SlideShare une entreprise Scribd logo
1  sur  17
Cantidad de movimiento!! Integrantes: Saúl Alejandro González molina Kevin Christopher  olivera alemán
cantidad de movimiento!! En Mecánica Clásica la forma más usual de introducir la cantidad de movimiento es mediante su definición como el producto de la masa de un cuerpo material por su velocidad, para luego analizar su  relación con la ley de Newton a través del teorema del impulso y la variación de la cantidad de movimiento. No obstante, luego del desarrollo de la Física Moderna, esta manera de hacerlo no resultó la más conveniente para abordar esta magnitud fundamental.
El defecto principal es que esta forma esconde el concepto inherente a la magnitud, que resulta ser una propiedad de cualquier ente físico con o sin masa, necesaria para describir las interacciones. Los modelos actuales consideran que no sólo los cuerpos masivos poseen cantidad de movimiento, también resulta ser un atributo de los campos y los fotones. Para abordar el tema con un enfoque más moderno primero se deben analizar las interacciones en sus diferentes manifestaciones de acuerdo a los modelos clásicos convencionales:
La primera, que resulta clásica en mecánica racional, es considerar el choque entre cuerpos materiales, aceptando implícitamente que entre ellos no hay fuerzas atractivas o repulsivas, siendo fortuito el encuentro. Aquí aparece la cuestión sobre choque elástico perfecto y choque plástico con pérdida de energía.
El siguiente tipo, campo-partícula sin pérdida de energía (choque elástico), resulta de considerar que cada partícula posee un campo asociado capaz de interactuar con la otra, modificando sus trayectorias, velocidades y energías. Un ejemplo típico es el estudio de fuerzas centrales en mecánica analítica. En este modelo se considera que los campos actúan instantáneamente, es decir a velocidad infinita, perdiendo su significado como ente físico real, para ser un formalismo auxiliar que simplifica su análisis. En esta categoría están la Ley de Coulomb y la Ley de gravitación universal de Newton.
El caso de interacción campo-partícula con pérdida de energía resulta más complejo pues aparece un tercer participante, un fotón con la energía disipada. Un ejemplo importante e ilustrativo que permite explicar el espectro continuo de emisión de rayos x, es el estudio de la radiación de frenado que ocurre con electrones rápidos obligados a cambiar bruscamente de dirección por acción del campo eléctrico de un  núcleo atómico, con pérdida de energía por emisión de radiación (fotón de radiación x).
La interacción radiación-materia es el caso más ilustrativo de la limitación de la definición usual de la cantidad de movimiento (p=mv). El efecto Compton, que ocurre entre fotones de rayos x o rayos gamma con electrones cuasi libres, es explicado convenientemente si el fotón posee una cantidad de movimiento cuyo módulo está dado por:                 p=, siendo h la constante de Planck y v la frecuencia.
Los cuatro casos descriptos tienen en común la transferencia de energía durante la interacción y/o cambios de dirección del movimiento. A los efectos de poder predecir las consecuencias de una interacción de acuerdo a lo mostrado por la experiencia, es necesario hacer extensivo el concepto de cantidad de movimiento a todos los entes físicos capaces de transferir energía, siendo una magnitud vectorial con dirección y sentido de la velocidad de la partícula y cuyo comportamiento responde a leyes de conservación.  Esta magnitud, que nos permitirá calcular el estado final de los participantes luego de una interacción, resulta ser:  Para partículas masivas p=mv Para fotones en el vacío p=c
 cantidad de movimiento en      Mecánica newtoniana  Históricamente el concepto de cantidad de movimiento surgió en el contexto de la mecánica newtoniana en estrecha relación con el concepto de velocidad y el de masa. En mecánica newtoniana se define la cantidad de movimiento lineal como el producto de la masa por la velocidad: P=MV La idea intuitiva tras esta definición está en que la "cantidad de movimiento" dependía tanto de la masa como de la velocidad: si se imagina una mosca y un camión, ambos moviéndose a 40 km/h, la experiencia cotidiana dice que la mosca es fácil de detener con la mano mientras que el camión no, aunque los dos vayan a la misma velocidad. Esta intuición llevó a definir una magnitud que fuera proporcional tanto a la masa del objeto móvil como a su velocidad.
CANTIDAD DE MOVIMIENTO EN UN     MEDIO CONTINUO Cantidad de movimiento de un medio continuo Si estamos interesados en averiguar la cantidad de movimiento de, por ejemplo, un fluido que se mueve según un campo de velocidades es necesario sumar la cantidad de movimiento de cada partícula del fluido, es decir, de cada diferencial de masa o elemento infinitesimal:
Cantidad de movimiento en   mecánica relativista La constancia de la velocidad de la luz en todos los sistemas inerciales tiene como consecuencia que la fuerza aplicada y la aceleración adquirida por un cuerpo material no sean coliniales en general, por lo cual la ley de Newton expresada como F=ma no es la más adecuada. La ley fundamental de la mecánica relativista aceptada es F=dp/dt. El Principio de Relatividad establece que las leyes de la Física conserven su forma en los sistemas inerciales (los fenómenos siguen las mismas leyes). Aplicando este Principio en la ley F=dp/dt se obtiene el concepto de masa relativista, variable con la velocidad del cuerpo, si se mantiene la definición clásica (newtoniana) de la cantidad de movimiento.
En el enfoque geométrico de la mecánica relativista, puesto que el intervalo de tiempo efectivo percibido por una partícula que se mueve con respecto a un observador difiere del tiempo medido por el observador. Eso hace que la derivada temporal del momento lineal respecto a la coordenada temporal del observador inercial y la fuerza medida por él no coincidan. Para que la fuerza sea la derivada temporal del momento es necesario emplear la derivada temporal respecto al tiempo propio de la partícula. Eso conduce a redefinir la cantidad de movimiento en términos de la masa y la velocidad medida por el observador con la corrección asociada a la dilatación de tiempo experimentada por la partícula. Así, la expresión relativista de la cantidad de movimiento de una partícula medida por un observador inercial viene dada por:
donde v2,c2 son respectivamente el módulo al cuadrado de la velocidad de la partícula y la velocidad de la luz al cuadrado y γ es el factor de Lorentz. Además, en mecánica relativista, cuando se consideran diferentes observadores en diversos estados de movimiento surge el problema de relacionar los valores de las medidas realizadas por ambos. Eso sólo es posible si en lugar de considerar vectores tridimensionales se consideran cuadrivectores que incluyan coordenadas espaciales y temporales. Así, el momento lineal definido anteriormente junto con la energía constituye el cuadrivector momento-energía o cuadrimomentoP:
Gracias por su atención espero  que les haya agradado

