Ce diaporama a bien été signalé.
Nous utilisons votre profil LinkedIn et vos données d’activité pour vous proposer des publicités personnalisées et pertinentes. Vous pouvez changer vos préférences de publicités à tout moment.

Flinders University - ATES and contaminated groundwater

1 512 vues

Publié le

November 25, 2010
Flinders University
Adelaide (Australia)

  • Did u try to use external powers for studying? Like ⇒ www.HelpWriting.net ⇐ ? They helped me a lot once.
       Répondre 
    Voulez-vous vraiment ?  Oui  Non
    Votre message apparaîtra ici
  • My personal experience with research paper writing services was highly positive. I sent a request to ⇒ www.WritePaper.info ⇐ and found a writer within a few minutes. Because I had to move house and I literally didn’t have any time to sit on a computer for many hours every evening. Thankfully, the writer I chose followed my instructions to the letter. I know we can all write essays ourselves. For those in the same situation I was in, I recommend ⇒ www.WritePaper.info ⇐.
       Répondre 
    Voulez-vous vraiment ?  Oui  Non
    Votre message apparaîtra ici
  • DOWNLOAD FULL BOOKS, INTO AVAILABLE FORMAT ......................................................................................................................... ......................................................................................................................... 1.DOWNLOAD FULL. PDF EBOOK here { https://tinyurl.com/yxufevpm } ......................................................................................................................... 1.DOWNLOAD FULL. EPUB Ebook here { https://tinyurl.com/yxufevpm } ......................................................................................................................... 1.DOWNLOAD FULL. doc Ebook here { https://tinyurl.com/yxufevpm } ......................................................................................................................... 1.DOWNLOAD FULL. PDF EBOOK here { https://tinyurl.com/yxufevpm } ......................................................................................................................... 1.DOWNLOAD FULL. EPUB Ebook here { https://tinyurl.com/yxufevpm } ......................................................................................................................... 1.DOWNLOAD FULL. doc Ebook here { https://tinyurl.com/yxufevpm } ......................................................................................................................... ......................................................................................................................... ......................................................................................................................... .............. Browse by Genre Available eBooks ......................................................................................................................... Art, Biography, Business, Chick Lit, Children's, Christian, Classics, Comics, Contemporary, Cookbooks, Crime, Ebooks, Fantasy, Fiction, Graphic Novels, Historical Fiction, History, Horror, Humor And Comedy, Manga, Memoir, Music, Mystery, Non Fiction, Paranormal, Philosophy, Poetry, Psychology, Religion, Romance, Science, Science Fiction, Self Help, Suspense, Spirituality, Sports, Thriller, Travel, Young Adult,
       Répondre 
    Voulez-vous vraiment ?  Oui  Non
    Votre message apparaîtra ici

