SlideShare une entreprise Scribd logo
1  sur  26
Télécharger pour lire hors ligne
Pericyclic
reactions in
Ethers Biofuels
July 31 - August 5, 2016 - Seoul, Korea
Juan-Carlos Lizardo-Huerta, Baptiste Sirjean,
Pierre-Alexandre Glaude, René Fournet
36TH International Symposium on Combustion
Reactions and Chemical Engineering Laboratory, Nancy, France.
36TH International Symposium on Combustion
• Acyclic ethers (DME and derivatives) used as additives to increase
octane number of usual fuels and mainly produced from alcohols
(first-generation biofuels)
• Saturated and unsaturated cyclic ethers (furan or pyran type) have
attracted recent interest as biofuel (second-generation biofuels-non
edible feedstock)
Ethers biofuels combustion
2
O
O
THF THP
O O O
DME DEE DPE
 For acyclic ethers, alcohol elimination is a well-known and preponderant
primary reaction
 For cyclic ethers, pericyclic reactions remain unknown
36TH International Symposium on Combustion
• Laidler and McKeney (1964) proved that this formation occurred from a
pericyclic reaction in DEE
• Rate constant proposed: Ea = 83.8 kcal mol-1 and A= 2.75×1018 s-1
Previous Work - Acyclic ethers
3
O
O
H
OH
‡
+
Alcohol elimination
• Danby and Freeman (1958) first detected ethanol as product of DEE thermal
decomposition
36TH International Symposium on Combustion
-5.0
-4.0
-3.0
-2.0
logk(s
-1
)
1.351.301.251.201.151.10
1000/(T(K))
Kinetics of alcohol elimination in DEE
4
Alcohol elimination
O
O
H
OH
‡
+
Alcohol elimination
-5.0
-4.0
-3.0
-2.0
logk(s
-1
)
1.351.301.251.201.151.10
1000/(T(K))
-5.0
-4.0
-3.0
-2.0
logk(s
-1
)
1.351.301.251.201.151.10
1000/(T(K))
-30
-25
-20
-15
-10
-5
0
5
logk(s
-1
)
1.1.00.8
1000/(T(K))
Laidler and McKenney (1964)
Foucaut and Martin (1978)
Yasunaga (2010)
Laidler and McKenney (1964)
Foucaut and Martin (1978)
Seres and Huhn (1986)
Yasunaga (2010)
-30
-25
-20
-15
-10
-5
0
5
logk(s
-1
)
1.1.00.8
1000/(T(K))
Laidler and McKenney (1964)
Foucaut and Martin (1978)
Yasunaga (2010)
Laidler and McKenney (1964)
Foucaut and Martin (1978)
Seres and Huhn (1986)
Yasunaga (2010)
1 K. Laidler, D. McKenney, Proc. R. Soc. Lond. A 278 (1964) 505-516.
2 J. Foucaut, R. Martin, Journal de chimie physique et de physico-chimie biologique 75 (1978) 132-144.
3 K. Yasunaga, F. Gillespie, J. Simmie, H. Curran, et al., The Journal of Physical Chemistry A 114 (2010) 9098-9109.
1
2
3
Factor of 9
at 800 K
-10
-8
-6
-4
-2
0
2
4
6
logk(s
-1
) 1.21.00.8
1000/(T(K))
Yasunaga et al. (2010)
Yasunaga et al. (2010)
36TH International Symposium on Combustion
Kinetics of alcohol elimination in DEE
5
 Alcohol elimination is dominant over unimolecular initiation below 1000 K
1 K. Laidler, D. McKenney, Proc. R. Soc. Lond. A 278 (1964) 505-516.
2 J. Foucaut, R. Martin, Journal de chimie physique et de physico-chimie biologique 75 (1978) 132-144.
3 K. Yasunaga, F. Gillespie, J. Simmie, H. Curran, et al., The Journal of Physical Chemistry A 114 (2010) 9098-9109.
4 I. Seres, P. Huhn, International journal of chemical kinetics 18 (1986) 829-836.
4
-8
-6
-4
-2
0
2
4
logk(s
-1
)
1.41.31.21.11.00.90.80.7
1000/(T(K))
C-O bond fission
-30
-25
-20
-15
-10
-5
0
5
logk(s
-1
)
1.1.00.8
1000/(T(K))
Laidler and McKenney (1964)
Foucaut and Martin (1978)
Yasunaga (2010)
Laidler and McKenney (1964)
Foucaut and Martin (1978)
Seres and Huhn (1986)
Yasunaga (2010)
-10
-8
-6
-4
-2
0
2
4
6
logk(s
-1
)
1.21.00.8
1000/(T(K))
Yasunaga et al. (2010)
Yasunaga et al. (2010)
Alcohol elimination
-30
-25
-20
-15
-10
-5
0
5
logk(s
-1
)
1.1.00.8
1000/(T(K))
Laidler and McKenney (1964)
Foucaut and Martin (1978)
Yasunaga (2010)
Laidler and McKenney (1964)
Foucaut and Martin (1978)
Seres and Huhn (1986)
Yasunaga (2010)
-30
-25
-20
-15
-10
-5
0
5
logk(s
-1
)
1.1.00.8
1000/(T(K))
Laidler and McKenney (1964)
Foucaut and Martin (1978)
Yasunaga (2010)
Laidler and McKenney (1964)
Foucaut and Martin (1978)
Seres and Huhn (1986)
Yasunaga (2010)
1
2
3
-10
-8
-6
-4
-2
0
2
4
logk(s
-1
)
1.21.00.8
1000/(T(K))
Yasunaga et al. (2010)
Yasunaga et al. (2010)
36TH International Symposium on Combustion
Kinetics of pericyclic reactions in THF
6
5 M. Verdicchio, B. Sirjean, L.S. Tran, P.-A. Glaude, et al., Proceedings of the Combustion Institute 35 (2015) 533-541
 ~20 % of the unimolecular degradation of THF occurs through pericyclic reactions
High-P limit model flux analysis of THF decomposition5, T=1200 K
(CBS-QB3, CASPT2)
36TH International Symposium on Combustion 7
Aims of present work
O R2
R3
R1
R'2
R'3
R'1
O R2R1O R2R1
Acyclic ethers Cyclic ethers
 Investigate the influence of structural effects in pericyclic reactions in the
decomposition of acyclic and cyclic ethers
Ri: H or alkyl group
 Propose reaction rate rules
36TH International Symposium on Combustion
• Quantum Chemical Calculations: Gaussian 09
– G4 (closed shell and radical, accuracy ~1.0 kcal mol-1)
• Rate Coefficients: ThermRot6
– Transition State Theory (TST)
– 1D tunneling correction (asymmetric Eckart)
– 1-DHR approach for hindered rotors from M06-2x/6-311+G(2d,p) relaxed scans,
including a recalculation of the (1D) harmonic frequency associated with
hindered rotations
– Multi-structural approach considered for the ring conformations (chair, boat, axial,
equatorial)
– Rate coefficients were fitted over temperatures range 500 - 2000 K, with a three
parameters Arrhenius expressions
Computational approach
8
6 J. Lizardo-Huerta, B. Sirjean, R. Bounaceur, R. Fournet, Physical Chemistry and Chemical Physics 18 (2016) 12231-
12251.
36TH International Symposium on Combustion
Conformational analysis: 2-MTHP
‡‡
0
2
4
6
8
10
12
chair
equatorial
(1)
half chair half chair chair
axial
(3)
twist boat (2)
Conformation
Energy(kcalmol-1)
9
Chair equatorial
Twist boat
Chair axial
O
36TH International Symposium on Combustion 10
Multi-structural rate constant
• Thermalization assumption:
Equilibrium constants calculation and conformational population (X1, X2, …)
• Total high-pressure limit rate constant: ktotale = X1×k1 + X2×k2 +…+ Xi×ki
with ki: alcohol elimination rate constant of the ith conformer
-4
-3
-2
-1
0
1
2
logk(s
-1
)
1.21.11.00.90.8
1000/(T(K))
k1
ktotale
alcohol elimination
48%
k
k
K1000at
totale
1

