SlideShare une entreprise Scribd logo
1  sur  43
Biofuel – what’s in it for rice farmers? Achim Dobermann
 
[object Object],[object Object],[object Object]
Terminology ,[object Object],[object Object],[object Object],http://bioenergy.ornl.gov/faqs/glossary.html
Biofuel categories ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
20-fold increase from 1850 to 2000.  Fossil fuels supplied 80% of the world’s energy in 2000 (Holdren 2007)
Oil consumption in selected countries World energy demand is projected to increase by 50% by 2030.
Biofuel production is viable if crude oil prices stay above $55/barrel. Global vegetable oil production (150 Mt) = 10 d global fossil fuel consumption.
Plans for annual growth in biofuel production…2010/12 Joachim von Braun, IFPRI, August 2007 Costs of feedstock dominate costs Ethanol: 50-70%; Biodiesel: 70-80%
Not a new idea ,[object Object],[object Object],First corn-ethanol blended gasoline station, Lincoln, Nebraska, 1933
Gross energy yield of various biofuel crops Liska and Cassman. 2007.  J. Biobased Materials and Bioenergy * BD – biodiesel; E – Ethanol Crop yields: 2003-2005 average (FAOSTAT) Conversion yields: corn,0.399 L/kg; cassava, 0.137 L/kg; soybean 0.205 L/kg; rapeseed, 0.427 L/kg 39 1863 14 Brazil Cassava-E 18 552 3 USA Soybean-BD 21 641 2 Canada Rapeseed-BD 79 3751 9 USA Maize-E 124 5865 74 Brazil Sugarcane-E 195 5920 21 Malaysia Oil Palm-BD  GJ/ha L/ha Mg/ha     Energy  Biofuel  Yield Country Crop-biofuel*
Gross energy yield and net GHG reduction estimates for food-crop biofuel systems Liska and Cassman. 2007.  J. Biobased Materials and Bioenergy Gross energy values: two largest producers in the world Net GHG gas reductions: literature summary Gross energy yield (GJ/ha)
Impact on food prices ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Two examples ,[object Object],[object Object]
42% 34% % of maize production, assuming  34 Mha area harvested and trend- line yield increase Expansion of USA maize-ethanol production 22% K. Cassman, Univ. of Nebraska
http://www.ethanolrfa.org
U.S. maize yields USA corn yield and irrigation (red hatched) by county (2004-2006 average).  Source: National Agricultural Statistics Service, USDA.   Liska and Cassman. 2007.  J. Biobased Materials and Bioenergy
GRAIN FERMENTATION DISTILLATION ETHANOL DISTILLERS  GRAINS Maize-ethanol production life-cycle CROP  PRODUCTION dry wet
CH 4 Grain NO 3  leaching N 2 O CO 2 A. Liska et al., UNL, 2007 Technologies to improve maize-ethanol systems Thermal energy CH 4 Methane biodigestor (6) Closed-loop system  (-56% energy) Biofertilizer CO 2 Maize & soybean production  (1) Improve management (2) Increase NUE (10%) Grain Stillage CO 2 Ethanol Distillers grain Ethanol plant (3) Starch content 72  75% (4) Conversion efficiency 91   97% (enzymes, microbes) N 2 O CH 4 Manure, urine Meat Cattle feedlot (5) Directly use wet distillers grain (-26% energy) NO 3  leaching
Technological improvements Yield  NUE  Genetics  Engineering  ALL  CORN YIELD Ethanol yield: crop management vs. other  technological improvements Black :  National average yields and technology (Farrrell et al., 2006) Blue :  High-yield irrigated corn-soybean system, CT A. Liska et al., UNL, 2007 0 1 2 3 4 5 6 7 8 3000 4000 5000 6000 7000 Ethanol yield (L/ha) 15.3 Mg/ha 8.7 Mg/ha
