SlideShare une entreprise Scribd logo
1  sur  15
Télécharger pour lire hors ligne
Unit-2 GAMMA, BETA FUNCTION
RAI UNIVERSITY, AHMEDABAD 1
Course: B.Tech- II
Subject: Engineering Mathematics II
Unit-2
RAI UNIVERSITY, AHMEDABAD
Unit-2 GAMMA, BETA FUNCTION
RAI UNIVERSITY, AHMEDABAD 2
Unit-II: GAMMA, BETA FUNCTION
Sr. No. Name of the Topic Page No.
1 Definition of Gamma function 2
2 Examples Based on Gamma Function 3
3 Beta function 5
4 Relation between Beta and Gamma Functions 5
5 Dirichlet’s Integral 9
6 Application to Area & Volume: Liouville’s
extension of dirichlet theorem
11
7 Reference Book 13
Unit-2 GAMMA, BETA FUNCTION
RAI UNIVERSITY, AHMEDABAD 3
GAMMA, BETA FUNCTION
 The Gamma function and Beta functions belong to the category of the
special transcendental functions and are defined in terms of improper
definite integrals.
1.1 Definition of Gamma function :
The gamma function is denoted and defined by the integral
Γ = ( > 0)
∞
1.2 Properties of Gamma function :
1) Γ( + 1) = Γ
2) Γ( + 1) = ! When m is a positive integer.
3) Γ( + ) = ( + − 1)( + − 2) … … … Γ , when n is a
positive integer.
4) Γ = 2 ∫ ( > 0)
∞
5)
Γ
= ∫ ( > 0)
∞
6) Γ = √
7) ∫ =
√∞
8) ∫ ( ) =
( )
( )
Γ( + 1)
2.1 Examples Based on Gamma Function:
Unit-2 GAMMA, BETA FUNCTION
RAI UNIVERSITY, AHMEDABAD 4
Example 1:Evaluate (− ).
Solution: We know that Γ( + 1) = Γ
 Γ − + 1 = − Γ −
 Γ = − Γ −
 √ = − Γ −
∴ − = − √ . __________Ans.
Example 2: Evaluate ∫ √ √∞
Solution: Let = ∫ √∞
__________(i)
Putting √ = ⟹ = so that = 2 in (i), we get
= ∫ ⁄
2
∞
= 2 ⁄
∞
= 2
∞
= 2Γ
= 2 ×
3
2
Γ
3
2
= 2 ×
3
2
×
1
2
Γ
1
2
=
3
2
√
∴ ∫ √ √∞
= √ ________Ans.
Unit-2 GAMMA, BETA FUNCTION
RAI UNIVERSITY, AHMEDABAD 5
Example 3: Evaluate ∫
∞
.
Solution: Let = ∫
∞
_______ (i)
Putting =
⟹ log =
⟹ =
1
log
⟹ = in (i), we have
= ∫
∞
= ( )
∫
∞
=
1
(log )
( )
∞
=
1
(log )
Γ( + 1)
∴ ∫
∞
= ( )
( + ) ________ Ans.
Example 4: Prove that ∫ ( ) =
!
Solution: We know that
∫ ( ) =
( )
( )
Γ( + 1) _______(i)
Now, ∫ ( ) = ∫ ( )
Putting = = 4 in (i), we get
Unit-2 GAMMA, BETA FUNCTION
RAI UNIVERSITY, AHMEDABAD 6
( ) =
(−1)
(4 + 1)
Γ(4 + 1)
=
Γ5
5
=
!
__________ proved.
2.2 EXERCISE:
1) Evaluate: (a) Γ − (b)Γ (c)Γ(0)
2) ∫
∞
3) ∫
4) ∫ ( )
3.1 BETA FUNCTION:
Definition: The Beta function denoted by ( , ) or ( , ) is defined as
( , ) = (1 − ) , ( > 0, > 0)
3.2 Properties of Beta function:
1) B(m,n) = B(n,m)
2) ( , ) = 2 ∫
3) ( , ) = ∫ ( )
∞
4) ( , ) = ∫ ( )
4.1 Relation between Beta and Gamma Functions:
Relation between Beta and gamma functions is
( , ) =
Γ .Γ
Γ( )
Unit-2 GAMMA, BETA FUNCTION
RAI UNIVERSITY, AHMEDABAD 7
 Using above relation we can derive following results:
 ∫ = , =
Γ .
Γ
 Γ = √
 Euler’s formula:
Γ . Γ(1 − ) =
sin
 Duplication formula:
Γ . Γ +
1
2
=
√ Γ(2 )
2
4.2 EXAMPLES:
Example 1: Evaluate ∫ − √
Solution: Let √ = ⟹ = so that = 2
1 − √ = ( ) (1 − ) (2 )
= 2 ∫ (1 − )
= 2 (10,6)
= 2
Γ Γ
Γ
= 2 ×
9! 5!
15!
=
× × × × ×
× × × × ×
=
× × ×
=
∴ ∫ 1 − √ = _________ Ans.
Unit-2 GAMMA, BETA FUNCTION
RAI UNIVERSITY, AHMEDABAD 8
Example 2: Find the value of .
Solution: We know that,
=
Γ .
2Γ
Putting = = 0, we get ∫ =
 [ ] ⁄
= Γ
 = Γ
 Γ =
 Γ = √ _______ Ans.
Example 3: show that ∫ √ =
Solution: We know that,
∫ =
Γ .
Γ
∫ √ = ∫
⁄
⁄
= ∫ ⁄ ⁄
On applying formula (1), we have