O
k1: kinetic constant
calculated from the
lowest energy
conformer
36TH International Symposium on Combustion
Pericyclic reaction of acyclic ethers - DEE
11
High-pressure limit rate constant
H2 elimination
O• • + H2O
79.2
O
H H ‡
Alcohol elimination
OH +O
67.1
CH2O
H
~
‡
-20
-15
-10
-5
0
logk(s
-1
)
1.41.31.21.11.0
1000/(T(K))
alcohol elimination
H2 elimination
Laidler and McKenney (1964)
Foucaut and Martin (1978)
Yasunaga (2010)
 For acyclic ethers
alcohol elimination is
dominant
-10
-8
-6
-4
-2
0
logk(s
-1
)
1.41.31.21.11.0
1000/(T(K))
-20
-15
-10
-5
0
logk(s
-1
)
1.41.31.21.11.0
1000/(T(K))
alcohol elimination
H2 elimination
Laidler and McKenney (1964)
Foucaut and Martin (1978)
Yasunaga (2010)
Alcohol
elimination
* Energy barrier at 0 K (G4) in kcal mol-1
-10
-8
-6
-4
-2
0
logk(s
-1
)
1.41.31.21.11.0
1000/(T(K))
36TH International Symposium on Combustion
Pericyclic reaction of acyclic ethers
12
Reaction rate rule for alcohol elimination
H-type*
k = ATnexp(-E/RT)
A (s-1) n E (cal)
Primary
(x, y = H)
9.55×103 2.612 61920
Secondary
(x = H, y = Alkyl)
3.49×104 2.445 62830
Tertiary
(x, y = Alkyl)
7.80×105 2.132 64300
* Values per transferable H-atom
R
O
y
x
H
36TH International Symposium on Combustion
Cyclic ether: Influence of lateral alkyl groups
13
78.6 79.8
H2 elimination
O
O
• • + H2
alcohol formation
OH
O
H
* Energy barrier at 0 K (G4) in kcal mol-1
First case, no lateral alkyl group in position 2: THF example
• H2-elimination competes with alcohol formation
• Only one possible alcohol formation
O
H-H
‡
O
H
~ ‡
36TH International Symposium on Combustion
Cyclic ether: Influence of lateral alkyl groups
14
78.2 80.5
62.8
* Energy barrier at 0 K (G4) in kcal mol-1
endo
exo
H2 elimination
O O
• • + H2
O
H-H
‡
O
H
OH
alcohol formation
O CH2
H
~
‡
alcohol formation
OH
O
H
O
H
~ ‡
Second case, one lateral alkyl group in position 2: MTHF example
77.9
O
H
~
‡
alcohol formation
OH
O
H
endo
36TH International Symposium on Combustion
PES of 2-MTHF pericyclic reaction - G4 at 0 K
Pericyclic reaction of THF derivatives
15
0
10
20
30
40
50
60
70
80
OH
O CH2
H
~
‡
O
H-H
‡
O
H
~ ‡
O
H
~
‡
OH OH
O
MTHF
E (0 K) kcal mol-1
M1
M2
M3
O
• •
+ H2
78.2
80.5
77.9
62.8
Internal transfer of H-atoms
(endo)
exo pericyclic
rearrangement
endo-1 endo-2
36TH International Symposium on Combustion
High-pressure limit rate constants
Pericyclic reaction of cyclic ethers
16
 H2-elimination competes with alcohol elimination if no lateral alkyl group is
located in position 2
-20
-15
-10
-5
0
logk(s
-1
)
2.01.81.61.41.21.00.8
1000/(T(K))
H2 elimination
alcohol elimination
THP
O
-20
-15
-10
-5
0
logk(s
-1
)
2.01.81.61.41.21.00.8
1000/(T(K))
H2 elimination
alcohol elimination
THF
O
36TH International Symposium on Combustion
High-pressure limit rate constants
Pericyclic reaction of cyclic ethers
17
-20
-15
-10
-5
0
logk(s
-1
)
2.01.81.61.41.21.00.8
1000/(T(K))
H2 elim
ROH elim exo
ROH elim endo branched
ROH elim endo linear
MTHP
-20
-15
-10
-5
0
logk(s
-1
)
2.01.81.61.41.21.00.8
1000/(T(K))
H2 elim
ROH elim exo
ROH elim endo branched
ROH elim endo linear
MTHF
O O
 exo concerted alcohol formation is predicted to be dominant over the other
pericyclic reactions when lateral alkyl group is located in position 2
36TH International Symposium on Combustion
Pericyclic reaction of cyclic ethers
18
Reaction rate rule for pericyclic reactions
* No additional correction for reaction path degeneracy is required
H-type* k = ATnexp(-E/RT)
A (s-1) n E (cal)
exo alcohol formation
p (x=Methyl) 1.57×104 2.510 57860
s (x=Ethyl) 2.41×105 2.203 58460
t (x=isoPropyl) 1.28×106 1.960 61150
endo-1 alcohol formation
2.09×106 2.160 76470
endo-2 alcohol formation
2.34×109 1.368 75710
H2 elimination
3.47×1010 0.956 79170
O
x
36TH International Symposium on Combustion 19
Reaction rate rules for pericyclic reactions for:
Pericyclic reaction of cyclic ethers
O
XY
O X O XY
Available online on the supplemental information of the article:
36TH International Symposium on Combustion