Technological improvements Ethanol biorefinery integration with livestock to avoid drying distiller’s grains and producing methane can DOUBLE corn-ethanol’s net energy efficiency.   Energy Ratio: 1.3 -1.6  1.6  1.6  1.6  1.9  2.6  2.8   Black :  National average yields and technology Blue :  High-yield irrigated corn-soybean system, CT A. Liska et al., UNL, 2007 0 1 2 3 4 5 6 7 8 6 8 10 12 14 16 18 Net Energy Value (MJ/L) Yield  NUE  Genetics  Engineering  ALL
GHG emissions reduction (% and t CO 2 eq*)   Maize production system Ethanol biorefineries *Based on a 100 million gal/yr production capacity  A. Liska et al., UNL, 2007 80% 601000 t 67% 504000 t closed-loop facility 73% 544000 t 60% 447000 t natural gas, wet DG 63%,  478000 t 51% 381000 natural gas 39% 294000 t 26% 198000 t coal Advanced Irrigated USA average
First Commercial-Scale Closed Loop Biofuel Refinery, Mead, Nebraska www.e3biofuels.com Ethanol: 24 M gallons/yr Cattle: 28,000 head/yr
R. Perrin, Univ. of Nebraska, Feb. 2007 Feb. 2007 Feb. 2006 ,[object Object],[object Object],[object Object],[object Object],Oct. 2007 Breakeven price for ethanol in the USA to compete with petroleum, given current subsidies
Includes forecast for 2007 (FAO Rice Market Monitor, Sep. 2007) Rice area Rice production
FAO Rice Market Monitor, Sep. 2007
[object Object],[object Object]
Rice hulls ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],Straw as a new income source for rice farmers?
In what systems can crop residues be removed without threatening long-term sustainability? R. Buresh (IRRI) & K. Sayre (CIMMYT) In irrigated rice monoculture systems, removal of straw does  not  cause a decline in soil organic matter. Partial Limited Wheat & maize Sole upland crop(s) Partial Limited Rice All Yes Maize or wheat Rice – wheat, rice-maize All Yes Rice Double rice All Yes Rice Triple rice Portion for removal Potential for removal  Residue System
Dry Season 2006 (kt straw) Wet Season 2006 (kt straw) Seasonal rice straw availability in Thailand B. Gadde, JGSEE Bangkok
Straw conversion to biopower or biofuel Slightly modified from C. Menke, JGSEE Bangkok Straw Energy conversion Electricity Solid Liquid Gas Intermediate energy form Form of end use Mandatory step Harvest Collection Transport Baling Combustion Pyrolysis Biomethanation Gasification Fermentation Raw material processing Shredded Briquetting Form as received Heat Gaseous fuel Liquid fuel Hydrolysis As intermediate steps increase – efficiency goes down Thermal conversion
[object Object],[object Object],[object Object],[object Object],[object Object],Thermal conversion technologies Combustion Gasification Pyrolysis Heat Syngas Bio-oil Gases Charcoal Excess air and heat Partial air, ~700  °C No air, 200-500 °C Liquid fuels Electricity Ash Steam
Biopower from thermal straw combustion ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Gadde et al., 2007
China’s first biopower plant using  100 % crop straw   Prof. Cheng Xu, CAU
Prof. Cheng Xu, CAU
Gasification and pyrolysis ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Gadde et al., 2007
Small scale rice hull furnaces, gasifiers, pyrolysis units
Industrial scale rice hull gasifiers Cargill Rice Milling Greenville, Mississippi  330 t rice hulls+straw/day  6.5 MW electricity + steam for parboiling facility Riceland Foods, Inc.,  Stuttgart, Arkansas 525 t rice hulls/day  15 MW electricity
What’s in it for rice farmers? ,[object Object],[object Object],[object Object],[object Object]
Research needs for utilizing rice straw ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Summary ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Acknowledgements ,[object Object],[object Object],[object Object],[object Object]

