SlideShare une entreprise Scribd logo
1  sur  52
Télécharger pour lire hors ligne
Unipolar Pulse Width Modulation Inverter
By
Randy Baggao & Gabriel Tam
Senior Project
ELECTRICAL ENGINEERING DEPARTMENT
California Polytechnic State University
San Luis Obispo
2013
- 1 -
Table of Contents
Section
Abstract……………………………………………………………………………………............4
Acknowledgements………………………………………………………………………………..5
I. Introduction………………………………………………………………………………..6
II. Background………………………………………………………………………………..8
III. Requirements & Specification...…………………………………………………………11
IV. Design…………………………………………………………………………….............14
A. Control Unit………………….………………………….……………………………….14
B. Firing Circuit……………………………………………………………………………. 18
C. H-Bridge………………………………………………………………………………… 22
V. Testing & Results………………………………………………………………………...25
A. Control Unit………………………………………………………………………………25
B. Firing Circuit……………………………………………………………………………...30
C. H-Bridge………………………………………………………………………………….35
VI. Conclusion & Recommendations………………………………………………………...39
Appendices
A. Datasheets………………………………………………………………………………...41
B. Gantt Chart……………………………………………………………………………….47
C. Parts List, Costs, and Time Schedule Allocation………………………………………...48
D. References………………………………………………………………………………..50
- 2 -
Page Locations of Tables, Figures, & Schematics
List of Tables
Table 3-1: Unipolar and Switching PWM Logic…………………………….………..................12
Table 3-2: Summary of PWM Inverter Functional Description………………………................13
Table 3-3: Requirement Specifications of the PWM Inverter for testing…………………..……13
List of Figures
Figure 2-1: A Commercial Tripp-Lite Power Inverter for Mobile Vehicles………………..……. 8
Figure 2-2: Photovoltaic Grid System Left-Installation Right- Photo of Solar Panels
installed on a School Gym……………………………………………………..................9
Figure 3-1: Block Diagram of the Pulse Width Modulation Inverter…………….….…...............12
Figure 3-2: Full Bridge Circuit Topology of the PWM Inverter Source Indication……...............12
Figure 5-1: PWM Inverter Wired for testing……………………………………………………..25
Figure 5-2: Filtered Triangle Output…………………………………………….….………….. 26
Figure 5-3: Output Control Voltages ܸሺ‫ܣ‬ା
, ‫ܣ‬ିሻ and ܸሺ‫ܤ‬ା
, ‫ܤ‬ି
ሻ with respect to
-12V reference and Vcont = 0 (ie. ݉௔= 0)…………………………………….…………27
Figure 5-4: ܸ஼ைே் and -ܸ஼ைே் with respect to proto board common………………….………... 28
Figure 5-5: Output Control Voltage V(A+, A-) on top and V(B+, B-) on bottom with respect
to -12V, where ࢂ࡯ࡻࡺࢀ positive……………………………….........................................29
Figure 5-6: Control Voltage V(A+, A-) on top and V(B+, B-) on bottom with respect
to -12V, where ܸ஼ைே் negative……………………………………………….................29
Figure 5-7: Idealized VLOAD at Overmodulation Region………………………………...............30
Figure 5-8: V(A+,A-) on top and Optocoupler A+ output on bottom…………………............... 32
- 3 -
Figure 5-9: V(A+, A-) on top and Optocoupler A- output on bottom…………………...............32
Figure 5-10: Optocoupler Outputs A+ (top) and A- (bottom)……………………………………33
Figure 5-11: V(A+, A-) on top and Driver A+ on bottom……………………………………….34
Figure 5-12: V(A+, A-) on top and Driver A- on bottom……………………………..…………34
Figure 5-13: Driver A+ on top and Driver A- on bottom………………………...………………35
Figure 5-14: MOSFET A+ on top and MOSFET A- on bottom……………………....................36
Figure 5-15: MOSFET B+ on top and MOSFET B- on bottom…………………………………36
Figure 5-16: Unfiltered AC Voltage Output……………………………………………………..37
Figure 5-17: Filtered AC Voltage Output………………………………………………………..38
Figure 5-18: Final Product of Unipolar PWM Inverter…………………………………………. 38
List of Schematics
Schematic 4-1: PWM Inverter Control Circuit…………………………………………………..17
Schematic 4-2: Isolated Firing Circuit with Optocoupler and Gate Drivers……………………..20
Schematic 4-3: Terminal Connections for all 4 Firing Circuits…………………….……………21
Schematic 4-4: H-Bridge of the Inverter………………………………………………………....23
Schematic 4-5: Physical Layout of Inverter…………………………………………………….. 24
- 4 -
Abstract
This project portrays the design and construction of a pulse width modulation (PWM) inverter.
The inverter is implemented as a unipolar converter. The inverter provides a steady single-phase
sinusoidal 60Hz AC voltage output from a DC input. This is a basic DC-AC power converter
that is built in 3 separate phases and integrated altogether at the end. The inverter can be broken
down into the control unit, firing circuit, and the H-bridge. By using the PWM method, one can
control the frequency and amplitude of the output by using a reference signal. This method will
also avoid using a transformer because transformers have high power losses. This project will be
dedicated to EE-410 power electronics students as an experiment to observe and experience the
fundamental operations of a PWM inverter circuit at Cal Poly.
- 5 -
Acknowledgments
We would like to express thanks to Jaime Carmo, the Electrical Engineering
Department’s Electronic Technician, for devoting his time to the faculty and students and
especially for helping create a case for our senior project. We would also like to express thanks
to our project advisors Taufik and Ahmad Nafisi for teaching us the concepts of Electrical
Engineering through our college careers and also guiding us through these last few quarters to
making a successful working product.
- 6 -
I. Introduction
Power Engineering has seen a rapid growth in efficient energy solutions. Power
electronics focuses on processing electrical power using electronics with high efficiency and less
power loss. Power electronics is found in applications of modified electrical energy. Some
examples include low voltage cellular devices and high voltage transmission lines. Efficiency
plays a large role in power electronics whereas inefficient systems are impractical and result in
wasted energy and higher costs in utilities or reliability of components.
Some types of efficient source conversions include AC-to-AC, DC-to-DC, AC-to-DC,
and DC-to-AC source conversions. AC-to-DC converters are best known as rectifiers while DC-
to-AC converters are known as inverters [1]. Today’s popular power conversion type includes
the use of photovoltaic (PV) solar panels to take in DC Power and convert it to supply household
AC power sources. Computers, cell phones, televisions, microwaves, etc. have been sourced by
AC power through some sort of energy conversion which will allow these appliances to function
without “blowing up” on startup. With the conversion of AC-to-DC sources, a solution of using
house hold appliances on the go took place that lead to the use of power inverters. This allowed
the reverse conversion of DC-to-AC inverter power supply sources giving designers and
customers the option of using larger scale DC batteries to power household appliances at any
specified voltage rating.
It is important for electrical engineering students who are focusing on power electronic
conversions, to learn the basics on inverter circuits as it is one of the four major conversion
types. At Cal Poly, the course that covers the foundation of the four basic conversion processes is
EE410: Introduction to Power Electronics. The course has a lab portion where students get the
hands-on experience on several basic power converters. Currently however, the lab lacks one
- 7 -
important experiment in which students can learn the operation and performance of an inverter
circuit. This senior design project aims to develop an inverter circuit experiment which addresses
several concepts and techniques used in covering DC to AC inverters.
- 8 -
II. Background
DC-to-AC inverters are seeing a rapid growth in contributing renewable energy sources.
An example of a DC-to-AC inverter application may include uninterruptible power supplies
known as backup generators that supply power from the use of batteries (DC source) and invert it
(previously converted and stored again as a DC power) into AC power [9]. A simpler way to
understand inverters is the application of converting DC power into AC power using a
commercially available car inverter that is used for car electrical outlets to allow household
electronics to be used by a car battery source as seen in Figure 2-1.
Figure 2-1: A Commercial Tripp-Lite Power Inverter for Mobile Vehicles [12]
In air conditioning, an inverter can adjust the input frequency to control the speed of its
motor. The desired room temperature is achieved by adjusting the output frequency of the
inverting control unit. There are many types of control units that may be selected according to
the designers preferred choice of specifications that will make the product run efficiently and
with lower cost [3].
- 9 -
Inverters play an important role in Power Electronics as it applies to larger device
applications that help change the development of electronic machinery. The increase use of
inverters are due to increasing use of grid tied residential PV. Figure 2-2 shows how a
photovoltaic grid system is installed.
Figure 2-2: Photovoltaic Grid System Left-Installation Right-Photo of Solar Panels installed on a School Gym [10][11].
The power electronic classes provided by California Polytechnic State University help
prepare students in the power industry. There are currently four power electronics courses
offered as technical elective courses for electrical engineering majors. The four courses are
EE410 (Power Electronics I), EE411 (Power Electronics II), EE433 (Introduction to Magnetic
Design), and EE527 (Advanced Topics in Power Electronics). Many lab experiments include
concepts of rectification using single and three phase source inputs, non-isolated converters like
buck and boost as well as isolated converters such as a fly-back circuit, magnetic design and
various computer simulation exercises [1], [2]. The labs provide little hands-on experience to
concepts explained in lecture which sometimes are further explored in computer simulation.
Some of the experiments created are provided by students that have had the privileges to taking
these classes and have their senior projects to help improve the experience in the power
electronics labs.
- 10 -
This senior project is an example of such an effort. More specifically, this senior project
has the objective to improve a previous effort by another senior project team to design and
develop a lab experiment in switching PWM inverter [5]. The following chapter details the many
aspects this senior project will improve.
- 11 -
III. Requirements & Specifications
The project consists of the design and development of a PWM inverter that amplifies a
small input signal Vcont and outputting voltages +VDC, –VDC or 0 at the load depending on how
+VCont or -VCont compares to the reference triangle waveform VTri. VCont is provided by an AC
Wall Wart that produces 4.5VRMS at a steady 60Hz frequency and adjustable by a trimmer knob
of up to 500 . One of the op-amps to the TLE2072CP componen of the control unit uses an
inverting amplifier to invert the VCont signal and produce –VCont.
The inputs VDC are from isolated rail DC voltages at +12V and -12V, provided by
multiple DC-DC converter chips that are supplied from a DC power supply. The waveform
generator chip outputs 22kHz triangle-wave VTri after it is powered by the rail voltages. The
LM339AN comparator chip performs the PWM logic comparison and is also powered by the
control circuit’s isolated rail voltage. The output load voltage is similar to VCont but contains
harmonics centered at even multiples between the ratio of the triangular waveform frequency fTri
and the continuous waveform fCont which is also known as frequency modulation mf.
The three circuits (Control, Firing and H-bridge circuits) are built onto a single proto
circuit board. Each circuit is isolated from one another by using DC-to-DC converter chips and
isolated grounds. This allows easy testing and troubleshooting at each different circuit. The
physical area of the board is about 5”x7”x2”. After extensive testing, the circuit will be encased
in plexiglass about 8”x10”x5”.
The circuit will be powered by a DC Power Supply to power the control and firing
circuit, a DC wall wart to provide the input of the inversion, and an AC wall wart to create the
continuous sinusoidal waveform. The output that is monitored is an AC sinusoidal signal based
on the amplitude modulation ma which is the ratio of VCont and VTri controlled by a trimmer knob
- 12 -
to set the output to be either linear overmodulation, or saturation. The second output is the
unfiltered AC output to confirm unipolar measurements of V+ to 0 or V- to 0.
Figure 3-1: Block diagram of the Pulse Width Modulation Inverter.
Figure 3-2: Full Bridge Circuit Topology of the PWM inverter Source Indications [1]
Table 3-1: Unipolar Switching PWM Logic [1] [4]
Switches [On] Unipolar Switching Logarithm
S1 ܸௌ௜௡௘ ൒ ்ܸ௥௜ ൌ൐ ܸ஺ ൌ ܸ஽஼
S2 ܸௌ௜௡௘ ൏ ்ܸ௥௜ ൌ൐ ܸ஺ ൌ 0
S3 െܸௌ௜௡௘ ൒ ்ܸ௥௜ ൌ൐ ܸ஻ ൌ െܸ஽஼
S4 െܸௌ௜௡௘ ൏ ்ܸ௥௜ ൌ൐ ܸ஻ ൌ 0
- 13 -
Table 3-2: Summary of PWM Inverter Functional Description
Module Unipolar PWM Inverter
Inputs DC Input: +/-12 V DC Rail from Power Supply supplies the entire circuit
PWM Control Input: Produces the Characteristic Waveform to be modulated by the
chip within a grand scale switching frequency range from 10kHz to 25kHz. Test data
