SlideShare une entreprise Scribd logo
1  sur  18
Télécharger pour lire hors ligne
Química Orgánica Profa. Zuleika Almengor
1
UNIVERSIDAD DE PANAMA
CENTRO REGIONAL UNIVERSITARIO DE BOCAS DEL TORO
FACULTAD DE CIENCIAS NATURALES, EXACTAS Y TECNOLOGIA
DEPARTAMENTO DE QUÍMICA
MODULO 1. QUÍMICA ORGÁNICA
ELABORADO POR:
PROFA. ZULEIKA ALMENGOR
PRIMER SEMESTRE
2016
Química Orgánica Profa. Zuleika Almengor
2
QUÍMICA ORGÁNICA
1. Generalidades de la química del carbono
Es tanta la importancia de la química del carbono que constituye una de las ramas de la química de más vasto campo de estudio: la
QUÍMICA ORGÁNICA.
La Química Orgánica se define como la rama de la Química que estudia la estructura, comportamiento, propiedades y usos de los
compuestos que contienen carbono. Esta definición excluye algunos compuestos tales como los óxidos de carbono, las sales del
carbono y los cianuros y derivados, los cuales por sus características pertenecen al campo de la química inorgánica. Pero éstos, son
solo unos cuantos compuestos contra los miles de compuestos que estudia la química orgánica.
A este campo de estudio se le conoce como “química orgánica” porque durante un tiempo se creyó que éstos compuestos
provenían forzosamente de organismos vivos, teoría conocida como de la “fuerza vital”. Fue hasta 1828 que el químico alemán
Federico Wöhler (1800-1882) obtuvo urea H2N-CO-NH2 calentando HCNO (ácido ciánico) y NH3 (amoniaco) cuando intentaba
preparar NH4CNO (cianato de amonio), con la cual se echó por tierra la teoría de la fuerza vital.
La Química Orgánica estudia aspectos tales como:
 Los componentes de los alimentos: carbohidratos, lípidos, proteínas y vitaminas.
 Industria textil
 Madera y sus derivados
 Industria farmacéutica
 Industria alimenticia
 Petroquímica
 Jabones y detergentes
 Cosmetología
Estos son solo algunos de los muchos ejemplos que podríamos citar sobre el estudio de la química orgánica.
Ramas de la Química Orgánica
Para su estudio, la Química Orgánica se divide en varias ramas:
 Química orgánica alifática.- Estudia los compuestos de cadena abierta. Ejemplos:
4
Química Orgánica Profa. Zuleika Almengor
3
 Química orgánica cíclica.- Estudia los compuestos de cadena cerrada. Ejemplos:
 Química orgánica heterocíclica.- Estudia los compuestos de cada cerrada donde al menos uno de los átomos que forman el
ciclo no es carbono. Ejemplos:
 Química orgánica aromática.- Estudia el benceno y todos los compuestos derivados de él. Ejemplos:
Fisicoquímica orgánica.- Estudia las reacciones químicas de los compuestos orgánicos.
Química Orgánica Profa. Zuleika Almengor
4
2. Características de los compuestos del carbono
Para entender mejor las características de los compuestos orgánicos, presentamos una tabla comparativa entre las características de
los compuestos orgánicos e inorgánicos.
Característica Compuestos orgánicos Compuestos inorgánicos
Composición
Principalmente formados por carbono,
hidrógeno, oxígeno y nitrógeno.
Formados por la mayoría de los
elementos de la tabla periódica.
Enlace Predomina el enlace covalente. Predomina el enlace iónico.
Solubilidad
Soluble en solventes no polares como
benceno.
Soluble en solventes polares
como agua.
Conductividad eléctrica No la conducen cuando están disueltos.
Conducen la corriente cuando
están disueltos.
Puntos de fusión y ebullición. Tienen bajos puntos de fusión o ebullición.
Tienen altos puntos de fusión o
ebullición.
Estabilidad Poco estables, se descomponen fácilmente. Son muy estables.
Estructuras
Forman estructuras complejas de alto peso
molecular.
Forman estructuras simples de
bajo peso molecular.
Velocidad de reacción Reacciones lentas Reacciones casi instantáneas
Isomería Fenómeno muy común. Es muy raro este fenómeno
El átomo de carbono
Siendo el átomo de carbono la base estructural de los compuestos orgánicos, es conveniente señalar algunas de sus características.
Característica
Número atómico 6
Configuración electrónica
Nivel de energía más externo (periodo) 2
Electrones de valencia 4
Masa atómica promedio 12.01 g/mol
Propiedades físicas Es un sólido inodoro, insípido e insoluble en agua
El átomo de carbono forma como máximo cuatro enlaces covalentes compartiendo electrones con otros átomos. Dos carbonos
pueden compartir dos, cuatro o seis electrones.
Química Orgánica Profa. Zuleika Almengor
5
2.1 Hibridación: La hibridación es un fenómeno que consiste en la mezcla de orbítales atómicos puros para generar un conjunto de
orbítales híbridos, los cuales tienen características combinadas de los orbítales originales.
La configuración electrónica desarrollada para el carbono es:
El primer paso en la hibridación, es la promoción de un electrón del orbital 2s al orbital 2p.
Estos orbítales son idénticos entre si, pero diferentes de los originales ya que tienen características de los orbítales “s” y “p”.
combinados. Estos son los electrones que se comparten. En este tipo de hibridación se forman cuatro enlaces sencillos. El átomo de
carbono forma un enlace doble y dos sencillos
.
Hibridación sp: En este tipo de hibridación sólo se combina un orbital “p” con el orbital “s”. Con este tipo de hibridación el carbono
puede formar un triple enlace.
Química Orgánica Profa. Zuleika Almengor
6
2.2 Geometría molecular
El tipo de hibridación determina la geometría molecular la cual se resume en el siguiente cuadro.
Geometría molecular tetraédrica.- El carbono se encuentra
en el centro de un tetraedro y los enlaces se dirigen hacia los
vértices.
Geometría triangular plana.- El carbono se encuentra en el
centro de un triángulo. Se forma un doble enlace y dos
enlaces sencillos.
Geometría lineal.- Se forman dos enlaces sencillos y uno
triple.
2.3 Tipos de carbono
En una cadena podemos identificar cuatro tipos de carbono, de acuerdo al número de carbonos al cual esté unido el átomo en
cuestión.
Química Orgánica Profa. Zuleika Almengor
7
PRIMARIO.- Está unido a un solo átomo de carbono. Ejemplo:
CH3-CH2-CH3
Los carbonos de color rojo son primarios porque están unidos a un solo carbono, el de color azul.
SECUNDARIO.- Está unido a dos átomos de carbono. Ejemplo:
CH3-CH2-CH3
El carbono de color rojo es secundario porque está unido a dos átomos de carbono, los de color azul.
TERCIARIO.- Está unidos a tres átomos de carbono. Ejemplo:
El carbono de color rojo es terciario porque está unido a tres carbonos, los de color azul.
CUATERNARIO.- Está unido a 4 átomos de carbono. Ejemplo:
El carbono rojo es cuaternario porque está unido a 4 átomos de carbonos, los de color azul.
Ejemplo 2.1
Complete los datos de la tabla de acuerdo a la siguiente estructura:
Carbono
Tipo de
hibridación
Geometría molecular
Ángulo de
enlace
Tipo de enlace Tipo de carbono
a) Tetraédrica 109.5° Sencillo Primario
b) Tetraédrica 109.5° Sencillo Cuaternario
c) Triangular plana 120° Doble Secundario
d) Lineal 180° Triple Primario
e) Triangular plana 120° Doble Secundario
f) Lineal 180° Triple Secundario
Recuerde que para determinar el tipo de carbono se cuentan los carbonos unidos, no los enlaces. Como en el carbono d) está unido
a un solo carbono (primario) y el otro enlace es con un átomo de cloro.
Química Orgánica Profa. Zuleika Almengor
8
2.4 Tipo de cadena e isomería
Las cadenas pueden ser “normales” cuando no tienen ramificaciones y arborescentes o ramificadas si tienen ramificaciones.
Ejemplos:
Las cadenas mostradas en el ejemplo anterior tienen el mismo número de átomos de carbono e hidrógeno, pero representan
compuestos diferentes debido a la disposición de dichos carbonos. Este fenómeno muy común en compuestos orgánicos se conoce
como isomería. Consiste en que compuestos con la misma fórmula molecular tengan diferente estructura. Cada uno de los isómeros
representa un compuesto de nombre y características diferentes.
Ejemplo: C5H12
n-pentano 2-metilbutano 2,2,-dimetilpropano
Las tres estructuras tienen la misma fórmula molecular pero la distribución de sus átomos es diferente. Este tipo de fórmulas
conocidas como semidesarrolladas son las de uso más frecuente en química orgánica, ya que la fórmula molecular no siempre es
suficiente para saber el nombre y tipo de compuesto.
ISOMERÍA
La existencia de moléculas que poseen la misma fórmula molecular y propiedades distintas se conoce como isomería. Los
compuestos que presentan esta característica reciben el nombre de isómeros. La isomería puede ser de dos tipos:
 Isomería plana
 Isomería en el espacio o estereoisomería
Isomería Plana: Se pueden distinguir diferentes tipos:
Isomería de cadena: Presentan isomería de cadena aquellos compuestos en los que cambia la distribución de los
átomos de carbono en la cadena, cambia por tanto, la estructura de la cadena
CH3-CH2-CH2-CH3 CH3-CH-CH3
CH3
Butano Isopropano
En ambos caso la formula es C4H10 pero la estructura y propiedades de estos dos compuestos son diferentes.
Isomería de posición: La presentan aquellos compuestos que tienen la misma cadena y el mismo grupo funcional,
pero difieren en la posición en que está colocado dicho grupo
Química Orgánica Profa. Zuleika Almengor
9
CH3 –CO-CH2 – CH2 - CH3 CH3 – CH2 - CO-CH2 - CH3
2-pentanona 3- pentanona
Isomería de función: La presentan aquellos compuestos que tienen la misma formula molecular pero diferente grupo funcional.
CH3-CH2-CH2-OH CH3-CH2-O-CH3
1-propanol (C3H8O) Etilmetileter (C3H8O)
ISOMERIA ESPACIAL O ESTEREOISOMERIA: Presentan esteroisomería aquellos compuestos que se diferencian en la disposición
