T., and B. M. Jakosky (1993), Geographic variations in the thermal and diffusive stability of ground ice on Mars,Mellon, M. T., and B. M. Jakosky (1993), Geographic variations in the thermal and diffusive stability of ground ice on Mars, J.J. Geophys. Res., 98Geophys. Res., 98(E2), 3345-3364.(E2), 3345-3364. Moore, J. M., M. T. Mellon, and A. P. Zent (1996), Mass wasting and ground collapse in terrains of volatile-rich deposits as a solarMoore, J. M., M. T. Mellon, and A. P. Zent (1996), Mass wasting and ground collapse in terrains of volatile-rich deposits as a solar system-wide geological process: The pre-Gallileo view,system-wide geological process: The pre-Gallileo view, Icarus, 122Icarus, 122, 63-78., 63-78. References Cited – 2 of 3References Cited – 2 of 3
  • 52. Moore, J. M., E. Asphaug, D. Morrison, K. C. Bender, R. J. Sullivan, R. Greeley, P. E. Geissler, C. R. Chapman, and C. B. PilcherMoore, J. M., E. Asphaug, D. Morrison, K. C. Bender, R. J. Sullivan, R. Greeley, P. E. Geissler, C. R. Chapman, and C. B. Pilcher (1997), Landform degradation and mass wasting on the icy Galilean satellites, Abstract no. 1407, 28.th Lunar and(1997), Landform degradation and mass wasting on the icy Galilean satellites, Abstract no. 1407, 28.th Lunar and Planetary Science Conference, Houston, Texas, March 17-21.Planetary Science Conference, Houston, Texas, March 17-21. Moore, J. M., J. R. Spencer, E. Asphaug, D. Morrison, J. E. Klemaszewski, R. J. Sullivan, F. C. Chuang, R. Greeley, K. C. Bender, P.Moore, J. M., J. R. Spencer, E. Asphaug, D. Morrison, J. E. Klemaszewski, R. J. Sullivan, F. C. Chuang, R. Greeley, K. C. Bender, P. E. Geissler, C. R. Chapman, C. B. Pilcher, and the Galileo SSI Team (1998), Mass movement and landform degradation onE. Geissler, C. R. Chapman, C. B. Pilcher, and the Galileo SSI Team (1998), Mass movement and landform degradation on Callisto and Ganymede as observed during the Galileo nominal mission: The role of sublimation, Abstract no. 1553, 29.thCallisto and Ganymede as observed during the Galileo nominal mission: The role of sublimation, Abstract no. 1553, 29.th Lunar and Planetary Science Conference, Houston, Texas, March 16-20.Lunar and Planetary Science Conference, Houston, Texas, March 16-20. Morris, R. V., S. Squyres, R. E. Arvidson, J. F. Bell, P. C. Christensen, S. Gorevan, K. Herkenhoff, G. Klingelhöfer, R. Rieder, W.Morris, R. V., S. Squyres, R. E. Arvidson, J. F. Bell, P. C. Christensen, S. Gorevan, K. Herkenhoff, G. Klingelhöfer, R. Rieder, W. Farrand, A. Ghosh, T. Glotch, J. R. Johnson, M. Lemmon, H. Y. McSween, D. W. Ming, C. Schroeder, P. de Souza, M. Wyatt,Farrand, A. Ghosh, T. Glotch, J. R. Johnson, M. Lemmon, H. Y. McSween, D. W. Ming, C. Schroeder, P. de Souza, M. Wyatt, and the Athena Science Team (2004), A first look at the mineralogy and geochemistry of the MER-B landing site inand the Athena Science Team (2004), A first look at the mineralogy and geochemistry of the MER-B landing site in Meridiani Planum, Abstract no. 2179, 35.th Lunar and Planetary Science Conference, Houston, Texas, March 15-19.Meridiani