Contenu connexe

Tendances

plant water relation, transpiration, root pressure and transpirational pull.pptx
plant water relation, transpiration, root pressure and transpirational pull.pptxplant water relation, transpiration, root pressure and transpirational pull.pptx
plant water relation, transpiration, root pressure and transpirational pull.pptx
Divya Srivastava
 
Potential Value-Added Potato Products (Potatoes: Planting, Growing and Harves...
Potential Value-Added Potato Products (Potatoes: Planting, Growing and Harves...Potential Value-Added Potato Products (Potatoes: Planting, Growing and Harves...
Potential Value-Added Potato Products (Potatoes: Planting, Growing and Harves...
Ajjay Kumar Gupta
 

Tendances (20)

Cam pathway
Cam pathwayCam pathway
Cam pathway
 
plant water relation, transpiration, root pressure and transpirational pull.pptx
plant water relation, transpiration, root pressure and transpirational pull.pptxplant water relation, transpiration, root pressure and transpirational pull.pptx
plant water relation, transpiration, root pressure and transpirational pull.pptx
 
Presentation on relevance of self incompatibility, methods to overcome self-i...
Presentation on relevance of self incompatibility, methods to overcome self-i...Presentation on relevance of self incompatibility, methods to overcome self-i...
Presentation on relevance of self incompatibility, methods to overcome self-i...
 
Heat stress resistance
Heat stress resistanceHeat stress resistance
Heat stress resistance
 
FLAVR SAVR tomato.pptx
FLAVR SAVR tomato.pptxFLAVR SAVR tomato.pptx
FLAVR SAVR tomato.pptx
 
Plant tissue culture
Plant tissue culture  Plant tissue culture
Plant tissue culture
 
Molecular And Biochemical Steps In Synthesis Of Auxin In Plant
Molecular And Biochemical Steps In Synthesis Of Auxin In PlantMolecular And Biochemical Steps In Synthesis Of Auxin In Plant
Molecular And Biochemical Steps In Synthesis Of Auxin In Plant
 
Fermentation technology
Fermentation technologyFermentation technology
Fermentation technology
 
Plant hormone (Part-3)- Cytokinins
Plant hormone (Part-3)- CytokininsPlant hormone (Part-3)- Cytokinins
Plant hormone (Part-3)- Cytokinins
 
Carbon assimilation / PHOTOSYNTHESIS
Carbon assimilation / PHOTOSYNTHESISCarbon assimilation / PHOTOSYNTHESIS
Carbon assimilation / PHOTOSYNTHESIS
 
C4 and cam pathway pdf
C4 and cam pathway pdfC4 and cam pathway pdf
C4 and cam pathway pdf
 
Engineering of secondary metabolism
Engineering of secondary metabolismEngineering of secondary metabolism
Engineering of secondary metabolism
 
Physiology of Senescence and Abscission
Physiology of Senescence and AbscissionPhysiology of Senescence and Abscission
Physiology of Senescence and Abscission
 
PHOTORESPIRATION
PHOTORESPIRATIONPHOTORESPIRATION
PHOTORESPIRATION
 
Potential Value-Added Potato Products (Potatoes: Planting, Growing and Harves...
Potential Value-Added Potato Products (Potatoes: Planting, Growing and Harves...Potential Value-Added Potato Products (Potatoes: Planting, Growing and Harves...
Potential Value-Added Potato Products (Potatoes: Planting, Growing and Harves...
 
Explant sterilization
Explant sterilizationExplant sterilization
Explant sterilization
 
Vernalization
VernalizationVernalization
Vernalization
 
Cell suspension culture
Cell suspension cultureCell suspension culture
Cell suspension culture
 
Anther culture & its importance in vegetable crops
Anther culture & its importance in vegetable cropsAnther culture & its importance in vegetable crops
Anther culture & its importance in vegetable crops
 
C3 cycle
C3 cycleC3 cycle
C3 cycle
 

Similaire à Biofuels - what is in it for rice farmers?