espacial de sus átomos. La isomería en el espacio se clasifica en:
Isomería geométrica o Cis-Trans: Este tipo de isomería es característico de compuestos que presentan dobles enlaces, y que, asu
vez, tienen dos sustituyentes idénticos. La rigidez del doble enlace impide la libre rotación y
obliga a que estos sustituyentes se sitúen al mismo lado del enlace (CIS)o a lados opuestos(TRANS)
Isomería óptica: as moléculas que presentan este tipo de isomería de diferencian únicamente en el comportamiento que tienen
sobre la luz polarizada. Los dos isómeros ópticos forman un par de enantiómeros. Los isómeros ópticos se denominan así porque son
ópticamente activos, es decir, un enantiómero desvía el plano de la luz polarizada hacia la derecha y el otro rota dicho plano el
mismo ángulo pero hacia la izquierda. Los enantiómeros poseen propiedades físicas idénticas, exceptuando la dirección de giro de la
luz polarizada y propiedades químicas idénticas excepto frente a reactivos ópticamente activos.
Química Orgánica Profa. Zuleika Almengor
10
3. Hidrocarburos
Son compuestos formados exclusivamente por carbono e hidrógeno.
A continuación se muestra la clasificación de los hidrocarburos.
3.1 Alcanos
Los alcanos son hidrocarburos saturados, están formados exclusivamente por carbono e hidrógeno y únicamente hay enlaces
sencillos en su estructura.
Fórmula general: CnH2n+2 donde “n” represente el número de carbonos del alcano.
Esta fórmula nos permite calcular la fórmula molecular de un alcano. Por ejemplo para el alcano de 5 carbonos: C5H [(2 x 5) +2] =
C5H12
Serie homóloga.- Es una conjunto de compuestos en los cuales cada uno difiere del siguiente en un grupo metileno (-CH2-), excepto
en los dos primeros.
Serie homóloga de los alcanos
Fórmula
molecular
Nombre Fórmula semidesarrollada
Metano
Etano
Propano
Butano
Pentano
Hexano
Heptano
Nonano
Decano
La terminación sistémica de los alcanos es ANO. Un compuestos con esta terminación en el nombre no siempre es un alcano, pero la
terminación indica que es un compuesto saturado y por lo tanto no tiene enlaces múltiples en su estructura.
a) Propiedades y usos de los alcanos.-
 El estado físico de los 4 primeros alcanos: metano, etano, propano y butano es gaseoso. Del pentano al hexadecano (16
átomos de carbono) son líquidos y a partir de heptadecano (17 átomos de carbono) son sólidos.
 El punto de fusión, de ebullición y la densidad aumentan conforme aumenta el número de átomos de carbono.
 Son insolubles en agua
 Pueden emplearse como disolventes para sustancias poco polares como grasas, aceites y ceras.
 El gas de uso doméstico es una mezcla de alcanos, principalmente propano.
Química Orgánica Profa. Zuleika Almengor
11
 El gas de los encendedores es butano.
 El principal uso de los alcanos es como combustibles debido a la gran cantidad de calor que se libera en esta reacción.
Ejemplo:
Lectura
Lea el texto titulado: "Gasolina e índices de octano" . Escriba un comentario y preséntelo en una cara de una página.
b) Nomenclatura de alcanos
Las reglas de nomenclatura para compuestos orgánicos e inorgánicos son establecidas por la Unión Internacional de Química pura y
aplicada, IUPAC (de sus siglas en inglés).
A continuación se señalan las reglas para la nomenclatura de alcanos. Estas reglas constituyen la base de la nomenclatura de los
compuestos orgánicos.
1.- La base del nombre fundamental, es la cadena continua más larga de átomos de carbono.
2.- La numeración se inicia por el extremo más cercano a una ramificación. En caso de encontrar dos ramificaciones a la misma
distancia, se empieza a numerar por el extremo más cercano a la ramificación de menor orden alfabético. Si se encuentran dos
ramificaciones del mismo nombre a la misma distancia de cada uno de los extremos, se busca una tercera ramificación y se numera
la cadena por el extremo más cercano a ella.
3.- Si se encuentran dos o más cadenas con el mismo número de átomos de carbono, se selecciona la que deje fuera los radicales
alquilo más sencillos. En los isómeros se toma los lineales como más simples. El n-propil es menos complejo que el isopropil. El ter-
butil es el más complejo de los radicales alquilo de 4 carbonos.
4.- Cuando en un compuestos hay dos o más ramificaciones iguales, no se repite el nombre, se le añade un prefijo numeral. Los
prefijos numerales son:
Número Prefijo
2 di ó bi
3 Tri
4 Tetra
5 Penta
6 Hexa
7 Hepta
6.- Se escriben las ramificaciones en orden alfabético y el nombre del alcano que corresponda a la cadena principal, como una sola
palabra junto con el último radical. Al ordenar alfabéticamente, los prefijos numerales y los prefijos n-, sec- y ter- no se toman en
cuenta.
7.- Por convención, los números y las palabras se separan mediante un guión, y los números entre si, se separan por comas.
La comprensión y el uso adecuado de las reglas señaladas facilitan la escritura de nombres y fórmulas de compuestos orgánicos.
Radicales alquilo
Química Orgánica Profa. Zuleika Almengor
12
Cuando alguno de los alcanos pierde un átomo de hidrógeno se forma un radical alquilo. Estos radicales aparecen como
ramificaciones sustituyendo átomos de hidrógeno en las cadenas.
Los radicales alquilo de uso más común son:
Las líneas rojas indican el enlace con el cual el radical se une a la cadena principal. Esto es muy importante, el radical no puede
unirse por cualquiera de sus carbonos, sólo por el que tiene el enlace libre.
Ejemplos de nomenclatura de alcanos
1)
Buscamos la cadena de carbonos continua más larga y numeramos por el extremo más cercano a un radical, e identificamos los que
están presentes.
Química Orgánica Profa. Zuleika Almengor
13
La cadena continua más larga tiene 7 carbonos y se empezó la numeración por el extremo derecho porque es el más cercano a un
radical. . Identificamos los radicales y el número del carbono al que están unidos, los acomodamos en orden alfabético y unido el
último radical al nombre de la cadena.
4-ETIL-2-METILHEPTANO
2)
Buscamos la cadena continua de carbonos más larga, la cual no tiene que ser siempre horizontal. Numeramos por el extremo más
cercano a un radical, que es el derecho. Ordenamos los radicales en orden alfabético y unimos el nombre de la cadena al último
radical.
5-ISOPROPIL-3- METILNONANO
3)
Buscamos la cadena de carbonos continua más larga, numeramos por el extremo mas cercano al primer radical, que en este caso es
del lado izquierdo. Nombramos los radicales con su respectivo número en orden alfabético y unimos el nombre de la cadena la
último radical.
Química Orgánica Profa. Zuleika Almengor
14
3-METIL-5-n-PROPILOCTANO
4)
Selecciona la cadena continua de carbonos más larga. Al tratar de numerar observamos que a la misma distancia de ambos extremos
hay un radical etil, entonces nos basamos en el siguiente radical, el n-butil para empezar a numerar.
Recuerde que el n-butil por tener guión se acomoda de acuerdo a la letra b, y no con la n.
5-n –BUTIL-4,7-DIETILDECANO
5)
Química Orgánica Profa. Zuleika Almengor
15
Al seleccionar la cadena de carbonos continua más larga observamos que a la misma distancia de cada extremo hay un radical, un
metil y un etil, entonces iniciamos la numeración por el extremo más cercano al etil ya que es el radical de menor orden alfabético.
3-ETIL-4-METILHEXANO
Ejemplos de nombre a estructura.
6) 3,4,6-TRIMETIL HEPTANO
La cadena heptano tiene 7 átomos de carbono. Los numeramos de izquierda a derecha, pero se puede hacer de izquierda a derecha.
Ahora colocamos los radicales en el carbono que les corresponda. Tenga cuidado de colocar el radical por el enlace libre.
Como el carbono forma 4 enlaces, completamos nuestra estructura con los hidrógenos necesarios para que cada uno tenga sus 4
enlaces.
7) 3-METIL-5-ISOPROPILNONANO
Nonano es una cadena de 9 carbonos.
Colocamos los radicales
Química Orgánica Profa. Zuleika Almengor
16
Los radicales pueden acomodarse de diferentes formas, siempre y cuando conserve su estructural.
Finalmente completamos con los hidrógenos necesarios para que cada carbono tenga sus 4 enlaces.
8) 5-TER-BUTIL-5-ETILDECANO
Decano es una cadena de 10 carbonos.
Los dos radicales de la estructura estánen el mismo carbono por lo tanto se coloca uno arriba y el otro abajo del carbono # 5,
indistintamente..
Completamos con los hidrógenos
9) 5-SEC-BUTIL-5-TER-BUTIL-8- METILNONANO
Nonano es una cadena de 9 carbonos.
Química Orgánica Profa. Zuleika Almengor
17
Colocamos los radicales.
10) 5-ISOBUTIL-4-ISOPROPIL-6-n-PROPILDECANO
Decano es una cadena de 10 carbonos que numeramos de izquierda derecha.
Colocamos los radicales cuidando de acomodarlos en forma correcta.
Contamos los enlaces para poner los hidrógenos necesarios para completar 4 enlaces a cada carbono.
Ahora completamos con hidrógeno para
que cada carbono tenga 4 enlaces.
Química Orgánica Profa. Zuleika Almengor
18
Taller #1
Nombre: _____________________________ Fecha:_______________
Complete los datos de la tabla de acuerdo a la siguiente estructura: Revise sus resultados en la sección de respuestas.
Carbono Tipo de enlace Tipo de carbono Tipo de hibridación
Geometría
molecular
Ángulo de
enlace
a)
b)
c)
d)
e)
f)
g)
Complete la información solicitada en la tabla en base a la siguiente estructura.
Carbono Tipo de hibridación
Ángulo de
enlace
Geometría molecular Tipo de carbono Tipo de enlace
a)
b)
c)
d)
e)
f)
g)
h)