Contenu connexe

Tendances

Fis2 soluciones tema 3
Fis2 soluciones tema 3Fis2 soluciones tema 3
Fis2 soluciones tema 3cometacb
 
Deducción ecuación movimiento armónico simple (MAS)
Deducción ecuación movimiento armónico simple (MAS)Deducción ecuación movimiento armónico simple (MAS)
Deducción ecuación movimiento armónico simple (MAS)Martín de la Rosa Díaz
 
Propiedades de los fluidos(densidad)
Propiedades de los fluidos(densidad)Propiedades de los fluidos(densidad)
Propiedades de los fluidos(densidad)sandra_rozoq
 
Ejercicios sobre Transformada de Laplace
Ejercicios sobre Transformada de LaplaceEjercicios sobre Transformada de Laplace
Ejercicios sobre Transformada de LaplaceJeickson Sulbaran
 
44500124 guia-ejercicios-resueltos-hidrodinamica-caudal-y-bernoulli
44500124 guia-ejercicios-resueltos-hidrodinamica-caudal-y-bernoulli44500124 guia-ejercicios-resueltos-hidrodinamica-caudal-y-bernoulli
44500124 guia-ejercicios-resueltos-hidrodinamica-caudal-y-bernoulliRafaelMendoza121
 
CANTIDAD DE MOVIMIENTO LINEAL
CANTIDAD DE MOVIMIENTO LINEALCANTIDAD DE MOVIMIENTO LINEAL
CANTIDAD DE MOVIMIENTO LINEALAxel Mac
 
Masa, Energía, Trabajo, Potencia Y
Masa, Energía, Trabajo, Potencia YMasa, Energía, Trabajo, Potencia Y
Masa, Energía, Trabajo, Potencia Ylucilleoliver
 
íNdices de weiss y miller
íNdices de weiss y milleríNdices de weiss y miller
íNdices de weiss y millerpollojuan
 
Cantidad de movimiento
Cantidad de movimientoCantidad de movimiento
Cantidad de movimientoYuri Milachay
 