Planum, Abstract no. 2179, 35.th Lunar and Planetary Science Conference, Houston, Texas, March 15-19. Paterson, W. S. B. (1981),Paterson, W. S. B. (1981), The Physics of GlaciersThe Physics of Glaciers, 2.nd Edition, Pergamon Press, New York, New York., 2.nd Edition, Pergamon Press, New York, New York. Paterson, W. S. B. (1994),Paterson, W. S. B. (1994), The Physics of GlaciersThe Physics of Glaciers, 3.rd Edition, Pergamon Press, Oxford, England., 3.rd Edition, Pergamon Press, Oxford, England. Russell-Head, D. S., and W. F. Budd (1979), Ice-sheet flow properties derived from bore-hole shear measurements combined withRussell-Head, D. S., and W. F. Budd (1979), Ice-sheet flow properties derived from bore-hole shear measurements combined with ice-core studies,ice-core studies, J. Glac., 24J. Glac., 24, 117-130., 117-130. Shoji, H. and A. Higashi (1978), A deformation mechanism map of ice,Shoji, H. and A. Higashi (1978), A deformation mechanism map of ice, J. Glac., 85J. Glac., 85, 419-427., 419-427. Smith, M. D. (2002), The annual cycle of water vapor on Mars as observed by the Thermal Emission SpectrometerSmith, M. D. (2002), The annual cycle of water vapor on Mars as observed by the Thermal Emission Spectrometer,, J. Geophys. Res.,J. Geophys. Res., 107107(E11), 25-1 – 25-19.(E11), 25-1 – 25-19. Smith, B. A., L. A. Soderblom, D. Banfield, C. Barnet, A. T. Basilevksy, R. F. Beebe, K. Bollinger, J. M. Boyce, A. Brahic, G. A. Briggs, R. H. Brown, C.Smith, B. A., L. A. Soderblom, D. Banfield, C. Barnet, A. T. Basilevksy, R. F. Beebe, K. Bollinger, J. M. Boyce, A. Brahic, G. A. Briggs, R. H. Brown, C. Chyba, S. A. Collins, T. Colvin, A. F. Cook, D. Crisp, S. K. Croft, D. Cruikshank, J. N. Cuzzi, G. E. Danielson, M. E. Davies, E. De Jong, L.Chyba, S. A. Collins, T. Colvin, A. F. Cook, D. Crisp, S. K. Croft, D. Cruikshank, J. N. Cuzzi, G. E. Danielson, M. E. Davies, E. De Jong, L. Dones, D. Godfrey, J. Goguen, I. Grenier, V. R. Haemmerle, H. Hammel, C. J. Hansen, C. P. Helfenstein, C. Howell, G. E. Hunt, A. P.Dones, D. Godfrey, J. Goguen, I. Grenier, V. R. Haemmerle, H. Hammel, C. J. Hansen, C. P. Helfenstein, C. Howell, G. E. Hunt, A. P. Ingersoll, T. V. Johnson, J. Kargel, R. Kirk, D. I. Kuehn, S. Limaye, H. Masursky, A. McEwen, D. Morrison, T. Owen, W. Owen, J. B. Pollack,Ingersoll, T. V. Johnson, J. Kargel, R. Kirk, D. I. Kuehn, S. Limaye, H. Masursky, A. McEwen, D. Morrison, T. Owen, W. Owen, J. B. Pollack, C. C. Porco, K. Rages, P. Rogers, D. Rudy, C. Sagan, J. Schwartz, E. M. Shoemaker, M. Showalter, B. Sicardy, D. Simonelli, J. Spencer, L.C. C. Porco, K. Rages, P. Rogers, D. Rudy, C. Sagan, J. Schwartz, E. M. Shoemaker, M. Showalter, B. Sicardy, D. Simonelli, J. Spencer, L. A. Sromovsky, C. Stoker, R. G. Strom, V. E. Suomi, S. P. Synott, R. J. Terrile, P. Thomas, W. R. Thompson, A. Verbiscer, and J. VeverkaA. Sromovsky, C. Stoker, R. G. Strom, V. E. Suomi, S. P. Synott, R. J. Terrile, P. Thomas, W. R. Thompson, A. Verbiscer, and J. Veverka (1989), Voyager 2 at Neptune: Imaging science results,(1989), Voyager 2 at Neptune: Imaging science