should show similar results when an input triangular waveform is compared with a
sinusoidal input controlled waveform.
Outputs AC Output: Should produce a 60Hz constant output signal from the inverting DC-to-
AC device. The DC power is held by the DC-to-DC chip which will readily be
modified through the inverting chip. The output waveform should follow a unipolar
PWM waveform.
Functionality The Pulse Width Modulation Inverter will take a +/-12V DC input and compare a
controlled sinusoidal waveform with an input triangular waveform to produce a PWM
output inverter.
Table 3-3: Requirement Specifications of the PWM Inverter for testing
Marketing
Requirements Engineering Requirements Justification
2,5 1. Total Harmonic Distortion of PWM
should be < 5-10%
The high-speed amplifiers can
easily achieve this kind of THD.
1,3,4 2. System must be compact, portable,
and safer to use compared to older
version.
No complicated steps necessary
to turn on the product and should
be safe for the customer.
1,4,5 3. System should be able to work as
inverter: 20-40 V DC input source -
Variable AC Output
Standard Inverter conversion of
DC to AC wall warts.
3,4 4. The system must be built on PCB
board with no extra materials i.e.
wood, plastic.
Compared to the previous
version, the circuit board was
held together with a block of
wood. Simplify connections and
use only electrical boards.
Marketing Requirements
1. Should be easy to use.
2. Should use PWM.
3. Should have 3 parts: firing, control, inverter circuits.
4. Should be simplified and portable.
5. Should be able to get desired an adjustable AC Voltage at a steady 60 Hz Output.
- 14 -
IV. Design
Control Unit
The control unit of the inverter is used to produce firing signals to the four MOSFETs in
the H-bridge. Schematic 4-1 displays the schematic of the control unit. The DC power supply
will provide + ૚૛ ࢂࡰ࡯ to the DC-DC converter to transmit isolated േ ૚૛ ࢂࡰ࡯ to the waveform
generator, op-amp, and comparator. The waveform generator will provide a triangle waveform at
pin 3. The frequency of the triangle output waveform can be controlled by a timing capacitor at
pin 10. The 500Ω trimmer will determine the rise time and fall time of the triangle waveform.
There is a high-pass filter to allow only DC signal of the triangle wave to go through. The
inverting op-amp inverts the small AC signal ࢂ࡯ࡻࡺࢀ to the negative AC signal െࢂ࡯ࡻࡺࢀ. The AC
signal, ࢂ࡯ࡻࡺࢀ, can be used to amplify the amplitude of ࢂ࡭࡯ at the output with the 500Ω
potentiometer. The 1kΩ trimmer can be adjusted to vary the amplitude of െࢂ࡯ࡻࡺࢀ to sync with
ࢂ࡯ࡻࡺࢀ. The comparator will be used to perform the PWM logic by comparing the triangle and
sine wave to create pulses that will send current to the optocouplers to switch them on and off
accordingly. The comparator will send pulses to the firing circuits of ࢂሺ࡭ା
, ࡭ିሻ that controls
MOSFETs ࡭ା
& ࡭ି
and ࢂሺ࡮ା
, ࡮ି
ሻ that controls MOSFETs ࡮ା
& ࡮ି
[6].
- 15 -
Specifications
• Input: +12Vdc regulated from 2W DC converter chip
• Reference: -12Vdc regulated from 2W DC converter chip
• Vcontrol = 60Hz, 4.5Vrms AC signal and 500Ω potentiometer
• Protoboard common connected to 0V output pin 2W, DC converter chip
Waveform Generator – Model NTE864
Ratings: 15mA max
Min: 10V
Max: 30V
Trimmer (500Ω) – Pins 4 & 5
• Vsupply = Vd = 12V
• Need: ~6݉‫ܣ‬
• ܴ ൌ
ଵଶ௏
଺௠஺
ൌ 2000ߗ
• Two Resistors (1k each) will be in series with trimmer.
Timing Capacitor – Pin 10
• According to datasheet: Ra = Rb = 1.5kΩ
• Vd = 12V
• Need: Operating Frequency = 22kHz
• ‫ܫ‬஽ ൌ
ଵଶ௏
ଵ.ହ௞ఆ
ൌ 8݉‫ܣ‬
• Need: Fairly large capacitor.
• Ideal capacitor = 0.01uF
• Actual size: 16nF
Inverting Op Amp – Model TLE2072CP
Ratings: Supply 3.1mA
Output: 20mA
Voltage Supply: 2.25V ~ 19V
- 16 -
Trimmer (1kΩ) – Pin 2
• Standard Range: 10Ω to 1MΩ
• Used: 9.53kΩ to output 6mA
• Max Variable Gain =
ோଷ
ோସ
ൌ
ோଶ
ோଵ
=
ଽ.ହଷ௞ఆ
ଵ௞ఆ
ൌ 9.53
Comparator – Model LM339 Quad
Ratings: 2V~ 36ܸ ‫ݐݑ݌݊ܫ‬ ܴܽ݊݃݁
Current Max: 18mA
Vd = 12V
Vgnd = -12V reference
17
14
1
8
7
1
DC - DC
Waveform Generator OP AMP
1 4
58
COMPARATOR
1 7
814
2 4 5 6
V(A+, A-) V(B+,B-) Vcc-
1k
1k
..
500 Trimmer
16nF (Freq. Control)
0.01uF 100k
10k
9.53k
1k
270k
1k Trimmer
1k
1.5k , 1/2 W
1.5k , 1/2 W
270k
500 Potentiometer
+12Vdc regulated from
2W, DC-DC converter
-12Vdc regulated from
2W, DC-DC converter
Proto board common
ground, 0V
60 Hz, 4.5Vrms signal
from function
generator
22kHz triangle
wave
-Vcont
Vcont
Filtered and
buffered triangle
wave
Refer to Appendix for IC pin
configurations
+12V
from
DC
power
High-pass filter
to block DC
Schematic 4-1: PWM Inverter Control
Circuit
18
Firing Circuit
There are four separate firing circuits that are used to drive the inverting and non-
inverting chips with pulses from ࢂሺ࡭ା
, ࡭ିሻ and ࢂሺ࡮ା
, ࡮ି
ሻ accordingly. The schematic of the
full firing circuit is displayed in Schematic 4-2. The isolated DC-DC converters will be used to
power the chips with ൅ െ⁄ ૚૛ ࢂࡰ࡯ and isolate the firing circuit from the control unit and H-
bridge. Each individual firing circuit will need an optocoupler, an inverting or non-inverting
driver chip, a switching diode, and separate passive resistors and capacitors. The optocoupler
will electrically isolate the PWM controller outputs from the gate terminal of the power
MOSFET, so then the source terminal of the power MOSFET has a “floating” ground. The
optocouplers have to be isolated from the PWM control circuit because the source terminal of the
respective MOSFET must be connected to its local ground reference. It also isolates the higher
voltage on the high power side of the H-bridge from the control circuit to prevent ICs from being
damaged and noise turbulences. Schematic 4-3 displays 4 firing circuits that are connected
similarly to one another [7].
19
Specifications
• Output of the control unit goes into the input of the optocoupler
• Input: +12V that is isolated from PWM circuit
• Reference: DC converter chip
Optocoupler – Model Vishay 6N136
Ratings: Supply: -0.5V to 15V
Output: -0.5V to 15V
Max output current: 8mA to 16mA
Pins 6 & 8
Want: I ൌ 1.19mA
I ൌ
ଵଶ୚
ଵ଴୩Ω
ൎ 1.2mA
MOSFET Driver – Model TC1426(Inverting) & TC1427(Non-Inverting)
Ratings: Supply: +18V
Range: 4.5V to 16V
Output Current Peak: 1.2A
Power Dissipation: 730mW
Diode Snubber Circuit
• Fast Switching Diode: 75V, 150mA
• Small Resistance for Diode ൎ10Ω
• Parallel Resistance ൎ 1kΩ
20
Optocoupler
1
45
8
0.1uF
1.2k 10
100k
1
DC - DC, 1W
2 4
1 2 4 5 6
3
1
45
8
Inverting Driver
MOSFET
DC - DC, 2W
G D S
10
O+ O-
Grounds (isolated
from control
circuit)
Switching diode
Green for A+, B+
Black for A-, B-
Switches A+ and B+
use inverting drivers.
Switches A- and B-
use non-inverting
drivers.
Vcc+ and GND
supplied by DC
power supply shares
nodes with A- and B-
+12V isolated
from the PWM
control circuit
One firing circuit for each MOSFET.
Switches A- and B- share a power supply
and ground. However, A+ and B+ must use
separate power supplies and grounds. Do
not connect any of these grounds to the
ground of the control circuit.
Connects to
Control Circuit
Schematic 4-2: Isolated Firing
Circuit with Optocoupler and
Gate Drivers
21
Schematic 4-3: Terminal connections for all 4 firing circuits
Firing Circuit
A+ A- B+ B-
Control Circuit
Firing Circuit Firing Circuit Firing Circuit
DC Supply
AC Control
+ + + +- - - -
V(A+,A-) V(B+,B-)
-12V
reference
22
H-Bridge
The H-bridge of the inverter circuit can be shown in Schematic 4-4 and the layout
consisting of all three circuits can be seen in Schematic 4-5. There are 4 separate power
MOSFETs that are used to perform the switching in the H-bridge. Unipolar switching will
require all 4 switches in order to have the output of the inverter to be switched from ൅ܸ஽஼ to 0 or
from െܸ஽஼ to 0. An electrolytic capacitor is placed across the positive and negative terminals of
the ൅ܸ஽஼ input as a filter to provide current ripple into the inverter so the DC current will have
fewer ripples. Two fuses are placed across the ൅ܸ஽஼ input as safety to protect ሺ‫ܣ‬ା
, ‫ܣ‬ିሻ and
ሺ‫ܤ‬ା
, ‫ܤ‬ି
ሻ respectively. One fuse feeds the ሺ‫ܣ‬ା
, ‫ܣ‬ିሻ side of the inverter and the other fuse feeds
the ሺ‫ܤ‬ା
, ‫ܤ‬ି
ሻ side. An inductor and a capacitor are used as a tank circuit to decrease the damping
waveform at the output to filter the pulses for ܸ஺஼. The inductor placed to prevent the output
from shorting with the electrolytic capacitor at higher frequencies [8].
Specifications
Convert 20-40VDC power to 60Hz VAC
Low Pass Filter
f = 60Hz
‫ݓ‬௢ ൌ 2ߨ݂ ൌ 376.99 ‫ݏ/݀ܽݎ‬
L = 100uH
C = 10uF
݂௖ ൌ
1
2ߨ√‫ܥܮ‬
ൌ
1
2ߨඥሺ100‫ܪݑ‬ሻሺ10‫ܨݑ‬ሻ
ൌ 15.915݇‫ݖܪ‬
23
Schematic 4-4: H-Bridge of the Inverter
G D S G G GD D D
Vdc Vac
+ +
_ _
A+ A-
S S S
B+ B-
24
Schematic 4-5: Physical Layout of Inverter
B+ B-
+ +
Firing Firing Firing Firing
A+ A-
MOSFET MOSFET MOSFET MOSFET
A+ A- B+ B-
+ + + +- - - -
DC Supply
AC Control
Control Circuit
Vdc Vac
--
V(A+, A-) V(B+,B-)
-12V
reference
H-Bridge and Filters
Individual heat sink
for each MOSFET.
HEAT SINKS
MUST NOT
TOUCH EACH
OTHER BECAUSE
THEY WILL
HAVE DIFFERENT
DRAIN
POTENTIALS
25
V. Testing
Figure 5-1: PWM Inverter Wired for testing
Figure 5-1 shows the inverter wired up for testing. The H-bridge, firing circuit and
control circuit work together to invert the DC input signal into an AC output signal. In this
section, each of the three circuits are tested individually to achieve the necessary inversion.
Control Unit
Step 1
The objective of the control unit is to have the waveform generator produce a triangle wave that
will produce a clean signal with 7.8ܸ௣௘௔௞ି௣௘௔௞ by supplying the oscillator with +12V. The
triangle wave should have a frequency of approximately 22kHz with minimized DC offset by
adjusting the values of the frequency control of the waveform generator. The fall and rise time of
the triangle wave should be equal by adjusting the 500Ω trimmer to get a duty cycle set to 50%.
Figure 5-1 below displays a high-pass filtered triangle wave with minimized DC offset.
26
Figure 5-2: Filtered Triangle Output
Step 2
Before powering AC ܸ஼ைே் with 4.5ܸோெௌ, energize the circuit with the DC power supply and
measure the terminals across ܸሺ‫ܣ‬ା
, ‫ܣ‬ିሻ and ܸሺ‫ܤ‬ା
, ‫ܤ‬ି
ሻ with respect to -12V reference and
confirm that both waveforms are varying sharply from +24V to 0V with a 50% duty cycle.
Figure 5-3 below displays the output control voltages ܸሺ‫ܣ‬ା
, ‫ܣ‬ିሻ and ܸሺ‫ܤ‬ା
, ‫ܤ‬ି
ሻ with ܸ஼ைே்= 0.
ܸ௉௘௔௞ ൎ 7.8ܸ
݂ ൎ 22݇‫ݖܪ‬
27
Figure 5-3: Output Control Voltages ࢂሺ࡭ା
, ࡭ିሻ and ࢂሺ࡮ା
, ࡮ି
ሻ with respect to -12V reference and Vcont = 0 (ie. ࢓ࢇ= 0).
Power up the AC ܸ஼ைே் to 4.5ܸோெௌ and raise the 500Ω potentiometer for maximum ܸ஼ைே். The
operational amplifier is an inverting amplifier that will invert ܸ஼ைே் to -ܸ஼ைே் that will be used
to determine the switching in the firing circuit and H-bridge. Probe ܸ஼ைே் and -ܸ஼ைே் with
respect to proto board common. The sinusoidal waveforms should be 180ᵒ out of phase of each
other as shown in Figure 5-4. Use the 1kΩ trimmer to adjust -ܸ஼ைே் to make it the same RMS
magnitude as ܸ஼ைே். The AC voltage with ݉ܽ= maximum across ሾܸሺ‫ܣ‬ା
, ‫ܣ‬ିሻ - ܸሺ‫ܤ‬ା
, ‫ܤ‬ି
ሻ]
should be approximately 21VAC.
ܸሺ‫ܣ‬൅, ‫ܣ‬ െሻ
ൎ 12ܸ݀ܿ
ܸሺ‫ܤ‬൅, ‫ܤ‬ െሻ
ൎ 12ܸ݀ܿ
28
Figure 5-4: ࢂ࡯ࡻࡺࢀ and -ࢂ࡯ࡻࡺࢀ with respect to proto board common.
Lower the 500Ω ܸ஼ைே் potentiometer for minimum ܸ஼ைே். Use the oscilloscope to make probe
connections at ܸሺ‫ܣ‬ା
, ‫ܣ‬ିሻ and ܸሺ‫ܤ‬ା
, ‫ܤ‬ି
ሻ with respect to the -12V reference point. Gradually
increase the 500Ω ܸ஼ைே் potentiometer so that ܸ஼ைே் increases from 0V to 3VRMS. Figures 5-5
and 5-6 display the output control voltages where ܸ஼ைே் is positive and where ܸ஼ைே் is negative.
The “ON” period of one waveform gets wider whereas the other waveform gets narrower, and
it’s vice-versa for the “OFF” period. These waveforms display pulses that were created by the
comparator. The comparator in the control unit compares the triangle wave and the sine wave,
and the output is switched from +VDC to 0 or from -VDC to 0.
29
Figure 5-5: Output Control Voltage V(A+, A-) on top and V(B+, B-) on bottom with respect to -12V, where ࢂ࡯ࡻࡺࢀ
positive.
Figure 5-6: Control Voltage V(A+, A-) on top and V(B+, B-) on bottom with respect to -12V, where ࢂ࡯ࡻࡺࢀ negative.
30
Figure 5-7 shows an oscilloscope capture of V(A+, A-) with reference to V(B+, B-) and the
“split” portion in both half cycles. If the split cycles are not the same, then adjust the gain of
െܸ஼ைே்with the 1kΩ trimmer. There is a lot of noise at the output because of long vulnerable
wires.
Figure 5-7: Idealized VLOAD at overmodulation region
Firing Circuit
Step 1
Before moving onto the firing circuit, perform power supply wiring continuity checks to confirm
that:
• The PWM control unit is isolated from the ground terminal of the DC power supply.
• The 12V rail and ground terminal of the DC power supply is isolated from the +12V rail
and ground of the A+ firing circuit board.
31
• The 12V rail and ground terminal of the DC power supply is connected to the +12V rail
and ground of the A- firing circuit board.
• The ൅ െ⁄ 12ܸ and ground rails of A+ and A- are isolated to each other.
Perform the DC converter chip test by powering up the 12V supply. Check the voltage rails of
the DC converter and make sure they output +12V and -12V. If the voltage drops more than