Ecuación de continuidad y de Bernoulli
Ecuación de continuidad y de BernoulliEcuación de continuidad y de Bernoulli
Ecuación de continuidad y de BernoulliYuri Milachay
 
Mecanica Fluidos
Mecanica FluidosMecanica Fluidos
Mecanica Fluidosleo1721
 
Movimiento uniformemente acelerado (1) laboratorio física 1
Movimiento uniformemente acelerado (1) laboratorio física 1Movimiento uniformemente acelerado (1) laboratorio física 1
Movimiento uniformemente acelerado (1) laboratorio física 1edge1992
 
Estatica de fluidos fic 2013 i
Estatica de fluidos  fic 2013 iEstatica de fluidos  fic 2013 i
Estatica de fluidos fic 2013 iJoe Arroyo Suárez
 

Tendances (20)

Fis2 soluciones tema 3
Fis2 soluciones tema 3Fis2 soluciones tema 3
Fis2 soluciones tema 3
 
Movimiento armónico simple y pendulo simple
Movimiento armónico simple y pendulo simpleMovimiento armónico simple y pendulo simple
Movimiento armónico simple y pendulo simple
 
Viscosidad
ViscosidadViscosidad
Viscosidad
 
Deducción ecuación movimiento armónico simple (MAS)
Deducción ecuación movimiento armónico simple (MAS)Deducción ecuación movimiento armónico simple (MAS)
Deducción ecuación movimiento armónico simple (MAS)
 
Laboratorio resortes analisis
Laboratorio resortes analisisLaboratorio resortes analisis
Laboratorio resortes analisis
 
Propiedades de los fluidos(densidad)
Propiedades de los fluidos(densidad)Propiedades de los fluidos(densidad)
Propiedades de los fluidos(densidad)
 
Ejercicios sobre Transformada de Laplace
Ejercicios sobre Transformada de LaplaceEjercicios sobre Transformada de Laplace
Ejercicios sobre Transformada de Laplace
 
FLUIDOS.pdf
FLUIDOS.pdfFLUIDOS.pdf
FLUIDOS.pdf
 
Fluidos
FluidosFluidos
Fluidos
 
44500124 guia-ejercicios-resueltos-hidrodinamica-caudal-y-bernoulli
44500124 guia-ejercicios-resueltos-hidrodinamica-caudal-y-bernoulli44500124 guia-ejercicios-resueltos-hidrodinamica-caudal-y-bernoulli
44500124 guia-ejercicios-resueltos-hidrodinamica-caudal-y-bernoulli
 
CANTIDAD DE MOVIMIENTO LINEAL
CANTIDAD DE MOVIMIENTO LINEALCANTIDAD DE MOVIMIENTO LINEAL
CANTIDAD DE MOVIMIENTO LINEAL
 
Masa, Energía, Trabajo, Potencia Y
Masa, Energía, Trabajo, Potencia YMasa, Energía, Trabajo, Potencia Y
Masa, Energía, Trabajo, Potencia Y
 
Monografia de mate 3 imprimir 2
Monografia de mate 3 imprimir 2Monografia de mate 3 imprimir 2
Monografia de mate 3 imprimir 2
 
íNdices de weiss y miller
íNdices de weiss y milleríNdices de weiss y miller
íNdices de weiss y miller
 
Cantidad de movimiento
Cantidad de movimientoCantidad de movimiento
Cantidad de movimiento
 
Movimiento oscilatorio
Movimiento oscilatorioMovimiento oscilatorio
Movimiento oscilatorio
 
Ecuación de continuidad y de Bernoulli
Ecuación de continuidad y de BernoulliEcuación de continuidad y de Bernoulli
Ecuación de continuidad y de Bernoulli
 
Mecanica Fluidos
Mecanica FluidosMecanica Fluidos
Mecanica Fluidos
 
Movimiento uniformemente acelerado (1) laboratorio física 1
Movimiento uniformemente acelerado (1) laboratorio física 1Movimiento uniformemente acelerado (1) laboratorio física 1
Movimiento uniformemente acelerado (1) laboratorio física 1
 
Estatica de fluidos fic 2013 i
Estatica de fluidos  fic 2013 iEstatica de fluidos  fic 2013 i
Estatica de fluidos fic 2013 i
 

En vedette

Cantidad de movimiento (p)
Cantidad de movimiento (p)Cantidad de movimiento (p)
Cantidad de movimiento (p)Netali
 