• The pericyclic reactions of acyclic and cyclic ethers were studied
using first principles computational chemistry.
• Two different types of elementary processes were probed using
theoretical calculations: H2-elimination and alcohol elimination.
• In acyclic ethers H2-elimination was found to be negligible, alcohol
elimination is preponderant for temperatures below ~1000 K.
• In cyclic ethers the role of pericyclic reactions is more complex:
- H2-elimination and endo 4-center rearrangements are equivalent
if no lateral alkyl group is located in position 2.
- Presence of a lateral alkyl group allows an exo concerted
alcohol formation which is predicted to be dominant over the
other pericyclic reactions
Concluding remarks
20
36TH International Symposium on Combustion
CINES for the HPC resources under the allocation
2015087249 made by GENCI.
Acknowledgements
Thanks for your attention
Supplemental Material
Pericyclic reactions in Ether
Biofuels
36th International Symposium on Combustion
Juan-Carlos Lizardo-Huerta, Baptiste Sirjean,
Pierre-Alexandre Glaude, René Fournet
Laboratoire Réactions et Génie des Procédés, CNRS, Université de Lorraine, ENSIC,
Nancy, France.
July 31 - August 5, 2016 - Seoul
36TH International Symposium on Combustion
• Ab initio calculations: Gaussian 09
– G4 (closed shell and radical, accuracy ~1.0 kcal/mol)
Computational approach
Reaction
Level
DEE  Ethanol
+ C2H4
DEE 
(CH3CH)2O + H2
THF  3-buten-1-
ol
THF  cC4H6O
+ H2
M06-2x/6-311+G(2d,p) 67.5 81.5 82.1 83.8
CBS-QB3 68.3 76.9 80.4 78.3
G4 67.1 77.7 79.8 78.6
ccsd(t)/VDZ-F12 67.3 77.3 80.7 79.2
ccsd(t)/VTZ-F12 67.1 77.5 - -
Energy barriers at 0 K.
Comparison of different levels of calculations for pericyclic reactions in DEE and THF.
Units are kcal mol-1.
23
36TH International Symposium on Combustion 24
10
8
6
4
2
0
RotationalBarrier(kcalmol
-1
)
-180 -120 -60 0 60 120 180
Torsion Angle (degree)
C2-C3
Perform Fourier fit
Calculate reduced
moment of inertia
V(θi) ai, bi
Ired,i
{εi}
σint
Relaxed
scan
Data from quantum
calculations
(external rotational
constant,
degeneracy, mass,
…)
Calculate
Hamiltonian
matrix and
eigenvalues
Calculate
partitions
functions
E, S, Cp
Rate constants
C1 C2
C3
Met4
O
Met2
Met1
O
OH
Met3
−
ℎ2
8𝜋2 𝐼𝑟𝑒𝑑
𝑑2
𝑑𝜃2
𝜓 + 𝑉 𝜃 𝜓 = 𝐸𝜓
𝑉 𝜃 = 𝑎0 + 𝑎 𝑘 𝑐𝑜𝑠 𝑘𝜃 + 𝑏 𝑘 𝑠𝑖𝑛 𝑘𝜃
𝑛
𝑘=1
𝑞1−𝐷𝐻𝑅,𝑗 =
1
𝜎𝑖𝑛𝑡
𝑔𝑖 𝑒𝑥𝑝 −
𝜖𝑖
𝑘 𝐵 𝑇
𝑖
𝜔𝑗 =
1
2𝜋
1
𝐼𝑟𝑒𝑑 ,𝑗
𝑑2
𝑉 𝜃
𝑑𝜃2
𝑚𝑖𝑛
1
2
Recalculation of the
(1D) harmonic
frequency based on
the internal rotational
potential
𝑄1−𝐷𝐻𝑅−𝑈 = 𝑄 𝐻𝑂
𝑞1−𝐷𝐻𝑅,𝑗
𝑞 𝐻𝑂,𝑗
𝑁
𝑗=1
New partition function
Computational approach
36TH International Symposium on Combustion
Energy barriers and enthalpies of reaction - G4 at 0 K (kcal mol-1)
25
Reaction Energy barrier ΔrH
THF  3-buten-1-ol (endo) 79.8 6.7
THF  C4H6O + H2 78.6 69.2
2-MTHF  4-penten-1-ol (exo) 62.8 11.8
2-MTHF  4-penten-2-ol (endo, branched alcohol) 80.5 7.7
2-MTHF  3-penten-1-ol (endo, linear alcohol) 77.9 9.1
2-MTHF  C5H8O + H2 78.2 69.1
2,5-DMTHF  5-hexen-2-ol (exo) 64.6 13.2
2,5-DMTHF  4-hexen-2-ol (endo, linear alcohol) 78.4 10.0
2,5-DMTHF  C6H10O + H2 77.7 67.9
THP  4-penten-1-ol (endo) 77.3 11.0
THP  C5H8O + H2 77.7 70.8
2-MTHP  5-hexen-1-ol (exo) 66.9 16.0
2-MTHP  5-hexen-2-ol (endo, branched alcohol) 77.3 12.5
2-MTHP  4-hexen-1-ol (endo, linear alcohol) 76.0 13.6
2-MTHP  C6H10O + H2 77.6 72.3
2,6-DMTHP  6-hepten-2-ol (exo) 67.0 17.4
2,6-DMTHP  5-hepten-2-ol (endo) 76.1 15.1
2,6-DMTHP  C7H12O + H2 77.4 74.1
36TH International Symposium on Combustion
Pericyclic reaction of cyclic ethers
26
Reaction rate rule for pericyclic reactions
* No additional correction for reaction path degeneracy is required
H-type* k = ATnexp(-E/RT)
A (s-1) n E (cal) k1000K (s-1)
exo alcohol formation
p (x=Methyl) 1.20×109 1.459 64770 0.200
s (x=Ethyl) 1.05×1010 1.161 66020 0.119
t (x=isoPropyl) 1.03×1010 1.073 66480 0.050
endo-1 alcohol formation
3.23×106 2.246 73050 1.91×10-3
endo-2 alcohol formation
1.78×109 1.501 72780 7.00×10-3
H2 elimination
1.25×1014 0.063 79380 8.63×10-4
O X

