SlideShare une entreprise Scribd logo
1  sur  14
Télécharger pour lire hors ligne
ISE-5013
Statistical Analysis for System Design
Graduate Project
Rock Typing based on Petrophysical Properties
Submitted by:
Karan Bathla
OU ID: 113072138
ISE	
  –	
  5013:	
  Statistical	
  Analysis	
  For	
  System	
  Design	
  
	
  
	
   1	
  
Abstract
Shale is a type of sedimentary rock and is most abundant in earth’s crust. It was formed due to
deposition of silt and organic debris on sea bottoms millions of years ago. Due to geothermal effects, it
cooked and transformed into oil. It has drastically changed the oil and gas production in United States of
America contributing 33 trillion cubic feet of natural gas (source: Energy Information Administration).
However since shale is composed of mud, silt, quartz, calcite and other minerals, it is very important to
classify the properties that have a greater impact on production for estimation of reservoir. The
experiments were performed at the Integrated Core Characterization Center at University of Oklahoma
to know the most important petrophysical properties at various depths of the same shale rock. By
knowing these properties, we can analyze and identify the properties that have most variation and use
them to do clustering to perform rock typing.
In this paper, principal component statistical analysis will be performed using XLSTAT on shale
composition primarily mineralogy, mainly clays, carbonates and feldspar, porosity and total organic
carbon to study the parameters that have maximum variation in them. Further, k-means will be
performed using XLSTAT on essential parameters identified by PCA to classify the rock and cluster
them.
Principal Component Analysis:
Saville and Wood in their book Statistical Methods: A Geometric Approach wrote the following
definition for Principal Component Analysis:
Definition: Given n points in , principal components analysis consists of choosing a
dimension and then finding the affine space of dimension k with the property that the squared
distance of the points to their orthogonal projection onto the space is minimized.
Principal Components are sum of independent linear components and arrange the data set according to
variability and helps to understand the internal structure of our data set. They are used to identify the
patterns and reduce the dimensions of the dataset (reduce the dispersion) with minimum loss of
information. The number of components extracted in PCA equals the number of observed variables.
If the data set has n variables then there will be n principal components:
• The first component will have the largest variance and will be linear combination of original
variables
• The subsequent components are unrelated with previous defined components and will consist of
linear combination of variables with greatest variance
Since, it is a truncated transformation, we will be able to focus on the essential data sets and perform a
detail analysis on them. It is an important step for pattern recognition.
Eigen Value and Eigen Vector:
We can get an estimate of the variance in the data by calculating eigenvalue. The principal component is
therefore the eigenvector, which has the highest eigenvalue. The number of eigenvector is equal to the
dimensions of the system.
Dimension reduction using eigenvalue
The Principal Component Analysis is used to reduce the dimensions of the data set. For example, there
is 3 dimension data that is represented in the figure below. It is plotted along x-axis, y-axis, and z-axis.
Since the data has a common z value and variance in that direction is 0, the value of eigenvalue along
ISE	
  –	
  5013:	
  Statistical	
  Analysis	
  For	
  System	
  Design	
  
	
  
	
   2	
  
that direction will be zero as shown in figure 2. Hence, we can represent the data in two dimensions now
since there is no information that can be extracted in z-axis.
Figure 1: 3 Dimensional data set represented alond x-axis, y-axis and z-axis
Figure 2: Calculation of eigenvector for the data set represented in Fig 1
Source: Dallas, George. Access on 11/25/2014, “Principal Component Analysis 4 Dummies:
Eigenvectors, Eigenvalues and Dimension Reduction.” Web blog post, access on 11/25/2014.
Weblink:https://georgemdallas.wordpress.com/2013/10/30/principal-component-analysis-4-dummies-
eigenvectors-eigenvalues-and-dimension-reduction/
Petroleum Engineering Definitions
Some Petroleum Engineering terms that have used in this paper have been defined below:
Porosity – is the ratio of pore space and bulk volume
TOC - Total Organic Content is composed of kerogen (hydrocarbon forming material) and
hydrocarbons (found in pore space)
Mineralogy: shales can be found in quartz a) clastics (quartz or clay rich) b) carbonates (carbon rich).
However shales are composed of both clastics minerals and carbonates and FTIR (Fourier Transform
Infrared Spectroscopy) is done to obtain the specific mineralogy.
The data used is from 168 core samples of Barnett shale at various depths from the lab Integrated Core
Characterization tabulated in the Appendix to perform Principal Component Analysis on the
petrophysical properties: Porosity, Total Organic Carbon, Quartz, Carbonates, Illite + Chlorite and
mixed clays to identify the most varying properties that can be for rock typing. The data was scaled
ISE	
  –	
  5013:	
  Statistical	
  Analysis	
  For	
  System	
  Design	
  
	
  
	
   3	
  
before performing the PCA by subtracting the mean and dividing by standard deviation. Table 1
indicates the various petrophysical properties and their correlation with each other. The matrix contains
the statistical parameters such as minimum, maximum, mean of the scaled properties.
We try to capture the variation in the eigenvalue of the 6 principal components. We can capture 58%
variation if we consider only the first principal component and 87.4% by considering three principal
components and 100% if we take all 6 principal components corresponding to 6 petrophysical
properties. Table 2 summarizes the variation captured by every principal component and their
cumulative variance.
Table 1: Various petrophysical properties along with their statistical parameters
Table 2: Principal Component Analysis using eigenvalue
Eigenvalues:
F1 F2 F3 F4 F5 F6
Eigenvalue 3.496 1.161 0.592 0.491 0.219 0.040
Variability (%) 58.269 19.352 9.869 8.187 3.656 0.667
Cumulative % 58.269 77.621 87.490 95.677 99.333 100.000
Figure 3: The independent (blue) and cumulative variance captured by each component (red line)
Table 3 gives the correlation between the different parameters and tells us how they are related. The
data has been normalized before calculating the co-variance matrix. From the table we can observe that
porosity, quartz, TOC and mineralogy are inversely proportional to carbonates. However, they are
proportional to each other. Similarly the interrelation between other properties can be observed.
0	
  
20	
  
40	
  
60	
  
80	
  
100	
  
0	
  
0.5	
  
1	
  
1.5	
  
2	
  
2.5	
  
3	
  
3.5	
  
4	
  
F1	
   F2	
   F3	
   F4	
   F5	
   F6	
  
Cumulative	
  variability	
  (%)	
  
Eigenvalue	
  
axis	
  
Screen	
  plot	
  
Variable Obs. Minimum Maximum Mean Std
deviation
Scaled porosity 168 -2.506 2.787 0.000 1.000
Scaled TOC 168 -2.212 2.268 0.000 1.000
Scaled quartz 168 -1.985 2.257 0.000 1.000
Scaled carbonates 168 -0.913 2.796 0.000 1.000
Scaled illite +
chlorite
168 -2.591 2.610 0.000 1.000
Scaled mixed clays 168 -1.336 2.264 0.000 1.000
ISE	
  –	
  5013:	
  Statistical	
  Analysis	
  For	
  System	
  Design	
  
	
  
	
   4	
  
Table 3: Correlation between 6 different shale composition parameters.
Table 4 represents the contribution of each petrophysical property to the 3 principal components that
captures almost 85% variability. Therefore it is observed that most significant parameters that
contribute maximum to the variability are Total Organic Carbon, Carbonates, and Illite + Chlorite. Also,
the porosity has very less contribution in variability of the matrix and remains almost constant.
Therefore we identify the 3 petrophysical properties Total Organic Carbon, Carbonates and Illite +
Chlorite to perform the k-means clustering in order to perform rock typing.
Table 4 : Correlation between various shale composition parameters with principal components.
*Values in bold correspond for each variable to the factor for which the squared cosine is the largest
k-means
The second step would be to do k-means clustering on the orthogonal data set obtained after based on
Lloyd’s algorithm. The algorithm is based on minimizing the sum of squares within the clusters to
identify the similar clusters required for classification of rocks.
Covariance matrix (Covariance
(n-1)):
Variables Scaled
porosity
Scaled
TOC
Scaled
quartz
Scaled
carbonates
Scaled illite
+ chlorite
Scaled Mixed
Clays
Scaled porosity 1 0.309 0.572 -0.551 0.236 0.223
Scaled TOC 0.309 1 0.579 -0.796 0.564 0.507
Scaled quartz 0.572 0.579 1 -0.685 0.153 0.182
Scaled carbonates -0.551 -0.796 -0.685 1 -0.744 -0.615
Scaled illite +
chlorite
0.236 0.564 0.153 -0.744 1 0.522
Scaled mixed
clays
0.223 0.507 0.182 -0.615 0.522 1
Contribution of the
variables (%):
F1 F2 F3
Scaled porosity 10.584 26.691 48.632
Scaled TOC 20.539 0.535 27.877
Scaled quartz 13.900 31.838 12.518
Scaled carbonates 27.250 0.027 0.140
Scaled illite + chlorite 14.928 21.498 2.413
Scaled mixed clays 12.799 19.411 8.421
Squared cosines of the
variables:
F1 F2 F3
Scaled porosity 0.370 0.310 0.288
Scaled TOC 0.718 0.006 0.165
Scaled quartz 0.486 0.370 0.074
Scaled carbonates 0.953 0.000 0.001
Scaled illite + chlorite 0.522 0.250 0.014
Scaled mixed clays 0.447 0.225 0.050
ISE	
  –	
  5013:	
  Statistical	
  Analysis	
  For	
  System	
  Design	
  
	
  