0.5V from your nominal voltage, then you most likely have two wires shorting each other in the
circuit. If so, fix the problem before moving on or else it would cause the converter chip to fail
and break.
Step 2
Perform checks on the isolated A+ and A- firing circuits by disconnecting AC Vcont so that ma=0.
Connect oscilloscope probe 1 to V(A+, A-) from the control unit and the ground with respect to
the -12V reference. Also, connect oscilloscope probe 2 to the output of Opto A+ and the ground
lead to the common ground of the firing circuit. It is okay to connect to any ground terminals on
the firing circuit because the two signals are already isolated from each other. Figure 5-8 displays
the result.
32
Figure 5-8: V(A+,A-) on top and Optocoupler A+ output on bottom
Connect oscilloscope probe 2 and its ground terminal to the Optocoupler A- output to view the
same waveforms as above. The result is shown in Figure 5-9.
Figure 5-9: V(A+, A-) on top and Optocoupler A- output on bottom
ܸሺ‫ܣ‬൅, ‫ܣ‬ െሻ
ܸ݀ܿ ൎ 1.7ܸ
ܸ݀ܿ ൎ 5.8ܸ
Opto A+ Output
ܸሺ‫ܣ‬൅, ‫ܣ‬െሻ
ܸ݀ܿ ൎ 1.7ܸ
ܸ݀ܿ ൎ 6.3ܸ
Opto A- Output
33
Connect probe 1 and its ground lead to the output of Optocoupler A+, and connect probe 2 and
its ground lead to the output of Optocoupler A-. The waveforms are expected to be similar as
Figure 5-10 below.
Figure 5-10: Optocoupler Outputs A+ (top) and A- (bottom)
Connect probe 1 and its ground lead to V(A+, A-) with respect to -12V reference. Connect probe
2 and its ground lead to the output of Driver A+. Figure 5-11 displays the correct waveform of
the output.
34
Figure 5-11: V(A+, A-) on top and Driver A+ on bottom
Connect probe 2 to the output of Driver A+. Figure 5-12 displays the correct waveform of the
output. It will be an inverting waveform because the driver receives inverting pulses from the
control unit.
Figure 5-12: V(A+, A-) on top and Driver A- on bottom
ܸሺ‫ܣ‬൅, ‫ܣ‬െሻ
ܸ݀ܿ ൎ 5.6ܸ
Driver A+ Output
ܸሺ‫ܣ‬൅, ‫ܣ‬െሻ
ܸ݀ܿ ൎ 6.7ܸ
Driver A- Output
35
Connect probe 1 and its ground lead to the output of Driver A+. Leave probe 2 and its ground
lead to the output of Driver A-. The two waveforms should be opposite of each other because
one is inverting whereas the other isn’t. There should not be any visible overlap in “on” times
because with ma = 0, their duty cycles should be close to 50%. This is illustrated in Figure 5-13.
Figure 5-13: Driver A+ on top and Driver A- on bottom
Step 3
Repeat step 2 for firing circuits B+ and B-. The waveforms of firing circuits B will be exactly the
same as the waveforms in firing circuits A.
After finishing firing circuits B+ and B-, disconnect both the DC supply and AC Vcont.
H-Bridge
Step 1
To test the H-bridge of the inverter, confirm that firing circuits A+ is isolated from A- and B+ is
isolated from B-. Energize the firing circuit with the DC power supply, but leave AC Vcont off.
36
Attach oscilloscope probe 1 and its ground lead across VGS of MOSFET A+, and attach
oscilloscope probe 2 and its ground lead across VGS of MOSFET A-. The waveforms should
appear as shown in Figure 5-14.
Figure 5-14: MOSFET A+ on top and MOSFET A- on bottom
Repeat the previous steps for B+ and B- to attain the waveform as shown in Figure 5-15.
Figure 5-15: MOSFET B+ on top and MOSFET B- on bottom
ܸீௌ ൎ 4.5ܸ݀ܿ
MOSFET A+
ܸீௌ ൎ 4.5ܸ݀ܿ
MOSFET A-
ܸீௌ ൎ 4.5ܸ݀ܿ
MOSFET B+
ܸீௌ ൎ 4.5ܸ݀ܿ
MOSFET B-
37
Step 2
Test the inverter by inputting a 20VDC into the H-bridge and it will output an AC voltage of
approximately 14ܸ௥௠௦. nominal at 60Hz at maximum ܸ஼ைே். The Figures of 5-16 and 5-17
shows the waveforms of the unfiltered AC voltage output and filtered AC voltage output. By
varying the 500Ω potentiometer, the ܸ஼ைே் can increase or decrease the magnitude of the output
AC voltage.
Figure 5-16: Unfiltered AC Voltage Output
38
Figure 5-17: Filtered AC Voltage Output
The final product of the unipolar PWM inverter can be seen in Figure 5-18.
Figure 5-18: Final Product of Unipolar PWM Inverter
39
VI. Conclusion & Improvements
The PWM inverter was built to be a prototype in the laboratory for EE-410. This project
was created into three sections: the control unit, firing circuit, and the H-bridge, which were all
integrated to invert DC voltage into AC voltage and uses unipolar switching. The project was
most practical for unipolar switching because the inverter utilizes the right number of
components and more efficient for it.
The inverter produced a clean AC output waveform that proves that the circuit works
successfully. The circuit produced a steady 60Hz amplitude varying AC voltage at the output.
The inverter was tested to only handle up to 50Vdc because anything higher than that caused the
filter capacitors to explode. Future EE-410 students could utilize unipolar switching without any
problems.
The problems encountered that slowed the pace of our project were the wires and faulty
chip components. Even though troubleshooting was not a big problem, the wires were the main
cause for noise in our circuit. The comparator was our only component problem because it would
breakdown easily if signals going in and out were corrupted. This was fixed by finding the most
updated component that performs similar or even better than the previous component.
The improvements made in comparison to the previous design include using a waveform
generator chip NTE864 to output a triangle waveform which cuts the need of using multiple
function generators in the lab. Another improvement made to the previous design was to use a
single input for the 12V DC side to supply both the control circuit and the firing circuit which
cuts the need for extra power supplies. One last improvement made to the design was to build
40
the circuit onto one circuit board which includes a low voltage circuit side and a high voltage
circuit side and also cover the board with a protective visible case.
Future improvement for this project would be to use a pre-made printed circuit board
(PCB) so that components could be soldered on without having wires. This would be the most
efficient way to have a cleaner and less expensive project. Even though soldering took a long
time, it was the best way to troubleshoot for any errors that had occurred. Another improvement
to consider in the design would be to use a controllable Boost Converter instead of using a DC
wall wart to power the switches in the H-Bridge. This would eliminate the need for another piece
of equipment by stepping up 12V power from the control and firing circuits’ supply sources and
with user control, vary the input source of the H-Bridge while keeping the output the same.
41
Appendix A: Datasheets
Pin # Function
1 +Vin
2 GND
4 -V
5 0V
6 +V
Murata Power Solutions NMH Series 2 Watt DC-DC Converter [15]
42
Murata Power Solutions NKE Series 1 Watt Isolated DC-DC Converter [18]
43
Pin # Symbol I/O Type Function
1 SA1 I Adjust Sine Waveform Input 1
2 SWO O Sine Wave Output
3 TWO O Triangle Wave Output
4 DCA1 I Duty Adjustment Input 1
5 DCA2 I Duty Adjustment Input 2
6 (+) Vcc Positive Power Supply
7 FM I Frequency Modulation
8 FS I Frequency Sweep
9 SQO O Square Wave Output
10 TC I Timing Capacitor Input
11 Vee Negative Power Supply
12 SA2 I Adjust Sine Waveform Input 2
13 N.C. No Connection
14 N.C. No Connection
NTE864 Integrated Precision Circuit Waveform Data for Triangle Wave with reference to
Intersil ICL8038 Precision Waveform Generator [13], [14]
44
Texas Instruments TLE2072 Excalibur Low-Noise High Speed Dual Op Amp [16]
Texas Instruments LM339 Low Power Offset Voltage Quad Comparator [17]
45
Vishay 6N136 High Speed Octocoupler [19]
Microchip Technology Inc. TC1426CPA Inverting MOSFET Driver [20]
Microchip Technology Inc. TC1427CPA Non-Inverting MOSFET Driver [20]
46
International Rectifier IRFP140NPbF HEXFET Power MOSFET [21]
47
Appendix B: Gantt Chart
Unipolar PWM DC-to-AC- INVERTERPROJECT
Week 8
Project Plan
Abstract (Proposal)V1
Requirements and Specifications
BlockDiagram
Literature search
Gantt Chart
Cost Estimates
PWM InverterProject Analysis
Requirements and Specifications V2
Rough Draft Report
Report V2
ResearchPowerInverter (DC-to-AC)
Ordering/InventoryofComponents
PWMPowerInverterApplications
Firing Circuit
ControlCircuit
H-Inverter
Contruction& Testing
FinalizeCircuit Layout
Construct and Test Device
IfVersion Ifailsto work,then..
Contruction& Testing (versionII)
Re-Design/Analysis
Simulation &Sensitivity Analysis
Purchase NewComponents
Contruction& Testing
Construct and Test Device
FinalizeResults and Prepare Data
InterimReport
Final SeniorProjectReport
Rough Draft
AdvisorReview
Second Rought Draft
AdvisorReview
FinalSeniorProject Report
4 5 1 2 3 4 5 6 7 8 9 10 9 10
FALL2012 (EE460) HOLIDAYBREAK SPRING2013(EE464)
1 2 3 4 5 1 2 3 46 7 8 9 10 5 6 7
WINTER2013(EE463)
1 2 3
48
Appendix C: Parts List
Control Circuit
• NTE864, Waveform Generator ,14 – pins (1)
• TLE2072CP, Dual Op Amp, 8 – pins (1)
• LM393N, Quad Comparator, 14 – pins (1)
• NMH1212SC, 2W Dual Output DC-DC Converter (1)
• 16nF, ceramic capacitor (1)
• 0.01uF, ceramic capacitor (1)
• 1kΩ, ¼ W resistor (4)
• 100kΩ, ¼ W resistor (1)
• 10kΩ, ¼ W resistor (1)
• 9.53kΩ, ¼ W resistor (1)
• 270kΩ, ¼ W resistor (2)
• 1.5kΩ, ½ W resistor (2)
• 500Ω ½ W Bourns trimmer (1)
• 1kΩ ½ W Bourns trimmer (1)
• 500Ω, 24 mm Potentiometer (1)
Firing Circuit
• 6N136, Optocouplers (4)
• TC1426, MOSFET Inverting Driver Microchip (2)
• TC1427, MOSFET Non-Inverting Driver Microchip (2)
• NKE0505S, 1 W Dual Output DC-DC Converter (2)
• D0-35 Case, 75V 150mA, High-Speed Switching Diode (4)
• 0.1uF, ceramic capacitor (4)
• 10kΩ, ¼ W resistor (4)
• 10Ω, ¼ W resistor (4)
• 1.2kΩ, ¼ W resistor (4)
• 100kΩ, ¼ W resistor (4)
H-Bridge
• IRFP140N, 100V 33A, N-Channel Power MOSFET (4)
• TO-218, Heat Sink Case (4)
• 10uF, 50V High Frequency Bipolar Capacitors (2)
• 100uH, 10A Inductor (1)
• 10A, 10V Fast – Acting Fuses (2)
• 10A, 250VAC, Chasis- Type ¼” x ¼” Fuse Holder (2)
Other
• Proto board – ૠ ࢏࢔ࢉࢎ ൈ ૝
૚
૛
࢏࢔ࢉࢎ (1)
• 14 – pin DIP sockets (2)
• 8 – pin DIP sockets (9)
49
• 24 – pin SIP socket (1)
• Plexiglass Board & Box Cover (1)
• Computer Board Standoffs (4)
Cost Estimation
Item Cost Per Unit Quantity Total
NTE864, Waveform
Generator
$50.00 1 $50.00
TLE2072CP, Dual Op
AMP
$3.07 1 $3.07
LM393N, Quad
Comparator
$0.98 1 $0.98
NMH1212SC, DC-
DC Converter
$13.42 1 $13.42
6N136, Optocoupler $1.32 4 $5.28
TC1426, MOSFET
Inverting Driver
Microchip
$1.24 2 $2.48
TC1427, MOSFET
Non-Inverting Driver
Microchip
$1.24 2 $2.48
NKE0505S, DC-DC
Converter
$7.74 2 $15.48
DO-35 Case
Switching Diodes
$0.35 4 $1.40
IRFP140N, N-Power
MOSFET
$2.07 4 $8.28
TO-218, Heat Sink $3.02 4 $12.08
Fast Acting Fuses $2.49 2 $5.00
Fuse Holders $1.25 2 $2.50
Capacitors $0.40 8 $3.20
Resistors $0.20 27 $5.40
Potentiometer $3.00 1 $3.00
Inductor $10.45 1 $10.45
IC Pin Sockets $1.00 12 $12.00
Trimmers $0.98 3 $2.94
Total: $159.44
50
Appendix D: References
Books
[1] Taufik, and Dale Dolan. Introduction to Power Electronics. Cal Poly State University.
San Luis Obispo: 10th
Revision, 2012.
[2] Taufik, and Dale Dolan. Advanced Power Electronics. Cal Poly State University. San
Luis Obispo: 6th
Revision, 2013.
[3] D. Grahame Holmes, Thomas A. Lipo, Pulse Width Modulation for Power Converters,
Hoboken NJ, USA. 2003
[4] Bin Wu, High-Power Converters and AC Drives, Hoboken NJ, USA. 2006
Reports
[5] Tran, Kelvin, and Ryan Sidarto. PWM Inverter. Print. San Luis Obispo: California
Polytechnic State University, 20 May 2011.
[6] EE362L, Power Electronics, PWM Inverter Control Circuit. Print. 20 October 2008.
[7] EE362L, Power Electronics, Isolated Firing Circuit for H-Bridge Inverter. Print. 27
October 2008.
[8] EE362L, Power Electronics, H-Bridge Inverter. Print. Print. 20 February 2008.
Internet
[9] Wikipedia (2012, October 13) Power Inverters http://en.wikipedia.org/Power_inverter
[10] Energy Home (2013, May 17) Photovoltaic Cells
http://www.energyeducation.tx.gov/renewables/section_3/topics/photovoltaic_cells/f.htm
l
[11] Consenergy Biotek (2013, May 17) Grid Connected PV Systems
http://www.consenergybiotek.com/grid_connected.html
[12] Tripp-Lite (2013, May 24) PowerVerter® 375W Ultra-Compact Inverter with 2 Outlets
http://www.tripplite.com/en/products/model.cfm?txtModelID=2552
Datasheets
[13] NTE Electronics, “NTE864 Integrated Circuit Precision Waveform Generator,” Data
Sheet Rev. N/A, July 2007.
51
[14] Intersil, “ICL8038 Precision Waveform Generator/Voltage Controlled Oscillator,” Data
Sheet Rev. 2864.4, April 2001.
[15] Murata Power Solutions, “NMH Series Isolated 2W Dual Output DC/DC Converters,”
Data Sheet Rev. KDC_NMH.E03, 2012.
[16] Texas Instruments, “TLE2072 Excalibur Low-Noise High-Speed JFET-Input Op-Amp,”
Data Sheet Rev. SLOS181A, March 2000.
[17] Texas Instruments, “LM339 Low Power Offset Voltage Quad Comparators,” Data Sheet
Rev. DS005706, March 2004.
[18] Murata Power Solutions, “NKE Series Isolated Sub-Miniature 1W Single Output DC/DC
Converters,” Data Sheet Rev. NDC_NKE.5, 2001.
[19] Vishay, “6N136 High Speed Optocoupler, 1 MBd, Photodiode with Transistor Output,”
Data Sheet Rev. 1.8, 05 September 2011.
[20] Microchip Technology Inc. “TC1426/TC1427 1.2A Dual High-Speed MOSFET
Drivers,” Data Sheet Rev. DS21393C, 2 February 2006.
[21] International Rectifier, “IRFP140NPbF HEXFET Power MOSFET,” Data Sheet Rev.
PD-95711, 2 August 2004