Contenu connexe

Tendances

Role of mixed ligand Pd(II) and Pt(II)complexes in photooxygenation reaction
Role of mixed ligand Pd(II) and Pt(II)complexes in photooxygenation reactionRole of mixed ligand Pd(II) and Pt(II)complexes in photooxygenation reaction
Role of mixed ligand Pd(II) and Pt(II)complexes in photooxygenation reactionIOSR Journals
 
Swift and efficient_sono-hydrolysis_of_n
Swift and efficient_sono-hydrolysis_of_nSwift and efficient_sono-hydrolysis_of_n
Swift and efficient_sono-hydrolysis_of_nKarlitox Saoj
 
1 tetralinyl as carboxamide-protecting group for asparagine
1 tetralinyl as carboxamide-protecting group for asparagine1 tetralinyl as carboxamide-protecting group for asparagine
1 tetralinyl as carboxamide-protecting group for asparagineAlexander Decker
 
Singaptungler
SingaptunglerSingaptungler
Singaptungleratungler
 
nano catalysis as a prospectus of green chemistry
nano catalysis as a prospectus of green chemistry nano catalysis as a prospectus of green chemistry
nano catalysis as a prospectus of green chemistry Ankit Grover
 
Synthesis of substituted 1, 2, 4-triazole derivatives by Microwave irradiation
Synthesis of substituted 1, 2, 4-triazole derivatives by Microwave irradiationSynthesis of substituted 1, 2, 4-triazole derivatives by Microwave irradiation
Synthesis of substituted 1, 2, 4-triazole derivatives by Microwave irradiationIOSR Journals
 
J. Bukowczan - Various methods for one pot synthesis of triazoles from quinol...
J. Bukowczan - Various methods for one pot synthesis of triazoles from quinol...J. Bukowczan - Various methods for one pot synthesis of triazoles from quinol...
J. Bukowczan - Various methods for one pot synthesis of triazoles from quinol...Jerzy_BN
 
Synthesis, Characterization and Biological Evaluation of Substitutedthiazolid...
Synthesis, Characterization and Biological Evaluation of Substitutedthiazolid...Synthesis, Characterization and Biological Evaluation of Substitutedthiazolid...
Synthesis, Characterization and Biological Evaluation of Substitutedthiazolid...paperpublications3
 
Ruthenium(III) Catalyzed Oxidation of Sugar Alcohols by Dichloroisocyanuric A...
Ruthenium(III) Catalyzed Oxidation of Sugar Alcohols by Dichloroisocyanuric A...Ruthenium(III) Catalyzed Oxidation of Sugar Alcohols by Dichloroisocyanuric A...
Ruthenium(III) Catalyzed Oxidation of Sugar Alcohols by Dichloroisocyanuric A...Ratnakaram Venkata Nadh
 
SYNTHESIS AND CHARACTERIZATION OF SCHIFF BASE METAL COMPLEXES DERIVED FROM NA...
SYNTHESIS AND CHARACTERIZATION OF SCHIFF BASE METAL COMPLEXES DERIVED FROM NA...SYNTHESIS AND CHARACTERIZATION OF SCHIFF BASE METAL COMPLEXES DERIVED FROM NA...
SYNTHESIS AND CHARACTERIZATION OF SCHIFF BASE METAL COMPLEXES DERIVED FROM NA...chemsurya
 

Tendances (17)

Role of mixed ligand Pd(II) and Pt(II)complexes in photooxygenation reaction
Role of mixed ligand Pd(II) and Pt(II)complexes in photooxygenation reactionRole of mixed ligand Pd(II) and Pt(II)complexes in photooxygenation reaction
Role of mixed ligand Pd(II) and Pt(II)complexes in photooxygenation reaction
 
Swift and efficient_sono-hydrolysis_of_n
Swift and efficient_sono-hydrolysis_of_nSwift and efficient_sono-hydrolysis_of_n
Swift and efficient_sono-hydrolysis_of_n
 
2
22
2
 
Artigo albendazol
Artigo albendazolArtigo albendazol
Artigo albendazol
 
1 tetralinyl as carboxamide-protecting group for asparagine
1 tetralinyl as carboxamide-protecting group for asparagine1 tetralinyl as carboxamide-protecting group for asparagine
1 tetralinyl as carboxamide-protecting group for asparagine
 
PhD presentation-V.Mogilireddy
PhD presentation-V.MogilireddyPhD presentation-V.Mogilireddy
PhD presentation-V.Mogilireddy
 
ol902123h
ol902123hol902123h
ol902123h
 
Singaptungler
SingaptunglerSingaptungler
Singaptungler
 
Tetrazole and triazole
Tetrazole and triazoleTetrazole and triazole
Tetrazole and triazole
 
My paper
My paperMy paper
My paper
 
nano catalysis as a prospectus of green chemistry
nano catalysis as a prospectus of green chemistry nano catalysis as a prospectus of green chemistry
nano catalysis as a prospectus of green chemistry
 
Newkome1981
Newkome1981Newkome1981
Newkome1981
 
Synthesis of substituted 1, 2, 4-triazole derivatives by Microwave irradiation
Synthesis of substituted 1, 2, 4-triazole derivatives by Microwave irradiationSynthesis of substituted 1, 2, 4-triazole derivatives by Microwave irradiation
Synthesis of substituted 1, 2, 4-triazole derivatives by Microwave irradiation
 
J. Bukowczan - Various methods for one pot synthesis of triazoles from quinol...
J. Bukowczan - Various methods for one pot synthesis of triazoles from quinol...J. Bukowczan - Various methods for one pot synthesis of triazoles from quinol...
J. Bukowczan - Various methods for one pot synthesis of triazoles from quinol...
 
Synthesis, Characterization and Biological Evaluation of Substitutedthiazolid...
Synthesis, Characterization and Biological Evaluation of Substitutedthiazolid...Synthesis, Characterization and Biological Evaluation of Substitutedthiazolid...
Synthesis, Characterization and Biological Evaluation of Substitutedthiazolid...
 
Ruthenium(III) Catalyzed Oxidation of Sugar Alcohols by Dichloroisocyanuric A...
Ruthenium(III) Catalyzed Oxidation of Sugar Alcohols by Dichloroisocyanuric A...Ruthenium(III) Catalyzed Oxidation of Sugar Alcohols by Dichloroisocyanuric A...
Ruthenium(III) Catalyzed Oxidation of Sugar Alcohols by Dichloroisocyanuric A...
 
SYNTHESIS AND CHARACTERIZATION OF SCHIFF BASE METAL COMPLEXES DERIVED FROM NA...
SYNTHESIS AND CHARACTERIZATION OF SCHIFF BASE METAL COMPLEXES DERIVED FROM NA...SYNTHESIS AND CHARACTERIZATION OF SCHIFF BASE METAL COMPLEXES DERIVED FROM NA...
SYNTHESIS AND CHARACTERIZATION OF SCHIFF BASE METAL COMPLEXES DERIVED FROM NA...
 