	
   5	
  
Algorithm:
We define k centroids for k clusters. For clustering, we place k centroids very far from each other and
arrange the data on minimum distance from the centroid. After this, we identify k new centroids (close
to the mean of the data points assigned to it) and try to group the same data set according to the nearest
new centroid which is the mean of the data points assigned to it. We repeat this step until a convergence
is obtained and there is no movement of data point from one cluster to another. This algorithm is based
on minimizing the following distance:
!! = New centroid after every iteration
!! = Data point
Steps for k-means clustering:
1. Plot all the points in the space. These points represent initial group centroids.
2. Assign the data points with respect to the closest centroid according to equation 1.
3. After arranging all the data points, reassign the centroids based on the mean of data points present in
the cluster.
4. Repeat Steps 2 and 3 until the data points converge towards common centroid and centroids don’t
change.
5. The result of above process clusters the data in specific groups.
Figure 4: Representation of k-means clustering algorithm
As we can see that k-means clustering is sensitive to the initial centroids selected, it is sometimes not
able to produce the most optimal configuration. Therefore it is an iterative process and is applied
multiple times on the data set in order to reduce the error. We can identify any number of data points in
any specific number of numbers.
PCA points in the direction of maximum variance. Since TOC, Carbonates and Illite +Chlorite have
highest variation, they are used for clustering for k-means. XL-STAT was used for performing the k-
means and upto 6 classes were used to captured so as to observe the within class variance. 500 iterations
were performed to make the results more precise. The summary statistics is given below in the table 5.
1	
  
ISE	
  –	
  5013:	
  Statistical	
  Analysis	
  For	
  System	
  Design	
  
	
  
	
   6	
  
Table 5: Summary statistics for k-means for 3 petrophysical properties.
Variable	
   Observation	
   Minimum	
   Maximum	
   Mean	
   Std.	
  deviation	
  
Scaled	
  TOC	
   168	
   -­‐2.212	
   2.268	
   0.000	
   1.000	
  
Scaled	
  
carbonates	
  
168	
   -­‐0.913	
   2.796	
   0.000	
   1.000	
  
Scaled	
  illite	
  +	
  
chlorite	
  
168	
   -­‐2.591	
   2.610	
   0.000	
   1.000	
  
From the table 6, we can observe that class 1 has maximum within-class variance and we can cluster the
data by noting the 3 classes as the change (figure 5) in between-class variance (red line) is almost 0 after
3 classes. Also, there is not a significant change in within–class variance after 3 classes. Therefore we
will cluster or differentiate the data into 3 classes.
Table 6: Evolution of variance within classes and between classes
VarianceClasses	
   1	
   2	
   3	
   4	
   5	
   6	
  
Within-­‐class	
   3.000	
   1.124	
   0.855	
   0.661	
   0.584	
   0.477	
  
Between-­‐classes	
   0.000	
   1.876	
   2.145	
   2.339	
   2.416	
   2.523	
  
Total	
   3.000	
   3.000	
   3.000	
   3.000	
   3.000	
   3.000	
  
Figure 5: The between-class variance (red line) and within-class variance (blue line) plotter versus
number of classes.
Results:
By performing the k-means clustering, we have obtained the following results. Table 8 gives the scaled
and the true value of centroid for every petrophysical property in each of the three clusters. Table 9
gives the mean value of every petrophysical property for the 3 clusters.
Table 8: Class Centroids and their true values
Class	
   Scaled	
  
TOC	
  
Scaled	
  
carbonates	
  
Scaled	
  
illite	
  +	
  
chlorite	
  
Within-­‐
class	
  
variance	
  
True	
  
TOC	
  
True	
  
Carbonates	
  
True	
  
Illite+Chlorite	
  
1	
   -­‐0.19	
   -­‐0.369	
   0.382	
   0.904	
   3.43637	
   12.7953	
   28.9343	
  
2	
   -­‐1.411	
   1.717	
   -­‐1.38	
   0.9	
   1.42739	
   61.83870	
   278.597	
  
3	
   0.978	
   -­‐0.57	
   0.37	
   0.779	
   5.35814	
   8.0697	
   28.8283	
  
0	
  
0.5	
  
1	
  
1.5	
  
2	
  
2.5	
  
3	
  
3.5	
  
1	
   2	
   3	
   4	
   5	
   6	
  
Within-­‐class	
  variance	
  
Number	
  of	
  classes	
  
ISE	
  –	
  5013:	
  Statistical	
  Analysis	
  For	
  System	
  Design	
  
	
  
	
   7	
  
Table 9:Class central value and their true values
Class	
   Scaled	
  TOC	
   Scaled	
  
carbonates	
  
Scaled	
  illite	
  
+	
  chlorite	
  
True	
  TOC	
   True	
  
Carbonates	
  
True	
  
Illite+Chlorite	
  
1	
  
(6444.5)	
  
-­‐0.151	
   -­‐0.394	
   0.593	
   3.50053974	
   12.20761685	
   30.79640611	
  
2	
  
(6474.5)	
  
-­‐1.403	
   1.941	
   -­‐1.231	
   1.44055736	
   67.10510541	
   14.69934199	
  
3	
  
(6756.4)	
  
0.754	
   -­‐0.628	
   0.299	
   4.98958450	
   6.706112641	
   28.20181353	
  
Table 10 gives the final clustering of the cores on the basis of these petrophysical properties.
Table 10: Final clustering of the wells done by k-means using PCA on TOC, Illite	
  +	
  Chlorite,	
  and	
  
Carbonates
Class	
   1	
   2	
   3	
  
Objects	
   67	
   36	
   65	
  
Within-­‐class	
  variance	
   0.904	
   0.900	
   0.779	
  
Minimum	
  distance	
  to	
  centroid	
   0.216	
   0.269	
   0.242	
  
Average	
  distance	
  to	
  centroid	
   0.835	
   0.851	
   0.786	
  
Maximum	
  distance	
  to	
  centroid	
   2.276	
   1.620	
   1.882	
  
	
  	
   6432.5	
   6438.5	
   6450.5	
  
	
   6434.5	
   6456.5	
   6454.5	
  
	
   6436.5	
   6458.5	
   6519.4	
  
	
   6440.6	
   6463.2	
   6522.3	
  
	
   6442.5	
   6464.5	
   6524.2	
  
	
   6444.5	
   6466.5	
   6527.7	
  
	
   6446.5	
   6468.5	
   6531.7	
  
	
   6448.4	
   6470.5	
   6534	
  
	
   6452.5	
   6472.7	
   6535.8	
  
	
   6460.5	
   6474.5	
   6542.1	
  
	
   6491	
   6476.5	
   6544.1	
  
	
   6493	
   6478.2	
   6548.3	
  
	
   6495.2	
   6480.2	
   6558.8	
  
	
   6496.8	
   6482.2	
   6570.3	
  
	
   6503.6	
   6484.2	
   6572	
  
	
   6505.6	
   6487	
   6573.8	
  
	
   6507.4	
   6489	
   6575.65	
  
	
   6515	
   6498.6	
   6578.8	
  
	
   6517.3	
   6501.2	
   6580.9	
  
	
   6526.1	
   6509.5	
   6585.3	
  
	
   6529.2	
   6511.2	
   6589	
  
	
   6538	
   6513.6	
   6600	
  
	
   6543	
   6520.8	
   6601.4	
  
	
   6546.2	
   6540	
   6617	
  
	
   6550.6	
   6554.6	
   6619	
  
	
   6552.5	
   6561.8	
   6627.5	
  
	
   6556.8	
   6565.35	
   6629.3	
  
ISE	
  –	
  5013:	
  Statistical	
  Analysis	
  For	
  System	
  Design	
  
	
  
	
   8	
  
	
   6560.6	
   6583.1	
   6631.1	
  
	
   6563.6	
   6591.4	
   6635.2	
  
	
   6567	
   6604	
   6637.1	
  
	
   6568	
   6633.3	
   6643.9	
  
	
   6587	
   6700	
   6645.9	
  
	
   6593	
   6722.6	
   6647.8	
  
	
   6594.6	
   6745.9	
   6650	
  
	
   6596.05	
   6752.6	
   6652	
  
	
   6598.1	
   6794	
   6654	
  
	
   6606	
   	
   6657.7	
  
	
   6608.7	
   	
   6660	
  
	
   6611	
   	
   6662	
  
	
   6613.2	
   	
   6665.6	
  
	
   6615.1	
   	
   6669.7	
  
	
   6621	
   	
   6671.7	
  
	
   6623.2	
   	
   6673.8	
  
	
   6639.8	
   	
   6675.6	
  
	
   6641.7	
   	
   6678.7	
  
	
   6667.6	
   	
   6680	
  
	
   6669.1	
   	
   6682	
  
	
   6686	
   	
   6684	
  
	
   6690	
   	
   6688	
  
	
   6704.2	
   	
   6691.9	
  
	
   6708	
   	
   6693.9	
  
	
   6719	
   	
   6696	
  
	
   6731	
   	
   6702.1	
  
	
   6734	
   	
   6706	
  
	
   6736.1	
   	
   6709.9	
  
	
   6742.1	
   	
   6712.1	
  
	
   6750.2	
   	
   6714	
  
	
   6754.5	
   	
   6716.3	
  
	
   6760.15	
   	
   6724.4	
  
	
   6765	
   	
   6727	
  
	
   6769.1	
   	
   6729	
  
	
   6771.8	
   	
   6738.1	
  
	
   6773.9	
   	
   6744.1	
  
	
   6775.1	
   	
   6756.4	
  
	
   6780.6	
   	
   6762.3	
  
	
   6782.2	
   	
   	
  
	
  	
   6784.3	
   	
  	
   	
  	
  
Conclusions:
PCA can be used to identify the most varying components and helps in reducing the dimensions of data
set for appropriate analysis of k-means. We were successfully able to classify the rocks by using PCA
and k-means. We can conclude from the PCA that TOC, Carbonates and Illite+Chlorite are the principal
components that capture maximum variability. k-means can cluster the data in any number of classes,
however the variance within-class reduces as we increase the number of clusters. The data has been
ISE	
  –	
  5013:	
  Statistical	
  Analysis	
  For	
  System	
  Design	
  