Contenu connexe

Tendances

Quimica organica basica
Quimica organica basicaQuimica organica basica
Quimica organica basica
Thiago Luiz
 
Formulacion quimica organica
Formulacion quimica organicaFormulacion quimica organica
Formulacion quimica organica
Jose Sánchez
 
Carbono y compuestos organicos
Carbono y compuestos organicosCarbono y compuestos organicos
Carbono y compuestos organicos
estudiantequimica
 
Química Orgánica. Carbono
Química Orgánica. CarbonoQuímica Orgánica. Carbono
Química Orgánica. Carbono
marcoantonio0909
 

Tendances (20)

Presentación de la quimica del carbono
Presentación de la quimica del carbonoPresentación de la quimica del carbono
Presentación de la quimica del carbono
 
Química orgánica básica
Química orgánica básicaQuímica orgánica básica
Química orgánica básica
 
Quimica organica basica
Quimica organica basicaQuimica organica basica
Quimica organica basica
 
Quimica organica
Quimica organicaQuimica organica
Quimica organica
 
Quimica organica unidad 4
Quimica organica unidad 4Quimica organica unidad 4
Quimica organica unidad 4
 
Formulacion quimica organica
Formulacion quimica organicaFormulacion quimica organica
Formulacion quimica organica
 
Carbono y compuestos organicos
Carbono y compuestos organicosCarbono y compuestos organicos
Carbono y compuestos organicos
 
Sustancias Orgánicas (Prof. Verónica Rosso)
Sustancias Orgánicas (Prof. Verónica Rosso)Sustancias Orgánicas (Prof. Verónica Rosso)
Sustancias Orgánicas (Prof. Verónica Rosso)
 