Similaire à Pericyclic reactions in ethers biofuels

Methanol to Ethanol by Homologation - Kinetic Study
Methanol to Ethanol by Homologation - Kinetic StudyMethanol to Ethanol by Homologation - Kinetic Study
Methanol to Ethanol by Homologation - Kinetic StudyPatrick Françoisse
 
Palladium catalysed reactions in synthesis
Palladium catalysed reactions in synthesisPalladium catalysed reactions in synthesis
Palladium catalysed reactions in synthesis鋒博 蔡
 
Thesis Defense
Thesis DefenseThesis Defense
Thesis DefenseYijiang Wu
 
Initial stages of pyrolysis of polyethylene
Initial stages of pyrolysis of polyethyleneInitial stages of pyrolysis of polyethylene
Initial stages of pyrolysis of polyethylenelugalzagissi
 
ReidN_PosterKnox2014_rbb
ReidN_PosterKnox2014_rbbReidN_PosterKnox2014_rbb
ReidN_PosterKnox2014_rbbNellone Reid
 
Cbse Class 12 Chemistry Sample Paper 2013-14
Cbse Class 12 Chemistry Sample Paper 2013-14Cbse Class 12 Chemistry Sample Paper 2013-14
Cbse Class 12 Chemistry Sample Paper 2013-14Sunaina Rawat
 
Paul Grieco Chemistry
Paul Grieco ChemistryPaul Grieco Chemistry
Paul Grieco Chemistryandy diep
 
Class 12 Cbse Chemistry Sample Paper 2012-13
Class 12 Cbse Chemistry Sample Paper 2012-13Class 12 Cbse Chemistry Sample Paper 2012-13
Class 12 Cbse Chemistry Sample Paper 2012-13Sunaina Rawat
 
EcoEngines Chemical Kinetics
EcoEngines Chemical KineticsEcoEngines Chemical Kinetics
EcoEngines Chemical KineticsEdward Blurock
 
Hirschfield_Ilan Undergraduate Thesis Research Summary.pptx
Hirschfield_Ilan Undergraduate Thesis Research Summary.pptxHirschfield_Ilan Undergraduate Thesis Research Summary.pptx
Hirschfield_Ilan Undergraduate Thesis Research Summary.pptxIlanHirschfield
 
01. Chemistry Topic Alcohols and Phenols.pdf
01. Chemistry Topic Alcohols and Phenols.pdf01. Chemistry Topic Alcohols and Phenols.pdf
01. Chemistry Topic Alcohols and Phenols.pdfsdmitragotri
 
Activity coefficients at infinite dilution for organic solutes dissolved in t...
Activity coefficients at infinite dilution for organic solutes dissolved in t...Activity coefficients at infinite dilution for organic solutes dissolved in t...
Activity coefficients at infinite dilution for organic solutes dissolved in t...Bihan Jiang
 

Similaire à Pericyclic reactions in ethers biofuels (20)

Methanol to Ethanol by Homologation - Kinetic Study
Methanol to Ethanol by Homologation - Kinetic StudyMethanol to Ethanol by Homologation - Kinetic Study
Methanol to Ethanol by Homologation - Kinetic Study
 
Research proposal.pptx
Research proposal.pptxResearch proposal.pptx
Research proposal.pptx
 
Palladium catalysed reactions in synthesis
Palladium catalysed reactions in synthesisPalladium catalysed reactions in synthesis
Palladium catalysed reactions in synthesis
 
Thesis Defense
Thesis DefenseThesis Defense
Thesis Defense
 
Initial stages of pyrolysis of polyethylene
Initial stages of pyrolysis of polyethyleneInitial stages of pyrolysis of polyethylene
Initial stages of pyrolysis of polyethylene
 
Snehesh-Presentation-PDF
Snehesh-Presentation-PDFSnehesh-Presentation-PDF
Snehesh-Presentation-PDF
 
ReidN_PosterKnox2014_rbb
ReidN_PosterKnox2014_rbbReidN_PosterKnox2014_rbb
ReidN_PosterKnox2014_rbb
 
Cbse Class 12 Chemistry Sample Paper 2013-14
Cbse Class 12 Chemistry Sample Paper 2013-14Cbse Class 12 Chemistry Sample Paper 2013-14
Cbse Class 12 Chemistry Sample Paper 2013-14
 
Allenes - Alenos
Allenes - Alenos Allenes - Alenos
Allenes - Alenos
 
3
33
3
 
Paul Grieco Chemistry
Paul Grieco ChemistryPaul Grieco Chemistry
Paul Grieco Chemistry
 
ReidN_PhD_Defense
ReidN_PhD_DefenseReidN_PhD_Defense
ReidN_PhD_Defense
 
Class 12 Cbse Chemistry Sample Paper 2012-13
Class 12 Cbse Chemistry Sample Paper 2012-13Class 12 Cbse Chemistry Sample Paper 2012-13
Class 12 Cbse Chemistry Sample Paper 2012-13
 
EcoEngines Chemical Kinetics
EcoEngines Chemical KineticsEcoEngines Chemical Kinetics
EcoEngines Chemical Kinetics
 
6.chavan b.l. 67 73
6.chavan b.l. 67 736.chavan b.l. 67 73
6.chavan b.l. 67 73
 
Raja paper 1
Raja paper 1Raja paper 1
Raja paper 1
 
Hirschfield_Ilan Undergraduate Thesis Research Summary.pptx
Hirschfield_Ilan Undergraduate Thesis Research Summary.pptxHirschfield_Ilan Undergraduate Thesis Research Summary.pptx
Hirschfield_Ilan Undergraduate Thesis Research Summary.pptx
 
01. Chemistry Topic Alcohols and Phenols.pdf
01. Chemistry Topic Alcohols and Phenols.pdf01. Chemistry Topic Alcohols and Phenols.pdf
01. Chemistry Topic Alcohols and Phenols.pdf
 
Aijrfans14 259
Aijrfans14 259Aijrfans14 259
Aijrfans14 259
 
Activity coefficients at infinite dilution for organic solutes dissolved in t...
Activity coefficients at infinite dilution for organic solutes dissolved in t...Activity coefficients at infinite dilution for organic solutes dissolved in t...
Activity coefficients at infinite dilution for organic solutes dissolved in t...
 