	
  
	
   9	
  
clustered into 3 groups to obtain the maximum variation. Most of the rocks (67) belong to class 1 and
have mean TOC= 3.5, mean carbonates=12.2 and mean illite +chlorite= 30.7 and least number of rocks
(36) belong to cluster 2 and have mean TOC = 1.44, mean carbonates=67.105 and mean illite +chlorite=
14.699. Class 1 has maximum within-class variance and Class 3 has least within-class variance.
Acknowledgement
The support was this work was provided by Professor Charles Nicholson, University of Oklahoma.
Appreciation is extended to Integrated Core Characterization Center, Department of Petroleum
Engineering, The University of Oklahoma for providing parameter information about the petrophysical
properties for various cores.
References
Hotelling, H. 1933. Analysis of a complex of statistical variables into principal components. Journal of
Educational Psychology, 24, 417-441, and 498-520.
Mendelhall, W. & Sincich, T. 2007. Statictics for Engineering and the Sciences, fifth edition. Published
by Pearson Prentice Hall Inc., New Jersey. ISBN 0-13-187706-2.
R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed. Prentice Hall, 2007.
Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model. In: CHES.
Volume 3156 of LNCS., Springer (2004) 16–29 Cambridge, MA, USA.
Batina, L., Gierlichs, B., Lemke-Rust, K.: Differential Cluster Analysis. In Clavier, C., Gaj, K.,eds.:
Cryptographic Hardware and Embedded Systems – CHES 2009. Volume 5747 of Lecture Notes in
Computer Science., Lausanne, Switzerland, Springer-Verlag (2009) 112–127
Kumar, V., C.H. Sondergeld, and C.S. Rai. 2012. Nano to macro mechanical characterization of shale.
SPE 159804 Presented in SPE Annual Technical Conference and Exhibition, San Antonio, Texas, 8-10
October 2012.DOI 10.2118/159804-MS
Appendix
The sample data for which rock typing was performed.
Depth	
   Corrected	
  
porosity	
  
TOC	
   Quartz	
   Carbonates	
   Illite	
  +	
  Chlorite	
   	
  
6432.5	
   6.67	
   4.15	
   38.6	
   4.7	
   29.1	
   14.7	
  
6434.5	
   6.07	
   4.25	
   48.6	
   14.1	
   25.4	
   3.9	
  
6436.5	
   4.91	
   3.4	
   41	
   8.4	
   27.7	
   12.4	
  
6438.5	
   6	
   0.39	
   4.6	
   75.5	
   6.9	
   0	
  
6440.6	
   5.63	
   3.9	
   37	
   4.9	
   30.2	
   8.9	
  
6442.5	
   5.85	
   3.95	
   40.6	
   6.5	
   26.5	
   7.7	
  
6444.5	
   0.88	
   3.5	
   29.3	
   12.2	
   30.8	
   14.9	
  
6446.5	
   6.14	
   4.12	
   43.1	
   16.4	
   23.8	
   4.4	
  
6448.4	
   5.27	
   3.61	
   33.7	
   27.8	
   27.6	
   1	
  
6450.5	
   6.02	
   5.92	
   54.8	
   3.3	
   18.6	
   9.8	
  
6452.5	
   4.46	
   3.15	
   50	
   13.3	
   21.9	
   0	
  
6454.5	
   5.27	
   4.68	
   42.1	
   18.2	
   16	
   11.4	
  
6456.5	
   4.42	
   2.49	
   27.3	
   42.7	
   17.9	
   1.5	
  
6458.5	
   5.55	
   1.7	
   35.6	
   32.5	
   13.6	
   6.4	
  
6460.5	
   5.09	
   3.49	
   40.9	
   6.7	
   27.4	
   12.9	
  
ISE	
  –	
  5013:	
  Statistical	
  Analysis	
  For	
  System	
  Design	
  
	
  
	
   10	
  
6463.2	
   2.52	
   2.5	
   20.4	
   48.8	
   21.2	
   0	
  
6464.5	
   2.7	
   1.51	
   3.7	
   68.9	
   14.4	
   2.1	
  
6466.5	
   2.77	
   1.7	
   11.1	
   54.7	
   21.5	
   0	
  
6468.5	
   2.09	
   0.83	
   6.8	
   73.6	
   11.5	
   0	
  
6470.5	
   1.96	
   1.14	
   10.6	
   62.3	
   19.6	
   0	
  
6472.7	
   2.13	
   1.29	
   10.3	
   63.5	
   19	
   0	
  
6474.5	
   2.74	
   1.44	
   8.4	
   67.1	
   14.7	
   0	
  
6476.5	
   2.03	
   0.49	
   1.8	
   75.3	
   11.3	
   0	
  
6478.2	
   2.16	
   0.64	
   0	
   87.2	
   7.8	
   0	
  
6480.2	
   2.65	
   0.8	
   4.3	
   79.9	
   10.7	
   0	
  
6482.2	
   2.34	
   0.92	
   6.4	
   73.5	
   9.5	
   2.3	
  
6484.2	
   1.79	
   0.53	
   0	
   76.2	
   16.4	
   0	
  
6487	
   2.61	
   1.09	
   12.7	
   67.5	
   12.2	
   0	
  
6489	
   4.46	
   1.12	
   11.3	
   58.5	
   15.6	
   3.1	
  
6491	
   6.38	
   2.84	
   3.9	
   7.1	
   42.4	
   26.1	
  
6493	
   3.39	
   2.23	
   18.1	
   27.5	
   31.3	
   13.2	
  
6495.2	
   6.39	
   2.87	
   5	
   7.4	
   44.1	
   25.4	
  
6496.8	
   5.38	
   2.17	
   4.4	
   21	
   39	
   19.3	
  
6498.6	
   3.34	
   1.67	
   14.4	
   47.1	
   19.5	
   7.9	
  
6501.2	
   2.73	
   1.07	
   2.3	
   65.4	
   13.9	
   0	
  
6503.6	
   5.22	
   2.34	
   10.4	
   25.6	
   28.1	
   20.2	
  
6505.6	
   4.83	
   2.44	
   9.8	
   20.3	
   32.5	
   21.3	
  
6507.4	
   3.66	
   2.69	
   7.2	
   21.1	
   34.7	
   19.7	
  
6509.5	
   1.82	
   1.11	
   6.3	
   76.2	
   12.1	
   0	
  
6511.2	
   1.49	
   0.97	
   6.7	
   75.7	
   10.2	
   0	
  
6513.6	
   3.19	
   1.67	
   14.2	
   56.2	
   16.8	
   4.9	
  
6515	
   4.13	
   3.46	
   30.3	
   10.2	
   30.8	
   17.7	
  
6517.3	
   3.82	
   3.23	
   20	
   33.6	
   23.2	
   0	
  
6519.4	
   4.59	
   4.72	
   36.7	
   15.3	
   21.3	
   17.5	
  
6520.8	
   3.72	
   2.57	
   29.4	
   37.5	
   13.1	
   3.2	
  
6522.3	
   5.57	
   4.78	
   30.6	
   5.4	
   32.8	
   17.7	
  
6524.2	
   5.3	
   5.58	
   43.8	
   9.7	
   23	
   15.6	
  
6526.1	
   4.14	
   3.2	
   39.4	
   19.7	
   19.3	
   12.2	
  
6527.7	
   5.11	
   6.01	
   34.8	
   6.3	
   26.4	
   20.8	
  
6529.2	
   3.86	
   3.46	
   37.8	
   18.4	
   26.8	
   2.4	
  
6531.7	
   4.8	
   4.68	
   38.7	
   8.6	
   28.9	
   15.7	
  
6534	
   4.38	
   5.2	
   29	
   7.2	
   24.2	
   27.1	
  
6535.8	
   4.46	
   4.87	
   25.3	
   11.9	
   29.9	
   15.5	
  
6538	
   4.14	
   4.36	
   29.1	
   15.4	
   28.7	
   9.8	
  
6540	
   1.47	
   1.24	
   14.4	
   33.4	
   20	
   14.2	
  
6542.1	
   5.88	
   5.15	
   39.5	
   6.4	
   24.8	
   8.2	
  
6543	
   7.11	
   3.91	
   59.4	
   6.5	
   14.2	
   0.1	
  
6544.1	
   6.86	
   4.42	
   54.7	
   6	
   13.9	
   9.6	
  
6546.2	
   6.17	
   3.59	
   51.2	
   7.7	
   21.3	
   5.9	
  
6548.3	
   6.31	
   4.69	
   44.8	
   5.9	
   26.3	
   14.2	
  
6550.6	
   4.64	
   3.96	
   35.7	
   10.2	
   30.2	
   2.9	
  
6552.5	
   5.19	
   2.9	
   42.8	
   4.1	
   30.6	
   6.3	
  
6554.6	
   2.99	
   2	
   25.4	
   40.2	
   13.8	
   0	
  
ISE	
  –	
  5013:	
  Statistical	
  Analysis	
  For	
  System	
  Design	
  
	
  