results, Science, 246Science, 246, 1422-1449., 1422-1449. Smith, D. E., M. T. Zuber, S. C. Solomon, R. J. Phillips, J. W. Head, J. B. Garvin, W. B. Banerdt, D. O. Muhlerman, G. H. Pettengill, G. A. Neumann, F.Smith, D. E., M. T. Zuber, S. C. Solomon, R. J. Phillips, J. W. Head, J. B. Garvin, W. B. Banerdt, D. O. Muhlerman, G. H. Pettengill, G. A. Neumann, F. G. Lemoine, J. B. Abshire, O. Aharonson, C. D. Brown, S. A. Hauck, A. B. Ivanov, P. J. McGovern, H. J. Zwally, and T. C. Duxbury (1999),G. Lemoine, J. B. Abshire, O. Aharonson, C. D. Brown, S. A. Hauck, A. B. Ivanov, P. J. McGovern, H. J. Zwally, and T. C. Duxbury (1999), The global topography of Mars and implications for surface evolution,The global topography of Mars and implications for surface evolution, Science, 284Science, 284, 1495-1503., 1495-1503. Squyres, S. W. (1979), The evolution of dust deposits in the Martian north polar region,Squyres, S. W. (1979), The evolution of dust deposits in the Martian north polar region, Icarus, 40Icarus, 40, 244-261., 244-261. Stoker, C. R., S. Dunagan, T. Stevens, R. Amils, J. Gómez-Elvira, D. C. Fernández-Remolar, J. Hall, K. Lynch, H. Cannon, J. Zavaleta, B. Glass, and L.Stoker, C. R., S. Dunagan, T. Stevens, R. Amils, J. Gómez-Elvira, D. C. Fernández-Remolar, J. Hall, K. Lynch, H. Cannon, J. Zavaleta, B. Glass, and L. Lemke (2004), Mars analog Rio Tinto experiment (MARTE): 2003 drilling campaign to search for a subsurface biosphere at Rio Tinto Spain,Lemke (2004), Mars analog Rio Tinto experiment (MARTE): 2003 drilling campaign to search for a subsurface biosphere at Rio Tinto Spain, Abstract no. 1766, 35.th Lunar and Planetary Science Conference, Houston, Texas, March 15-19.Abstract no. 1766, 35.th Lunar and Planetary Science Conference, Houston, Texas, March 15-19. Tanaka, K. L., D. H. Scott, and R. Greeley (1992), Global stratigraphy, inTanaka, K. L., D. H. Scott, and R. Greeley (1992), Global stratigraphy, in MarsMars, edited by H. H. Kieffer et al., pp. 345-382, The University of Arizona, edited by H. H. Kieffer et al., pp. 345-382, The University of Arizona Press, Tucson, Arizona.Press, Tucson, Arizona. Whalley, W. B., and F. Azizi (2003), Rock glaciers and protalus landforms: Analogous forms and ice sources on Earth and Mars,Whalley, W. B., and F. Azizi (2003), Rock glaciers and protalus landforms: Analogous forms and ice sources on Earth and Mars, J. Geophys. Res.,J. Geophys. Res., 108108(E4), GDS 13-1 – GDS 13-17.(E4), GDS 13-1 – GDS 13-17. Zuber, M. T. (2001), The crust and mantle of Mars,Zuber, M. T. (2001), The crust and mantle of Mars, Nature, 412Nature, 412, 220-227., 220-227. References Cited – 3 of 3References Cited – 3 of 3

Notes de l'éditeur

  1. Dick Morris’ talk at LPSC 35 referred to Rio Tinto as an analog environment to that of the MER-B landing site for the formation of jarocite (acidic environment; pH ~1.5-3). Jeff Kargel also referred to Rio Tinto at the same meeting. If you want to know more about the Rio Tinto analog, refer to David Fernandez’ and Carol Stoker’s talks at LPSC 35, and earlier work in Rio Tinto by them and others.