Dernier

Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . pptDineshKumar4165
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfJiananWang21
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...SUHANI PANDEY
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringmulugeta48
 
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank  Design by Working Stress - IS Method.pdfIntze Overhead Water Tank  Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank Design by Working Stress - IS Method.pdfSuman Jyoti
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordAsst.prof M.Gokilavani
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college projectTonystark477637
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfKamal Acharya
 
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELLPVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELLManishPatel169454
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxfenichawla
 
Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...Christo Ananth
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptDineshKumar4165
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Bookingroncy bisnoi
 

Dernier (20)

Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank  Design by Working Stress - IS Method.pdfIntze Overhead Water Tank  Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
 
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELLPVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
 
Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
 

Pericyclic reactions in ethers biofuels

  • 1. Pericyclic reactions in Ethers Biofuels July 31 - August 5, 2016 - Seoul, Korea Juan-Carlos Lizardo-Huerta, Baptiste Sirjean, Pierre-Alexandre Glaude, René Fournet 36TH International Symposium on Combustion Reactions and Chemical Engineering Laboratory, Nancy, France.
  • 2. 36TH International Symposium on Combustion • Acyclic ethers (DME and derivatives) used as additives to increase octane number of usual fuels and mainly produced from alcohols (first-generation biofuels) • Saturated and unsaturated cyclic ethers (furan or pyran type) have attracted recent interest as biofuel (second-generation biofuels-non edible feedstock) Ethers biofuels combustion 2 O O THF THP O O O DME DEE DPE  For acyclic ethers, alcohol elimination is a well-known and preponderant primary reaction  For cyclic ethers, pericyclic reactions remain unknown
  • 3. 36TH International Symposium on Combustion • Laidler and McKeney (1964) proved that this formation occurred from a pericyclic reaction in DEE • Rate constant proposed: Ea = 83.8 kcal mol-1 and A= 2.75×1018 s-1 Previous Work - Acyclic ethers 3 O O H OH ‡ + Alcohol elimination • Danby and Freeman (1958) first detected ethanol as product of DEE thermal decomposition
  • 4. 36TH International Symposium on Combustion -5.0 -4.0 -3.0 -2.0 logk(s -1 ) 1.351.301.251.201.151.10 1000/(T(K)) Kinetics of alcohol elimination in DEE 4 Alcohol elimination O O H OH ‡ + Alcohol elimination -5.0 -4.0 -3.0 -2.0 logk(s -1 ) 1.351.301.251.201.151.10 1000/(T(K)) -5.0 -4.0 -3.0 -2.0 logk(s -1 ) 1.351.301.251.201.151.10 1000/(T(K)) -30 -25 -20 -15 -10 -5 0 5 logk(s -1 ) 1.1.00.8 1000/(T(K)) Laidler and McKenney (1964) Foucaut and Martin (1978) Yasunaga (2010) Laidler and McKenney (1964) Foucaut and Martin (1978) Seres and Huhn (1986) Yasunaga (2010) -30 -25 -20 -15 -10 -5 0 5 logk(s -1 ) 1.1.00.8 1000/(T(K)) Laidler and McKenney (1964) Foucaut and Martin (1978) Yasunaga (2010) Laidler and McKenney (1964) Foucaut and Martin (1978) Seres and Huhn (1986) Yasunaga (2010) 1 K. Laidler, D. McKenney, Proc. R. Soc. Lond. A 278 (1964) 505-516. 2 J. Foucaut, R. Martin, Journal de chimie physique et de physico-chimie biologique 75 (1978) 132-144. 3 K. Yasunaga, F. Gillespie, J. Simmie, H. Curran, et al., The Journal of Physical Chemistry A 114 (2010) 9098-9109. 1 2 3 Factor of 9 at 800 K -10 -8 -6 -4 -2 0 2 4 6 logk(s -1 ) 1.21.00.8 1000/(T(K)) Yasunaga et al. (2010) Yasunaga et al. (2010)
  • 5. 36TH International Symposium on Combustion Kinetics of alcohol elimination in DEE 5  Alcohol elimination is dominant over unimolecular initiation below 1000 K 1 K. Laidler, D. McKenney, Proc. R. Soc. Lond. A 278 (1964) 505-516. 2 J. Foucaut, R. Martin, Journal de chimie physique et de physico-chimie biologique 75 (1978) 132-144. 3 K. Yasunaga, F. Gillespie, J. Simmie, H. Curran, et al., The Journal of Physical Chemistry A 114 (2010) 9098-9109. 4 I. Seres, P. Huhn, International journal of chemical kinetics 18 (1986) 829-836. 4 -8 -6 -4 -2 0 2 4 logk(s -1 ) 1.41.31.21.11.00.90.80.7 1000/(T(K)) C-O bond fission -30 -25 -20 -15 -10 -5 0 5 logk(s -1 ) 1.1.00.8 1000/(T(K)) Laidler and McKenney (1964) Foucaut and Martin (1978) Yasunaga (2010) Laidler and McKenney (1964) Foucaut and Martin (1978) Seres and Huhn (1986) Yasunaga (2010) -10 -8 -6 -4 -2 0 2 4 6 logk(s -1 ) 1.21.00.8 1000/(T(K)) Yasunaga et al. (2010) Yasunaga et al. (2010) Alcohol elimination -30 -25 -20 -15 -10 -5 0 5 logk(s -1 ) 1.1.00.8 1000/(T(K)) Laidler and McKenney (1964) Foucaut and Martin (1978) Yasunaga (2010) Laidler and McKenney (1964) Foucaut and Martin (1978) Seres and Huhn (1986) Yasunaga (2010) -30 -25 -20 -15 -10 -5 0 5 logk(s -1 ) 1.1.00.8 1000/(T(K)) Laidler and McKenney (1964) Foucaut and Martin (1978) Yasunaga (2010) Laidler and McKenney (1964) Foucaut and Martin (1978) Seres and Huhn (1986) Yasunaga (2010) 1 2 3 -10 -8 -6 -4 -2 0 2 4 logk(s -1 ) 1.21.00.8 1000/(T(K)) Yasunaga et al. (2010) Yasunaga et al. (2010)