MOMENTO LINEAL: Fisica Conceptual-ESPOL
MOMENTO LINEAL: Fisica Conceptual-ESPOLMOMENTO LINEAL: Fisica Conceptual-ESPOL
MOMENTO LINEAL: Fisica Conceptual-ESPOLESPOL
 
Momento lineal e Impulso
Momento lineal e ImpulsoMomento lineal e Impulso
Momento lineal e Impulsoicano7
 
Conservación de la cantidad de movimiento
Conservación de la cantidad de movimientoConservación de la cantidad de movimiento
Conservación de la cantidad de movimientoYuri Milachay
 
Fuerza, trabajo, potencia y energia m.
Fuerza, trabajo, potencia y energia m.Fuerza, trabajo, potencia y energia m.
Fuerza, trabajo, potencia y energia m.Michel Lizarazo
 
Balance de movimiento lineal
Balance de movimiento linealBalance de movimiento lineal
Balance de movimiento linealJESTRIDD
 
Ley de conservación del momentum lineal
Ley de conservación del momentum linealLey de conservación del momentum lineal
Ley de conservación del momentum linealsanmarinocollege
 
Impulso y cantidad de movimiento
Impulso y cantidad de movimientoImpulso y cantidad de movimiento
Impulso y cantidad de movimientoYenny Apellidos
 
Impulsos y colisiones
Impulsos y colisionesImpulsos y colisiones
Impulsos y colisionesCamila Alfaro
 
Biofisica del hueso y el musculo
Biofisica del hueso y el musculoBiofisica del hueso y el musculo
Biofisica del hueso y el musculoGaston Ramos
 
Conservación de la Cantidad de Movimiento Lineal
Conservación de la Cantidad de Movimiento LinealConservación de la Cantidad de Movimiento Lineal
Conservación de la Cantidad de Movimiento LinealVane Pazmiño
 

En vedette (20)

Cantidad de movimiento (p)
Cantidad de movimiento (p)Cantidad de movimiento (p)
Cantidad de movimiento (p)
 
Cantidad de movimiento
Cantidad de movimientoCantidad de movimiento
Cantidad de movimiento
 
MOMENTO LINEAL: Fisica Conceptual-ESPOL
MOMENTO LINEAL: Fisica Conceptual-ESPOLMOMENTO LINEAL: Fisica Conceptual-ESPOL
MOMENTO LINEAL: Fisica Conceptual-ESPOL
 
Impulso y cantidad de movimiento
Impulso y cantidad de movimientoImpulso y cantidad de movimiento
Impulso y cantidad de movimiento
 
Momento lineal e Impulso
Momento lineal e ImpulsoMomento lineal e Impulso
Momento lineal e Impulso
 
Impulso y cantidad de movimiento
Impulso y cantidad de movimientoImpulso y cantidad de movimiento
Impulso y cantidad de movimiento
 
Conservación de la cantidad de movimiento
Conservación de la cantidad de movimientoConservación de la cantidad de movimiento
Conservación de la cantidad de movimiento
 
Fuerza, trabajo, potencia y energia m.
Fuerza, trabajo, potencia y energia m.Fuerza, trabajo, potencia y energia m.
Fuerza, trabajo, potencia y energia m.
 
Impulso y cantidad de movimiento
Impulso y cantidad de movimientoImpulso y cantidad de movimiento
Impulso y cantidad de movimiento
 
Conservacion de la cantidad de movimiento
Conservacion de la cantidad de movimientoConservacion de la cantidad de movimiento
Conservacion de la cantidad de movimiento
 
Balance de movimiento lineal
Balance de movimiento linealBalance de movimiento lineal
Balance de movimiento lineal
 
Exposición de cálculo grupo 1
Exposición de cálculo grupo 1Exposición de cálculo grupo 1
Exposición de cálculo grupo 1
 
Ley de conservación del momentum lineal
Ley de conservación del momentum linealLey de conservación del momentum lineal
Ley de conservación del momentum lineal
 
La relatividad 2
La relatividad 2La relatividad 2
La relatividad 2
 
Impulso y cantidad de movimiento
Impulso y cantidad de movimientoImpulso y cantidad de movimiento
Impulso y cantidad de movimiento
 
Impulsos y colisiones
Impulsos y colisionesImpulsos y colisiones
Impulsos y colisiones
 
Biofisica del hueso y el musculo
Biofisica del hueso y el musculoBiofisica del hueso y el musculo
Biofisica del hueso y el musculo
 
Biofisica: Bioelasticidad
Biofisica: BioelasticidadBiofisica: Bioelasticidad
Biofisica: Bioelasticidad
 
Dilatación del tiempo (fisica)
Dilatación del tiempo (fisica)Dilatación del tiempo (fisica)
Dilatación del tiempo (fisica)
 
Conservación de la Cantidad de Movimiento Lineal
Conservación de la Cantidad de Movimiento LinealConservación de la Cantidad de Movimiento Lineal
Conservación de la Cantidad de Movimiento Lineal
 

Similaire à Cantidad de movimiento!!