Contenu connexe

Tendances

Exam Preparation Syllabus
Exam Preparation SyllabusExam Preparation Syllabus
Exam Preparation SyllabusRusty Ward
 
IRJET- Dynamic Chargingof the Lead Acid Battery using the Programmable Interf...
IRJET- Dynamic Chargingof the Lead Acid Battery using the Programmable Interf...IRJET- Dynamic Chargingof the Lead Acid Battery using the Programmable Interf...
IRJET- Dynamic Chargingof the Lead Acid Battery using the Programmable Interf...IRJET Journal
 
IRJET- Design and Implementation of Converters using MPPT in an Eco Vehicle
IRJET-  	  Design and Implementation of Converters using MPPT in an Eco VehicleIRJET-  	  Design and Implementation of Converters using MPPT in an Eco Vehicle
IRJET- Design and Implementation of Converters using MPPT in an Eco VehicleIRJET Journal
 
Senior Design Research Paper
Senior Design Research PaperSenior Design Research Paper
Senior Design Research PaperNoel Villegas Jr
 
An electric circuit model for a lithium-ion battery cell based on automotive ...
An electric circuit model for a lithium-ion battery cell based on automotive ...An electric circuit model for a lithium-ion battery cell based on automotive ...
An electric circuit model for a lithium-ion battery cell based on automotive ...IJECEIAES
 
Balaguru.G_ Senior Electrical Designer
Balaguru.G_ Senior Electrical DesignerBalaguru.G_ Senior Electrical Designer
Balaguru.G_ Senior Electrical DesignerBala G
 
IMPEDANCE SOURCE INVERTER TOPOLOGIES FOR PHOTOVOLTAIC APPLICATIONS – A REVIEW
IMPEDANCE SOURCE INVERTER TOPOLOGIES FOR PHOTOVOLTAIC APPLICATIONS – A REVIEWIMPEDANCE SOURCE INVERTER TOPOLOGIES FOR PHOTOVOLTAIC APPLICATIONS – A REVIEW
IMPEDANCE SOURCE INVERTER TOPOLOGIES FOR PHOTOVOLTAIC APPLICATIONS – A REVIEWIAEME Publication
 
C&S Electric Summer Training Report
C&S Electric Summer Training ReportC&S Electric Summer Training Report
C&S Electric Summer Training ReportParas Pratap
 
Sr.Electrical Engineer_13years of Experinece
Sr.Electrical Engineer_13years of ExperineceSr.Electrical Engineer_13years of Experinece
Sr.Electrical Engineer_13years of ExperineceNagaraj Maradi
 
Implementation of Solar Powered BLDC Motor Drive
Implementation of Solar Powered BLDC Motor DriveImplementation of Solar Powered BLDC Motor Drive
Implementation of Solar Powered BLDC Motor Driveijsrd.com
 
PARTICLE INITIATED FOV OF HYBRID CYLINDRICAL INSULATING SPACERS UNDER AC AND ...
PARTICLE INITIATED FOV OF HYBRID CYLINDRICAL INSULATING SPACERS UNDER AC AND ...PARTICLE INITIATED FOV OF HYBRID CYLINDRICAL INSULATING SPACERS UNDER AC AND ...
PARTICLE INITIATED FOV OF HYBRID CYLINDRICAL INSULATING SPACERS UNDER AC AND ...IAEME Publication
 
VIJAYABASKAR_ELECTRICAL _8YEARS_EXPERIENCE
VIJAYABASKAR_ELECTRICAL _8YEARS_EXPERIENCEVIJAYABASKAR_ELECTRICAL _8YEARS_EXPERIENCE
VIJAYABASKAR_ELECTRICAL _8YEARS_EXPERIENCEvijayabaskar v
 
Mohammad Fayez Hosne Hasan
Mohammad Fayez Hosne HasanMohammad Fayez Hosne Hasan
Mohammad Fayez Hosne HasanMohammad Fayez
 
Mostafa Yunis_original
Mostafa Yunis_originalMostafa Yunis_original
Mostafa Yunis_originalMostafa yunis
 
inverter & its application in power system
inverter & its application in power system inverter & its application in power system
inverter & its application in power system Deepak singh Chauhan
 
Development of a novel ultracapacitor electric
Development of a novel ultracapacitor electricDevelopment of a novel ultracapacitor electric
Development of a novel ultracapacitor electricTania Martinez
 

Tendances (20)

Exam Preparation Syllabus
Exam Preparation SyllabusExam Preparation Syllabus
Exam Preparation Syllabus
 
IRJET- Dynamic Chargingof the Lead Acid Battery using the Programmable Interf...
IRJET- Dynamic Chargingof the Lead Acid Battery using the Programmable Interf...IRJET- Dynamic Chargingof the Lead Acid Battery using the Programmable Interf...
IRJET- Dynamic Chargingof the Lead Acid Battery using the Programmable Interf...
 
IRJET- Design and Implementation of Converters using MPPT in an Eco Vehicle
IRJET-  	  Design and Implementation of Converters using MPPT in an Eco VehicleIRJET-  	  Design and Implementation of Converters using MPPT in an Eco Vehicle
IRJET- Design and Implementation of Converters using MPPT in an Eco Vehicle
 
CV_Susovan
CV_SusovanCV_Susovan
CV_Susovan
 
CV, Electrical Engr
CV, Electrical EngrCV, Electrical Engr
CV, Electrical Engr
 
Suresh Resume
Suresh ResumeSuresh Resume
Suresh Resume
 
Olkhovskiy_Resume_2016_1
Olkhovskiy_Resume_2016_1Olkhovskiy_Resume_2016_1
Olkhovskiy_Resume_2016_1
 
Senior Design Research Paper
Senior Design Research PaperSenior Design Research Paper
Senior Design Research Paper
 
An electric circuit model for a lithium-ion battery cell based on automotive ...
An electric circuit model for a lithium-ion battery cell based on automotive ...An electric circuit model for a lithium-ion battery cell based on automotive ...
An electric circuit model for a lithium-ion battery cell based on automotive ...
 
Balaguru.G_ Senior Electrical Designer
Balaguru.G_ Senior Electrical DesignerBalaguru.G_ Senior Electrical Designer
Balaguru.G_ Senior Electrical Designer
 
IMPEDANCE SOURCE INVERTER TOPOLOGIES FOR PHOTOVOLTAIC APPLICATIONS – A REVIEW
IMPEDANCE SOURCE INVERTER TOPOLOGIES FOR PHOTOVOLTAIC APPLICATIONS – A REVIEWIMPEDANCE SOURCE INVERTER TOPOLOGIES FOR PHOTOVOLTAIC APPLICATIONS – A REVIEW
IMPEDANCE SOURCE INVERTER TOPOLOGIES FOR PHOTOVOLTAIC APPLICATIONS – A REVIEW
 
C&S Electric Summer Training Report
C&S Electric Summer Training ReportC&S Electric Summer Training Report
C&S Electric Summer Training Report
 
Sr.Electrical Engineer_13years of Experinece
Sr.Electrical Engineer_13years of ExperineceSr.Electrical Engineer_13years of Experinece
Sr.Electrical Engineer_13years of Experinece
 
Implementation of Solar Powered BLDC Motor Drive
Implementation of Solar Powered BLDC Motor DriveImplementation of Solar Powered BLDC Motor Drive
Implementation of Solar Powered BLDC Motor Drive
 
PARTICLE INITIATED FOV OF HYBRID CYLINDRICAL INSULATING SPACERS UNDER AC AND ...
PARTICLE INITIATED FOV OF HYBRID CYLINDRICAL INSULATING SPACERS UNDER AC AND ...PARTICLE INITIATED FOV OF HYBRID CYLINDRICAL INSULATING SPACERS UNDER AC AND ...
PARTICLE INITIATED FOV OF HYBRID CYLINDRICAL INSULATING SPACERS UNDER AC AND ...
 
VIJAYABASKAR_ELECTRICAL _8YEARS_EXPERIENCE
VIJAYABASKAR_ELECTRICAL _8YEARS_EXPERIENCEVIJAYABASKAR_ELECTRICAL _8YEARS_EXPERIENCE
VIJAYABASKAR_ELECTRICAL _8YEARS_EXPERIENCE
 
Mohammad Fayez Hosne Hasan
Mohammad Fayez Hosne HasanMohammad Fayez Hosne Hasan
Mohammad Fayez Hosne Hasan
 
Mostafa Yunis_original
Mostafa Yunis_originalMostafa Yunis_original
Mostafa Yunis_original
 
inverter & its application in power system
inverter & its application in power system inverter & its application in power system
inverter & its application in power system
 
Development of a novel ultracapacitor electric
Development of a novel ultracapacitor electricDevelopment of a novel ultracapacitor electric
Development of a novel ultracapacitor electric
 

Similaire à Unipolar pulse width modulation inverter

Introduction to solid state power electronics.pdf
Introduction to solid state power electronics.pdfIntroduction to solid state power electronics.pdf
Introduction to solid state power electronics.pdfGollapalli Sreenivasulu
 
MINI INVERTER
MINI INVERTERMINI INVERTER
MINI INVERTERmhjit
 
Automatic Power Factor Corrector Using Arduino report
Automatic Power Factor Corrector Using Arduino reportAutomatic Power Factor Corrector Using Arduino report
Automatic Power Factor Corrector Using Arduino reportSelf-employed
 
Variable power supply with digital control with seven segments display
Variable power supply with digital control with seven segments displayVariable power supply with digital control with seven segments display
Variable power supply with digital control with seven segments displaypoornima college of engg. jaipur
 
EV Charger SMPS Based.pdf
EV Charger SMPS Based.pdfEV Charger SMPS Based.pdf
EV Charger SMPS Based.pdfLalitKapoor7
 
Automatic Phase Changer
Automatic Phase ChangerAutomatic Phase Changer
Automatic Phase ChangerBhanu Bhawesh
 
sample project report (2).docx
sample project report (2).docxsample project report (2).docx
sample project report (2).docxDrFROSTFIRExR
 
“MODELING AND ANALYSIS OF DC-DC CONVERTER FOR RENEWABLE ENERGY SYSTEM” Final...
“MODELING AND ANALYSIS OF DC-DC CONVERTER  FOR RENEWABLE ENERGY SYSTEM” Final...“MODELING AND ANALYSIS OF DC-DC CONVERTER  FOR RENEWABLE ENERGY SYSTEM” Final...
“MODELING AND ANALYSIS OF DC-DC CONVERTER FOR RENEWABLE ENERGY SYSTEM” Final...8381801685
 