Química orgánica
Química orgánicaQuímica orgánica
Química orgánica
 
QUÌMICA DEL CARBONO
QUÌMICA DEL CARBONOQUÌMICA DEL CARBONO
QUÌMICA DEL CARBONO
 
Enlaces 2016
Enlaces  2016Enlaces  2016
Enlaces 2016
 
Hibridación de carbono
Hibridación de carbonoHibridación de carbono
Hibridación de carbono
 
Química Orgánica. Carbono
Química Orgánica. CarbonoQuímica Orgánica. Carbono
Química Orgánica. Carbono
 
Química orgánica
Química orgánicaQuímica orgánica
Química orgánica
 
Química Orgánica
Química OrgánicaQuímica Orgánica
Química Orgánica
 
Quimica organica
Quimica organicaQuimica organica
Quimica organica
 
Quimica organica II
Quimica organica IIQuimica organica II
Quimica organica II
 
QUIMICA ORGANICA
QUIMICA ORGANICAQUIMICA ORGANICA
QUIMICA ORGANICA
 
Organica 110804102207-phpapp01
Organica 110804102207-phpapp01Organica 110804102207-phpapp01
Organica 110804102207-phpapp01
 
QUIMICA ORGANICA
QUIMICA ORGANICAQUIMICA ORGANICA
QUIMICA ORGANICA
 

En vedette

En vedette (20)

Ensayo tics
Ensayo ticsEnsayo tics
Ensayo tics
 
3Com 03-0104-004 I
3Com 03-0104-004 I3Com 03-0104-004 I
3Com 03-0104-004 I
 
international monetary fund
international monetary fund international monetary fund
international monetary fund
 
3Com 3CRWE51196
3Com 3CRWE511963Com 3CRWE51196
3Com 3CRWE51196
 
3Com WDBPCK0010BBK
3Com WDBPCK0010BBK3Com WDBPCK0010BBK
3Com WDBPCK0010BBK
 
Building Custom Visual Composer Elements
Building Custom Visual Composer ElementsBuilding Custom Visual Composer Elements
Building Custom Visual Composer Elements
 
Formato n ousado_paramaterial_labgeogebra_citid2017_v3
Formato n ousado_paramaterial_labgeogebra_citid2017_v3Formato n ousado_paramaterial_labgeogebra_citid2017_v3
Formato n ousado_paramaterial_labgeogebra_citid2017_v3
 
Contestacion de accidente de transito
Contestacion de accidente de transitoContestacion de accidente de transito
Contestacion de accidente de transito
 
Рудолф Щайнер. Гьотевите съчиненияGa 1a 1
Рудолф Щайнер. Гьотевите съчиненияGa 1a 1 Рудолф Щайнер. Гьотевите съчиненияGa 1a 1
Рудолф Щайнер. Гьотевите съчиненияGa 1a 1
 
Another woman's house
Another woman's houseAnother woman's house
Another woman's house
 
College admission system
College admission system College admission system
College admission system
 
Base De Datos- Access
Base De Datos- AccessBase De Datos- Access
Base De Datos- Access
 
Ensayo1 simce lenguaje_1_basico_2014
Ensayo1 simce lenguaje_1_basico_2014Ensayo1 simce lenguaje_1_basico_2014
Ensayo1 simce lenguaje_1_basico_2014
 
The Revolution Will Not Be Televised… It’s screenless
The Revolution Will Not Be Televised… It’s screenlessThe Revolution Will Not Be Televised… It’s screenless
The Revolution Will Not Be Televised… It’s screenless
 
Crm
CrmCrm
Crm
 
Using Adwords Ad Extensions
Using Adwords Ad ExtensionsUsing Adwords Ad Extensions
Using Adwords Ad Extensions
 
Majo cyborg
Majo cyborgMajo cyborg
Majo cyborg
 
Praying For Our Enemy
Praying For Our EnemyPraying For Our Enemy
Praying For Our Enemy
 
Tendencias pedagógicas
Tendencias pedagógicasTendencias pedagógicas
Tendencias pedagógicas
 
Obtención de etileno
Obtención de etilenoObtención de etileno
Obtención de etileno
 

Similaire à Modulo 1. quimica organica

Quimica organica
Quimica organica Quimica organica
Quimica organica
MRcdz Ryz
 
Quimica organica ppt
Quimica organica pptQuimica organica ppt
Quimica organica ppt
Pattypatuga
 

Similaire à Modulo 1. quimica organica (20)

Química orgánica
Química orgánicaQuímica orgánica
Química orgánica
 
Química orgánica SHT
Química orgánica SHTQuímica orgánica SHT
Química orgánica SHT
 
Iii. química orgánica
Iii. química orgánicaIii. química orgánica
Iii. química orgánica
 
Iii. química orgánica
Iii. química orgánicaIii. química orgánica
Iii. química orgánica
 
Iii. química orgánica
Iii. química orgánicaIii. química orgánica
Iii. química orgánica
 
Quimica Organica
Quimica OrganicaQuimica Organica
Quimica Organica
 
Quimica organica
Quimica organicaQuimica organica
Quimica organica
 
Quimica organica
Quimica organica Quimica organica
Quimica organica
 
Tema_11_Introducion_Quimica_Organica.pptx
Tema_11_Introducion_Quimica_Organica.pptxTema_11_Introducion_Quimica_Organica.pptx
Tema_11_Introducion_Quimica_Organica.pptx
 
Tema_11_Introducion_Quimica_Organica.pptx
Tema_11_Introducion_Quimica_Organica.pptxTema_11_Introducion_Quimica_Organica.pptx
Tema_11_Introducion_Quimica_Organica.pptx
 
Tema_11_Introducion_Quimica_Organica.pdf
Tema_11_Introducion_Quimica_Organica.pdfTema_11_Introducion_Quimica_Organica.pdf
Tema_11_Introducion_Quimica_Organica.pdf
 
Tema_11_Introducion_Quimica_Organica.pdf
Tema_11_Introducion_Quimica_Organica.pdfTema_11_Introducion_Quimica_Organica.pdf
Tema_11_Introducion_Quimica_Organica.pdf
 
Química orgánica
Química orgánicaQuímica orgánica
Química orgánica
 
Quimica organica ppt
Quimica organica pptQuimica organica ppt
Quimica organica ppt
 
Organica
OrganicaOrganica
Organica
 
BIOQUIMICA 3 UMG QUIMICA ORGANICA 1.pptx
BIOQUIMICA 3 UMG QUIMICA ORGANICA 1.pptxBIOQUIMICA 3 UMG QUIMICA ORGANICA 1.pptx
BIOQUIMICA 3 UMG QUIMICA ORGANICA 1.pptx
 
Formulacion organica
Formulacion organicaFormulacion organica
Formulacion organica
 
Clase 2 quimica del carbono
Clase 2 quimica del carbonoClase 2 quimica del carbono
Clase 2 quimica del carbono
 
1. quimica organica
1. quimica organica1. quimica organica
1. quimica organica
 
Tema 9 - Química del Carbono.pdf
Tema 9 - Química del Carbono.pdfTema 9 - Química del Carbono.pdf
Tema 9 - Química del Carbono.pdf
 

Dernier

122 - EXPLORACIÓN CERVICAL INSPECCIÓN, PALPACIÓN, EXAMEN POR LA IMAGEN.pptx
122 - EXPLORACIÓN CERVICAL INSPECCIÓN, PALPACIÓN, EXAMEN POR LA IMAGEN.pptx122 - EXPLORACIÓN CERVICAL INSPECCIÓN, PALPACIÓN, EXAMEN POR LA IMAGEN.pptx
122 - EXPLORACIÓN CERVICAL INSPECCIÓN, PALPACIÓN, EXAMEN POR LA IMAGEN.pptx
TonyHernandez458061
 