∫ √ =
Γ Γ
Γ
=
Γ Γ
Γ( )
= Γ Γ
∴ ∫ √ = Γ Γ __________ Ans.
Unit-2 GAMMA, BETA FUNCTION
RAI UNIVERSITY, AHMEDABAD 9
Example 4: Evaluate∫ ( + ) ( − )
Solution: Put = 2 cos 2 , then = −2 sin 2 in
(1 + ) (1 − )
= (1 + 2 ) (1 − 2 ) (−2 2 )
= (1 + 2 − 1) (1 − 1 + 2 ) (−4 )
= 4 2 . 2 .
= 2
∞
= 2
Γ Γ
2Γ
= 2
Γ( )Γ( )
Γ( )
__________Ans.
Example 5: Show that ( ) ( − ) = ( < < 1)
Solution: We know that
( , ) =
(1 + )
∞
Γ Γ
Γ( + )
=
(1 + )
∞
Putting + = 1 = 1 − , we get
Unit-2 GAMMA, BETA FUNCTION
RAI UNIVERSITY, AHMEDABAD 10
Γ(1 − ) Γ
Γ1
=
(1 + )
∞
Γ(1 − )Γ = ∫
∞
∵ ∫
∞
=
∴ Γ( )Γ(1 − ) = ______ proved.
4.3 EXERCISE:
1) Evaluate ∫ (1 − ) ⁄
2) Evaluate ∫ ( )
3) Evaluate ∫
4) Prove that Γ Γ = √2
5) Show that ( , ) = ( + 1, ) + ( , + 1)
5.1 DIRICHLET’S INTEGRAL:
If , , are all positive, then the triple integral
=
Γ(l)Γ(m)Γ(n)
Γ( + + + 1)
Where V is the region ≥ 0, ≥ 0, ≥ 0 and + + ≤ 1.
Note:
=
Γ(l)Γ(m)Γ(n)
Γ( + + + 1)
ℎ
Where V is the domain, ≥ 0, ≥ 0, ≥ 0 and + + ≤ ℎ
5.2 Corollary: Dirichlet’s theorem for n variables, the theorem status that
Unit-2 GAMMA, BETA FUNCTION
RAI UNIVERSITY, AHMEDABAD 11
… … …
=
Γ Γ Γ … Γ
Γ(1 + + + ⋯ + )
ℎ ⋯
Example 1: Prove that ∫
( )
( )
=
∞
Solution: Let = ∫
( )
( )
∞
 = ∫ ( )
∞
+ ∫ ( )
∞
 = + __________ (i)
Now, put = , when = 0, = 0; when = ∞, = 1
1 + = 1 + =
 =
( )
∴ =
1 −
. (1 − ) .
1
(1 − )
= ∫ (1 − )
= (5,10) _______(2)
And = ∫ . (1 − ) .
( )
= ∫ (1 − )
= (10,5) ________(3)
∴ = +
= (5,10) + (10,5) [Using(2) and (3)]
= (5,10) + (5,10) [ ( , ) = ( , )]
Unit-2 GAMMA, BETA FUNCTION
RAI UNIVERSITY, AHMEDABAD 12
= 2 (5,10)
=
Γ Γ
Γ
=
× !× !
!
=
× × × × × !
× × × × × !
= _______ Proved.
5.3 EXERCISE:
1) Find the value of ∫ ( )
2) Show that ∫
( )
( )
=
( , )
( )
3) ( + 1, ) = ( , )
6.1 Application to Area & Volume:
 Liouville’s extension of dirichlet theorem:
( + + )
=
Γ(l)Γ(m)Γ(n)
Γ(l + m + n)
( )
Example1: Show that ∭ ( )
= − , the integral being
taken throughout the volume bounded by
= , = , = , + + = .
Solution: By Liouville’s theorem when 0 < + + < 1
Unit-2 GAMMA, BETA FUNCTION
RAI UNIVERSITY, AHMEDABAD 13
( + + + 1)
=
( + + + 1)
(0 ≤ + + ≤ 1)
=
Γ Γ Γ
Γ( )
∫ ( )
u du
=
1
2 ( + 1)
= ∫ −
( )
+
( )
(Partial fractions)
= log( + 1) + −
( )
= 2 + 2 − 1 − −
= 2 −
∴ ∭ ( )
= − _______ Proved.
Example 2: Find the mass of an octant of the ellipsoid + + = ,
the density at any point being = .
Solution: Mass = ∭
= ( )
= ∭( )( )( ) _______ (1)
Putting = , = , = and + + = 1
So that = , = , =
Mass= ∭
Unit-2 GAMMA, BETA FUNCTION
RAI UNIVERSITY, AHMEDABAD 14
= ∭ , Where + + ≤ 1
= ∭
=
Γ Γ Γ
Γ
=
8 × 6
=
∴ = Ans.
6.2 EXERCISE:
1) Find the value of ∭ ( + + ) the integral extending
over all positive and zero values of , , subject to the condition
+ + < 1.
Unit-2 GAMMA, BETA FUNCTION
RAI UNIVERSITY, AHMEDABAD 15
2) Evaluate ∭ , integral being taken over all
positive values of , , such that + + ≤ 1.
3) Find the area and the mass contained m the first quadrant enclosed by
the curve + = 1 ℎ > 0, > 0 given that density at
any point ( ) is .
7.1 REFERENCE BOOK:
1) Introduction to Engineering Mathematics
By H. K. DASS. & Dr. RAMA VERMA
2) Higher Engineering Mathematics
By B.V.RAMANA
3) A text book of Engineering Mathematics
By N.P.BALI
4) www1.gantep.edu.tr/~olgar/C6.SP.pdf