GIZ2013-The Potential of Biogas and Biomass from Agriculture and Agro-Industr...
GIZ2013-The Potential of Biogas and Biomass from Agriculture and Agro-Industr...GIZ2013-The Potential of Biogas and Biomass from Agriculture and Agro-Industr...
GIZ2013-The Potential of Biogas and Biomass from Agriculture and Agro-Industr...
Tuong Do
 
Analysis Of Biomass And Biofuels
Analysis Of  Biomass And  BiofuelsAnalysis Of  Biomass And  Biofuels
Analysis Of Biomass And Biofuels
Nandeesh Laxetty
 
Analysis of biomass and biofuels
Analysis of biomass and biofuelsAnalysis of biomass and biofuels
Analysis of biomass and biofuels
Nandeesh Laxetty
 
Engineering challenges in algae energy
Engineering challenges in algae energyEngineering challenges in algae energy
Engineering challenges in algae energy
Oilgae Oil
 
The Philippine Carabao A Paradigm For Bep 20 Min
The Philippine Carabao A Paradigm For Bep  20 MinThe Philippine Carabao A Paradigm For Bep  20 Min
The Philippine Carabao A Paradigm For Bep 20 Min
Fiorello Abenes
 
Mostly Convenient Truths From A Technology Optimist
Mostly Convenient Truths From A Technology OptimistMostly Convenient Truths From A Technology Optimist
Mostly Convenient Truths From A Technology Optimist
Glenn Klith Andersen
 

Similaire à Biofuels - what is in it for rice farmers? (20)

BIOFUELS AND THEIR FUTURE PERESPECTIVES
BIOFUELS AND THEIR FUTURE PERESPECTIVESBIOFUELS AND THEIR FUTURE PERESPECTIVES
BIOFUELS AND THEIR FUTURE PERESPECTIVES
 
20 Monreal Serena
20 Monreal Serena20 Monreal Serena
20 Monreal Serena
 
GIZ2013-The Potential of Biogas and Biomass from Agriculture and Agro-Industr...
GIZ2013-The Potential of Biogas and Biomass from Agriculture and Agro-Industr...GIZ2013-The Potential of Biogas and Biomass from Agriculture and Agro-Industr...
GIZ2013-The Potential of Biogas and Biomass from Agriculture and Agro-Industr...
 
The future source_of_energy_chemicals[1]
The future source_of_energy_chemicals[1]The future source_of_energy_chemicals[1]
The future source_of_energy_chemicals[1]
 
Dorisel Icraf Presentation
Dorisel   Icraf PresentationDorisel   Icraf Presentation
Dorisel Icraf Presentation
 
Analysis Of Biomass And Biofuels
Analysis Of  Biomass And  BiofuelsAnalysis Of  Biomass And  Biofuels
Analysis Of Biomass And Biofuels
 
Analysis of biomass and biofuels
Analysis of biomass and biofuelsAnalysis of biomass and biofuels
Analysis of biomass and biofuels
 
Understanding Renewable Fuels in Today's Marketplace - Mayo, Hall
Understanding Renewable Fuels in Today's Marketplace - Mayo, HallUnderstanding Renewable Fuels in Today's Marketplace - Mayo, Hall
Understanding Renewable Fuels in Today's Marketplace - Mayo, Hall
 
“Sweet Sorghum – A Novel Opportunity for Biofuel Production”.pptx
“Sweet Sorghum – A Novel Opportunity for Biofuel Production”.pptx“Sweet Sorghum – A Novel Opportunity for Biofuel Production”.pptx
“Sweet Sorghum – A Novel Opportunity for Biofuel Production”.pptx
 
Biomass By Akash Kewal
Biomass By Akash KewalBiomass By Akash Kewal
Biomass By Akash Kewal
 
The future of wood based energy
The future of wood based energyThe future of wood based energy
The future of wood based energy
 
Bio Diesal production & Biomass energy programs in INDIA BY G.DINESHPIRAN
Bio Diesal production & Biomass energy programs in INDIA BY G.DINESHPIRANBio Diesal production & Biomass energy programs in INDIA BY G.DINESHPIRAN
Bio Diesal production & Biomass energy programs in INDIA BY G.DINESHPIRAN
 
Engineering challenges in algae energy
Engineering challenges in algae energyEngineering challenges in algae energy
Engineering challenges in algae energy
 
The Philippine Carabao A Paradigm For Bep 20 Min
The Philippine Carabao A Paradigm For Bep  20 MinThe Philippine Carabao A Paradigm For Bep  20 Min
The Philippine Carabao A Paradigm For Bep 20 Min
 