Flinders University - ATES and contaminated groundwater

  1. 1. EFFECTS OF AQUIFER THERMAL ENERGY STORAGE (ATES) ON MOBILE CONTAMINANTS IN A GROUNDWATER SYSTEM: A MODEL APPROACH Koen Zuurbier (KWR, VU, Deltares), Niels Hartog (Deltares), Johan Valstar (Deltares), Boris van Breukelen (VU), Vincent Post (VU) 26.11.2010, Flinders, Australia
  2. 2. 2. Background: ATES and mobile contaminants <ul><li>Aquifer Thermal Energy Storage (ATES): </li></ul><ul><li>Both heat & cold </li></ul><ul><li>Use of seasonality </li></ul><ul><li>Supply by/for buildings </li></ul><ul><li>Relatively shallow aquifers </li></ul>15 - 20 o C 6 - 8 o C
  3. 3. 2. Background: ATES and mobile contaminants <ul><li>Aquifer Thermal Energy Storage (ATES): </li></ul><ul><li>Both heat & cold </li></ul><ul><li>Use of seasonality </li></ul><ul><li>Supply by/for buildings </li></ul><ul><li>Relatively shallow aquifers </li></ul>
  4. 4. 2. Background: ATES and mobile contaminants IF Technology Doublet Summer Winter
  5. 5. 2. Background: ATES and mobile contaminants ATES ≠ Geothermal Energy! Heat & cold demand Heat demand Building = supply+user Building = user
  6. 6. 2. Background: ATES and mobile contaminants BTES (Borehole Thermal Energy Storage): Closed loop systems Horizontal Vertical
  7. 7. 2. Background: ATES and mobile contaminants <ul><li>Mobile contaminants: </li></ul><ul><li>Mainly Chlorinated Hydrocarbons (VOC) </li></ul><ul><li>Chemical laundries + </li></ul><ul><li>metal industries </li></ul><ul><li>Dense Non-Aqueous </li></ul><ul><li>Phase Liquids (DNAPLs) </li></ul>ρ DNAPL > ρ water
  8. 8. <ul><li>ATES = sustainable energy </li></ul><ul><li> application desired in Greenfields and contaminated Brownfields </li></ul>2. Background: ATES and mobile contaminants Risks? Conflict Potential benefits? (source: Sanergy.nl)
  9. 9. 2. Background: ATES and mobile contaminants <ul><li>Research Program: </li></ul><ul><li>‘ More with Subsurface Energy’ </li></ul><ul><li>Consortium Research Institutes + consultants </li></ul><ul><li>Field measurements </li></ul><ul><li>modelling Study (Deltares) </li></ul><ul><li>Result: guidelines for new policies </li></ul>
  10. 10. 2. Background: ATES and mobile contaminants Aim of my study: What effect does ATES have on existing potential contaminant plumes? (focus on PCE, source contaminant) <ul><li>Plume blending in wells + reinjection (larger volume, lower C) </li></ul><ul><li>Temperature changes (density, visc., degradation?) </li></ul><ul><li>Increased dissolution of DNAPL (more water obtaining C = max solubility of VOC) </li></ul>
  11. 11. 2. Background: ATES and mobile contaminants Aim of my study: What effect does ATES have on existing potential contaminant plumes? <ul><li>Plume blending in wells (larger volume, lower C) </li></ul><ul><li>Temperature changes (density, visc., degradation ?) </li></ul><ul><li>Increased dissolution of DNAPL (more water passing, obtaining C = max solubility of VOC) </li></ul>
  12. 12. 2. Background: ATES and mobile contaminants <ul><li>Chlorinated hydrocarbons: </li></ul><ul><li>Degradation follows common sequence </li></ul><ul><li>Removal of Cl </li></ul>Reductive dechlorination VOCl (Wiedemeier, 1999) Source Products following degradation
  13. 13. 2. Background: ATES and mobile contaminants <ul><li>Dutch Environmental Protection Act: </li></ul><ul><li>Target concentrations (S-values): almost background level </li></ul><ul><li>Intervention concentrations: >100 m 3 requires remediation </li></ul>
  14. 14. 2. Background: ATES and mobile contaminants <ul><li>0 th order: </li></ul><ul><li> Constant hydrolyses org. matter = constant degradation rate </li></ul>How to describe degradation: C i = concentration component i (kg m -3 ) t = time (s) λ 0 = degradation constant 0 e order (kg m -3 s -1 ) <ul><li>1 st order: </li></ul><ul><li> Concentration contaminant </li></ul>C i = concentration component i (kg m -3 ) t = time (s) λ 0 = degradation constant 1 e order (s -1 ) C 0 = initial concentration component i (kg m -3 ) Degradation constants ( λ 0 , λ 1 ) vary with redox-conditions and component: Limited degradation of DCE and especially vinylchloride in anoxic environments Larger aquifer volume contaminated = more mass removal!!
  15. 15. 2. Background: ATES and mobile contaminants How to describe degradation: Monod kinetics: combination of 0 th and 1 st -order Not modelled (yet) At high C At low C
  16. 16. 3. Methods: modelling tools No integral modelling code available Flow: MODFLOW Transport: MT3DMS Density/Viscosity + SEAWAT (V4) Reactions: PHT3D (V2) (PHREEQC) Plume blending: Multi-Node-Well Package (MODFLOW) (total discharge  discharge per model layer) (mixing concentrations in well) Compilation