	
   11	
  
6556.8	
   6.15	
   3.86	
   43.7	
   4.3	
   29.6	
   5.4	
  
6558.8	
   5.81	
   5.02	
   41.8	
   4.9	
   32.9	
   6.8	
  
6560.6	
   5.28	
   3.9	
   37.5	
   5.3	
   28.5	
   20	
  
6561.8	
   1.8	
   0.8	
   12.1	
   67.7	
   8.6	
   0	
  
6563.6	
   4.51	
   3.35	
   20.9	
   30.6	
   24.1	
   8.6	
  
6565.35	
   2.59	
   1.3	
   8.5	
   73.9	
   13.6	
   0	
  
6567	
   5.18	
   3.72	
   41.9	
   2.3	
   30.2	
   10.8	
  
6568	
   6.06	
   3.95	
   38.7	
   5.3	
   23.3	
   22.5	
  
6570.3	
   5.89	
   4.53	
   47	
   3.3	
   30.7	
   8.7	
  
6572	
   5.76	
   4.36	
   44.2	
   2.2	
   26.8	
   19.9	
  
6573.8	
   4.99	
   4.66	
   31.2	
   25.2	
   23.9	
   3.7	
  
6575.65	
   5.72	
   5.18	
   44.1	
   4.7	
   30.8	
   4.2	
  
6578.8	
   5.12	
   5.76	
   37.4	
   6.2	
   26.8	
   12.6	
  
6580.9	
   5.75	
   5.09	
   41.7	
   8.8	
   30.4	
   5	
  
6583.1	
   4.75	
   2.97	
   36.2	
   35.8	
   8.2	
   7.4	
  
6585.3	
   1.41	
   4.91	
   25.5	
   8.2	
   26.7	
   15.9	
  
6587	
   4.48	
   3.89	
   23.6	
   15.3	
   20.3	
   0	
  
6589	
   5.22	
   4.69	
   33.7	
   5.5	
   29.6	
   11.7	
  
6591.4	
   4.4	
   2.64	
   23.2	
   41.2	
   15.5	
   8.8	
  
6593	
   5.34	
   4	
   33	
   9.1	
   27.7	
   4.1	
  
6594.6	
   5.54	
   3.71	
   40.9	
   10	
   22.2	
   14.9	
  
6596.05	
   7.02	
   3.38	
   38	
   7.9	
   16.9	
   0	
  
6598.1	
   6.71	
   4.11	
   51.4	
   6.1	
   28.2	
   9.4	
  
6600	
   5.91	
   5.3	
   50.3	
   6	
   21.2	
   8.7	
  
6601.4	
   6.08	
   4.5	
   59.2	
   12.7	
   17.4	
   0	
  
6604	
   4.1	
   1.79	
   9.3	
   56.7	
   14.2	
   8.9	
  
6606	
   4.74	
   3.79	
   26	
   3.1	
   35.6	
   21.8	
  
6608.7	
   6	
   4.06	
   43.8	
   4	
   26	
   16.9	
  
6611	
   3.4	
   3.66	
   38.6	
   4.7	
   25.3	
   21	
  
6613.2	
   5.1	
   2.82	
   9.7	
   7.3	
   34	
   0	
  
6615.1	
   4.39	
   3.72	
   37	
   7.9	
   26.6	
   15.4	
  
6617	
   4.8	
   4.61	
   35	
   4.5	
   26.7	
   23	
  
6619	
   3.54	
   5.35	
   34.5	
   23.7	
   18.8	
   0	
  
6621	
   3.22	
   4.27	
   34.1	
   2.8	
   27.6	
   8.3	
  
6623.2	
   4.98	
   4	
   26.5	
   5	
   29.2	
   24.9	
  
6627.5	
   4.06	
   6.23	
   30.4	
   4.5	
   22.1	
   24	
  
6629.3	
   4.4	
   4.64	
   34	
   4.8	
   31.6	
   20.1	
  
6631.1	
   3.97	
   5.41	
   33.6	
   6.5	
   26.5	
   23	
  
6633.3	
   3.17	
   1.98	
   19.1	
   62.7	
   7.7	
   0	
  
6635.2	
   4.63	
   4.62	
   35.7	
   5.5	
   23.1	
   25.5	
  
6637.1	
   4.73	
   5.55	
   39.5	
   4.8	
   23.6	
   19.3	
  
6639.8	
   4.23	
   3.43	
   36.1	
   8.6	
   26.8	
   14.9	
  
6641.7	
   8.05	
   3.48	
   26.5	
   4.9	
   22.5	
   30.4	
  
6643.9	
   4.64	
   4.85	
   23.7	
   2.3	
   35.1	
   14.2	
  
6645.9	
   5.04	
   4.94	
   28.5	
   4.1	
   35.4	
   21	
  
6647.8	
   4.47	
   4.99	
   28.2	
   5	
   36.2	
   20.3	
  
6650	
   4.61	
   5.09	
   28.1	
   3.7	
   39.1	
   18.6	
  
6652	
   4.01	
   4.92	
   33.2	
   5.2	
   40	
   8.7	
  
ISE	
  –	
  5013:	
  Statistical	
  Analysis	
  For	
  System	
  Design	
  
	
  
	
   12	
  
6654	
   3.77	
   4.42	
   33.2	
   5.1	
   33.1	
   19.4	
  
6657.7	
   3.38	
   6.76	
   31.1	
   5.4	
   26.2	
   26.5	
  
6660	
   3.01	
   5.86	
   32.6	
   6.9	
   23.7	
   28.6	
  
6662	
   3.58	
   5.49	
   30.8	
   17.5	
   30.8	
   12.1	
  
6665.6	
   3.99	
   6.81	
   46.3	
   8.4	
   26.4	
   10.8	
  
6667.6	
   5.43	
   3.67	
   37.8	
   15.8	
   20.5	
   21.1	
  
6669.1	
   4.38	
   3.9	
   24.5	
   20	
   24.3	
   22.2	
  
6669.7	
   2.05	
   6.77	
   20.1	
   5.1	
   32.9	
   27.5	
  
6671.7	
   4.82	
   5.83	
   40.4	
   5.8	
   29.8	
   15.9	
  
6673.8	
   4.13	
   6.69	
   42.1	
   7.1	
   32	
   9.6	
  
6675.6	
   4.51	
   5.86	
   32.1	
   5.7	
   31.1	
   23.9	
  
6678.7	
   3.96	
   7.48	
   29.7	
   4.5	
   35.9	
   23.3	
  
6680	
   3.42	
   7.21	
   26.7	
   6.3	
   30.6	
   25.8	
  
6682	
   3.77	
   5.71	
   37.9	
   5.4	
   26.4	
   22.5	
  
6684	
   4.48	
   4.72	
   34.8	
   4.5	
   30.5	
   18.9	
  
6686	
   4.81	
   3.72	
   37.8	
   3.8	
   35.5	
   19.3	
  
6688	
   3.26	
   5.01	
   42.3	
   13.2	
   31.2	
   3.5	
  
6690	
   3.41	
   4.18	
   36.3	
   5.6	
   26.8	
   25.3	
  
6691.9	
   4.85	
   4.98	
   43.2	
   7.5	
   20.7	
   19	
  
6693.9	
   3.92	
   5.1	
   28.4	
   3.7	
   35.3	
   21.7	
  
6696	
   3.59	
   5.79	
   28.1	
   7.8	
   34.5	
   13.9	
  
6700	
   1.41	
   0.72	
   5.2	
   81.6	
   2.7	
   3.4	
  
6702.1	
   3.57	
   6.31	
   23.1	
   4.1	
   30	
   24.3	
  
6704.2	
   3.32	
   3.55	
   16.8	
   6.7	
   38.9	
   7.7	
  
6706	
   3.45	
   6.94	
   29.6	
   0	
   31.1	
   9.6	
  
6708	
   5.23	
   3.8	
   20.8	
   1.7	
   43.9	
   18.4	
  
6709.9	
   4.61	
   5.11	
   17.7	
   13	
   34.9	
   12.6	
  
6712.1	
   4.61	
   5.07	
   19.1	
   2.9	
   37.9	
   23.7	
  
6714	
   3.74	
   6.73	
   17.3	
   5.1	
   36.5	
   15.8	
  
6716.3	
   3.75	
   5.39	
   32.6	
   15.5	
   26.8	
   12.1	
  
6719	
   4.75	
   3.59	
   15.2	
   2.1	
   48.6	
   18.9	
  
6722.6	
   3.54	
   2.73	
   10.9	
   55.1	
   18.1	
   9.1	
  
6724.4	
   3.9	
   4.88	
   31.7	
   6	
   30.8	
   20.7	
  
6727	
   4.2	
   5.49	
   12.8	
   5.5	
   38	
   0	
  
6729	
   3.4	
   4.78	
   10.8	
   27.4	
   27.4	
   6.2	
  
6731	
   3.66	
   2.67	
   10.8	
   42.1	
   23.3	
   13.1	
  
6734	
   4.25	
   3.09	
   20	
   13.9	
   40	
   10.1	
  
6736.1	
   3.51	
   4.38	
   18.2	
   12.4	
   37.7	
   6.5	
  
6738.1	
   3.34	
   6.75	
   12.8	
   4.2	
   43.6	
   2.2	
  
6742.1	
   4.08	
   3.94	
   19.5	
   4	
   43.9	
   17.7	
  
6744.1	
   2.54	
   4.86	
   17.6	
   28.8	
   36.7	
   8.3	
  
6745.9	
   1.35	
   1.7	
   6.4	
   72	
   11.6	
   0	
  
6750.2	
   2.99	
   3.95	
   30	
   30.5	
   26.3	
   6.4	
  
6752.6	
   2.81	
   1.75	
   8.7	
   53	
   13.1	
   5.6	
  
6754.5	
   5.41	
   2.83	
   33.4	
   3.9	
   25.7	
   16.3	
  
6756.4	
   6.37	
   4.99	
   43.4	
   6.7	
   28.2	
   7.3	
  
6760.15	
   3.84	
   3.42	
   39.3	
   31.3	
   19.8	
   1.6	
  
6762.3	
   4.65	
   4.56	
   50	
   18.5	
   19.6	
   4.8	
  
ISE	
  –	
  5013:	
  Statistical	
  Analysis	
  For	
  System	
  Design	
  
	
  