Biofuels: some facts and prospects, Luiz Horta Bioenergía.pdf
Biofuels: some facts and prospects, Luiz Horta Bioenergía.pdfBiofuels: some facts and prospects, Luiz Horta Bioenergía.pdf
Biofuels: some facts and prospects, Luiz Horta Bioenergía.pdf
 
Mostly Convenient Truths From A Technology Optimist
Mostly Convenient Truths From A Technology OptimistMostly Convenient Truths From A Technology Optimist
Mostly Convenient Truths From A Technology Optimist
 
bioethanol production and need of future
bioethanol production and need of futurebioethanol production and need of future
bioethanol production and need of future
 
Dan Verser, Co-Founder, ZeaChem
Dan Verser, Co-Founder, ZeaChemDan Verser, Co-Founder, ZeaChem
Dan Verser, Co-Founder, ZeaChem
 
Bioethanol biofuel renewable energy resources
Bioethanol biofuel renewable energy resourcesBioethanol biofuel renewable energy resources
Bioethanol biofuel renewable energy resources
 
Role of bioenergy in energy management
Role of bioenergy in energy managementRole of bioenergy in energy management
Role of bioenergy in energy management
 

Plus de Tuong Do

Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2
Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2
Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2
Tuong Do
 
Giz2013 en-exploring-biogas-market-opportunities-vietnam
Giz2013 en-exploring-biogas-market-opportunities-vietnamGiz2013 en-exploring-biogas-market-opportunities-vietnam
Giz2013 en-exploring-biogas-market-opportunities-vietnam
Tuong Do
 
04 giz doris_beck_presentation_vietnam_september_2013
04 giz doris_beck_presentation_vietnam_september_201304 giz doris_beck_presentation_vietnam_september_2013
04 giz doris_beck_presentation_vietnam_september_2013
Tuong Do
 
Giz2013 Policies and regulatory framework promoting the application of biomas...
Giz2013 Policies and regulatory framework promoting the application of biomas...Giz2013 Policies and regulatory framework promoting the application of biomas...
Giz2013 Policies and regulatory framework promoting the application of biomas...
Tuong Do
 

Plus de Tuong Do (20)

Tiềm năng và xu hướng công nghệ phát triển điện mặt trời ở Việt Nam
Tiềm năng và xu hướng công nghệ phát triển điện mặt trời ở Việt NamTiềm năng và xu hướng công nghệ phát triển điện mặt trời ở Việt Nam
Tiềm năng và xu hướng công nghệ phát triển điện mặt trời ở Việt Nam
 
Tổng quan Công nghệ Khí sinh học
Tổng quan Công nghệ Khí sinh họcTổng quan Công nghệ Khí sinh học
Tổng quan Công nghệ Khí sinh học
 
Điện mặt trời và cơ chế thanh toán bù trừ net-metering tại Thailand
Điện mặt trời và cơ chế thanh toán bù trừ net-metering tại ThailandĐiện mặt trời và cơ chế thanh toán bù trừ net-metering tại Thailand
Điện mặt trời và cơ chế thanh toán bù trừ net-metering tại Thailand
 
Solar PV development in singapore and SERIS introduction
Solar PV development in singapore and SERIS introductionSolar PV development in singapore and SERIS introduction
Solar PV development in singapore and SERIS introduction
 
Vietnam the new powerhouse for cell manufacturing in Southeast Asia
Vietnam the new powerhouse for cell manufacturing in Southeast AsiaVietnam the new powerhouse for cell manufacturing in Southeast Asia
Vietnam the new powerhouse for cell manufacturing in Southeast Asia
 
Solar technology and market trend 2017 - Tuong Do
Solar technology and market trend 2017 - Tuong DoSolar technology and market trend 2017 - Tuong Do
Solar technology and market trend 2017 - Tuong Do
 
Xu hướng công nghệ thị trường - Điện mặt trời và Điện gió
Xu hướng công nghệ thị trường - Điện mặt trời và Điện gióXu hướng công nghệ thị trường - Điện mặt trời và Điện gió
Xu hướng công nghệ thị trường - Điện mặt trời và Điện gió
 