Similaire à Cantidad de movimiento!! (20)

Trabajo de fisica de elsena
Trabajo de fisica de elsenaTrabajo de fisica de elsena
Trabajo de fisica de elsena
 
Traba jo de mecanica y newton
Traba jo de mecanica y newtonTraba jo de mecanica y newton
Traba jo de mecanica y newton
 
La mecánica
La mecánicaLa mecánica
La mecánica
 
Mecánica newtoniana.docx
Mecánica newtoniana.docxMecánica newtoniana.docx
Mecánica newtoniana.docx
 
mecanica clasica
mecanica clasicamecanica clasica
mecanica clasica
 
Diapositivas
DiapositivasDiapositivas
Diapositivas
 
Mecanica y Segunda Ley de Newton
Mecanica y Segunda Ley de NewtonMecanica y Segunda Ley de Newton
Mecanica y Segunda Ley de Newton
 
Mecanica y Segunda Ley de Newton
Mecanica y Segunda Ley de NewtonMecanica y Segunda Ley de Newton
Mecanica y Segunda Ley de Newton
 
Trabajo en Equipos
Trabajo en EquiposTrabajo en Equipos
Trabajo en Equipos
 
Segunda Ley de Newton - Comprobación Experimental
Segunda Ley de Newton - Comprobación ExperimentalSegunda Ley de Newton - Comprobación Experimental
Segunda Ley de Newton - Comprobación Experimental
 
Unidad 5: impulso y cantidad de movimiento
Unidad 5: impulso y cantidad de movimientoUnidad 5: impulso y cantidad de movimiento
Unidad 5: impulso y cantidad de movimiento
 
Leyesdenewtooooonn
LeyesdenewtooooonnLeyesdenewtooooonn
Leyesdenewtooooonn
 
Diapos
DiaposDiapos
Diapos
 
Movimiento
MovimientoMovimiento
Movimiento
 
Las Leyes De Newton
Las Leyes De NewtonLas Leyes De Newton
Las Leyes De Newton
 
Dinámica
DinámicaDinámica
Dinámica
 
Leyes de newton
Leyes de newtonLeyes de newton
Leyes de newton
 
Mecánica industrial
Mecánica industrialMecánica industrial
Mecánica industrial
 
Centro de masa
Centro de masaCentro de masa
Centro de masa
 
Mecánica De Fluidos
Mecánica De FluidosMecánica De Fluidos
Mecánica De Fluidos
 

Dernier

LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...JAVIER SOLIS NOYOLA
 
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...Katherine Concepcion Gonzalez
 
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VSOCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VSYadi Campos
 
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONALMiNeyi1
 
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxSEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxYadi Campos
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAEl Fortí
 
Proyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdfProyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdfpatriciaines1993
 
Tema 10. Dinámica y funciones de la Atmosfera 2024
Tema 10. Dinámica y funciones de la Atmosfera 2024Tema 10. Dinámica y funciones de la Atmosfera 2024
Tema 10. Dinámica y funciones de la Atmosfera 2024IES Vicent Andres Estelles
 
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdfNUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdfUPTAIDELTACHIRA
 
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLAACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLAJAVIER SOLIS NOYOLA
 
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.Alejandrino Halire Ccahuana
 
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docxPLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docxiemerc2024
 
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdfFeliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdfMercedes Gonzalez
 
Infografía EE con pie del 2023 (3)-1.pdf
Infografía EE con pie del 2023 (3)-1.pdfInfografía EE con pie del 2023 (3)-1.pdf
Infografía EE con pie del 2023 (3)-1.pdfAlfaresbilingual
 
origen y desarrollo del ensayo literario
origen y desarrollo del ensayo literarioorigen y desarrollo del ensayo literario
origen y desarrollo del ensayo literarioELIASAURELIOCHAVEZCA1
 

Dernier (20)

LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
 
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
 
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VSOCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
 
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
 
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxSEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
 
Tema 11. Dinámica de la hidrosfera 2024
Tema 11.  Dinámica de la hidrosfera 2024Tema 11.  Dinámica de la hidrosfera 2024
Tema 11. Dinámica de la hidrosfera 2024
 
Power Point: Fe contra todo pronóstico.pptx
Power Point: Fe contra todo pronóstico.pptxPower Point: Fe contra todo pronóstico.pptx
Power Point: Fe contra todo pronóstico.pptx
 
Interpretación de cortes geológicos 2024
Interpretación de cortes geológicos 2024Interpretación de cortes geológicos 2024
Interpretación de cortes geológicos 2024
 
Supuestos_prácticos_funciones.docx
Supuestos_prácticos_funciones.docxSupuestos_prácticos_funciones.docx
Supuestos_prácticos_funciones.docx
 
Proyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdfProyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdf
 
Tema 10. Dinámica y funciones de la Atmosfera 2024
Tema 10. Dinámica y funciones de la Atmosfera 2024Tema 10. Dinámica y funciones de la Atmosfera 2024
Tema 10. Dinámica y funciones de la Atmosfera 2024
 
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdfNUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
 
Sesión de clase: Fe contra todo pronóstico
Sesión de clase: Fe contra todo pronósticoSesión de clase: Fe contra todo pronóstico
Sesión de clase: Fe contra todo pronóstico
 
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLAACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
 
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
 
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docxPLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
 
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdfFeliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
 
Infografía EE con pie del 2023 (3)-1.pdf
Infografía EE con pie del 2023 (3)-1.pdfInfografía EE con pie del 2023 (3)-1.pdf
Infografía EE con pie del 2023 (3)-1.pdf
 
origen y desarrollo del ensayo literario
origen y desarrollo del ensayo literarioorigen y desarrollo del ensayo literario
origen y desarrollo del ensayo literario
 

Cantidad de movimiento!!