Contenu connexe

Tendances

Beta & Gamma Functions
Beta & Gamma FunctionsBeta & Gamma Functions
Beta & Gamma FunctionsDrDeepaChauhan
 
Homogeneous Linear Differential Equations
 Homogeneous Linear Differential Equations Homogeneous Linear Differential Equations
Homogeneous Linear Differential EquationsAMINULISLAM439
 
Normal subgroups- Group theory
Normal subgroups- Group theoryNormal subgroups- Group theory
Normal subgroups- Group theoryAyush Agrawal
 
The binomial theorem class 11 maths
The binomial theorem class 11 mathsThe binomial theorem class 11 maths
The binomial theorem class 11 mathsDharmendra Dudi
 
numerical differentiation&integration
numerical differentiation&integrationnumerical differentiation&integration
numerical differentiation&integration8laddu8
 
B.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiationB.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiationRai University
 
Lesson 7: Vector-valued functions
Lesson 7: Vector-valued functionsLesson 7: Vector-valued functions
Lesson 7: Vector-valued functionsMatthew Leingang
 
Interpolation functions
Interpolation functionsInterpolation functions
Interpolation functionsTarun Gehlot
 
Newton's Backward Interpolation Formula with Example
Newton's Backward Interpolation Formula with ExampleNewton's Backward Interpolation Formula with Example
Newton's Backward Interpolation Formula with ExampleMuhammadUsmanIkram2
 
Numerical Integration Project Report
Numerical Integration Project ReportNumerical Integration Project Report
Numerical Integration Project ReportMuhammad Bilal Khan
 