STATE OF THE INDUSTRY KEYNOTE BNEF SUMMIT 2016
STATE OF THE INDUSTRY KEYNOTE BNEF SUMMIT 2016STATE OF THE INDUSTRY KEYNOTE BNEF SUMMIT 2016
STATE OF THE INDUSTRY KEYNOTE BNEF SUMMIT 2016
 
Renewable energy models for rice residues - SNV Vietnam
Renewable energy models for rice residues - SNV VietnamRenewable energy models for rice residues - SNV Vietnam
Renewable energy models for rice residues - SNV Vietnam
 
GIZ support mechanism for RE development in Vietnam
GIZ support mechanism for RE development in VietnamGIZ support mechanism for RE development in Vietnam
GIZ support mechanism for RE development in Vietnam
 
Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2
Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2
Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2
 
Giz2013 en-exploring-biogas-market-opportunities-vietnam
Giz2013 en-exploring-biogas-market-opportunities-vietnamGiz2013 en-exploring-biogas-market-opportunities-vietnam
Giz2013 en-exploring-biogas-market-opportunities-vietnam
 
Module 1: Technical options and international best practices for on-grid powe...
Module 1: Technical options and international best practices for on-grid powe...Module 1: Technical options and international best practices for on-grid powe...
Module 1: Technical options and international best practices for on-grid powe...
 
Module 2: Assessment of international good practices in the fields of biomass...
Module 2: Assessment of international good practices in the fields of biomass...Module 2: Assessment of international good practices in the fields of biomass...
Module 2: Assessment of international good practices in the fields of biomass...
 
Module 3: Criteria for the siting and systems integration
Module 3: Criteria for the siting and systems integrationModule 3: Criteria for the siting and systems integration
Module 3: Criteria for the siting and systems integration
 
Module 7: Assessment of framework conditions and necessary adaptations
Module 7: Assessment of framework conditions and necessary adaptationsModule 7: Assessment of framework conditions and necessary adaptations
Module 7: Assessment of framework conditions and necessary adaptations
 
Module 4: Basic design parameters (technical and economic) for commercially v...
Module 4: Basic design parameters (technical and economic) for commercially v...Module 4: Basic design parameters (technical and economic) for commercially v...
Module 4: Basic design parameters (technical and economic) for commercially v...
 
04 giz doris_beck_presentation_vietnam_september_2013
04 giz doris_beck_presentation_vietnam_september_201304 giz doris_beck_presentation_vietnam_september_2013
04 giz doris_beck_presentation_vietnam_september_2013
 
Module 6 Basic design parameters for commercially viable on-grid biomass gasi...
Module 6 Basic design parameters for commercially viable on-grid biomass gasi...Module 6 Basic design parameters for commercially viable on-grid biomass gasi...
Module 6 Basic design parameters for commercially viable on-grid biomass gasi...
 
Giz2013 Policies and regulatory framework promoting the application of biomas...
Giz2013 Policies and regulatory framework promoting the application of biomas...Giz2013 Policies and regulatory framework promoting the application of biomas...
Giz2013 Policies and regulatory framework promoting the application of biomas...
 

Dernier

Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Victor Rentea
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
panagenda
 

Dernier (20)

Vector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxVector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptx
 
Spring Boot vs Quarkus the ultimate battle - DevoxxUK
Spring Boot vs Quarkus the ultimate battle - DevoxxUKSpring Boot vs Quarkus the ultimate battle - DevoxxUK
Spring Boot vs Quarkus the ultimate battle - DevoxxUK
 
Six Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal OntologySix Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal Ontology
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
AI in Action: Real World Use Cases by Anitaraj
AI in Action: Real World Use Cases by AnitarajAI in Action: Real World Use Cases by Anitaraj
AI in Action: Real World Use Cases by Anitaraj
 
Introduction to use of FHIR Documents in ABDM
Introduction to use of FHIR Documents in ABDMIntroduction to use of FHIR Documents in ABDM
Introduction to use of FHIR Documents in ABDM
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
 
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWEREMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
 
[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf
 
WSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering DevelopersWSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering Developers
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 
Understanding the FAA Part 107 License ..
Understanding the FAA Part 107 License ..Understanding the FAA Part 107 License ..
Understanding the FAA Part 107 License ..
 