Sistema Nervioso Periférico (1).pdf
Sistema Nervioso Periférico      (1).pdfSistema Nervioso Periférico      (1).pdf
Sistema Nervioso Periférico (1).pdf
NjeraMatas
 
(2024-04-30). ACTUALIZACIÓN EN PREP FRENTE A VIH (PPT)
(2024-04-30). ACTUALIZACIÓN EN PREP FRENTE A VIH (PPT)(2024-04-30). ACTUALIZACIÓN EN PREP FRENTE A VIH (PPT)
(2024-04-30). ACTUALIZACIÓN EN PREP FRENTE A VIH (PPT)
UDMAFyC SECTOR ZARAGOZA II
 
Relacion final de ingresantes 23.11.2020 (2).pdf
Relacion final de ingresantes 23.11.2020 (2).pdfRelacion final de ingresantes 23.11.2020 (2).pdf
Relacion final de ingresantes 23.11.2020 (2).pdf
AlvaroLeiva18
 
Cuadro-comparativo-Aparato-Reproductor-Masculino-y-Femenino.pptx
Cuadro-comparativo-Aparato-Reproductor-Masculino-y-Femenino.pptxCuadro-comparativo-Aparato-Reproductor-Masculino-y-Femenino.pptx
Cuadro-comparativo-Aparato-Reproductor-Masculino-y-Femenino.pptx
guadalupedejesusrios
 
(2024-04-29)Actualización en profilaxis PrEP frente a VIH. (DOC)
(2024-04-29)Actualización en profilaxis PrEP frente a VIH. (DOC)(2024-04-29)Actualización en profilaxis PrEP frente a VIH. (DOC)
(2024-04-29)Actualización en profilaxis PrEP frente a VIH. (DOC)
UDMAFyC SECTOR ZARAGOZA II
 
11-incisiones-y-cierre-de-pared-abdominal.ppt
11-incisiones-y-cierre-de-pared-abdominal.ppt11-incisiones-y-cierre-de-pared-abdominal.ppt
11-incisiones-y-cierre-de-pared-abdominal.ppt
yuhelipm
 
SEGUNDA Y TERCERA SEMANA DEL DESARROLLO EMBRIONARIO.pptx
SEGUNDA  Y  TERCERA  SEMANA  DEL  DESARROLLO  EMBRIONARIO.pptxSEGUNDA  Y  TERCERA  SEMANA  DEL  DESARROLLO  EMBRIONARIO.pptx
SEGUNDA Y TERCERA SEMANA DEL DESARROLLO EMBRIONARIO.pptx
Arian753404
 
LIBRO LA MEJOR PSICOTERAPIA, PROLOGO - copia.pdf
LIBRO LA MEJOR PSICOTERAPIA, PROLOGO - copia.pdfLIBRO LA MEJOR PSICOTERAPIA, PROLOGO - copia.pdf
LIBRO LA MEJOR PSICOTERAPIA, PROLOGO - copia.pdf
Franc.J. Vasquez.M
 

Dernier (20)

asma bronquial- nuevo enfoque GINA y GEMA
asma bronquial- nuevo enfoque  GINA y GEMAasma bronquial- nuevo enfoque  GINA y GEMA
asma bronquial- nuevo enfoque GINA y GEMA
 
REACCION ANTIGENO ANTICUERPOS INMUNOLOGIA pptx
REACCION ANTIGENO ANTICUERPOS INMUNOLOGIA pptxREACCION ANTIGENO ANTICUERPOS INMUNOLOGIA pptx
REACCION ANTIGENO ANTICUERPOS INMUNOLOGIA pptx
 
122 - EXPLORACIÓN CERVICAL INSPECCIÓN, PALPACIÓN, EXAMEN POR LA IMAGEN.pptx
122 - EXPLORACIÓN CERVICAL INSPECCIÓN, PALPACIÓN, EXAMEN POR LA IMAGEN.pptx122 - EXPLORACIÓN CERVICAL INSPECCIÓN, PALPACIÓN, EXAMEN POR LA IMAGEN.pptx
122 - EXPLORACIÓN CERVICAL INSPECCIÓN, PALPACIÓN, EXAMEN POR LA IMAGEN.pptx
 
Sistema Nervioso Periférico (1).pdf
Sistema Nervioso Periférico      (1).pdfSistema Nervioso Periférico      (1).pdf
Sistema Nervioso Periférico (1).pdf
 
Clase 15 Artrologia mmii 1 de 3 (Cintura Pelvica y Cadera) 2024.pdf
Clase 15 Artrologia mmii 1 de 3 (Cintura Pelvica y Cadera) 2024.pdfClase 15 Artrologia mmii 1 de 3 (Cintura Pelvica y Cadera) 2024.pdf
Clase 15 Artrologia mmii 1 de 3 (Cintura Pelvica y Cadera) 2024.pdf
 
(2024-04-30). ACTUALIZACIÓN EN PREP FRENTE A VIH (PPT)
(2024-04-30). ACTUALIZACIÓN EN PREP FRENTE A VIH (PPT)(2024-04-30). ACTUALIZACIÓN EN PREP FRENTE A VIH (PPT)
(2024-04-30). ACTUALIZACIÓN EN PREP FRENTE A VIH (PPT)
 
glucólisis anaerobia.pdf
glucólisis                 anaerobia.pdfglucólisis                 anaerobia.pdf
glucólisis anaerobia.pdf
 
Relacion final de ingresantes 23.11.2020 (2).pdf
Relacion final de ingresantes 23.11.2020 (2).pdfRelacion final de ingresantes 23.11.2020 (2).pdf
Relacion final de ingresantes 23.11.2020 (2).pdf
 
Psorinum y sus usos en la homeopatía y la dermatología
Psorinum y sus usos en la homeopatía y la dermatologíaPsorinum y sus usos en la homeopatía y la dermatología
Psorinum y sus usos en la homeopatía y la dermatología
 
Microorganismos presentes en los cereales
Microorganismos presentes en los cerealesMicroorganismos presentes en los cereales
Microorganismos presentes en los cereales
 
Cuadro-comparativo-Aparato-Reproductor-Masculino-y-Femenino.pptx
Cuadro-comparativo-Aparato-Reproductor-Masculino-y-Femenino.pptxCuadro-comparativo-Aparato-Reproductor-Masculino-y-Femenino.pptx
Cuadro-comparativo-Aparato-Reproductor-Masculino-y-Femenino.pptx
 
(2024-04-29)Actualización en profilaxis PrEP frente a VIH. (DOC)
(2024-04-29)Actualización en profilaxis PrEP frente a VIH. (DOC)(2024-04-29)Actualización en profilaxis PrEP frente a VIH. (DOC)
(2024-04-29)Actualización en profilaxis PrEP frente a VIH. (DOC)
 
11-incisiones-y-cierre-de-pared-abdominal.ppt
11-incisiones-y-cierre-de-pared-abdominal.ppt11-incisiones-y-cierre-de-pared-abdominal.ppt
11-incisiones-y-cierre-de-pared-abdominal.ppt
 