	
   13	
  
6765	
   4.39	
   2.78	
   21.6	
   35.9	
   22.4	
   10	
  
6769.1	
   3.46	
   2.91	
   29.3	
   19.2	
   28.9	
   13.5	
  
6771.8	
   3.86	
   1.53	
   43.1	
   8.9	
   28.7	
   9.8	
  
6773.9	
   3.77	
   2.06	
   26.7	
   20.8	
   30.2	
   11.5	
  
6775.1	
   4.6	
   3.52	
   31	
   5.8	
   34.3	
   11.8	
  
6780.6	
   4.16	
   2.47	
   16	
   13.9	
   30.4	
   19	
  
6782.2	
   2.49	
   2.32	
   24.8	
   26.1	
   27	
   12.6	
  
6784.3	
   2.99	
   3.66	
   20.2	
   17	
   29.3	
   12.4	
  
6794	
   6.28	
   0.11	
   0	
   87.2	
   5.4	
   0	
  

Contenu connexe

En vedette

Spe 101930
Spe 101930Spe 101930
Spe 101930
mfathi
 
SPWLA-2015-GGGG
SPWLA-2015-GGGGSPWLA-2015-GGGG
SPWLA-2015-GGGG
Ramy Essam
 
Petrophysical Study of Reservoir Rocks: Use of Image Analysis Software (IAS...
Petrophysical Study of Reservoir Rocks: Use of Image Analysis Software (IAS...Petrophysical Study of Reservoir Rocks: Use of Image Analysis Software (IAS...
Petrophysical Study of Reservoir Rocks: Use of Image Analysis Software (IAS...
Cristian Medina
 

En vedette (15)

Spe 101930
Spe 101930Spe 101930
Spe 101930
 
PetroSync - Special Core Analysis
PetroSync - Special Core AnalysisPetroSync - Special Core Analysis
PetroSync - Special Core Analysis
 
Spwla96 Paper I
Spwla96 Paper ISpwla96 Paper I
Spwla96 Paper I
 
Introduction to some basics
Introduction to some basicsIntroduction to some basics
Introduction to some basics
 
Seismic QC & Filtering with Geostatistics
Seismic QC & Filtering with GeostatisticsSeismic QC & Filtering with Geostatistics
Seismic QC & Filtering with Geostatistics
 
SPWLA-2015-GGGG
SPWLA-2015-GGGGSPWLA-2015-GGGG
SPWLA-2015-GGGG
 
Integrated petrophysical parameters and petrographic analysis characterizing ...
Integrated petrophysical parameters and petrographic analysis characterizing ...Integrated petrophysical parameters and petrographic analysis characterizing ...
Integrated petrophysical parameters and petrographic analysis characterizing ...
 
Overview of Experimental works conducted in this work
Overview of Experimental works conducted in this workOverview of Experimental works conducted in this work
Overview of Experimental works conducted in this work
 
Petrophysics More Important Than Ever
Petrophysics   More Important Than EverPetrophysics   More Important Than Ever
Petrophysics More Important Than Ever
 
Petrophysics and Big Data by Elephant Scale training and consultin
Petrophysics and Big Data by Elephant Scale training and consultinPetrophysics and Big Data by Elephant Scale training and consultin
Petrophysics and Big Data by Elephant Scale training and consultin
 
Special core analysis
Special core analysisSpecial core analysis
Special core analysis
 
Petrophysical Study of Reservoir Rocks: Use of Image Analysis Software (IAS...
Petrophysical Study of Reservoir Rocks: Use of Image Analysis Software (IAS...Petrophysical Study of Reservoir Rocks: Use of Image Analysis Software (IAS...
Petrophysical Study of Reservoir Rocks: Use of Image Analysis Software (IAS...
 
Fmi log presentation
Fmi log presentationFmi log presentation
Fmi log presentation
 
PetroSync - Integration of Petrophysics and Core Analysis
PetroSync - Integration of Petrophysics and Core AnalysisPetroSync - Integration of Petrophysics and Core Analysis
PetroSync - Integration of Petrophysics and Core Analysis
 
كتاب أسـاسـيـات الـجـيـولـوجـيـا د. ميشيل عطا الله
كتاب أسـاسـيـات الـجـيـولـوجـيـا   د. ميشيل عطا الله كتاب أسـاسـيـات الـجـيـولـوجـيـا   د. ميشيل عطا الله
كتاب أسـاسـيـات الـجـيـولـوجـيـا د. ميشيل عطا الله
 

Similaire à Rock Typing

308 two dimensional infrared correlation noda
308 two dimensional infrared correlation   noda308 two dimensional infrared correlation   noda
308 two dimensional infrared correlation noda
Isao Noda
 
Swanetal.JournalofSedimentaryPetrology1978.pdf
Swanetal.JournalofSedimentaryPetrology1978.pdfSwanetal.JournalofSedimentaryPetrology1978.pdf
Swanetal.JournalofSedimentaryPetrology1978.pdf
DrBaliReddy
 
Structural Study of the West Red Lake Area
Structural Study of the West Red Lake AreaStructural Study of the West Red Lake Area
Structural Study of the West Red Lake Area
Vadim Galkine
 
Mva 06 principal_component_analysis_2010_11
Mva 06 principal_component_analysis_2010_11Mva 06 principal_component_analysis_2010_11
Mva 06 principal_component_analysis_2010_11
P Palai
 
Partition Curve - an overview _ ScienceDirect Topics (1).pdf
Partition Curve - an overview _ ScienceDirect Topics (1).pdfPartition Curve - an overview _ ScienceDirect Topics (1).pdf
Partition Curve - an overview _ ScienceDirect Topics (1).pdf
ssuser9d0ede
 

Similaire à Rock Typing (20)

poster-lowe-6
poster-lowe-6poster-lowe-6
poster-lowe-6
 
Statistic report
Statistic reportStatistic report
Statistic report
 
A rich molecular chemistry in the gas of the IC 348 star cluster of the Perse...
A rich molecular chemistry in the gas of the IC 348 star cluster of the Perse...A rich molecular chemistry in the gas of the IC 348 star cluster of the Perse...
A rich molecular chemistry in the gas of the IC 348 star cluster of the Perse...
 
308 two dimensional infrared correlation noda
308 two dimensional infrared correlation   noda308 two dimensional infrared correlation   noda
308 two dimensional infrared correlation noda
 
Effect of Petrophysical Parameters on Water Saturation in Carbonate Formation
Effect of Petrophysical Parameters on Water Saturation in Carbonate FormationEffect of Petrophysical Parameters on Water Saturation in Carbonate Formation
Effect of Petrophysical Parameters on Water Saturation in Carbonate Formation
 
Swanetal.JournalofSedimentaryPetrology1978.pdf
Swanetal.JournalofSedimentaryPetrology1978.pdfSwanetal.JournalofSedimentaryPetrology1978.pdf
Swanetal.JournalofSedimentaryPetrology1978.pdf
 
Perceuptal mapping, Factor analysis, cluster analysis, conjoint analysis
Perceuptal mapping, Factor analysis, cluster analysis, conjoint analysisPerceuptal mapping, Factor analysis, cluster analysis, conjoint analysis
Perceuptal mapping, Factor analysis, cluster analysis, conjoint analysis
 
Geology, Chemostratigraphy, and Alteration Geochemistry of the Rosemont Cu-Mo...
Geology, Chemostratigraphy, and Alteration Geochemistry of the Rosemont Cu-Mo...Geology, Chemostratigraphy, and Alteration Geochemistry of the Rosemont Cu-Mo...
Geology, Chemostratigraphy, and Alteration Geochemistry of the Rosemont Cu-Mo...
 
L7 bonding (2)
L7 bonding (2)L7 bonding (2)
L7 bonding (2)
 
Dilution modelarticle
Dilution modelarticleDilution modelarticle
Dilution modelarticle
 
Unit 1 notes-final
Unit 1 notes-finalUnit 1 notes-final
Unit 1 notes-final
 
Data preparation, depth function
Data preparation, depth functionData preparation, depth function
Data preparation, depth function
 
Ab initio restricted hartree-fock formalism using for calculations electronic...
Ab initio restricted hartree-fock formalism using for calculations electronic...Ab initio restricted hartree-fock formalism using for calculations electronic...
Ab initio restricted hartree-fock formalism using for calculations electronic...
 