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 

Biofuels - what is in it for rice farmers?

  • 1. Biofuel – what’s in it for rice farmers? Achim Dobermann
  • 2.  
  • 3.
  • 4.
  • 5.
  • 6. 20-fold increase from 1850 to 2000. Fossil fuels supplied 80% of the world’s energy in 2000 (Holdren 2007)
  • 7. Oil consumption in selected countries World energy demand is projected to increase by 50% by 2030.
  • 8. Biofuel production is viable if crude oil prices stay above $55/barrel. Global vegetable oil production (150 Mt) = 10 d global fossil fuel consumption.
  • 9. Plans for annual growth in biofuel production…2010/12 Joachim von Braun, IFPRI, August 2007 Costs of feedstock dominate costs Ethanol: 50-70%; Biodiesel: 70-80%
  • 10.
  • 11. Gross energy yield of various biofuel crops Liska and Cassman. 2007. J. Biobased Materials and Bioenergy * BD – biodiesel; E – Ethanol Crop yields: 2003-2005 average (FAOSTAT) Conversion yields: corn,0.399 L/kg; cassava, 0.137 L/kg; soybean 0.205 L/kg; rapeseed, 0.427 L/kg 39 1863 14 Brazil Cassava-E 18 552 3 USA Soybean-BD 21 641 2 Canada Rapeseed-BD 79 3751 9 USA Maize-E 124 5865 74 Brazil Sugarcane-E 195 5920 21 Malaysia Oil Palm-BD GJ/ha L/ha Mg/ha     Energy Biofuel Yield Country Crop-biofuel*
  • 12. Gross energy yield and net GHG reduction estimates for food-crop biofuel systems Liska and Cassman. 2007. J. Biobased Materials and Bioenergy Gross energy values: two largest producers in the world Net GHG gas reductions: literature summary Gross energy yield (GJ/ha)
  • 13.
  • 14.
  • 15. 42% 34% % of maize production, assuming 34 Mha area harvested and trend- line yield increase Expansion of USA maize-ethanol production 22% K. Cassman, Univ. of Nebraska
  • 17. U.S. maize yields USA corn yield and irrigation (red hatched) by county (2004-2006 average). Source: National Agricultural Statistics Service, USDA. Liska and Cassman. 2007. J. Biobased Materials and Bioenergy
  • 18. GRAIN FERMENTATION DISTILLATION ETHANOL DISTILLERS GRAINS Maize-ethanol production life-cycle CROP PRODUCTION dry wet
  • 19. CH 4 Grain NO 3 leaching N 2 O CO 2 A. Liska et al., UNL, 2007 Technologies to improve maize-ethanol systems Thermal energy CH 4 Methane biodigestor (6) Closed-loop system (-56% energy) Biofertilizer CO 2 Maize & soybean production (1) Improve management (2) Increase NUE (10%) Grain Stillage CO 2 Ethanol Distillers grain Ethanol plant (3) Starch content 72  75% (4) Conversion efficiency 91  97% (enzymes, microbes) N 2 O CH 4 Manure, urine Meat Cattle feedlot (5) Directly use wet distillers grain (-26% energy) NO 3 leaching
  • 20. Technological improvements Yield NUE Genetics Engineering ALL CORN YIELD Ethanol yield: crop management vs. other technological improvements Black : National average yields and technology (Farrrell et al., 2006) Blue : High-yield irrigated corn-soybean system, CT A. Liska et al., UNL, 2007 0 1 2 3 4 5 6 7 8 3000 4000 5000 6000 7000 Ethanol yield (L/ha) 15.3 Mg/ha 8.7 Mg/ha
  • 21. Technological improvements Ethanol biorefinery integration with livestock to avoid drying distiller’s grains and producing methane can DOUBLE corn-ethanol’s net energy efficiency. Energy Ratio: 1.3 -1.6 1.6 1.6 1.6 1.9 2.6 2.8 Black : National average yields and technology Blue : High-yield irrigated corn-soybean system, CT A. Liska et al., UNL, 2007 0 1 2 3 4 5 6 7 8 6 8 10 12 14 16 18 Net Energy Value (MJ/L) Yield NUE Genetics Engineering ALL