IRJET-Study of Three State Switching Cell Based DC-To-DC Converter
IRJET-Study of Three State Switching Cell Based DC-To-DC ConverterIRJET-Study of Three State Switching Cell Based DC-To-DC Converter
IRJET-Study of Three State Switching Cell Based DC-To-DC ConverterIRJET Journal
 
High efficiency push pull converter for photovoltaic applications
High efficiency push pull converter for photovoltaic applicationsHigh efficiency push pull converter for photovoltaic applications
High efficiency push pull converter for photovoltaic applicationsEklavya Sharma
 
[Codientu.org] design of a charge controller circuit
[Codientu.org] design of a charge controller circuit[Codientu.org] design of a charge controller circuit
[Codientu.org] design of a charge controller circuitMinh Phương
 
IRJET - Single Phase Inverter using MOSFET
IRJET -  	  Single Phase Inverter using MOSFETIRJET -  	  Single Phase Inverter using MOSFET
IRJET - Single Phase Inverter using MOSFETIRJET Journal
 
Design and Implementation of Photovoltaic Module using Multilevel Inverter an...
Design and Implementation of Photovoltaic Module using Multilevel Inverter an...Design and Implementation of Photovoltaic Module using Multilevel Inverter an...
Design and Implementation of Photovoltaic Module using Multilevel Inverter an...IRJET Journal
 
Report on simulation and analysis of converters for electric vehicles
Report on simulation and analysis of converters for electric vehiclesReport on simulation and analysis of converters for electric vehicles
Report on simulation and analysis of converters for electric vehiclesMAYANK ACHARYA
 
IRJET - Modeling and Simulation of Fuzzy Logic based Controller with Proposed...
IRJET - Modeling and Simulation of Fuzzy Logic based Controller with Proposed...IRJET - Modeling and Simulation of Fuzzy Logic based Controller with Proposed...
IRJET - Modeling and Simulation of Fuzzy Logic based Controller with Proposed...IRJET Journal
 
DESIGN_AND_CONSTRUCTION_OF_2KW_SOLAR_PAN.pdf
DESIGN_AND_CONSTRUCTION_OF_2KW_SOLAR_PAN.pdfDESIGN_AND_CONSTRUCTION_OF_2KW_SOLAR_PAN.pdf
DESIGN_AND_CONSTRUCTION_OF_2KW_SOLAR_PAN.pdfakindolutimilehin
 
Grid Connected Solar PV System with SEPIC Converter Based MPPT
Grid Connected Solar PV System with SEPIC Converter Based MPPTGrid Connected Solar PV System with SEPIC Converter Based MPPT
Grid Connected Solar PV System with SEPIC Converter Based MPPTIRJET Journal
 

Similaire à Unipolar pulse width modulation inverter (20)

Introduction to solid state power electronics.pdf
Introduction to solid state power electronics.pdfIntroduction to solid state power electronics.pdf
Introduction to solid state power electronics.pdf
 
MINI INVERTER
MINI INVERTERMINI INVERTER
MINI INVERTER
 
Automatic Power Factor Corrector Using Arduino report
Automatic Power Factor Corrector Using Arduino reportAutomatic Power Factor Corrector Using Arduino report
Automatic Power Factor Corrector Using Arduino report
 
Variable power supply with digital control with seven segments display
Variable power supply with digital control with seven segments displayVariable power supply with digital control with seven segments display
Variable power supply with digital control with seven segments display
 
EV Charger SMPS Based.pdf
EV Charger SMPS Based.pdfEV Charger SMPS Based.pdf
EV Charger SMPS Based.pdf
 
Automatic Phase Changer
Automatic Phase ChangerAutomatic Phase Changer
Automatic Phase Changer
 
sample project report (2).docx
sample project report (2).docxsample project report (2).docx
sample project report (2).docx
 
“MODELING AND ANALYSIS OF DC-DC CONVERTER FOR RENEWABLE ENERGY SYSTEM” Final...
“MODELING AND ANALYSIS OF DC-DC CONVERTER  FOR RENEWABLE ENERGY SYSTEM” Final...“MODELING AND ANALYSIS OF DC-DC CONVERTER  FOR RENEWABLE ENERGY SYSTEM” Final...
“MODELING AND ANALYSIS OF DC-DC CONVERTER FOR RENEWABLE ENERGY SYSTEM” Final...
 
Hybrid inverter project report
Hybrid inverter project reportHybrid inverter project report
Hybrid inverter project report
 
IRJET-Study of Three State Switching Cell Based DC-To-DC Converter
IRJET-Study of Three State Switching Cell Based DC-To-DC ConverterIRJET-Study of Three State Switching Cell Based DC-To-DC Converter
IRJET-Study of Three State Switching Cell Based DC-To-DC Converter
 
PJ HND KDUA POLY
PJ HND KDUA POLYPJ HND KDUA POLY
PJ HND KDUA POLY
 
High efficiency push pull converter for photovoltaic applications
High efficiency push pull converter for photovoltaic applicationsHigh efficiency push pull converter for photovoltaic applications
High efficiency push pull converter for photovoltaic applications
 
[Codientu.org] design of a charge controller circuit
[Codientu.org] design of a charge controller circuit[Codientu.org] design of a charge controller circuit
[Codientu.org] design of a charge controller circuit
 
IRJET - Single Phase Inverter using MOSFET
IRJET -  	  Single Phase Inverter using MOSFETIRJET -  	  Single Phase Inverter using MOSFET
IRJET - Single Phase Inverter using MOSFET
 
Design and Implementation of Photovoltaic Module using Multilevel Inverter an...
Design and Implementation of Photovoltaic Module using Multilevel Inverter an...Design and Implementation of Photovoltaic Module using Multilevel Inverter an...
Design and Implementation of Photovoltaic Module using Multilevel Inverter an...
 
Report on simulation and analysis of converters for electric vehicles
Report on simulation and analysis of converters for electric vehiclesReport on simulation and analysis of converters for electric vehicles
Report on simulation and analysis of converters for electric vehicles
 
IRJET - Modeling and Simulation of Fuzzy Logic based Controller with Proposed...
IRJET - Modeling and Simulation of Fuzzy Logic based Controller with Proposed...IRJET - Modeling and Simulation of Fuzzy Logic based Controller with Proposed...
IRJET - Modeling and Simulation of Fuzzy Logic based Controller with Proposed...
 
Design and Construction of 2KVA AC/DC Inverter
Design and Construction of 2KVA AC/DC InverterDesign and Construction of 2KVA AC/DC Inverter
Design and Construction of 2KVA AC/DC Inverter
 
DESIGN_AND_CONSTRUCTION_OF_2KW_SOLAR_PAN.pdf
DESIGN_AND_CONSTRUCTION_OF_2KW_SOLAR_PAN.pdfDESIGN_AND_CONSTRUCTION_OF_2KW_SOLAR_PAN.pdf
DESIGN_AND_CONSTRUCTION_OF_2KW_SOLAR_PAN.pdf
 
Grid Connected Solar PV System with SEPIC Converter Based MPPT
Grid Connected Solar PV System with SEPIC Converter Based MPPTGrid Connected Solar PV System with SEPIC Converter Based MPPT
Grid Connected Solar PV System with SEPIC Converter Based MPPT
 

Plus de Web Design & Development

power electronic computer simulation and analysis
power electronic computer simulation and analysispower electronic computer simulation and analysis
power electronic computer simulation and analysisWeb Design & Development
 
Selecting efficiency and estimating savings
Selecting efficiency and estimating savingsSelecting efficiency and estimating savings
Selecting efficiency and estimating savingsWeb Design & Development
 
Capacitive cmos sensors for cell viability testing
Capacitive cmos sensors for cell viability testingCapacitive cmos sensors for cell viability testing
Capacitive cmos sensors for cell viability testingWeb Design & Development
 
design and simulation of valveless piezoelectric micropumppresentation
design and simulation of valveless piezoelectric micropumppresentationdesign and simulation of valveless piezoelectric micropumppresentation
design and simulation of valveless piezoelectric micropumppresentationWeb Design & Development
 
Electromagnetic pollution and its health effects on the organism
Electromagnetic pollution and its  health effects on the organismElectromagnetic pollution and its  health effects on the organism
Electromagnetic pollution and its health effects on the organismWeb Design & Development
 
Dc motor speed controller by pwm technique
Dc motor speed controller by pwm techniqueDc motor speed controller by pwm technique
Dc motor speed controller by pwm techniqueWeb Design & Development
 

Plus de Web Design & Development (18)

Basic PLC Ladder Programming
Basic PLC Ladder ProgrammingBasic PLC Ladder Programming
Basic PLC Ladder Programming
 
Emi emc-pdf
Emi emc-pdfEmi emc-pdf
Emi emc-pdf
 
mosfet scaling_
mosfet scaling_mosfet scaling_
mosfet scaling_
 
Estimating parameters of IM
Estimating parameters of IM Estimating parameters of IM
Estimating parameters of IM
 
power electronic computer simulation and analysis
power electronic computer simulation and analysispower electronic computer simulation and analysis
power electronic computer simulation and analysis
 
How to calculate β
How to calculate βHow to calculate β
How to calculate β
 
Opertional amplifier khiri elrmali libya
Opertional amplifier khiri elrmali  libyaOpertional amplifier khiri elrmali  libya
Opertional amplifier khiri elrmali libya
 
DC servo motor
DC servo motorDC servo motor
DC servo motor
 
Cantilever1
Cantilever1Cantilever1
Cantilever1
 
Voltage sags evaluation studies
Voltage sags evaluation studiesVoltage sags evaluation studies
Voltage sags evaluation studies
 
Selecting efficiency and estimating savings
Selecting efficiency and estimating savingsSelecting efficiency and estimating savings
Selecting efficiency and estimating savings
 
ceiling fan
 ceiling fan  ceiling fan
ceiling fan
 
Capacitive cmos sensors for cell viability testing
Capacitive cmos sensors for cell viability testingCapacitive cmos sensors for cell viability testing
Capacitive cmos sensors for cell viability testing
 
Presentation1
Presentation1Presentation1
Presentation1
 
design and simulation of valveless piezoelectric micropumppresentation
design and simulation of valveless piezoelectric micropumppresentationdesign and simulation of valveless piezoelectric micropumppresentation
design and simulation of valveless piezoelectric micropumppresentation
 
emc
emcemc
emc
 
Electromagnetic pollution and its health effects on the organism
Electromagnetic pollution and its  health effects on the organismElectromagnetic pollution and its  health effects on the organism
Electromagnetic pollution and its health effects on the organism
 
Dc motor speed controller by pwm technique
Dc motor speed controller by pwm techniqueDc motor speed controller by pwm technique
Dc motor speed controller by pwm technique
 

Dernier

An introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptxAn introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptxPurva Nikam
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitter8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitterShivangiSharma879191
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catcherssdickerson1
 
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncWhy does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncssuser2ae721
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEroselinkalist12
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...Chandu841456
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptSAURABHKUMAR892774
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)dollysharma2066
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
 

Dernier (20)

An introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptxAn introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptx
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitter8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitter
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
 
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncWhy does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
 
POWER SYSTEMS-1 Complete notes examples
POWER SYSTEMS-1 Complete notes  examplesPOWER SYSTEMS-1 Complete notes  examples
POWER SYSTEMS-1 Complete notes examples
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
young call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Serviceyoung call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Service
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.ppt
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
 