  • 6. 36TH International Symposium on Combustion Kinetics of pericyclic reactions in THF 6 5 M. Verdicchio, B. Sirjean, L.S. Tran, P.-A. Glaude, et al., Proceedings of the Combustion Institute 35 (2015) 533-541  ~20 % of the unimolecular degradation of THF occurs through pericyclic reactions High-P limit model flux analysis of THF decomposition5, T=1200 K (CBS-QB3, CASPT2)
  • 7. 36TH International Symposium on Combustion 7 Aims of present work O R2 R3 R1 R'2 R'3 R'1 O R2R1O R2R1 Acyclic ethers Cyclic ethers  Investigate the influence of structural effects in pericyclic reactions in the decomposition of acyclic and cyclic ethers Ri: H or alkyl group  Propose reaction rate rules
  • 8. 36TH International Symposium on Combustion • Quantum Chemical Calculations: Gaussian 09 – G4 (closed shell and radical, accuracy ~1.0 kcal mol-1) • Rate Coefficients: ThermRot6 – Transition State Theory (TST) – 1D tunneling correction (asymmetric Eckart) – 1-DHR approach for hindered rotors from M06-2x/6-311+G(2d,p) relaxed scans, including a recalculation of the (1D) harmonic frequency associated with hindered rotations – Multi-structural approach considered for the ring conformations (chair, boat, axial, equatorial) – Rate coefficients were fitted over temperatures range 500 - 2000 K, with a three parameters Arrhenius expressions Computational approach 8 6 J. Lizardo-Huerta, B. Sirjean, R. Bounaceur, R. Fournet, Physical Chemistry and Chemical Physics 18 (2016) 12231- 12251.
  • 9. 36TH International Symposium on Combustion Conformational analysis: 2-MTHP ‡‡ 0 2 4 6 8 10 12 chair equatorial (1) half chair half chair chair axial (3) twist boat (2) Conformation Energy(kcalmol-1) 9 Chair equatorial Twist boat Chair axial O
  • 10. 36TH International Symposium on Combustion 10 Multi-structural rate constant • Thermalization assumption: Equilibrium constants calculation and conformational population (X1, X2, …) • Total high-pressure limit rate constant: ktotale = X1×k1 + X2×k2 +…+ Xi×ki with ki: alcohol elimination rate constant of the ith conformer -4 -3 -2 -1 0 1 2 logk(s -1 ) 1.21.11.00.90.8 1000/(T(K)) k1 ktotale alcohol elimination 48% k k K1000at totale 1  O k1: kinetic constant calculated from the lowest energy conformer
  • 11. 36TH International Symposium on Combustion Pericyclic reaction of acyclic ethers - DEE 11 High-pressure limit rate constant H2 elimination O• • + H2O 79.2 O H H ‡ Alcohol elimination OH +O 67.1 CH2O H ~ ‡ -20 -15 -10 -5 0 logk(s -1 ) 1.41.31.21.11.0 1000/(T(K)) alcohol elimination H2 elimination Laidler and McKenney (1964) Foucaut and Martin (1978) Yasunaga (2010)  For acyclic ethers alcohol elimination is dominant -10 -8 -6 -4 -2 0 logk(s -1 ) 1.41.31.21.11.0 1000/(T(K)) -20 -15 -10 -5 0 logk(s -1 ) 1.41.31.21.11.0 1000/(T(K)) alcohol elimination H2 elimination Laidler and McKenney (1964) Foucaut and Martin (1978) Yasunaga (2010) Alcohol elimination * Energy barrier at 0 K (G4) in kcal mol-1 -10 -8 -6 -4 -2 0 logk(s -1 ) 1.41.31.21.11.0 1000/(T(K))
  • 12. 36TH International Symposium on Combustion Pericyclic reaction of acyclic ethers 12 Reaction rate rule for alcohol elimination H-type* k = ATnexp(-E/RT) A (s-1) n E (cal) Primary (x, y = H) 9.55×103 2.612 61920 Secondary (x = H, y = Alkyl) 3.49×104 2.445 62830 Tertiary (x, y = Alkyl) 7.80×105 2.132 64300 * Values per transferable H-atom R O y x H
  • 13. 36TH International Symposium on Combustion Cyclic ether: Influence of lateral alkyl groups 13 78.6 79.8 H2 elimination O O • • + H2 alcohol formation OH O H * Energy barrier at 0 K (G4) in kcal mol-1 First case, no lateral alkyl group in position 2: THF example • H2-elimination competes with alcohol formation • Only one possible alcohol formation O H-H ‡ O H ~ ‡
  • 14. 36TH International Symposium on Combustion Cyclic ether: Influence of lateral alkyl groups 14 78.2 80.5 62.8 * Energy barrier at 0 K (G4) in kcal mol-1 endo exo H2 elimination O O • • + H2 O H-H ‡ O H OH alcohol formation O CH2 H ~ ‡ alcohol formation OH O H O H ~ ‡ Second case, one lateral alkyl group in position 2: MTHF example 77.9 O H ~ ‡ alcohol formation OH O H endo
  • 15. 36TH International Symposium on Combustion PES of 2-MTHF pericyclic reaction - G4 at 0 K Pericyclic reaction of THF derivatives 15 0 10 20 30 40 50 60 70 80 OH O CH2 H ~ ‡ O H-H ‡ O H ~ ‡ O H ~ ‡ OH OH O MTHF E (0 K) kcal mol-1 M1 M2 M3 O • • + H2 78.2 80.5 77.9 62.8 Internal transfer of H-atoms (endo) exo pericyclic rearrangement endo-1 endo-2
  • 16. 36TH International Symposium on Combustion High-pressure limit rate constants Pericyclic reaction of cyclic ethers 16  H2-elimination competes with alcohol elimination if no lateral alkyl group is located in position 2 -20 -15 -10 -5 0 logk(s -1 ) 2.01.81.61.41.21.00.8 1000/(T(K)) H2 elimination alcohol elimination THP O -20 -15 -10 -5 0 logk(s -1 ) 2.01.81.61.41.21.00.8 1000/(T(K)) H2 elimination alcohol elimination THF O