  17. 17. 4. Case study ‘Uithof’ <ul><li>Desire for realistic configurations: ATES ‘Uithof’ </li></ul><ul><li>Discharge data </li></ul><ul><li>Geohydrology (layers + heads) </li></ul><ul><li>No contamination… </li></ul> added (in model only)
  18. 18. 4. Case study ‘Uithof’ You are here Temp injection = 8 o C / 16 o C Temp background = 10,5 o C Imbalance: net 1.2 % to K1
  19. 19. 4. Case study ‘Uithof’ You are here Temp injection = 8 o C / 16 o C Temp background = 10,5 o C Imbalance: net 1.2 % to K1 N.B.: Start installation in last week of November (week 1)
  20. 20. 4. Case study ‘Uithof’ 2.8 m 50 m 56 m 41 m Vertical Cross-section 39 m 1760 m 135 m Holocene cover Aquif. 1A Sandy clay Aquif. 1B Aquitard Aquif. 2 DNAPL Holocene cover Aquif. 1A Sandy clay Aquif. 1B Aquitard Aquif. 2
  21. 21. 4. Case study ‘Uithof’ Scenario’s Here: degradation using 0 th –order (1.1*10 -9 mol L -1 d -1 ) ? x x x All factors present S-4 Increasing mass in aquifer, large volume contaminated x x Degradation absent S-3 Initial increase in volume, followed by decrease (increased degr.+blending) x x DNAPL absent S-2 Contaminated plume in +/- original size x Reference: No DNAPL, no ATES S-1 Predicted effect DNAPL ATES Degr. Characteristics Scenario
  22. 22. 5. Results <ul><li>630 l PCE at base of aquifer 1 </li></ul><ul><li>Plume developement by lateral background flow </li></ul><ul><li>Dispersion ( λ = 1m) causing mixing + broadening of plume </li></ul>Future ATES warm bubble t = 40 yr: Initial plume Conc. requiring remediation (I)
  23. 23. 5. Results <ul><li>630 l PCE at base of aquifer 1 </li></ul><ul><li>Plume developement by lateral background flow </li></ul><ul><li>Dispersion ( λ = 1m) causing mixing + broadening of plume </li></ul>Future ATES warm bubble PCE, base of aquifer 1 t = 40 yr: Initial plume Conc. requiring remediation (I)
  24. 24. 5. Results <ul><li>Scenario 1 (no DNAPL, no ATES): </li></ul><ul><li>small decrease contaminated volume </li></ul><ul><li>small decrease mass in aquifer </li></ul><ul><li>Scenario 2 (no DNAPL, but addition of ATES) </li></ul><ul><li>initial increase contaminated volume, drop in concentrations </li></ul><ul><li>after 19 yr: small volume of contaminated groundwater left </li></ul><ul><li>quick removal of mass PCE </li></ul>
  25. 25. 5. Results <ul><li>Scenario 1 & 2: </li></ul>Mainly remaining in aquitard
  26. 26. 5. Results
  27. 27. 5. Results <ul><li>Scenario 3 (DNAPL+ATES) </li></ul><ul><li>Major spreading of PCE </li></ul><ul><li>in aquifer 1 </li></ul>S I
  28. 28. t = 19 jaar
  29. 29. 5. Results <ul><li>Scenario 3: </li></ul><ul><li>>50% of DNAPL </li></ul><ul><li>in solution in 19 yr </li></ul>
  30. 30. 5. Results
  31. 31. 5. Results <ul><li>Scenario 4 (ATES, DNAPL and Degradation) </li></ul><ul><li>Limited volume </li></ul><ul><li>contaminated </li></ul><ul><li>Degradation after </li></ul><ul><li>reinjection </li></ul>S I
  32. 32. 5. Results <ul><li>Scenario 4: </li></ul><ul><li>> again >50% of DNAPL </li></ul><ul><li>in solution in 19 yr, but </li></ul><ul><li>a smaller contaminated </li></ul><ul><li>volume </li></ul>
  33. 33. 5. Results <ul><li>Scenario 4: </li></ul><ul><li>Eventually buffering </li></ul><ul><li>of mass PCE due </li></ul><ul><li>to degradation in </li></ul><ul><li>a large aquifer </li></ul><ul><li>volume </li></ul><ul><li>Dependency λ </li></ul>
  34. 34. 6. Discussion <ul><li>Important factors: </li></ul><ul><li>DNAPL (yes/no, where?) </li></ul><ul><li>Local hydro(geo)logical system (blending) </li></ul><ul><li>How to descbribe degradation, what rates, temp. effects? </li></ul>
  35. 35. 6. Discussion <ul><li>Important factors: </li></ul><ul><li>DNAPL (yes/no, where?) </li></ul><ul><li>Local hydro(geo)logical system (blending) </li></ul><ul><li>How to descbribe degradation, what rates, temp. effects? </li></ul>
  36. 36. 6. Discussion <ul><li>Degradation 1 st order: hard to get concentration below desired S-value: </li></ul>
  37. 37. 6. Discussion <ul><li>Model optimalisation? </li></ul><ul><li>computer time </li></ul><ul><li>monod kinetics </li></ul><ul><li>temp. dependent degradation </li></ul><ul><li>mixing of redox-zones?  effects on degradation </li></ul>
  38. 38. 7. Conclusions <ul><li>Important new insights on effects of ATES! </li></ul><ul><li>Positive effects ATES dissolved plume + 0 th order (expected) </li></ul><ul><li>Negative effects ATES when DNAPL near well (unexpected/not considered) </li></ul><ul><li>Blending of plume depends on local conditions (3-D modelling required) </li></ul><ul><li>Work ≠ finished (especially considering to degradation) </li></ul>

×