Unipolar pulse width modulation inverter

  • 1. Unipolar Pulse Width Modulation Inverter By Randy Baggao & Gabriel Tam Senior Project ELECTRICAL ENGINEERING DEPARTMENT California Polytechnic State University San Luis Obispo 2013
  • 2. - 1 - Table of Contents Section Abstract……………………………………………………………………………………............4 Acknowledgements………………………………………………………………………………..5 I. Introduction………………………………………………………………………………..6 II. Background………………………………………………………………………………..8 III. Requirements & Specification...…………………………………………………………11 IV. Design…………………………………………………………………………….............14 A. Control Unit………………….………………………….……………………………….14 B. Firing Circuit……………………………………………………………………………. 18 C. H-Bridge………………………………………………………………………………… 22 V. Testing & Results………………………………………………………………………...25 A. Control Unit………………………………………………………………………………25 B. Firing Circuit……………………………………………………………………………...30 C. H-Bridge………………………………………………………………………………….35 VI. Conclusion & Recommendations………………………………………………………...39 Appendices A. Datasheets………………………………………………………………………………...41 B. Gantt Chart……………………………………………………………………………….47 C. Parts List, Costs, and Time Schedule Allocation………………………………………...48 D. References………………………………………………………………………………..50
  • 3. - 2 - Page Locations of Tables, Figures, & Schematics List of Tables Table 3-1: Unipolar and Switching PWM Logic…………………………….………..................12 Table 3-2: Summary of PWM Inverter Functional Description………………………................13 Table 3-3: Requirement Specifications of the PWM Inverter for testing…………………..……13 List of Figures Figure 2-1: A Commercial Tripp-Lite Power Inverter for Mobile Vehicles………………..……. 8 Figure 2-2: Photovoltaic Grid System Left-Installation Right- Photo of Solar Panels installed on a School Gym……………………………………………………..................9 Figure 3-1: Block Diagram of the Pulse Width Modulation Inverter…………….….…...............12 Figure 3-2: Full Bridge Circuit Topology of the PWM Inverter Source Indication……...............12 Figure 5-1: PWM Inverter Wired for testing……………………………………………………..25 Figure 5-2: Filtered Triangle Output…………………………………………….….………….. 26 Figure 5-3: Output Control Voltages ܸሺ‫ܣ‬ା , ‫ܣ‬ିሻ and ܸሺ‫ܤ‬ା , ‫ܤ‬ି ሻ with respect to -12V reference and Vcont = 0 (ie. ݉௔= 0)…………………………………….…………27 Figure 5-4: ܸ஼ைே் and -ܸ஼ைே் with respect to proto board common………………….………... 28 Figure 5-5: Output Control Voltage V(A+, A-) on top and V(B+, B-) on bottom with respect to -12V, where ࢂ࡯ࡻࡺࢀ positive……………………………….........................................29 Figure 5-6: Control Voltage V(A+, A-) on top and V(B+, B-) on bottom with respect to -12V, where ܸ஼ைே் negative……………………………………………….................29 Figure 5-7: Idealized VLOAD at Overmodulation Region………………………………...............30 Figure 5-8: V(A+,A-) on top and Optocoupler A+ output on bottom…………………............... 32
  • 4. - 3 - Figure 5-9: V(A+, A-) on top and Optocoupler A- output on bottom…………………...............32 Figure 5-10: Optocoupler Outputs A+ (top) and A- (bottom)……………………………………33 Figure 5-11: V(A+, A-) on top and Driver A+ on bottom……………………………………….34 Figure 5-12: V(A+, A-) on top and Driver A- on bottom……………………………..…………34 Figure 5-13: Driver A+ on top and Driver A- on bottom………………………...………………35 Figure 5-14: MOSFET A+ on top and MOSFET A- on bottom……………………....................36 Figure 5-15: MOSFET B+ on top and MOSFET B- on bottom…………………………………36 Figure 5-16: Unfiltered AC Voltage Output……………………………………………………..37 Figure 5-17: Filtered AC Voltage Output………………………………………………………..38 Figure 5-18: Final Product of Unipolar PWM Inverter…………………………………………. 38 List of Schematics Schematic 4-1: PWM Inverter Control Circuit…………………………………………………..17 Schematic 4-2: Isolated Firing Circuit with Optocoupler and Gate Drivers……………………..20 Schematic 4-3: Terminal Connections for all 4 Firing Circuits…………………….……………21 Schematic 4-4: H-Bridge of the Inverter………………………………………………………....23 Schematic 4-5: Physical Layout of Inverter…………………………………………………….. 24
  • 5. - 4 - Abstract This project portrays the design and construction of a pulse width modulation (PWM) inverter. The inverter is implemented as a unipolar converter. The inverter provides a steady single-phase sinusoidal 60Hz AC voltage output from a DC input. This is a basic DC-AC power converter that is built in 3 separate phases and integrated altogether at the end. The inverter can be broken down into the control unit, firing circuit, and the H-bridge. By using the PWM method, one can control the frequency and amplitude of the output by using a reference signal. This method will also avoid using a transformer because transformers have high power losses. This project will be dedicated to EE-410 power electronics students as an experiment to observe and experience the fundamental operations of a PWM inverter circuit at Cal Poly.
  • 6. - 5 - Acknowledgments We would like to express thanks to Jaime Carmo, the Electrical Engineering Department’s Electronic Technician, for devoting his time to the faculty and students and especially for helping create a case for our senior project. We would also like to express thanks to our project advisors Taufik and Ahmad Nafisi for teaching us the concepts of Electrical Engineering through our college careers and also guiding us through these last few quarters to making a successful working product.
  • 7. - 6 - I. Introduction Power Engineering has seen a rapid growth in efficient energy solutions. Power electronics focuses on processing electrical power using electronics with high efficiency and less power loss. Power electronics is found in applications of modified electrical energy. Some examples include low voltage cellular devices and high voltage transmission lines. Efficiency plays a large role in power electronics whereas inefficient systems are impractical and result in wasted energy and higher costs in utilities or reliability of components. Some types of efficient source conversions include AC-to-AC, DC-to-DC, AC-to-DC, and DC-to-AC source conversions. AC-to-DC converters are best known as rectifiers while DC- to-AC converters are known as inverters [1]. Today’s popular power conversion type includes the use of photovoltaic (PV) solar panels to take in DC Power and convert it to supply household AC power sources. Computers, cell phones, televisions, microwaves, etc. have been sourced by AC power through some sort of energy conversion which will allow these appliances to function without “blowing up” on startup. With the conversion of AC-to-DC sources, a solution of using house hold appliances on the go took place that lead to the use of power inverters. This allowed the reverse conversion of DC-to-AC inverter power supply sources giving designers and customers the option of using larger scale DC batteries to power household appliances at any specified voltage rating. It is important for electrical engineering students who are focusing on power electronic conversions, to learn the basics on inverter circuits as it is one of the four major conversion types. At Cal Poly, the course that covers the foundation of the four basic conversion processes is EE410: Introduction to Power Electronics. The course has a lab portion where students get the hands-on experience on several basic power converters. Currently however, the lab lacks one
  • 8. - 7 - important experiment in which students can learn the operation and performance of an inverter circuit. This senior design project aims to develop an inverter circuit experiment which addresses several concepts and techniques used in covering DC to AC inverters.
  • 9. - 8 - II. Background DC-to-AC inverters are seeing a rapid growth in contributing renewable energy sources. An example of a DC-to-AC inverter application may include uninterruptible power supplies known as backup generators that supply power from the use of batteries (DC source) and invert it (previously converted and stored again as a DC power) into AC power [9]. A simpler way to understand inverters is the application of converting DC power into AC power using a commercially available car inverter that is used for car electrical outlets to allow household electronics to be used by a car battery source as seen in Figure 2-1. Figure 2-1: A Commercial Tripp-Lite Power Inverter for Mobile Vehicles [12] In air conditioning, an inverter can adjust the input frequency to control the speed of its motor. The desired room temperature is achieved by adjusting the output frequency of the inverting control unit. There are many types of control units that may be selected according to the designers preferred choice of specifications that will make the product run efficiently and with lower cost [3].
  • 10. - 9 - Inverters play an important role in Power Electronics as it applies to larger device applications that help change the development of electronic machinery. The increase use of inverters are due to increasing use of grid tied residential PV. Figure 2-2 shows how a photovoltaic grid system is installed. Figure 2-2: Photovoltaic Grid System Left-Installation Right-Photo of Solar Panels installed on a School Gym [10][11]. The power electronic classes provided by California Polytechnic State University help prepare students in the power industry. There are currently four power electronics courses offered as technical elective courses for electrical engineering majors. The four courses are EE410 (Power Electronics I), EE411 (Power Electronics II), EE433 (Introduction to Magnetic Design), and EE527 (Advanced Topics in Power Electronics). Many lab experiments include concepts of rectification using single and three phase source inputs, non-isolated converters like buck and boost as well as isolated converters such as a fly-back circuit, magnetic design and various computer simulation exercises [1], [2]. The labs provide little hands-on experience to concepts explained in lecture which sometimes are further explored in computer simulation. Some of the experiments created are provided by students that have had the privileges to taking these classes and have their senior projects to help improve the experience in the power electronics labs.
  • 11. - 10 - This senior project is an example of such an effort. More specifically, this senior project has the objective to improve a previous effort by another senior project team to design and develop a lab experiment in switching PWM inverter [5]. The following chapter details the many aspects this senior project will improve.
  • 12. - 11 - III. Requirements & Specifications The project consists of the design and development of a PWM inverter that amplifies a small input signal Vcont and outputting voltages +VDC, –VDC or 0 at the load depending on how +VCont or -VCont compares to the reference triangle waveform VTri. VCont is provided by an AC Wall Wart that produces 4.5VRMS at a steady 60Hz frequency and adjustable by a trimmer knob of up to 500 . One of the op-amps to the TLE2072CP componen of the control unit uses an inverting amplifier to invert the VCont signal and produce –VCont. The inputs VDC are from isolated rail DC voltages at +12V and -12V, provided by multiple DC-DC converter chips that are supplied from a DC power supply. The waveform generator chip outputs 22kHz triangle-wave VTri after it is powered by the rail voltages. The LM339AN comparator chip performs the PWM logic comparison and is also powered by the control circuit’s isolated rail voltage. The output load voltage is similar to VCont but contains harmonics centered at even multiples between the ratio of the triangular waveform frequency fTri and the continuous waveform fCont which is also known as frequency modulation mf. The three circuits (Control, Firing and H-bridge circuits) are built onto a single proto circuit board. Each circuit is isolated from one another by using DC-to-DC converter chips and isolated grounds. This allows easy testing and troubleshooting at each different circuit. The physical area of the board is about 5”x7”x2”. After extensive testing, the circuit will be encased in plexiglass about 8”x10”x5”. The circuit will be powered by a DC Power Supply to power the control and firing circuit, a DC wall wart to provide the input of the inversion, and an AC wall wart to create the continuous sinusoidal waveform. The output that is monitored is an AC sinusoidal signal based on the amplitude modulation ma which is the ratio of VCont and VTri controlled by a trimmer knob
  • 13. - 12 - to set the output to be either linear overmodulation, or saturation. The second output is the unfiltered AC output to confirm unipolar measurements of V+ to 0 or V- to 0. Figure 3-1: Block diagram of the Pulse Width Modulation Inverter. Figure 3-2: Full Bridge Circuit Topology of the PWM inverter Source Indications [1] Table 3-1: Unipolar Switching PWM Logic [1] [4] Switches [On] Unipolar Switching Logarithm S1 ܸௌ௜௡௘ ൒ ்ܸ௥௜ ൌ൐ ܸ஺ ൌ ܸ஽஼ S2 ܸௌ௜௡௘ ൏ ்ܸ௥௜ ൌ൐ ܸ஺ ൌ 0 S3 െܸௌ௜௡௘ ൒ ்ܸ௥௜ ൌ൐ ܸ஻ ൌ െܸ஽஼ S4 െܸௌ௜௡௘ ൏ ்ܸ௥௜ ൌ൐ ܸ஻ ൌ 0