Structural Study of the West Red Lake Area
Structural Study of the West Red Lake AreaStructural Study of the West Red Lake Area
Structural Study of the West Red Lake Area
 
Spg nitin
Spg nitinSpg nitin
Spg nitin
 
Dinosaur Extinction Essay
Dinosaur Extinction EssayDinosaur Extinction Essay
Dinosaur Extinction Essay
 
Unsupervised learning
Unsupervised learning Unsupervised learning
Unsupervised learning
 
Ab initio Study for Structural and Electronic Properties of Rock Salt CaS
Ab initio Study for Structural and Electronic Properties of Rock Salt CaSAb initio Study for Structural and Electronic Properties of Rock Salt CaS
Ab initio Study for Structural and Electronic Properties of Rock Salt CaS
 
Mva 06 principal_component_analysis_2010_11
Mva 06 principal_component_analysis_2010_11Mva 06 principal_component_analysis_2010_11
Mva 06 principal_component_analysis_2010_11
 
Partition Curve - an overview _ ScienceDirect Topics (1).pdf
Partition Curve - an overview _ ScienceDirect Topics (1).pdfPartition Curve - an overview _ ScienceDirect Topics (1).pdf
Partition Curve - an overview _ ScienceDirect Topics (1).pdf
 

Rock Typing

  • 1. ISE-5013 Statistical Analysis for System Design Graduate Project Rock Typing based on Petrophysical Properties Submitted by: Karan Bathla OU ID: 113072138
  • 2. ISE  –  5013:  Statistical  Analysis  For  System  Design       1   Abstract Shale is a type of sedimentary rock and is most abundant in earth’s crust. It was formed due to deposition of silt and organic debris on sea bottoms millions of years ago. Due to geothermal effects, it cooked and transformed into oil. It has drastically changed the oil and gas production in United States of America contributing 33 trillion cubic feet of natural gas (source: Energy Information Administration). However since shale is composed of mud, silt, quartz, calcite and other minerals, it is very important to classify the properties that have a greater impact on production for estimation of reservoir. The experiments were performed at the Integrated Core Characterization Center at University of Oklahoma to know the most important petrophysical properties at various depths of the same shale rock. By knowing these properties, we can analyze and identify the properties that have most variation and use them to do clustering to perform rock typing. In this paper, principal component statistical analysis will be performed using XLSTAT on shale composition primarily mineralogy, mainly clays, carbonates and feldspar, porosity and total organic carbon to study the parameters that have maximum variation in them. Further, k-means will be performed using XLSTAT on essential parameters identified by PCA to classify the rock and cluster them. Principal Component Analysis: Saville and Wood in their book Statistical Methods: A Geometric Approach wrote the following definition for Principal Component Analysis: Definition: Given n points in , principal components analysis consists of choosing a dimension and then finding the affine space of dimension k with the property that the squared distance of the points to their orthogonal projection onto the space is minimized. Principal Components are sum of independent linear components and arrange the data set according to variability and helps to understand the internal structure of our data set. They are used to identify the patterns and reduce the dimensions of the dataset (reduce the dispersion) with minimum loss of information. The number of components extracted in PCA equals the number of observed variables. If the data set has n variables then there will be n principal components: • The first component will have the largest variance and will be linear combination of original variables • The subsequent components are unrelated with previous defined components and will consist of linear combination of variables with greatest variance Since, it is a truncated transformation, we will be able to focus on the essential data sets and perform a detail analysis on them. It is an important step for pattern recognition. Eigen Value and Eigen Vector: We can get an estimate of the variance in the data by calculating eigenvalue. The principal component is therefore the eigenvector, which has the highest eigenvalue. The number of eigenvector is equal to the dimensions of the system. Dimension reduction using eigenvalue The Principal Component Analysis is used to reduce the dimensions of the data set. For example, there is 3 dimension data that is represented in the figure below. It is plotted along x-axis, y-axis, and z-axis. Since the data has a common z value and variance in that direction is 0, the value of eigenvalue along
  • 3. ISE  –  5013:  Statistical  Analysis  For  System  Design       2   that direction will be zero as shown in figure 2. Hence, we can represent the data in two dimensions now since there is no information that can be extracted in z-axis. Figure 1: 3 Dimensional data set represented alond x-axis, y-axis and z-axis Figure 2: Calculation of eigenvector for the data set represented in Fig 1 Source: Dallas, George. Access on 11/25/2014, “Principal Component Analysis 4 Dummies: Eigenvectors, Eigenvalues and Dimension Reduction.” Web blog post, access on 11/25/2014. Weblink:https://georgemdallas.wordpress.com/2013/10/30/principal-component-analysis-4-dummies- eigenvectors-eigenvalues-and-dimension-reduction/ Petroleum Engineering Definitions Some Petroleum Engineering terms that have used in this paper have been defined below: Porosity – is the ratio of pore space and bulk volume TOC - Total Organic Content is composed of kerogen (hydrocarbon forming material) and hydrocarbons (found in pore space) Mineralogy: shales can be found in quartz a) clastics (quartz or clay rich) b) carbonates (carbon rich). However shales are composed of both clastics minerals and carbonates and FTIR (Fourier Transform Infrared Spectroscopy) is done to obtain the specific mineralogy. The data used is from 168 core samples of Barnett shale at various depths from the lab Integrated Core Characterization tabulated in the Appendix to perform Principal Component Analysis on the petrophysical properties: Porosity, Total Organic Carbon, Quartz, Carbonates, Illite + Chlorite and mixed clays to identify the most varying properties that can be for rock typing. The data was scaled
  • 4. ISE  –  5013:  Statistical  Analysis  For  System  Design       3   before performing the PCA by subtracting the mean and dividing by standard deviation. Table 1 indicates the various petrophysical properties and their correlation with each other. The matrix contains the statistical parameters such as minimum, maximum, mean of the scaled properties. We try to capture the variation in the eigenvalue of the 6 principal components. We can capture 58% variation if we consider only the first principal component and 87.4% by considering three principal components and 100% if we take all 6 principal components corresponding to 6 petrophysical properties. Table 2 summarizes the variation captured by every principal component and their cumulative variance. Table 1: Various petrophysical properties along with their statistical parameters Table 2: Principal Component Analysis using eigenvalue Eigenvalues: F1 F2 F3 F4 F5 F6 Eigenvalue 3.496 1.161 0.592 0.491 0.219 0.040 Variability (%) 58.269 19.352 9.869 8.187 3.656 0.667 Cumulative % 58.269 77.621 87.490 95.677 99.333 100.000 Figure 3: The independent (blue) and cumulative variance captured by each component (red line) Table 3 gives the correlation between the different parameters and tells us how they are related. The data has been normalized before calculating the co-variance matrix. From the table we can observe that porosity, quartz, TOC and mineralogy are inversely proportional to carbonates. However, they are proportional to each other. Similarly the interrelation between other properties can be observed. 0   20   40   60   80   100   0   0.5   1   1.5   2   2.5   3   3.5   4   F1   F2   F3   F4   F5   F6   Cumulative  variability  (%)   Eigenvalue   axis   Screen  plot   Variable Obs. Minimum Maximum Mean Std deviation Scaled porosity 168 -2.506 2.787 0.000 1.000 Scaled TOC 168 -2.212 2.268 0.000 1.000 Scaled quartz 168 -1.985 2.257 0.000 1.000 Scaled carbonates 168 -0.913 2.796 0.000 1.000 Scaled illite + chlorite 168 -2.591 2.610 0.000 1.000 Scaled mixed clays 168 -1.336 2.264 0.000 1.000