  • 17. 36TH International Symposium on Combustion High-pressure limit rate constants Pericyclic reaction of cyclic ethers 17 -20 -15 -10 -5 0 logk(s -1 ) 2.01.81.61.41.21.00.8 1000/(T(K)) H2 elim ROH elim exo ROH elim endo branched ROH elim endo linear MTHP -20 -15 -10 -5 0 logk(s -1 ) 2.01.81.61.41.21.00.8 1000/(T(K)) H2 elim ROH elim exo ROH elim endo branched ROH elim endo linear MTHF O O  exo concerted alcohol formation is predicted to be dominant over the other pericyclic reactions when lateral alkyl group is located in position 2
  • 18. 36TH International Symposium on Combustion Pericyclic reaction of cyclic ethers 18 Reaction rate rule for pericyclic reactions * No additional correction for reaction path degeneracy is required H-type* k = ATnexp(-E/RT) A (s-1) n E (cal) exo alcohol formation p (x=Methyl) 1.57×104 2.510 57860 s (x=Ethyl) 2.41×105 2.203 58460 t (x=isoPropyl) 1.28×106 1.960 61150 endo-1 alcohol formation 2.09×106 2.160 76470 endo-2 alcohol formation 2.34×109 1.368 75710 H2 elimination 3.47×1010 0.956 79170 O x
  • 19. 36TH International Symposium on Combustion 19 Reaction rate rules for pericyclic reactions for: Pericyclic reaction of cyclic ethers O XY O X O XY Available online on the supplemental information of the article:
  • 20. 36TH International Symposium on Combustion • The pericyclic reactions of acyclic and cyclic ethers were studied using first principles computational chemistry. • Two different types of elementary processes were probed using theoretical calculations: H2-elimination and alcohol elimination. • In acyclic ethers H2-elimination was found to be negligible, alcohol elimination is preponderant for temperatures below ~1000 K. • In cyclic ethers the role of pericyclic reactions is more complex: - H2-elimination and endo 4-center rearrangements are equivalent if no lateral alkyl group is located in position 2. - Presence of a lateral alkyl group allows an exo concerted alcohol formation which is predicted to be dominant over the other pericyclic reactions Concluding remarks 20
  • 21. 36TH International Symposium on Combustion CINES for the HPC resources under the allocation 2015087249 made by GENCI. Acknowledgements Thanks for your attention
  • 22. Supplemental Material Pericyclic reactions in Ether Biofuels 36th International Symposium on Combustion Juan-Carlos Lizardo-Huerta, Baptiste Sirjean, Pierre-Alexandre Glaude, René Fournet Laboratoire Réactions et Génie des Procédés, CNRS, Université de Lorraine, ENSIC, Nancy, France. July 31 - August 5, 2016 - Seoul
  • 23. 36TH International Symposium on Combustion • Ab initio calculations: Gaussian 09 – G4 (closed shell and radical, accuracy ~1.0 kcal/mol) Computational approach Reaction Level DEE  Ethanol + C2H4 DEE  (CH3CH)2O + H2 THF  3-buten-1- ol THF  cC4H6O + H2 M06-2x/6-311+G(2d,p) 67.5 81.5 82.1 83.8 CBS-QB3 68.3 76.9 80.4 78.3 G4 67.1 77.7 79.8 78.6 ccsd(t)/VDZ-F12 67.3 77.3 80.7 79.2 ccsd(t)/VTZ-F12 67.1 77.5 - - Energy barriers at 0 K. Comparison of different levels of calculations for pericyclic reactions in DEE and THF. Units are kcal mol-1. 23
  • 24. 36TH International Symposium on Combustion 24 10 8 6 4 2 0 RotationalBarrier(kcalmol -1 ) -180 -120 -60 0 60 120 180 Torsion Angle (degree) C2-C3 Perform Fourier fit Calculate reduced moment of inertia V(θi) ai, bi Ired,i {εi} σint Relaxed scan Data from quantum calculations (external rotational constant, degeneracy, mass, …) Calculate Hamiltonian matrix and eigenvalues Calculate partitions functions E, S, Cp Rate constants C1 C2 C3 Met4 O Met2 Met1 O OH Met3 − ℎ2 8𝜋2 𝐼𝑟𝑒𝑑 𝑑2 𝑑𝜃2 𝜓 + 𝑉 𝜃 𝜓 = 𝐸𝜓 𝑉 𝜃 = 𝑎0 + 𝑎 𝑘 𝑐𝑜𝑠 𝑘𝜃 + 𝑏 𝑘 𝑠𝑖𝑛 𝑘𝜃 𝑛 𝑘=1 𝑞1−𝐷𝐻𝑅,𝑗 = 1 𝜎𝑖𝑛𝑡 𝑔𝑖 𝑒𝑥𝑝 − 𝜖𝑖 𝑘 𝐵 𝑇 𝑖 𝜔𝑗 = 1 2𝜋 1 𝐼𝑟𝑒𝑑 ,𝑗 𝑑2 𝑉 𝜃 𝑑𝜃2 𝑚𝑖𝑛 1 2 Recalculation of the (1D) harmonic frequency based on the internal rotational potential 𝑄1−𝐷𝐻𝑅−𝑈 = 𝑄 𝐻𝑂 𝑞1−𝐷𝐻𝑅,𝑗 𝑞 𝐻𝑂,𝑗 𝑁 𝑗=1 New partition function Computational approach
  • 25. 36TH International Symposium on Combustion Energy barriers and enthalpies of reaction - G4 at 0 K (kcal mol-1) 25 Reaction Energy barrier ΔrH THF  3-buten-1-ol (endo) 79.8 6.7 THF  C4H6O + H2 78.6 69.2 2-MTHF  4-penten-1-ol (exo) 62.8 11.8 2-MTHF  4-penten-2-ol (endo, branched alcohol) 80.5 7.7 2-MTHF  3-penten-1-ol (endo, linear alcohol) 77.9 9.1 2-MTHF  C5H8O + H2 78.2 69.1 2,5-DMTHF  5-hexen-2-ol (exo) 64.6 13.2 2,5-DMTHF  4-hexen-2-ol (endo, linear alcohol) 78.4 10.0 2,5-DMTHF  C6H10O + H2 77.7 67.9 THP  4-penten-1-ol (endo) 77.3 11.0 THP  C5H8O + H2 77.7 70.8 2-MTHP  5-hexen-1-ol (exo) 66.9 16.0 2-MTHP  5-hexen-2-ol (endo, branched alcohol) 77.3 12.5 2-MTHP  4-hexen-1-ol (endo, linear alcohol) 76.0 13.6 2-MTHP  C6H10O + H2 77.6 72.3 2,6-DMTHP  6-hepten-2-ol (exo) 67.0 17.4 2,6-DMTHP  5-hepten-2-ol (endo) 76.1 15.1 2,6-DMTHP  C7H12O + H2 77.4 74.1
  • 26. 36TH International Symposium on Combustion Pericyclic reaction of cyclic ethers 26 Reaction rate rule for pericyclic reactions * No additional correction for reaction path degeneracy is required H-type* k = ATnexp(-E/RT) A (s-1) n E (cal) k1000K (s-1) exo alcohol formation p (x=Methyl) 1.20×109 1.459 64770 0.200 s (x=Ethyl) 1.05×1010 1.161 66020 0.119 t (x=isoPropyl) 1.03×1010 1.073 66480 0.050 endo-1 alcohol formation 3.23×106 2.246 73050 1.91×10-3 endo-2 alcohol formation 1.78×109 1.501 72780 7.00×10-3 H2 elimination 1.25×1014 0.063 79380 8.63×10-4 O X