Sangrado Uterino Anormal. Dr Carlos Quiroz_052747.pptx
Sangrado Uterino Anormal. Dr Carlos Quiroz_052747.pptxSangrado Uterino Anormal. Dr Carlos Quiroz_052747.pptx
Sangrado Uterino Anormal. Dr Carlos Quiroz_052747.pptx
 
Histologia del sistema respiratorio y sus funciones
Histologia del sistema respiratorio y sus funcionesHistologia del sistema respiratorio y sus funciones
Histologia del sistema respiratorio y sus funciones
 
10. Protocolo de atencion a victimas de violencia sexual.pptx
10. Protocolo de atencion a victimas de violencia sexual.pptx10. Protocolo de atencion a victimas de violencia sexual.pptx
10. Protocolo de atencion a victimas de violencia sexual.pptx
 
SEGUNDA Y TERCERA SEMANA DEL DESARROLLO EMBRIONARIO.pptx
SEGUNDA  Y  TERCERA  SEMANA  DEL  DESARROLLO  EMBRIONARIO.pptxSEGUNDA  Y  TERCERA  SEMANA  DEL  DESARROLLO  EMBRIONARIO.pptx
SEGUNDA Y TERCERA SEMANA DEL DESARROLLO EMBRIONARIO.pptx
 
TEXTO PRN 8VA ESPAÑOL.pdf reanimacion neonatal
TEXTO PRN 8VA ESPAÑOL.pdf reanimacion neonatalTEXTO PRN 8VA ESPAÑOL.pdf reanimacion neonatal
TEXTO PRN 8VA ESPAÑOL.pdf reanimacion neonatal
 
Resumen de tejido Óseo de Histología texto y atlas de Ross.pptx
Resumen de tejido Óseo de Histología texto y atlas de Ross.pptxResumen de tejido Óseo de Histología texto y atlas de Ross.pptx
Resumen de tejido Óseo de Histología texto y atlas de Ross.pptx
 
LIBRO LA MEJOR PSICOTERAPIA, PROLOGO - copia.pdf
LIBRO LA MEJOR PSICOTERAPIA, PROLOGO - copia.pdfLIBRO LA MEJOR PSICOTERAPIA, PROLOGO - copia.pdf
LIBRO LA MEJOR PSICOTERAPIA, PROLOGO - copia.pdf
 