  • 5. ISE  –  5013:  Statistical  Analysis  For  System  Design       4   Table 3: Correlation between 6 different shale composition parameters. Table 4 represents the contribution of each petrophysical property to the 3 principal components that captures almost 85% variability. Therefore it is observed that most significant parameters that contribute maximum to the variability are Total Organic Carbon, Carbonates, and Illite + Chlorite. Also, the porosity has very less contribution in variability of the matrix and remains almost constant. Therefore we identify the 3 petrophysical properties Total Organic Carbon, Carbonates and Illite + Chlorite to perform the k-means clustering in order to perform rock typing. Table 4 : Correlation between various shale composition parameters with principal components. *Values in bold correspond for each variable to the factor for which the squared cosine is the largest k-means The second step would be to do k-means clustering on the orthogonal data set obtained after based on Lloyd’s algorithm. The algorithm is based on minimizing the sum of squares within the clusters to identify the similar clusters required for classification of rocks. Covariance matrix (Covariance (n-1)): Variables Scaled porosity Scaled TOC Scaled quartz Scaled carbonates Scaled illite + chlorite Scaled Mixed Clays Scaled porosity 1 0.309 0.572 -0.551 0.236 0.223 Scaled TOC 0.309 1 0.579 -0.796 0.564 0.507 Scaled quartz 0.572 0.579 1 -0.685 0.153 0.182 Scaled carbonates -0.551 -0.796 -0.685 1 -0.744 -0.615 Scaled illite + chlorite 0.236 0.564 0.153 -0.744 1 0.522 Scaled mixed clays 0.223 0.507 0.182 -0.615 0.522 1 Contribution of the variables (%): F1 F2 F3 Scaled porosity 10.584 26.691 48.632 Scaled TOC 20.539 0.535 27.877 Scaled quartz 13.900 31.838 12.518 Scaled carbonates 27.250 0.027 0.140 Scaled illite + chlorite 14.928 21.498 2.413 Scaled mixed clays 12.799 19.411 8.421 Squared cosines of the variables: F1 F2 F3 Scaled porosity 0.370 0.310 0.288 Scaled TOC 0.718 0.006 0.165 Scaled quartz 0.486 0.370 0.074 Scaled carbonates 0.953 0.000 0.001 Scaled illite + chlorite 0.522 0.250 0.014 Scaled mixed clays 0.447 0.225 0.050
  • 6. ISE  –  5013:  Statistical  Analysis  For  System  Design       5   Algorithm: We define k centroids for k clusters. For clustering, we place k centroids very far from each other and arrange the data on minimum distance from the centroid. After this, we identify k new centroids (close to the mean of the data points assigned to it) and try to group the same data set according to the nearest new centroid which is the mean of the data points assigned to it. We repeat this step until a convergence is obtained and there is no movement of data point from one cluster to another. This algorithm is based on minimizing the following distance: !! = New centroid after every iteration !! = Data point Steps for k-means clustering: 1. Plot all the points in the space. These points represent initial group centroids. 2. Assign the data points with respect to the closest centroid according to equation 1. 3. After arranging all the data points, reassign the centroids based on the mean of data points present in the cluster. 4. Repeat Steps 2 and 3 until the data points converge towards common centroid and centroids don’t change. 5. The result of above process clusters the data in specific groups. Figure 4: Representation of k-means clustering algorithm As we can see that k-means clustering is sensitive to the initial centroids selected, it is sometimes not able to produce the most optimal configuration. Therefore it is an iterative process and is applied multiple times on the data set in order to reduce the error. We can identify any number of data points in any specific number of numbers. PCA points in the direction of maximum variance. Since TOC, Carbonates and Illite +Chlorite have highest variation, they are used for clustering for k-means. XL-STAT was used for performing the k- means and upto 6 classes were used to captured so as to observe the within class variance. 500 iterations were performed to make the results more precise. The summary statistics is given below in the table 5. 1  
  • 7. ISE  –  5013:  Statistical  Analysis  For  System  Design       6   Table 5: Summary statistics for k-means for 3 petrophysical properties. Variable   Observation   Minimum   Maximum   Mean   Std.  deviation   Scaled  TOC   168   -­‐2.212   2.268   0.000   1.000   Scaled   carbonates   168   -­‐0.913   2.796   0.000   1.000   Scaled  illite  +   chlorite   168   -­‐2.591   2.610   0.000   1.000   From the table 6, we can observe that class 1 has maximum within-class variance and we can cluster the data by noting the 3 classes as the change (figure 5) in between-class variance (red line) is almost 0 after 3 classes. Also, there is not a significant change in within–class variance after 3 classes. Therefore we will cluster or differentiate the data into 3 classes. Table 6: Evolution of variance within classes and between classes VarianceClasses   1   2   3   4   5   6   Within-­‐class   3.000   1.124   0.855   0.661   0.584   0.477   Between-­‐classes   0.000   1.876   2.145   2.339   2.416   2.523   Total   3.000   3.000   3.000   3.000   3.000   3.000   Figure 5: The between-class variance (red line) and within-class variance (blue line) plotter versus number of classes. Results: By performing the k-means clustering, we have obtained the following results. Table 8 gives the scaled and the true value of centroid for every petrophysical property in each of the three clusters. Table 9 gives the mean value of every petrophysical property for the 3 clusters. Table 8: Class Centroids and their true values Class   Scaled   TOC   Scaled   carbonates   Scaled   illite  +   chlorite   Within-­‐ class   variance   True   TOC   True   Carbonates   True   Illite+Chlorite   1   -­‐0.19   -­‐0.369   0.382   0.904   3.43637   12.7953   28.9343   2   -­‐1.411   1.717   -­‐1.38   0.9   1.42739   61.83870   278.597   3   0.978   -­‐0.57   0.37   0.779   5.35814   8.0697   28.8283   0   0.5   1   1.5   2   2.5   3   3.5   1   2   3   4   5   6   Within-­‐class  variance   Number  of  classes  
  • 8. ISE  –  5013:  Statistical  Analysis  For  System  Design       7   Table 9:Class central value and their true values Class   Scaled  TOC   Scaled   carbonates   Scaled  illite   +  chlorite   True  TOC   True   Carbonates   True   Illite+Chlorite   1   (6444.5)   -­‐0.151   -­‐0.394   0.593   3.50053974   12.20761685   30.79640611   2   (6474.5)   -­‐1.403   1.941   -­‐1.231   1.44055736   67.10510541   14.69934199   3   (6756.4)   0.754   -­‐0.628   0.299   4.98958450   6.706112641   28.20181353   Table 10 gives the final clustering of the cores on the basis of these petrophysical properties. Table 10: Final clustering of the wells done by k-means using PCA on TOC, Illite  +  Chlorite,  and   Carbonates Class   1   2   3   Objects   67   36   65   Within-­‐class  variance   0.904   0.900   0.779   Minimum  distance  to  centroid   0.216   0.269   0.242   Average  distance  to  centroid   0.835   0.851   0.786   Maximum  distance  to  centroid   2.276   1.620   1.882       6432.5   6438.5   6450.5     6434.5   6456.5   6454.5     6436.5   6458.5   6519.4     6440.6   6463.2   6522.3     6442.5   6464.5   6524.2     6444.5   6466.5   6527.7     6446.5   6468.5   6531.7     6448.4   6470.5   6534     6452.5   6472.7   6535.8     6460.5   6474.5   6542.1     6491   6476.5   6544.1     6493   6478.2   6548.3     6495.2   6480.2   6558.8     6496.8   6482.2   6570.3     6503.6   6484.2   6572     6505.6   6487   6573.8     6507.4   6489   6575.65     6515   6498.6   6578.8     6517.3   6501.2   6580.9     6526.1   6509.5   6585.3     6529.2   6511.2   6589     6538   6513.6   6600     6543   6520.8   6601.4     6546.2   6540   6617     6550.6   6554.6   6619     6552.5   6561.8   6627.5     6556.8   6565.35   6629.3  
  • 9. ISE  –  5013:  Statistical  Analysis  For  System  Design       8     6560.6   6583.1   6631.1     6563.6   6591.4   6635.2     6567   6604   6637.1     6568   6633.3   6643.9     6587   6700   6645.9     6593   6722.6   6647.8     6594.6   6745.9   6650     6596.05   6752.6   6652     6598.1   6794   6654     6606     6657.7     6608.7     6660     6611     6662     6613.2     6665.6     6615.1     6669.7     6621     6671.7     6623.2     6673.8     6639.8     6675.6     6641.7     6678.7     6667.6     6680     6669.1     6682     6686     6684     6690     6688     6704.2     6691.9     6708     6693.9     6719     6696     6731     6702.1     6734     6706     6736.1     6709.9     6742.1     6712.1     6750.2     6714     6754.5     6716.3     6760.15     6724.4     6765     6727     6769.1     6729     6771.8     6738.1     6773.9     6744.1     6775.1     6756.4     6780.6     6762.3     6782.2           6784.3           Conclusions: PCA can be used to identify the most varying components and helps in reducing the dimensions of data set for appropriate analysis of k-means. We were successfully able to classify the rocks by using PCA and k-means. We can conclude from the PCA that TOC, Carbonates and Illite+Chlorite are the principal components that capture maximum variability. k-means can cluster the data in any number of classes, however the variance within-class reduces as we increase the number of clusters. The data has been