  • 1. Cantidad de movimiento!! Integrantes: Saúl Alejandro González molina Kevin Christopher olivera alemán
  • 2. cantidad de movimiento!! En Mecánica Clásica la forma más usual de introducir la cantidad de movimiento es mediante su definición como el producto de la masa de un cuerpo material por su velocidad, para luego analizar su  relación con la ley de Newton a través del teorema del impulso y la variación de la cantidad de movimiento. No obstante, luego del desarrollo de la Física Moderna, esta manera de hacerlo no resultó la más conveniente para abordar esta magnitud fundamental.
  • 3. El defecto principal es que esta forma esconde el concepto inherente a la magnitud, que resulta ser una propiedad de cualquier ente físico con o sin masa, necesaria para describir las interacciones. Los modelos actuales consideran que no sólo los cuerpos masivos poseen cantidad de movimiento, también resulta ser un atributo de los campos y los fotones. Para abordar el tema con un enfoque más moderno primero se deben analizar las interacciones en sus diferentes manifestaciones de acuerdo a los modelos clásicos convencionales:
  • 4.
  • 5. La primera, que resulta clásica en mecánica racional, es considerar el choque entre cuerpos materiales, aceptando implícitamente que entre ellos no hay fuerzas atractivas o repulsivas, siendo fortuito el encuentro. Aquí aparece la cuestión sobre choque elástico perfecto y choque plástico con pérdida de energía.
  • 6. El siguiente tipo, campo-partícula sin pérdida de energía (choque elástico), resulta de considerar que cada partícula posee un campo asociado capaz de interactuar con la otra, modificando sus trayectorias, velocidades y energías. Un ejemplo típico es el estudio de fuerzas centrales en mecánica analítica. En este modelo se considera que los campos actúan instantáneamente, es decir a velocidad infinita, perdiendo su significado como ente físico real, para ser un formalismo auxiliar que simplifica su análisis. En esta categoría están la Ley de Coulomb y la Ley de gravitación universal de Newton.
  • 7. El caso de interacción campo-partícula con pérdida de energía resulta más complejo pues aparece un tercer participante, un fotón con la energía disipada. Un ejemplo importante e ilustrativo que permite explicar el espectro continuo de emisión de rayos x, es el estudio de la radiación de frenado que ocurre con electrones rápidos obligados a cambiar bruscamente de dirección por acción del campo eléctrico de un  núcleo atómico, con pérdida de energía por emisión de radiación (fotón de radiación x).
  • 8. La interacción radiación-materia es el caso más ilustrativo de la limitación de la definición usual de la cantidad de movimiento (p=mv). El efecto Compton, que ocurre entre fotones de rayos x o rayos gamma con electrones cuasi libres, es explicado convenientemente si el fotón posee una cantidad de movimiento cuyo módulo está dado por:                 p=, siendo h la constante de Planck y v la frecuencia.
  • 9. Los cuatro casos descriptos tienen en común la transferencia de energía durante la interacción y/o cambios de dirección del movimiento. A los efectos de poder predecir las consecuencias de una interacción de acuerdo a lo mostrado por la experiencia, es necesario hacer extensivo el concepto de cantidad de movimiento a todos los entes físicos capaces de transferir energía, siendo una magnitud vectorial con dirección y sentido de la velocidad de la partícula y cuyo comportamiento responde a leyes de conservación. Esta magnitud, que nos permitirá calcular el estado final de los participantes luego de una interacción, resulta ser: Para partículas masivas p=mv Para fotones en el vacío p=c
  • 10. cantidad de movimiento en Mecánica newtoniana Históricamente el concepto de cantidad de movimiento surgió en el contexto de la mecánica newtoniana en estrecha relación con el concepto de velocidad y el de masa. En mecánica newtoniana se define la cantidad de movimiento lineal como el producto de la masa por la velocidad: P=MV La idea intuitiva tras esta definición está en que la "cantidad de movimiento" dependía tanto de la masa como de la velocidad: si se imagina una mosca y un camión, ambos moviéndose a 40 km/h, la experiencia cotidiana dice que la mosca es fácil de detener con la mano mientras que el camión no, aunque los dos vayan a la misma velocidad. Esta intuición llevó a definir una magnitud que fuera proporcional tanto a la masa del objeto móvil como a su velocidad.
  • 11.
  • 12. CANTIDAD DE MOVIMIENTO EN UN MEDIO CONTINUO Cantidad de movimiento de un medio continuo Si estamos interesados en averiguar la cantidad de movimiento de, por ejemplo, un fluido que se mueve según un campo de velocidades es necesario sumar la cantidad de movimiento de cada partícula del fluido, es decir, de cada diferencial de masa o elemento infinitesimal:
  • 13. Cantidad de movimiento en mecánica relativista La constancia de la velocidad de la luz en todos los sistemas inerciales tiene como consecuencia que la fuerza aplicada y la aceleración adquirida por un cuerpo material no sean coliniales en general, por lo cual la ley de Newton expresada como F=ma no es la más adecuada. La ley fundamental de la mecánica relativista aceptada es F=dp/dt. El Principio de Relatividad establece que las leyes de la Física conserven su forma en los sistemas inerciales (los fenómenos siguen las mismas leyes). Aplicando este Principio en la ley F=dp/dt se obtiene el concepto de masa relativista, variable con la velocidad del cuerpo, si se mantiene la definición clásica (newtoniana) de la cantidad de movimiento.
  • 14. En el enfoque geométrico de la mecánica relativista, puesto que el intervalo de tiempo efectivo percibido por una partícula que se mueve con respecto a un observador difiere del tiempo medido por el observador. Eso hace que la derivada temporal del momento lineal respecto a la coordenada temporal del observador inercial y la fuerza medida por él no coincidan. Para que la fuerza sea la derivada temporal del momento es necesario emplear la derivada temporal respecto al tiempo propio de la partícula. Eso conduce a redefinir la cantidad de movimiento en términos de la masa y la velocidad medida por el observador con la corrección asociada a la dilatación de tiempo experimentada por la partícula. Así, la expresión relativista de la cantidad de movimiento de una partícula medida por un observador inercial viene dada por:
  • 15. donde v2,c2 son respectivamente el módulo al cuadrado de la velocidad de la partícula y la velocidad de la luz al cuadrado y γ es el factor de Lorentz. Además, en mecánica relativista, cuando se consideran diferentes observadores en diversos estados de movimiento surge el problema de relacionar los valores de las medidas realizadas por ambos. Eso sólo es posible si en lugar de considerar vectores tridimensionales se consideran cuadrivectores que incluyan coordenadas espaciales y temporales. Así, el momento lineal definido anteriormente junto con la energía constituye el cuadrivector momento-energía o cuadrimomentoP:
  • 16.
  • 17. Gracias por su atención espero que les haya agradado