Modulo 1. quimica organica

  • 1. Química Orgánica Profa. Zuleika Almengor 1 UNIVERSIDAD DE PANAMA CENTRO REGIONAL UNIVERSITARIO DE BOCAS DEL TORO FACULTAD DE CIENCIAS NATURALES, EXACTAS Y TECNOLOGIA DEPARTAMENTO DE QUÍMICA MODULO 1. QUÍMICA ORGÁNICA ELABORADO POR: PROFA. ZULEIKA ALMENGOR PRIMER SEMESTRE 2016
  • 2. Química Orgánica Profa. Zuleika Almengor 2 QUÍMICA ORGÁNICA 1. Generalidades de la química del carbono Es tanta la importancia de la química del carbono que constituye una de las ramas de la química de más vasto campo de estudio: la QUÍMICA ORGÁNICA. La Química Orgánica se define como la rama de la Química que estudia la estructura, comportamiento, propiedades y usos de los compuestos que contienen carbono. Esta definición excluye algunos compuestos tales como los óxidos de carbono, las sales del carbono y los cianuros y derivados, los cuales por sus características pertenecen al campo de la química inorgánica. Pero éstos, son solo unos cuantos compuestos contra los miles de compuestos que estudia la química orgánica. A este campo de estudio se le conoce como “química orgánica” porque durante un tiempo se creyó que éstos compuestos provenían forzosamente de organismos vivos, teoría conocida como de la “fuerza vital”. Fue hasta 1828 que el químico alemán Federico Wöhler (1800-1882) obtuvo urea H2N-CO-NH2 calentando HCNO (ácido ciánico) y NH3 (amoniaco) cuando intentaba preparar NH4CNO (cianato de amonio), con la cual se echó por tierra la teoría de la fuerza vital. La Química Orgánica estudia aspectos tales como:  Los componentes de los alimentos: carbohidratos, lípidos, proteínas y vitaminas.  Industria textil  Madera y sus derivados  Industria farmacéutica  Industria alimenticia  Petroquímica  Jabones y detergentes  Cosmetología Estos son solo algunos de los muchos ejemplos que podríamos citar sobre el estudio de la química orgánica. Ramas de la Química Orgánica Para su estudio, la Química Orgánica se divide en varias ramas:  Química orgánica alifática.- Estudia los compuestos de cadena abierta. Ejemplos: 4
  • 3. Química Orgánica Profa. Zuleika Almengor 3  Química orgánica cíclica.- Estudia los compuestos de cadena cerrada. Ejemplos:  Química orgánica heterocíclica.- Estudia los compuestos de cada cerrada donde al menos uno de los átomos que forman el ciclo no es carbono. Ejemplos:  Química orgánica aromática.- Estudia el benceno y todos los compuestos derivados de él. Ejemplos: Fisicoquímica orgánica.- Estudia las reacciones químicas de los compuestos orgánicos.
  • 4. Química Orgánica Profa. Zuleika Almengor 4 2. Características de los compuestos del carbono Para entender mejor las características de los compuestos orgánicos, presentamos una tabla comparativa entre las características de los compuestos orgánicos e inorgánicos. Característica Compuestos orgánicos Compuestos inorgánicos Composición Principalmente formados por carbono, hidrógeno, oxígeno y nitrógeno. Formados por la mayoría de los elementos de la tabla periódica. Enlace Predomina el enlace covalente. Predomina el enlace iónico. Solubilidad Soluble en solventes no polares como benceno. Soluble en solventes polares como agua. Conductividad eléctrica No la conducen cuando están disueltos. Conducen la corriente cuando están disueltos. Puntos de fusión y ebullición. Tienen bajos puntos de fusión o ebullición. Tienen altos puntos de fusión o ebullición. Estabilidad Poco estables, se descomponen fácilmente. Son muy estables. Estructuras Forman estructuras complejas de alto peso molecular. Forman estructuras simples de bajo peso molecular. Velocidad de reacción Reacciones lentas Reacciones casi instantáneas Isomería Fenómeno muy común. Es muy raro este fenómeno El átomo de carbono Siendo el átomo de carbono la base estructural de los compuestos orgánicos, es conveniente señalar algunas de sus características. Característica Número atómico 6 Configuración electrónica Nivel de energía más externo (periodo) 2 Electrones de valencia 4 Masa atómica promedio 12.01 g/mol Propiedades físicas Es un sólido inodoro, insípido e insoluble en agua El átomo de carbono forma como máximo cuatro enlaces covalentes compartiendo electrones con otros átomos. Dos carbonos pueden compartir dos, cuatro o seis electrones.
  • 5. Química Orgánica Profa. Zuleika Almengor 5 2.1 Hibridación: La hibridación es un fenómeno que consiste en la mezcla de orbítales atómicos puros para generar un conjunto de orbítales híbridos, los cuales tienen características combinadas de los orbítales originales. La configuración electrónica desarrollada para el carbono es: El primer paso en la hibridación, es la promoción de un electrón del orbital 2s al orbital 2p. Estos orbítales son idénticos entre si, pero diferentes de los originales ya que tienen características de los orbítales “s” y “p”. combinados. Estos son los electrones que se comparten. En este tipo de hibridación se forman cuatro enlaces sencillos. El átomo de carbono forma un enlace doble y dos sencillos . Hibridación sp: En este tipo de hibridación sólo se combina un orbital “p” con el orbital “s”. Con este tipo de hibridación el carbono puede formar un triple enlace.
  • 6. Química Orgánica Profa. Zuleika Almengor 6 2.2 Geometría molecular El tipo de hibridación determina la geometría molecular la cual se resume en el siguiente cuadro. Geometría molecular tetraédrica.- El carbono se encuentra en el centro de un tetraedro y los enlaces se dirigen hacia los vértices. Geometría triangular plana.- El carbono se encuentra en el centro de un triángulo. Se forma un doble enlace y dos enlaces sencillos. Geometría lineal.- Se forman dos enlaces sencillos y uno triple. 2.3 Tipos de carbono En una cadena podemos identificar cuatro tipos de carbono, de acuerdo al número de carbonos al cual esté unido el átomo en cuestión.
  • 7. Química Orgánica Profa. Zuleika Almengor 7 PRIMARIO.- Está unido a un solo átomo de carbono. Ejemplo: CH3-CH2-CH3 Los carbonos de color rojo son primarios porque están unidos a un solo carbono, el de color azul. SECUNDARIO.- Está unido a dos átomos de carbono. Ejemplo: CH3-CH2-CH3 El carbono de color rojo es secundario porque está unido a dos átomos de carbono, los de color azul. TERCIARIO.- Está unidos a tres átomos de carbono. Ejemplo: El carbono de color rojo es terciario porque está unido a tres carbonos, los de color azul. CUATERNARIO.- Está unido a 4 átomos de carbono. Ejemplo: El carbono rojo es cuaternario porque está unido a 4 átomos de carbonos, los de color azul. Ejemplo 2.1 Complete los datos de la tabla de acuerdo a la siguiente estructura: Carbono Tipo de hibridación Geometría molecular Ángulo de enlace Tipo de enlace Tipo de carbono a) Tetraédrica 109.5° Sencillo Primario b) Tetraédrica 109.5° Sencillo Cuaternario c) Triangular plana 120° Doble Secundario d) Lineal 180° Triple Primario e) Triangular plana 120° Doble Secundario f) Lineal 180° Triple Secundario Recuerde que para determinar el tipo de carbono se cuentan los carbonos unidos, no los enlaces. Como en el carbono d) está unido a un solo carbono (primario) y el otro enlace es con un átomo de cloro.
  • 8. Química Orgánica Profa. Zuleika Almengor 8 2.4 Tipo de cadena e isomería Las cadenas pueden ser “normales” cuando no tienen ramificaciones y arborescentes o ramificadas si tienen ramificaciones. Ejemplos: Las cadenas mostradas en el ejemplo anterior tienen el mismo número de átomos de carbono e hidrógeno, pero representan compuestos diferentes debido a la disposición de dichos carbonos. Este fenómeno muy común en compuestos orgánicos se conoce como isomería. Consiste en que compuestos con la misma fórmula molecular tengan diferente estructura. Cada uno de los isómeros representa un compuesto de nombre y características diferentes. Ejemplo: C5H12 n-pentano 2-metilbutano 2,2,-dimetilpropano Las tres estructuras tienen la misma fórmula molecular pero la distribución de sus átomos es diferente. Este tipo de fórmulas conocidas como semidesarrolladas son las de uso más frecuente en química orgánica, ya que la fórmula molecular no siempre es suficiente para saber el nombre y tipo de compuesto. ISOMERÍA La existencia de moléculas que poseen la misma fórmula molecular y propiedades distintas se conoce como isomería. Los compuestos que presentan esta característica reciben el nombre de isómeros. La isomería puede ser de dos tipos:  Isomería plana  Isomería en el espacio o estereoisomería Isomería Plana: Se pueden distinguir diferentes tipos: Isomería de cadena: Presentan isomería de cadena aquellos compuestos en los que cambia la distribución de los átomos de carbono en la cadena, cambia por tanto, la estructura de la cadena CH3-CH2-CH2-CH3 CH3-CH-CH3 CH3 Butano Isopropano En ambos caso la formula es C4H10 pero la estructura y propiedades de estos dos compuestos son diferentes. Isomería de posición: La presentan aquellos compuestos que tienen la misma cadena y el mismo grupo funcional, pero difieren en la posición en que está colocado dicho grupo