  • 14. - 13 - Table 3-2: Summary of PWM Inverter Functional Description Module Unipolar PWM Inverter Inputs DC Input: +/-12 V DC Rail from Power Supply supplies the entire circuit PWM Control Input: Produces the Characteristic Waveform to be modulated by the chip within a grand scale switching frequency range from 10kHz to 25kHz. Test data should show similar results when an input triangular waveform is compared with a sinusoidal input controlled waveform. Outputs AC Output: Should produce a 60Hz constant output signal from the inverting DC-to- AC device. The DC power is held by the DC-to-DC chip which will readily be modified through the inverting chip. The output waveform should follow a unipolar PWM waveform. Functionality The Pulse Width Modulation Inverter will take a +/-12V DC input and compare a controlled sinusoidal waveform with an input triangular waveform to produce a PWM output inverter. Table 3-3: Requirement Specifications of the PWM Inverter for testing Marketing Requirements Engineering Requirements Justification 2,5 1. Total Harmonic Distortion of PWM should be < 5-10% The high-speed amplifiers can easily achieve this kind of THD. 1,3,4 2. System must be compact, portable, and safer to use compared to older version. No complicated steps necessary to turn on the product and should be safe for the customer. 1,4,5 3. System should be able to work as inverter: 20-40 V DC input source - Variable AC Output Standard Inverter conversion of DC to AC wall warts. 3,4 4. The system must be built on PCB board with no extra materials i.e. wood, plastic. Compared to the previous version, the circuit board was held together with a block of wood. Simplify connections and use only electrical boards. Marketing Requirements 1. Should be easy to use. 2. Should use PWM. 3. Should have 3 parts: firing, control, inverter circuits. 4. Should be simplified and portable. 5. Should be able to get desired an adjustable AC Voltage at a steady 60 Hz Output.
  • 15. - 14 - IV. Design Control Unit The control unit of the inverter is used to produce firing signals to the four MOSFETs in the H-bridge. Schematic 4-1 displays the schematic of the control unit. The DC power supply will provide + ૚૛ ࢂࡰ࡯ to the DC-DC converter to transmit isolated േ ૚૛ ࢂࡰ࡯ to the waveform generator, op-amp, and comparator. The waveform generator will provide a triangle waveform at pin 3. The frequency of the triangle output waveform can be controlled by a timing capacitor at pin 10. The 500Ω trimmer will determine the rise time and fall time of the triangle waveform. There is a high-pass filter to allow only DC signal of the triangle wave to go through. The inverting op-amp inverts the small AC signal ࢂ࡯ࡻࡺࢀ to the negative AC signal െࢂ࡯ࡻࡺࢀ. The AC signal, ࢂ࡯ࡻࡺࢀ, can be used to amplify the amplitude of ࢂ࡭࡯ at the output with the 500Ω potentiometer. The 1kΩ trimmer can be adjusted to vary the amplitude of െࢂ࡯ࡻࡺࢀ to sync with ࢂ࡯ࡻࡺࢀ. The comparator will be used to perform the PWM logic by comparing the triangle and sine wave to create pulses that will send current to the optocouplers to switch them on and off accordingly. The comparator will send pulses to the firing circuits of ࢂሺ࡭ା , ࡭ିሻ that controls MOSFETs ࡭ା & ࡭ି and ࢂሺ࡮ା , ࡮ି ሻ that controls MOSFETs ࡮ା & ࡮ି [6].
  • 16. - 15 - Specifications • Input: +12Vdc regulated from 2W DC converter chip • Reference: -12Vdc regulated from 2W DC converter chip • Vcontrol = 60Hz, 4.5Vrms AC signal and 500Ω potentiometer • Protoboard common connected to 0V output pin 2W, DC converter chip Waveform Generator – Model NTE864 Ratings: 15mA max Min: 10V Max: 30V Trimmer (500Ω) – Pins 4 & 5 • Vsupply = Vd = 12V • Need: ~6݉‫ܣ‬ • ܴ ൌ ଵଶ௏ ଺௠஺ ൌ 2000ߗ • Two Resistors (1k each) will be in series with trimmer. Timing Capacitor – Pin 10 • According to datasheet: Ra = Rb = 1.5kΩ • Vd = 12V • Need: Operating Frequency = 22kHz • ‫ܫ‬஽ ൌ ଵଶ௏ ଵ.ହ௞ఆ ൌ 8݉‫ܣ‬ • Need: Fairly large capacitor. • Ideal capacitor = 0.01uF • Actual size: 16nF Inverting Op Amp – Model TLE2072CP Ratings: Supply 3.1mA Output: 20mA Voltage Supply: 2.25V ~ 19V
  • 17. - 16 - Trimmer (1kΩ) – Pin 2 • Standard Range: 10Ω to 1MΩ • Used: 9.53kΩ to output 6mA • Max Variable Gain = ோଷ ோସ ൌ ோଶ ோଵ = ଽ.ହଷ௞ఆ ଵ௞ఆ ൌ 9.53 Comparator – Model LM339 Quad Ratings: 2V~ 36ܸ ‫ݐݑ݌݊ܫ‬ ܴܽ݊݃݁ Current Max: 18mA Vd = 12V Vgnd = -12V reference
  • 18. 17 14 1 8 7 1 DC - DC Waveform Generator OP AMP 1 4 58 COMPARATOR 1 7 814 2 4 5 6 V(A+, A-) V(B+,B-) Vcc- 1k 1k .. 500 Trimmer 16nF (Freq. Control) 0.01uF 100k 10k 9.53k 1k 270k 1k Trimmer 1k 1.5k , 1/2 W 1.5k , 1/2 W 270k 500 Potentiometer +12Vdc regulated from 2W, DC-DC converter -12Vdc regulated from 2W, DC-DC converter Proto board common ground, 0V 60 Hz, 4.5Vrms signal from function generator 22kHz triangle wave -Vcont Vcont Filtered and buffered triangle wave Refer to Appendix for IC pin configurations +12V from DC power High-pass filter to block DC Schematic 4-1: PWM Inverter Control Circuit
  • 19. 18 Firing Circuit There are four separate firing circuits that are used to drive the inverting and non- inverting chips with pulses from ࢂሺ࡭ା , ࡭ିሻ and ࢂሺ࡮ା , ࡮ି ሻ accordingly. The schematic of the full firing circuit is displayed in Schematic 4-2. The isolated DC-DC converters will be used to power the chips with ൅ െ⁄ ૚૛ ࢂࡰ࡯ and isolate the firing circuit from the control unit and H- bridge. Each individual firing circuit will need an optocoupler, an inverting or non-inverting driver chip, a switching diode, and separate passive resistors and capacitors. The optocoupler will electrically isolate the PWM controller outputs from the gate terminal of the power MOSFET, so then the source terminal of the power MOSFET has a “floating” ground. The optocouplers have to be isolated from the PWM control circuit because the source terminal of the respective MOSFET must be connected to its local ground reference. It also isolates the higher voltage on the high power side of the H-bridge from the control circuit to prevent ICs from being damaged and noise turbulences. Schematic 4-3 displays 4 firing circuits that are connected similarly to one another [7].
  • 20. 19 Specifications • Output of the control unit goes into the input of the optocoupler • Input: +12V that is isolated from PWM circuit • Reference: DC converter chip Optocoupler – Model Vishay 6N136 Ratings: Supply: -0.5V to 15V Output: -0.5V to 15V Max output current: 8mA to 16mA Pins 6 & 8 Want: I ൌ 1.19mA I ൌ ଵଶ୚ ଵ଴୩Ω ൎ 1.2mA MOSFET Driver – Model TC1426(Inverting) & TC1427(Non-Inverting) Ratings: Supply: +18V Range: 4.5V to 16V Output Current Peak: 1.2A Power Dissipation: 730mW Diode Snubber Circuit • Fast Switching Diode: 75V, 150mA • Small Resistance for Diode ൎ10Ω • Parallel Resistance ൎ 1kΩ
  • 21. 20 Optocoupler 1 45 8 0.1uF 1.2k 10 100k 1 DC - DC, 1W 2 4 1 2 4 5 6 3 1 45 8 Inverting Driver MOSFET DC - DC, 2W G D S 10 O+ O- Grounds (isolated from control circuit) Switching diode Green for A+, B+ Black for A-, B- Switches A+ and B+ use inverting drivers. Switches A- and B- use non-inverting drivers. Vcc+ and GND supplied by DC power supply shares nodes with A- and B- +12V isolated from the PWM control circuit One firing circuit for each MOSFET. Switches A- and B- share a power supply and ground. However, A+ and B+ must use separate power supplies and grounds. Do not connect any of these grounds to the ground of the control circuit. Connects to Control Circuit Schematic 4-2: Isolated Firing Circuit with Optocoupler and Gate Drivers
  • 22. 21 Schematic 4-3: Terminal connections for all 4 firing circuits Firing Circuit A+ A- B+ B- Control Circuit Firing Circuit Firing Circuit Firing Circuit DC Supply AC Control + + + +- - - - V(A+,A-) V(B+,B-) -12V reference
  • 23. 22 H-Bridge The H-bridge of the inverter circuit can be shown in Schematic 4-4 and the layout consisting of all three circuits can be seen in Schematic 4-5. There are 4 separate power MOSFETs that are used to perform the switching in the H-bridge. Unipolar switching will require all 4 switches in order to have the output of the inverter to be switched from ൅ܸ஽஼ to 0 or from െܸ஽஼ to 0. An electrolytic capacitor is placed across the positive and negative terminals of the ൅ܸ஽஼ input as a filter to provide current ripple into the inverter so the DC current will have fewer ripples. Two fuses are placed across the ൅ܸ஽஼ input as safety to protect ሺ‫ܣ‬ା , ‫ܣ‬ିሻ and ሺ‫ܤ‬ା , ‫ܤ‬ି ሻ respectively. One fuse feeds the ሺ‫ܣ‬ା , ‫ܣ‬ିሻ side of the inverter and the other fuse feeds the ሺ‫ܤ‬ା , ‫ܤ‬ି ሻ side. An inductor and a capacitor are used as a tank circuit to decrease the damping waveform at the output to filter the pulses for ܸ஺஼. The inductor placed to prevent the output from shorting with the electrolytic capacitor at higher frequencies [8]. Specifications Convert 20-40VDC power to 60Hz VAC Low Pass Filter f = 60Hz ‫ݓ‬௢ ൌ 2ߨ݂ ൌ 376.99 ‫ݏ/݀ܽݎ‬ L = 100uH C = 10uF ݂௖ ൌ 1 2ߨ√‫ܥܮ‬ ൌ 1 2ߨඥሺ100‫ܪݑ‬ሻሺ10‫ܨݑ‬ሻ ൌ 15.915݇‫ݖܪ‬
  • 24. 23 Schematic 4-4: H-Bridge of the Inverter G D S G G GD D D Vdc Vac + + _ _ A+ A- S S S B+ B-
  • 25. 24 Schematic 4-5: Physical Layout of Inverter B+ B- + + Firing Firing Firing Firing A+ A- MOSFET MOSFET MOSFET MOSFET A+ A- B+ B- + + + +- - - - DC Supply AC Control Control Circuit Vdc Vac -- V(A+, A-) V(B+,B-) -12V reference H-Bridge and Filters Individual heat sink for each MOSFET. HEAT SINKS MUST NOT TOUCH EACH OTHER BECAUSE THEY WILL HAVE DIFFERENT DRAIN POTENTIALS
  • 26. 25 V. Testing Figure 5-1: PWM Inverter Wired for testing Figure 5-1 shows the inverter wired up for testing. The H-bridge, firing circuit and control circuit work together to invert the DC input signal into an AC output signal. In this section, each of the three circuits are tested individually to achieve the necessary inversion. Control Unit Step 1 The objective of the control unit is to have the waveform generator produce a triangle wave that will produce a clean signal with 7.8ܸ௣௘௔௞ି௣௘௔௞ by supplying the oscillator with +12V. The triangle wave should have a frequency of approximately 22kHz with minimized DC offset by adjusting the values of the frequency control of the waveform generator. The fall and rise time of the triangle wave should be equal by adjusting the 500Ω trimmer to get a duty cycle set to 50%. Figure 5-1 below displays a high-pass filtered triangle wave with minimized DC offset.
  • 27. 26 Figure 5-2: Filtered Triangle Output Step 2 Before powering AC ܸ஼ைே் with 4.5ܸோெௌ, energize the circuit with the DC power supply and measure the terminals across ܸሺ‫ܣ‬ା , ‫ܣ‬ିሻ and ܸሺ‫ܤ‬ା , ‫ܤ‬ି ሻ with respect to -12V reference and confirm that both waveforms are varying sharply from +24V to 0V with a 50% duty cycle. Figure 5-3 below displays the output control voltages ܸሺ‫ܣ‬ା , ‫ܣ‬ିሻ and ܸሺ‫ܤ‬ା , ‫ܤ‬ି ሻ with ܸ஼ைே்= 0. ܸ௉௘௔௞ ൎ 7.8ܸ ݂ ൎ 22݇‫ݖܪ‬
  • 28. 27 Figure 5-3: Output Control Voltages ࢂሺ࡭ା , ࡭ିሻ and ࢂሺ࡮ା , ࡮ି ሻ with respect to -12V reference and Vcont = 0 (ie. ࢓ࢇ= 0). Power up the AC ܸ஼ைே் to 4.5ܸோெௌ and raise the 500Ω potentiometer for maximum ܸ஼ைே். The operational amplifier is an inverting amplifier that will invert ܸ஼ைே் to -ܸ஼ைே் that will be used to determine the switching in the firing circuit and H-bridge. Probe ܸ஼ைே் and -ܸ஼ைே் with respect to proto board common. The sinusoidal waveforms should be 180ᵒ out of phase of each other as shown in Figure 5-4. Use the 1kΩ trimmer to adjust -ܸ஼ைே் to make it the same RMS magnitude as ܸ஼ைே். The AC voltage with ݉ܽ= maximum across ሾܸሺ‫ܣ‬ା , ‫ܣ‬ିሻ - ܸሺ‫ܤ‬ା , ‫ܤ‬ି ሻ] should be approximately 21VAC. ܸሺ‫ܣ‬൅, ‫ܣ‬ െሻ ൎ 12ܸ݀ܿ ܸሺ‫ܤ‬൅, ‫ܤ‬ െሻ ൎ 12ܸ݀ܿ
  • 29. 28 Figure 5-4: ࢂ࡯ࡻࡺࢀ and -ࢂ࡯ࡻࡺࢀ with respect to proto board common. Lower the 500Ω ܸ஼ைே் potentiometer for minimum ܸ஼ைே். Use the oscilloscope to make probe connections at ܸሺ‫ܣ‬ା , ‫ܣ‬ିሻ and ܸሺ‫ܤ‬ା , ‫ܤ‬ି ሻ with respect to the -12V reference point. Gradually increase the 500Ω ܸ஼ைே் potentiometer so that ܸ஼ைே் increases from 0V to 3VRMS. Figures 5-5 and 5-6 display the output control voltages where ܸ஼ைே் is positive and where ܸ஼ைே் is negative. The “ON” period of one waveform gets wider whereas the other waveform gets narrower, and it’s vice-versa for the “OFF” period. These waveforms display pulses that were created by the comparator. The comparator in the control unit compares the triangle wave and the sine wave, and the output is switched from +VDC to 0 or from -VDC to 0.
  • 30. 29 Figure 5-5: Output Control Voltage V(A+, A-) on top and V(B+, B-) on bottom with respect to -12V, where ࢂ࡯ࡻࡺࢀ positive. Figure 5-6: Control Voltage V(A+, A-) on top and V(B+, B-) on bottom with respect to -12V, where ࢂ࡯ࡻࡺࢀ negative.
  • 31. 30 Figure 5-7 shows an oscilloscope capture of V(A+, A-) with reference to V(B+, B-) and the “split” portion in both half cycles. If the split cycles are not the same, then adjust the gain of െܸ஼ைே்with the 1kΩ trimmer. There is a lot of noise at the output because of long vulnerable wires. Figure 5-7: Idealized VLOAD at overmodulation region Firing Circuit Step 1 Before moving onto the firing circuit, perform power supply wiring continuity checks to confirm that: • The PWM control unit is isolated from the ground terminal of the DC power supply. • The 12V rail and ground terminal of the DC power supply is isolated from the +12V rail and ground of the A+ firing circuit board.