  • 22. GHG emissions reduction (% and t CO 2 eq*) Maize production system Ethanol biorefineries *Based on a 100 million gal/yr production capacity A. Liska et al., UNL, 2007 80% 601000 t 67% 504000 t closed-loop facility 73% 544000 t 60% 447000 t natural gas, wet DG 63%, 478000 t 51% 381000 natural gas 39% 294000 t 26% 198000 t coal Advanced Irrigated USA average
  • 23. First Commercial-Scale Closed Loop Biofuel Refinery, Mead, Nebraska www.e3biofuels.com Ethanol: 24 M gallons/yr Cattle: 28,000 head/yr
  • 24.
  • 25. Includes forecast for 2007 (FAO Rice Market Monitor, Sep. 2007) Rice area Rice production
  • 26. FAO Rice Market Monitor, Sep. 2007
  • 27.
  • 28.
  • 29.
  • 30. In what systems can crop residues be removed without threatening long-term sustainability? R. Buresh (IRRI) & K. Sayre (CIMMYT) In irrigated rice monoculture systems, removal of straw does not cause a decline in soil organic matter. Partial Limited Wheat & maize Sole upland crop(s) Partial Limited Rice All Yes Maize or wheat Rice – wheat, rice-maize All Yes Rice Double rice All Yes Rice Triple rice Portion for removal Potential for removal Residue System
  • 31. Dry Season 2006 (kt straw) Wet Season 2006 (kt straw) Seasonal rice straw availability in Thailand B. Gadde, JGSEE Bangkok
  • 32. Straw conversion to biopower or biofuel Slightly modified from C. Menke, JGSEE Bangkok Straw Energy conversion Electricity Solid Liquid Gas Intermediate energy form Form of end use Mandatory step Harvest Collection Transport Baling Combustion Pyrolysis Biomethanation Gasification Fermentation Raw material processing Shredded Briquetting Form as received Heat Gaseous fuel Liquid fuel Hydrolysis As intermediate steps increase – efficiency goes down Thermal conversion
  • 33.
  • 34.
  • 35. China’s first biopower plant using 100 % crop straw Prof. Cheng Xu, CAU
  • 37.
  • 38. Small scale rice hull furnaces, gasifiers, pyrolysis units
  • 39. Industrial scale rice hull gasifiers Cargill Rice Milling Greenville, Mississippi 330 t rice hulls+straw/day 6.5 MW electricity + steam for parboiling facility Riceland Foods, Inc., Stuttgart, Arkansas 525 t rice hulls/day 15 MW electricity
  • 40.
  • 41.
  • 42.
  • 43.

Notes de l'éditeur

  1. Main point: many of these technologies are at an early stage of development and, so far, they have mostly been investigated for larger-scale industrial use. Starch ethanol and biodiesel processes are widely used already, but cellulosic ethanol remains at a pre-commercial stage thus far and will probably not have major impact on the next 5-10 years. For example: At present, the initial capital investment cost to build a corn-grain ethanol plant in the U.S. is about $1 per gallon of ethanol production capacity. The capital cost for a cellulosic ethanol plant is, at present, estimated to be 10 times as much, i.e., $10 per gallon capacity.
  2. Trendline yield in 2007 is 9300 kg/ha, on 34.6 Mha, tottal production in 2007 = 322 Mt. yield increase is 112 kg/ha-yr, and estimated maize area in future years is 34 Mha, and probably less due to balance needed for soybean area.
  3. There are other examples for such closed cycles at pilot stage: Oilseed  biodiesel + high protein animal feed after oil extraction with wheat straw used to provide heat and power the process New Zealand (R. Sims): Fractionate biomass into various components, washing, pre-heating, hydrolysis of hemicellulose to chemicals such as furfural, lignin, and dried cellulose