  • 9. Química Orgánica Profa. Zuleika Almengor 9 CH3 –CO-CH2 – CH2 - CH3 CH3 – CH2 - CO-CH2 - CH3 2-pentanona 3- pentanona Isomería de función: La presentan aquellos compuestos que tienen la misma formula molecular pero diferente grupo funcional. CH3-CH2-CH2-OH CH3-CH2-O-CH3 1-propanol (C3H8O) Etilmetileter (C3H8O) ISOMERIA ESPACIAL O ESTEREOISOMERIA: Presentan esteroisomería aquellos compuestos que se diferencian en la disposición espacial de sus átomos. La isomería en el espacio se clasifica en: Isomería geométrica o Cis-Trans: Este tipo de isomería es característico de compuestos que presentan dobles enlaces, y que, asu vez, tienen dos sustituyentes idénticos. La rigidez del doble enlace impide la libre rotación y obliga a que estos sustituyentes se sitúen al mismo lado del enlace (CIS)o a lados opuestos(TRANS) Isomería óptica: as moléculas que presentan este tipo de isomería de diferencian únicamente en el comportamiento que tienen sobre la luz polarizada. Los dos isómeros ópticos forman un par de enantiómeros. Los isómeros ópticos se denominan así porque son ópticamente activos, es decir, un enantiómero desvía el plano de la luz polarizada hacia la derecha y el otro rota dicho plano el mismo ángulo pero hacia la izquierda. Los enantiómeros poseen propiedades físicas idénticas, exceptuando la dirección de giro de la luz polarizada y propiedades químicas idénticas excepto frente a reactivos ópticamente activos.
  • 10. Química Orgánica Profa. Zuleika Almengor 10 3. Hidrocarburos Son compuestos formados exclusivamente por carbono e hidrógeno. A continuación se muestra la clasificación de los hidrocarburos. 3.1 Alcanos Los alcanos son hidrocarburos saturados, están formados exclusivamente por carbono e hidrógeno y únicamente hay enlaces sencillos en su estructura. Fórmula general: CnH2n+2 donde “n” represente el número de carbonos del alcano. Esta fórmula nos permite calcular la fórmula molecular de un alcano. Por ejemplo para el alcano de 5 carbonos: C5H [(2 x 5) +2] = C5H12 Serie homóloga.- Es una conjunto de compuestos en los cuales cada uno difiere del siguiente en un grupo metileno (-CH2-), excepto en los dos primeros. Serie homóloga de los alcanos Fórmula molecular Nombre Fórmula semidesarrollada Metano Etano Propano Butano Pentano Hexano Heptano Nonano Decano La terminación sistémica de los alcanos es ANO. Un compuestos con esta terminación en el nombre no siempre es un alcano, pero la terminación indica que es un compuesto saturado y por lo tanto no tiene enlaces múltiples en su estructura. a) Propiedades y usos de los alcanos.-  El estado físico de los 4 primeros alcanos: metano, etano, propano y butano es gaseoso. Del pentano al hexadecano (16 átomos de carbono) son líquidos y a partir de heptadecano (17 átomos de carbono) son sólidos.  El punto de fusión, de ebullición y la densidad aumentan conforme aumenta el número de átomos de carbono.  Son insolubles en agua  Pueden emplearse como disolventes para sustancias poco polares como grasas, aceites y ceras.  El gas de uso doméstico es una mezcla de alcanos, principalmente propano.
  • 11. Química Orgánica Profa. Zuleika Almengor 11  El gas de los encendedores es butano.  El principal uso de los alcanos es como combustibles debido a la gran cantidad de calor que se libera en esta reacción. Ejemplo: Lectura Lea el texto titulado: "Gasolina e índices de octano" . Escriba un comentario y preséntelo en una cara de una página. b) Nomenclatura de alcanos Las reglas de nomenclatura para compuestos orgánicos e inorgánicos son establecidas por la Unión Internacional de Química pura y aplicada, IUPAC (de sus siglas en inglés). A continuación se señalan las reglas para la nomenclatura de alcanos. Estas reglas constituyen la base de la nomenclatura de los compuestos orgánicos. 1.- La base del nombre fundamental, es la cadena continua más larga de átomos de carbono. 2.- La numeración se inicia por el extremo más cercano a una ramificación. En caso de encontrar dos ramificaciones a la misma distancia, se empieza a numerar por el extremo más cercano a la ramificación de menor orden alfabético. Si se encuentran dos ramificaciones del mismo nombre a la misma distancia de cada uno de los extremos, se busca una tercera ramificación y se numera la cadena por el extremo más cercano a ella. 3.- Si se encuentran dos o más cadenas con el mismo número de átomos de carbono, se selecciona la que deje fuera los radicales alquilo más sencillos. En los isómeros se toma los lineales como más simples. El n-propil es menos complejo que el isopropil. El ter- butil es el más complejo de los radicales alquilo de 4 carbonos. 4.- Cuando en un compuestos hay dos o más ramificaciones iguales, no se repite el nombre, se le añade un prefijo numeral. Los prefijos numerales son: Número Prefijo 2 di ó bi 3 Tri 4 Tetra 5 Penta 6 Hexa 7 Hepta 6.- Se escriben las ramificaciones en orden alfabético y el nombre del alcano que corresponda a la cadena principal, como una sola palabra junto con el último radical. Al ordenar alfabéticamente, los prefijos numerales y los prefijos n-, sec- y ter- no se toman en cuenta. 7.- Por convención, los números y las palabras se separan mediante un guión, y los números entre si, se separan por comas. La comprensión y el uso adecuado de las reglas señaladas facilitan la escritura de nombres y fórmulas de compuestos orgánicos. Radicales alquilo
  • 12. Química Orgánica Profa. Zuleika Almengor 12 Cuando alguno de los alcanos pierde un átomo de hidrógeno se forma un radical alquilo. Estos radicales aparecen como ramificaciones sustituyendo átomos de hidrógeno en las cadenas. Los radicales alquilo de uso más común son: Las líneas rojas indican el enlace con el cual el radical se une a la cadena principal. Esto es muy importante, el radical no puede unirse por cualquiera de sus carbonos, sólo por el que tiene el enlace libre. Ejemplos de nomenclatura de alcanos 1) Buscamos la cadena de carbonos continua más larga y numeramos por el extremo más cercano a un radical, e identificamos los que están presentes.
  • 13. Química Orgánica Profa. Zuleika Almengor 13 La cadena continua más larga tiene 7 carbonos y se empezó la numeración por el extremo derecho porque es el más cercano a un radical. . Identificamos los radicales y el número del carbono al que están unidos, los acomodamos en orden alfabético y unido el último radical al nombre de la cadena. 4-ETIL-2-METILHEPTANO 2) Buscamos la cadena continua de carbonos más larga, la cual no tiene que ser siempre horizontal. Numeramos por el extremo más cercano a un radical, que es el derecho. Ordenamos los radicales en orden alfabético y unimos el nombre de la cadena al último radical. 5-ISOPROPIL-3- METILNONANO 3) Buscamos la cadena de carbonos continua más larga, numeramos por el extremo mas cercano al primer radical, que en este caso es del lado izquierdo. Nombramos los radicales con su respectivo número en orden alfabético y unimos el nombre de la cadena la último radical.
  • 14. Química Orgánica Profa. Zuleika Almengor 14 3-METIL-5-n-PROPILOCTANO 4) Selecciona la cadena continua de carbonos más larga. Al tratar de numerar observamos que a la misma distancia de ambos extremos hay un radical etil, entonces nos basamos en el siguiente radical, el n-butil para empezar a numerar. Recuerde que el n-butil por tener guión se acomoda de acuerdo a la letra b, y no con la n. 5-n –BUTIL-4,7-DIETILDECANO 5)
  • 15. Química Orgánica Profa. Zuleika Almengor 15 Al seleccionar la cadena de carbonos continua más larga observamos que a la misma distancia de cada extremo hay un radical, un metil y un etil, entonces iniciamos la numeración por el extremo más cercano al etil ya que es el radical de menor orden alfabético. 3-ETIL-4-METILHEXANO Ejemplos de nombre a estructura. 6) 3,4,6-TRIMETIL HEPTANO La cadena heptano tiene 7 átomos de carbono. Los numeramos de izquierda a derecha, pero se puede hacer de izquierda a derecha. Ahora colocamos los radicales en el carbono que les corresponda. Tenga cuidado de colocar el radical por el enlace libre. Como el carbono forma 4 enlaces, completamos nuestra estructura con los hidrógenos necesarios para que cada uno tenga sus 4 enlaces. 7) 3-METIL-5-ISOPROPILNONANO Nonano es una cadena de 9 carbonos. Colocamos los radicales
  • 16. Química Orgánica Profa. Zuleika Almengor 16 Los radicales pueden acomodarse de diferentes formas, siempre y cuando conserve su estructural. Finalmente completamos con los hidrógenos necesarios para que cada carbono tenga sus 4 enlaces. 8) 5-TER-BUTIL-5-ETILDECANO Decano es una cadena de 10 carbonos. Los dos radicales de la estructura estánen el mismo carbono por lo tanto se coloca uno arriba y el otro abajo del carbono # 5, indistintamente.. Completamos con los hidrógenos 9) 5-SEC-BUTIL-5-TER-BUTIL-8- METILNONANO Nonano es una cadena de 9 carbonos.
  • 17. Química Orgánica Profa. Zuleika Almengor 17 Colocamos los radicales. 10) 5-ISOBUTIL-4-ISOPROPIL-6-n-PROPILDECANO Decano es una cadena de 10 carbonos que numeramos de izquierda derecha. Colocamos los radicales cuidando de acomodarlos en forma correcta. Contamos los enlaces para poner los hidrógenos necesarios para completar 4 enlaces a cada carbono. Ahora completamos con hidrógeno para que cada carbono tenga 4 enlaces.
  • 18. Química Orgánica Profa. Zuleika Almengor 18 Taller #1 Nombre: _____________________________ Fecha:_______________ Complete los datos de la tabla de acuerdo a la siguiente estructura: Revise sus resultados en la sección de respuestas. Carbono Tipo de enlace Tipo de carbono Tipo de hibridación Geometría molecular Ángulo de enlace a) b) c) d) e) f) g) Complete la información solicitada en la tabla en base a la siguiente estructura. Carbono Tipo de hibridación Ángulo de enlace Geometría molecular Tipo de carbono Tipo de enlace a) b) c) d) e) f) g) h)