  • 32. 31 • The 12V rail and ground terminal of the DC power supply is connected to the +12V rail and ground of the A- firing circuit board. • The ൅ െ⁄ 12ܸ and ground rails of A+ and A- are isolated to each other. Perform the DC converter chip test by powering up the 12V supply. Check the voltage rails of the DC converter and make sure they output +12V and -12V. If the voltage drops more than 0.5V from your nominal voltage, then you most likely have two wires shorting each other in the circuit. If so, fix the problem before moving on or else it would cause the converter chip to fail and break. Step 2 Perform checks on the isolated A+ and A- firing circuits by disconnecting AC Vcont so that ma=0. Connect oscilloscope probe 1 to V(A+, A-) from the control unit and the ground with respect to the -12V reference. Also, connect oscilloscope probe 2 to the output of Opto A+ and the ground lead to the common ground of the firing circuit. It is okay to connect to any ground terminals on the firing circuit because the two signals are already isolated from each other. Figure 5-8 displays the result.
  • 33. 32 Figure 5-8: V(A+,A-) on top and Optocoupler A+ output on bottom Connect oscilloscope probe 2 and its ground terminal to the Optocoupler A- output to view the same waveforms as above. The result is shown in Figure 5-9. Figure 5-9: V(A+, A-) on top and Optocoupler A- output on bottom ܸሺ‫ܣ‬൅, ‫ܣ‬ െሻ ܸ݀ܿ ൎ 1.7ܸ ܸ݀ܿ ൎ 5.8ܸ Opto A+ Output ܸሺ‫ܣ‬൅, ‫ܣ‬െሻ ܸ݀ܿ ൎ 1.7ܸ ܸ݀ܿ ൎ 6.3ܸ Opto A- Output
  • 34. 33 Connect probe 1 and its ground lead to the output of Optocoupler A+, and connect probe 2 and its ground lead to the output of Optocoupler A-. The waveforms are expected to be similar as Figure 5-10 below. Figure 5-10: Optocoupler Outputs A+ (top) and A- (bottom) Connect probe 1 and its ground lead to V(A+, A-) with respect to -12V reference. Connect probe 2 and its ground lead to the output of Driver A+. Figure 5-11 displays the correct waveform of the output.
  • 35. 34 Figure 5-11: V(A+, A-) on top and Driver A+ on bottom Connect probe 2 to the output of Driver A+. Figure 5-12 displays the correct waveform of the output. It will be an inverting waveform because the driver receives inverting pulses from the control unit. Figure 5-12: V(A+, A-) on top and Driver A- on bottom ܸሺ‫ܣ‬൅, ‫ܣ‬െሻ ܸ݀ܿ ൎ 5.6ܸ Driver A+ Output ܸሺ‫ܣ‬൅, ‫ܣ‬െሻ ܸ݀ܿ ൎ 6.7ܸ Driver A- Output
  • 36. 35 Connect probe 1 and its ground lead to the output of Driver A+. Leave probe 2 and its ground lead to the output of Driver A-. The two waveforms should be opposite of each other because one is inverting whereas the other isn’t. There should not be any visible overlap in “on” times because with ma = 0, their duty cycles should be close to 50%. This is illustrated in Figure 5-13. Figure 5-13: Driver A+ on top and Driver A- on bottom Step 3 Repeat step 2 for firing circuits B+ and B-. The waveforms of firing circuits B will be exactly the same as the waveforms in firing circuits A. After finishing firing circuits B+ and B-, disconnect both the DC supply and AC Vcont. H-Bridge Step 1 To test the H-bridge of the inverter, confirm that firing circuits A+ is isolated from A- and B+ is isolated from B-. Energize the firing circuit with the DC power supply, but leave AC Vcont off.
  • 37. 36 Attach oscilloscope probe 1 and its ground lead across VGS of MOSFET A+, and attach oscilloscope probe 2 and its ground lead across VGS of MOSFET A-. The waveforms should appear as shown in Figure 5-14. Figure 5-14: MOSFET A+ on top and MOSFET A- on bottom Repeat the previous steps for B+ and B- to attain the waveform as shown in Figure 5-15. Figure 5-15: MOSFET B+ on top and MOSFET B- on bottom ܸீௌ ൎ 4.5ܸ݀ܿ MOSFET A+ ܸீௌ ൎ 4.5ܸ݀ܿ MOSFET A- ܸீௌ ൎ 4.5ܸ݀ܿ MOSFET B+ ܸீௌ ൎ 4.5ܸ݀ܿ MOSFET B-
  • 38. 37 Step 2 Test the inverter by inputting a 20VDC into the H-bridge and it will output an AC voltage of approximately 14ܸ௥௠௦. nominal at 60Hz at maximum ܸ஼ைே். The Figures of 5-16 and 5-17 shows the waveforms of the unfiltered AC voltage output and filtered AC voltage output. By varying the 500Ω potentiometer, the ܸ஼ைே் can increase or decrease the magnitude of the output AC voltage. Figure 5-16: Unfiltered AC Voltage Output
  • 39. 38 Figure 5-17: Filtered AC Voltage Output The final product of the unipolar PWM inverter can be seen in Figure 5-18. Figure 5-18: Final Product of Unipolar PWM Inverter
  • 40. 39 VI. Conclusion & Improvements The PWM inverter was built to be a prototype in the laboratory for EE-410. This project was created into three sections: the control unit, firing circuit, and the H-bridge, which were all integrated to invert DC voltage into AC voltage and uses unipolar switching. The project was most practical for unipolar switching because the inverter utilizes the right number of components and more efficient for it. The inverter produced a clean AC output waveform that proves that the circuit works successfully. The circuit produced a steady 60Hz amplitude varying AC voltage at the output. The inverter was tested to only handle up to 50Vdc because anything higher than that caused the filter capacitors to explode. Future EE-410 students could utilize unipolar switching without any problems. The problems encountered that slowed the pace of our project were the wires and faulty chip components. Even though troubleshooting was not a big problem, the wires were the main cause for noise in our circuit. The comparator was our only component problem because it would breakdown easily if signals going in and out were corrupted. This was fixed by finding the most updated component that performs similar or even better than the previous component. The improvements made in comparison to the previous design include using a waveform generator chip NTE864 to output a triangle waveform which cuts the need of using multiple function generators in the lab. Another improvement made to the previous design was to use a single input for the 12V DC side to supply both the control circuit and the firing circuit which cuts the need for extra power supplies. One last improvement made to the design was to build
  • 41. 40 the circuit onto one circuit board which includes a low voltage circuit side and a high voltage circuit side and also cover the board with a protective visible case. Future improvement for this project would be to use a pre-made printed circuit board (PCB) so that components could be soldered on without having wires. This would be the most efficient way to have a cleaner and less expensive project. Even though soldering took a long time, it was the best way to troubleshoot for any errors that had occurred. Another improvement to consider in the design would be to use a controllable Boost Converter instead of using a DC wall wart to power the switches in the H-Bridge. This would eliminate the need for another piece of equipment by stepping up 12V power from the control and firing circuits’ supply sources and with user control, vary the input source of the H-Bridge while keeping the output the same.
  • 42. 41 Appendix A: Datasheets Pin # Function 1 +Vin 2 GND 4 -V 5 0V 6 +V Murata Power Solutions NMH Series 2 Watt DC-DC Converter [15]
  • 43. 42 Murata Power Solutions NKE Series 1 Watt Isolated DC-DC Converter [18]
  • 44. 43 Pin # Symbol I/O Type Function 1 SA1 I Adjust Sine Waveform Input 1 2 SWO O Sine Wave Output 3 TWO O Triangle Wave Output 4 DCA1 I Duty Adjustment Input 1 5 DCA2 I Duty Adjustment Input 2 6 (+) Vcc Positive Power Supply 7 FM I Frequency Modulation 8 FS I Frequency Sweep 9 SQO O Square Wave Output 10 TC I Timing Capacitor Input 11 Vee Negative Power Supply 12 SA2 I Adjust Sine Waveform Input 2 13 N.C. No Connection 14 N.C. No Connection NTE864 Integrated Precision Circuit Waveform Data for Triangle Wave with reference to Intersil ICL8038 Precision Waveform Generator [13], [14]
  • 45. 44 Texas Instruments TLE2072 Excalibur Low-Noise High Speed Dual Op Amp [16] Texas Instruments LM339 Low Power Offset Voltage Quad Comparator [17]
  • 46. 45 Vishay 6N136 High Speed Octocoupler [19] Microchip Technology Inc. TC1426CPA Inverting MOSFET Driver [20] Microchip Technology Inc. TC1427CPA Non-Inverting MOSFET Driver [20]
  • 47. 46 International Rectifier IRFP140NPbF HEXFET Power MOSFET [21]
  • 48. 47 Appendix B: Gantt Chart Unipolar PWM DC-to-AC- INVERTERPROJECT Week 8 Project Plan Abstract (Proposal)V1 Requirements and Specifications BlockDiagram Literature search Gantt Chart Cost Estimates PWM InverterProject Analysis Requirements and Specifications V2 Rough Draft Report Report V2 ResearchPowerInverter (DC-to-AC) Ordering/InventoryofComponents PWMPowerInverterApplications Firing Circuit ControlCircuit H-Inverter Contruction& Testing FinalizeCircuit Layout Construct and Test Device IfVersion Ifailsto work,then.. Contruction& Testing (versionII) Re-Design/Analysis Simulation &Sensitivity Analysis Purchase NewComponents Contruction& Testing Construct and Test Device FinalizeResults and Prepare Data InterimReport Final SeniorProjectReport Rough Draft AdvisorReview Second Rought Draft AdvisorReview FinalSeniorProject Report 4 5 1 2 3 4 5 6 7 8 9 10 9 10 FALL2012 (EE460) HOLIDAYBREAK SPRING2013(EE464) 1 2 3 4 5 1 2 3 46 7 8 9 10 5 6 7 WINTER2013(EE463) 1 2 3
  • 49. 48 Appendix C: Parts List Control Circuit • NTE864, Waveform Generator ,14 – pins (1) • TLE2072CP, Dual Op Amp, 8 – pins (1) • LM393N, Quad Comparator, 14 – pins (1) • NMH1212SC, 2W Dual Output DC-DC Converter (1) • 16nF, ceramic capacitor (1) • 0.01uF, ceramic capacitor (1) • 1kΩ, ¼ W resistor (4) • 100kΩ, ¼ W resistor (1) • 10kΩ, ¼ W resistor (1) • 9.53kΩ, ¼ W resistor (1) • 270kΩ, ¼ W resistor (2) • 1.5kΩ, ½ W resistor (2) • 500Ω ½ W Bourns trimmer (1) • 1kΩ ½ W Bourns trimmer (1) • 500Ω, 24 mm Potentiometer (1) Firing Circuit • 6N136, Optocouplers (4) • TC1426, MOSFET Inverting Driver Microchip (2) • TC1427, MOSFET Non-Inverting Driver Microchip (2) • NKE0505S, 1 W Dual Output DC-DC Converter (2) • D0-35 Case, 75V 150mA, High-Speed Switching Diode (4) • 0.1uF, ceramic capacitor (4) • 10kΩ, ¼ W resistor (4) • 10Ω, ¼ W resistor (4) • 1.2kΩ, ¼ W resistor (4) • 100kΩ, ¼ W resistor (4) H-Bridge • IRFP140N, 100V 33A, N-Channel Power MOSFET (4) • TO-218, Heat Sink Case (4) • 10uF, 50V High Frequency Bipolar Capacitors (2) • 100uH, 10A Inductor (1) • 10A, 10V Fast – Acting Fuses (2) • 10A, 250VAC, Chasis- Type ¼” x ¼” Fuse Holder (2) Other • Proto board – ૠ ࢏࢔ࢉࢎ ൈ ૝ ૚ ૛ ࢏࢔ࢉࢎ (1) • 14 – pin DIP sockets (2) • 8 – pin DIP sockets (9)
  • 50. 49 • 24 – pin SIP socket (1) • Plexiglass Board & Box Cover (1) • Computer Board Standoffs (4) Cost Estimation Item Cost Per Unit Quantity Total NTE864, Waveform Generator $50.00 1 $50.00 TLE2072CP, Dual Op AMP $3.07 1 $3.07 LM393N, Quad Comparator $0.98 1 $0.98 NMH1212SC, DC- DC Converter $13.42 1 $13.42 6N136, Optocoupler $1.32 4 $5.28 TC1426, MOSFET Inverting Driver Microchip $1.24 2 $2.48 TC1427, MOSFET Non-Inverting Driver Microchip $1.24 2 $2.48 NKE0505S, DC-DC Converter $7.74 2 $15.48 DO-35 Case Switching Diodes $0.35 4 $1.40 IRFP140N, N-Power MOSFET $2.07 4 $8.28 TO-218, Heat Sink $3.02 4 $12.08 Fast Acting Fuses $2.49 2 $5.00 Fuse Holders $1.25 2 $2.50 Capacitors $0.40 8 $3.20 Resistors $0.20 27 $5.40 Potentiometer $3.00 1 $3.00 Inductor $10.45 1 $10.45 IC Pin Sockets $1.00 12 $12.00 Trimmers $0.98 3 $2.94 Total: $159.44
  • 51. 50 Appendix D: References Books [1] Taufik, and Dale Dolan. Introduction to Power Electronics. Cal Poly State University. San Luis Obispo: 10th Revision, 2012. [2] Taufik, and Dale Dolan. Advanced Power Electronics. Cal Poly State University. San Luis Obispo: 6th Revision, 2013. [3] D. Grahame Holmes, Thomas A. Lipo, Pulse Width Modulation for Power Converters, Hoboken NJ, USA. 2003 [4] Bin Wu, High-Power Converters and AC Drives, Hoboken NJ, USA. 2006 Reports [5] Tran, Kelvin, and Ryan Sidarto. PWM Inverter. Print. San Luis Obispo: California Polytechnic State University, 20 May 2011. [6] EE362L, Power Electronics, PWM Inverter Control Circuit. Print. 20 October 2008. [7] EE362L, Power Electronics, Isolated Firing Circuit for H-Bridge Inverter. Print. 27 October 2008. [8] EE362L, Power Electronics, H-Bridge Inverter. Print. Print. 20 February 2008. Internet [9] Wikipedia (2012, October 13) Power Inverters http://en.wikipedia.org/Power_inverter [10] Energy Home (2013, May 17) Photovoltaic Cells http://www.energyeducation.tx.gov/renewables/section_3/topics/photovoltaic_cells/f.htm l [11] Consenergy Biotek (2013, May 17) Grid Connected PV Systems http://www.consenergybiotek.com/grid_connected.html [12] Tripp-Lite (2013, May 24) PowerVerter® 375W Ultra-Compact Inverter with 2 Outlets http://www.tripplite.com/en/products/model.cfm?txtModelID=2552 Datasheets [13] NTE Electronics, “NTE864 Integrated Circuit Precision Waveform Generator,” Data Sheet Rev. N/A, July 2007.
  • 52. 51 [14] Intersil, “ICL8038 Precision Waveform Generator/Voltage Controlled Oscillator,” Data Sheet Rev. 2864.4, April 2001. [15] Murata Power Solutions, “NMH Series Isolated 2W Dual Output DC/DC Converters,” Data Sheet Rev. KDC_NMH.E03, 2012. [16] Texas Instruments, “TLE2072 Excalibur Low-Noise High-Speed JFET-Input Op-Amp,” Data Sheet Rev. SLOS181A, March 2000. [17] Texas Instruments, “LM339 Low Power Offset Voltage Quad Comparators,” Data Sheet Rev. DS005706, March 2004. [18] Murata Power Solutions, “NKE Series Isolated Sub-Miniature 1W Single Output DC/DC Converters,” Data Sheet Rev. NDC_NKE.5, 2001. [19] Vishay, “6N136 High Speed Optocoupler, 1 MBd, Photodiode with Transistor Output,” Data Sheet Rev. 1.8, 05 September 2011. [20] Microchip Technology Inc. “TC1426/TC1427 1.2A Dual High-Speed MOSFET Drivers,” Data Sheet Rev. DS21393C, 2 February 2006. [21] International Rectifier, “IRFP140NPbF HEXFET Power MOSFET,” Data Sheet Rev. PD-95711, 2 August 2004