Nous avons mis à jour notre politique de confidentialité. Cliquez ici pour consulter les détails. Cliquez ici pour consulter les détails.
Activez votre essai gratuit de 30 jours pour accéder à une lecture illimitée
Activez votre essai gratuit de 30 jours pour continuer votre lecture.
Télécharger pour lire hors ligne
Molecular dynamics simulation is a powerful biophysical tool to gain theoretical insights into protein action. In mechanobiology, conformational change of bacterial mechanosensitive ion channels has been studied extensively. Here we studied transient receptor potential cation channel subfamily V member 2 (TRPV2), a mammalian mechanosensitive ion channel, using coarse grained molecular dynamics simulation. Coarse grained geometry of TRPV2 was generated based on a full atomic cryo-electron microscopy structure (PDB ID: 5HI9). The TRPV2 protein was embedded in a membrane composed of POPC/POPS phospholipid bilayer and solvated. The structure of TRPV2 homotetramer was stable during 1 μs simulation period. While a bacterial mechanosensitive channel MscS showed significant increase in pore radius in response to membrane tension, TRPV2 did not, as suggested by previous experimental studies. Transmembrane helix tilt, which was observed in mechanosensitive opening of MscS, was not observed in TRPV2 in membrane tension. This result suggests that mechanosensitive alteration of TRPV2 structure requires external force other than the membrane tension.
Molecular dynamics simulation is a powerful biophysical tool to gain theoretical insights into protein action. In mechanobiology, conformational change of bacterial mechanosensitive ion channels has been studied extensively. Here we studied transient receptor potential cation channel subfamily V member 2 (TRPV2), a mammalian mechanosensitive ion channel, using coarse grained molecular dynamics simulation. Coarse grained geometry of TRPV2 was generated based on a full atomic cryo-electron microscopy structure (PDB ID: 5HI9). The TRPV2 protein was embedded in a membrane composed of POPC/POPS phospholipid bilayer and solvated. The structure of TRPV2 homotetramer was stable during 1 μs simulation period. While a bacterial mechanosensitive channel MscS showed significant increase in pore radius in response to membrane tension, TRPV2 did not, as suggested by previous experimental studies. Transmembrane helix tilt, which was observed in mechanosensitive opening of MscS, was not observed in TRPV2 in membrane tension. This result suggests that mechanosensitive alteration of TRPV2 structure requires external force other than the membrane tension.
Il semblerait que vous ayez déjà ajouté cette diapositive à .
Vous avez clippé votre première diapositive !
En clippant ainsi les diapos qui vous intéressent, vous pourrez les revoir plus tard. Personnalisez le nom d’un clipboard pour mettre de côté vos diapositives.La famille SlideShare vient de s'agrandir. Profitez de l'accès à des millions de livres numériques, livres audio, magazines et bien plus encore sur Scribd.
Annulez à tout moment.Lecture illimitée
Apprenez plus vite et de façon plus astucieuse avec les meilleurs spécialistes
Téléchargements illimités
Téléchargez et portez vos connaissances avec vous hors ligne et en déplacement
Vous bénéficiez également d'un accés gratuit à Scribd!
Accès instantané à des millions de livres numériques, de livres audio, de magazines, de podcasts, et bien plus encore.
Lisez et écoutez hors ligne depuis n'importe quel appareil.
Accès gratuit à des services premium tels que TuneIn, Mubi, et bien plus encore.
Nous avons mis à jour notre politique de confidentialité pour nous conformer à l'évolution des réglementations mondiales en matière de confidentialité et pour vous informer de la manière dont nous utilisons vos données de façon limitée.
Vous pouvez consulter les détails ci-dessous. En cliquant sur Accepter, vous acceptez la politique de confidentialité mise à jour.
Merci!