  • 10. ISE  –  5013:  Statistical  Analysis  For  System  Design       9   clustered into 3 groups to obtain the maximum variation. Most of the rocks (67) belong to class 1 and have mean TOC= 3.5, mean carbonates=12.2 and mean illite +chlorite= 30.7 and least number of rocks (36) belong to cluster 2 and have mean TOC = 1.44, mean carbonates=67.105 and mean illite +chlorite= 14.699. Class 1 has maximum within-class variance and Class 3 has least within-class variance. Acknowledgement The support was this work was provided by Professor Charles Nicholson, University of Oklahoma. Appreciation is extended to Integrated Core Characterization Center, Department of Petroleum Engineering, The University of Oklahoma for providing parameter information about the petrophysical properties for various cores. References Hotelling, H. 1933. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24, 417-441, and 498-520. Mendelhall, W. & Sincich, T. 2007. Statictics for Engineering and the Sciences, fifth edition. Published by Pearson Prentice Hall Inc., New Jersey. ISBN 0-13-187706-2. R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed. Prentice Hall, 2007. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model. In: CHES. Volume 3156 of LNCS., Springer (2004) 16–29 Cambridge, MA, USA. Batina, L., Gierlichs, B., Lemke-Rust, K.: Differential Cluster Analysis. In Clavier, C., Gaj, K.,eds.: Cryptographic Hardware and Embedded Systems – CHES 2009. Volume 5747 of Lecture Notes in Computer Science., Lausanne, Switzerland, Springer-Verlag (2009) 112–127 Kumar, V., C.H. Sondergeld, and C.S. Rai. 2012. Nano to macro mechanical characterization of shale. SPE 159804 Presented in SPE Annual Technical Conference and Exhibition, San Antonio, Texas, 8-10 October 2012.DOI 10.2118/159804-MS Appendix The sample data for which rock typing was performed. Depth   Corrected   porosity   TOC   Quartz   Carbonates   Illite  +  Chlorite     6432.5   6.67   4.15   38.6   4.7   29.1   14.7   6434.5   6.07   4.25   48.6   14.1   25.4   3.9   6436.5   4.91   3.4   41   8.4   27.7   12.4   6438.5   6   0.39   4.6   75.5   6.9   0   6440.6   5.63   3.9   37   4.9   30.2   8.9   6442.5   5.85   3.95   40.6   6.5   26.5   7.7   6444.5   0.88   3.5   29.3   12.2   30.8   14.9   6446.5   6.14   4.12   43.1   16.4   23.8   4.4   6448.4   5.27   3.61   33.7   27.8   27.6   1   6450.5   6.02   5.92   54.8   3.3   18.6   9.8   6452.5   4.46   3.15   50   13.3   21.9   0   6454.5   5.27   4.68   42.1   18.2   16   11.4   6456.5   4.42   2.49   27.3   42.7   17.9   1.5   6458.5   5.55   1.7   35.6   32.5   13.6   6.4   6460.5   5.09   3.49   40.9   6.7   27.4   12.9  
  • 11. ISE  –  5013:  Statistical  Analysis  For  System  Design       10   6463.2   2.52   2.5   20.4   48.8   21.2   0   6464.5   2.7   1.51   3.7   68.9   14.4   2.1   6466.5   2.77   1.7   11.1   54.7   21.5   0   6468.5   2.09   0.83   6.8   73.6   11.5   0   6470.5   1.96   1.14   10.6   62.3   19.6   0   6472.7   2.13   1.29   10.3   63.5   19   0   6474.5   2.74   1.44   8.4   67.1   14.7   0   6476.5   2.03   0.49   1.8   75.3   11.3   0   6478.2   2.16   0.64   0   87.2   7.8   0   6480.2   2.65   0.8   4.3   79.9   10.7   0   6482.2   2.34   0.92   6.4   73.5   9.5   2.3   6484.2   1.79   0.53   0   76.2   16.4   0   6487   2.61   1.09   12.7   67.5   12.2   0   6489   4.46   1.12   11.3   58.5   15.6   3.1   6491   6.38   2.84   3.9   7.1   42.4   26.1   6493   3.39   2.23   18.1   27.5   31.3   13.2   6495.2   6.39   2.87   5   7.4   44.1   25.4   6496.8   5.38   2.17   4.4   21   39   19.3   6498.6   3.34   1.67   14.4   47.1   19.5   7.9   6501.2   2.73   1.07   2.3   65.4   13.9   0   6503.6   5.22   2.34   10.4   25.6   28.1   20.2   6505.6   4.83   2.44   9.8   20.3   32.5   21.3   6507.4   3.66   2.69   7.2   21.1   34.7   19.7   6509.5   1.82   1.11   6.3   76.2   12.1   0   6511.2   1.49   0.97   6.7   75.7   10.2   0   6513.6   3.19   1.67   14.2   56.2   16.8   4.9   6515   4.13   3.46   30.3   10.2   30.8   17.7   6517.3   3.82   3.23   20   33.6   23.2   0   6519.4   4.59   4.72   36.7   15.3   21.3   17.5   6520.8   3.72   2.57   29.4   37.5   13.1   3.2   6522.3   5.57   4.78   30.6   5.4   32.8   17.7   6524.2   5.3   5.58   43.8   9.7   23   15.6   6526.1   4.14   3.2   39.4   19.7   19.3   12.2   6527.7   5.11   6.01   34.8   6.3   26.4   20.8   6529.2   3.86   3.46   37.8   18.4   26.8   2.4   6531.7   4.8   4.68   38.7   8.6   28.9   15.7   6534   4.38   5.2   29   7.2   24.2   27.1   6535.8   4.46   4.87   25.3   11.9   29.9   15.5   6538   4.14   4.36   29.1   15.4   28.7   9.8   6540   1.47   1.24   14.4   33.4   20   14.2   6542.1   5.88   5.15   39.5   6.4   24.8   8.2   6543   7.11   3.91   59.4   6.5   14.2   0.1   6544.1   6.86   4.42   54.7   6   13.9   9.6   6546.2   6.17   3.59   51.2   7.7   21.3   5.9   6548.3   6.31   4.69   44.8   5.9   26.3   14.2   6550.6   4.64   3.96   35.7   10.2   30.2   2.9   6552.5   5.19   2.9   42.8   4.1   30.6   6.3   6554.6   2.99   2   25.4   40.2   13.8   0  
  • 12. ISE  –  5013:  Statistical  Analysis  For  System  Design       11   6556.8   6.15   3.86   43.7   4.3   29.6   5.4   6558.8   5.81   5.02   41.8   4.9   32.9   6.8   6560.6   5.28   3.9   37.5   5.3   28.5   20   6561.8   1.8   0.8   12.1   67.7   8.6   0   6563.6   4.51   3.35   20.9   30.6   24.1   8.6   6565.35   2.59   1.3   8.5   73.9   13.6   0   6567   5.18   3.72   41.9   2.3   30.2   10.8   6568   6.06   3.95   38.7   5.3   23.3   22.5   6570.3   5.89   4.53   47   3.3   30.7   8.7   6572   5.76   4.36   44.2   2.2   26.8   19.9   6573.8   4.99   4.66   31.2   25.2   23.9   3.7   6575.65   5.72   5.18   44.1   4.7   30.8   4.2   6578.8   5.12   5.76   37.4   6.2   26.8   12.6   6580.9   5.75   5.09   41.7   8.8   30.4   5   6583.1   4.75   2.97   36.2   35.8   8.2   7.4   6585.3   1.41   4.91   25.5   8.2   26.7   15.9   6587   4.48   3.89   23.6   15.3   20.3   0   6589   5.22   4.69   33.7   5.5   29.6   11.7   6591.4   4.4   2.64   23.2   41.2   15.5   8.8   6593   5.34   4   33   9.1   27.7   4.1   6594.6   5.54   3.71   40.9   10   22.2   14.9   6596.05   7.02   3.38   38   7.9   16.9   0   6598.1   6.71   4.11   51.4   6.1   28.2   9.4   6600   5.91   5.3   50.3   6   21.2   8.7   6601.4   6.08   4.5   59.2   12.7   17.4   0   6604   4.1   1.79   9.3   56.7   14.2   8.9   6606   4.74   3.79   26   3.1   35.6   21.8   6608.7   6   4.06   43.8   4   26   16.9   6611   3.4   3.66   38.6   4.7   25.3   21   6613.2   5.1   2.82   9.7   7.3   34   0   6615.1   4.39   3.72   37   7.9   26.6   15.4   6617   4.8   4.61   35   4.5   26.7   23   6619   3.54   5.35   34.5   23.7   18.8   0   6621   3.22   4.27   34.1   2.8   27.6   8.3   6623.2   4.98   4   26.5   5   29.2   24.9   6627.5   4.06   6.23   30.4   4.5   22.1   24   6629.3   4.4   4.64   34   4.8   31.6   20.1   6631.1   3.97   5.41   33.6   6.5   26.5   23   6633.3   3.17   1.98   19.1   62.7   7.7   0   6635.2   4.63   4.62   35.7   5.5   23.1   25.5   6637.1   4.73   5.55   39.5   4.8   23.6   19.3   6639.8   4.23   3.43   36.1   8.6   26.8   14.9   6641.7   8.05   3.48   26.5   4.9   22.5   30.4   6643.9   4.64   4.85   23.7   2.3   35.1   14.2   6645.9   5.04   4.94   28.5   4.1   35.4   21   6647.8   4.47   4.99   28.2   5   36.2   20.3   6650   4.61   5.09   28.1   3.7   39.1   18.6   6652   4.01   4.92   33.2   5.2   40   8.7  
  • 13. ISE  –  5013:  Statistical  Analysis  For  System  Design       12   6654   3.77   4.42   33.2   5.1   33.1   19.4   6657.7   3.38   6.76   31.1   5.4   26.2   26.5   6660   3.01   5.86   32.6   6.9   23.7   28.6   6662   3.58   5.49   30.8   17.5   30.8   12.1   6665.6   3.99   6.81   46.3   8.4   26.4   10.8   6667.6   5.43   3.67   37.8   15.8   20.5   21.1   6669.1   4.38   3.9   24.5   20   24.3   22.2   6669.7   2.05   6.77   20.1   5.1   32.9   27.5   6671.7   4.82   5.83   40.4   5.8   29.8   15.9   6673.8   4.13   6.69   42.1   7.1   32   9.6   6675.6   4.51   5.86   32.1   5.7   31.1   23.9   6678.7   3.96   7.48   29.7   4.5   35.9   23.3   6680   3.42   7.21   26.7   6.3   30.6   25.8   6682   3.77   5.71   37.9   5.4   26.4   22.5   6684   4.48   4.72   34.8   4.5   30.5   18.9   6686   4.81   3.72   37.8   3.8   35.5   19.3   6688   3.26   5.01   42.3   13.2   31.2   3.5   6690   3.41   4.18   36.3   5.6   26.8   25.3   6691.9   4.85   4.98   43.2   7.5   20.7   19   6693.9   3.92   5.1   28.4   3.7   35.3   21.7   6696   3.59   5.79   28.1   7.8   34.5   13.9   6700   1.41   0.72   5.2   81.6   2.7   3.4   6702.1   3.57   6.31   23.1   4.1   30   24.3   6704.2   3.32   3.55   16.8   6.7   38.9   7.7   6706   3.45   6.94   29.6   0   31.1   9.6   6708   5.23   3.8   20.8   1.7   43.9   18.4   6709.9   4.61   5.11   17.7   13   34.9   12.6   6712.1   4.61   5.07   19.1   2.9   37.9   23.7   6714   3.74   6.73   17.3   5.1   36.5   15.8   6716.3   3.75   5.39   32.6   15.5   26.8   12.1   6719   4.75   3.59   15.2   2.1   48.6   18.9   6722.6   3.54   2.73   10.9   55.1   18.1   9.1   6724.4   3.9   4.88   31.7   6   30.8   20.7   6727   4.2   5.49   12.8   5.5   38   0   6729   3.4   4.78   10.8   27.4   27.4   6.2   6731   3.66   2.67   10.8   42.1   23.3   13.1   6734   4.25   3.09   20   13.9   40   10.1   6736.1   3.51   4.38   18.2   12.4   37.7   6.5   6738.1   3.34   6.75   12.8   4.2   43.6   2.2   6742.1   4.08   3.94   19.5   4   43.9   17.7   6744.1   2.54   4.86   17.6   28.8   36.7   8.3   6745.9   1.35   1.7   6.4   72   11.6   0   6750.2   2.99   3.95   30   30.5   26.3   6.4   6752.6   2.81   1.75   8.7   53   13.1   5.6   6754.5   5.41   2.83   33.4   3.9   25.7   16.3   6756.4   6.37   4.99   43.4   6.7   28.2   7.3   6760.15   3.84   3.42   39.3   31.3   19.8   1.6   6762.3   4.65   4.56   50   18.5   19.6   4.8  
  • 14. ISE  –  5013:  Statistical  Analysis  For  System  Design       13   6765   4.39   2.78   21.6   35.9   22.4   10   6769.1   3.46   2.91   29.3   19.2   28.9   13.5   6771.8   3.86   1.53   43.1   8.9   28.7   9.8   6773.9   3.77   2.06   26.7   20.8   30.2   11.5   6775.1   4.6   3.52   31   5.8   34.3   11.8   6780.6   4.16   2.47   16   13.9   30.4   19   6782.2   2.49   2.32   24.8   26.1   27   12.6   6784.3   2.99   3.66   20.2   17   29.3   12.4   6794   6.28   0.11   0   87.2   5.4   0