Numerical solution of system of linear equations
Numerical solution of system of linear equationsNumerical solution of system of linear equations
Numerical solution of system of linear equationsreach2arkaELECTRICAL
 
Integral Calculus
Integral CalculusIntegral Calculus
Integral Calculusitutor
 
Maxima & Minima of Calculus
Maxima & Minima of CalculusMaxima & Minima of Calculus
Maxima & Minima of CalculusArpit Modh
 
functions limits and continuity
functions limits and continuityfunctions limits and continuity
functions limits and continuityPume Ananda
 
Power Series - Legendre Polynomial - Bessel's Equation
Power Series - Legendre Polynomial - Bessel's EquationPower Series - Legendre Polynomial - Bessel's Equation
Power Series - Legendre Polynomial - Bessel's EquationArijitDhali
 
Lesson 17: The Method of Lagrange Multipliers
Lesson 17: The Method of Lagrange MultipliersLesson 17: The Method of Lagrange Multipliers
Lesson 17: The Method of Lagrange MultipliersMatthew Leingang
 

Tendances (20)

Beta & Gamma Functions
Beta & Gamma FunctionsBeta & Gamma Functions
Beta & Gamma Functions
 
Homogeneous Linear Differential Equations
 Homogeneous Linear Differential Equations Homogeneous Linear Differential Equations
Homogeneous Linear Differential Equations
 
The gamma function
The gamma functionThe gamma function
The gamma function
 
Normal subgroups- Group theory
Normal subgroups- Group theoryNormal subgroups- Group theory
Normal subgroups- Group theory
 
The binomial theorem class 11 maths
The binomial theorem class 11 mathsThe binomial theorem class 11 maths
The binomial theorem class 11 maths
 
Gauss jordan
Gauss jordanGauss jordan
Gauss jordan
 
numerical differentiation&integration
numerical differentiation&integrationnumerical differentiation&integration
numerical differentiation&integration
 
B.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiationB.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiation
 
Lesson 7: Vector-valued functions
Lesson 7: Vector-valued functionsLesson 7: Vector-valued functions
Lesson 7: Vector-valued functions
 
Interpolation functions
Interpolation functionsInterpolation functions
Interpolation functions
 
APPLICATION OF INTEGRATION
APPLICATION OF INTEGRATIONAPPLICATION OF INTEGRATION
APPLICATION OF INTEGRATION
 
Unit1
Unit1Unit1
Unit1
 
Newton's Backward Interpolation Formula with Example
Newton's Backward Interpolation Formula with ExampleNewton's Backward Interpolation Formula with Example
Newton's Backward Interpolation Formula with Example
 
Numerical Integration Project Report
Numerical Integration Project ReportNumerical Integration Project Report
Numerical Integration Project Report
 
Numerical solution of system of linear equations
Numerical solution of system of linear equationsNumerical solution of system of linear equations
Numerical solution of system of linear equations
 
Integral Calculus
Integral CalculusIntegral Calculus
Integral Calculus
 
Maxima & Minima of Calculus
Maxima & Minima of CalculusMaxima & Minima of Calculus
Maxima & Minima of Calculus
 
functions limits and continuity
functions limits and continuityfunctions limits and continuity
functions limits and continuity
 
Power Series - Legendre Polynomial - Bessel's Equation
Power Series - Legendre Polynomial - Bessel's EquationPower Series - Legendre Polynomial - Bessel's Equation
Power Series - Legendre Polynomial - Bessel's Equation
 
Lesson 17: The Method of Lagrange Multipliers
Lesson 17: The Method of Lagrange MultipliersLesson 17: The Method of Lagrange Multipliers
Lesson 17: The Method of Lagrange Multipliers
 

En vedette

B.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma functionB.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma functionRai University
 
Alpha Beta Gamma Quiz Questions
Alpha Beta Gamma Quiz QuestionsAlpha Beta Gamma Quiz Questions
Alpha Beta Gamma Quiz Questionsmrmeredith
 
Gamma and betta function harsh shah
Gamma and betta function  harsh shahGamma and betta function  harsh shah
Gamma and betta function harsh shahC.G.P.I.T
 
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IIEngineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IIRai University
 
Hydrogen spectrum
Hydrogen spectrumHydrogen spectrum
Hydrogen spectrumSidra Javed
 
Green's theorem in classical mechanics and electrodynamics
Green's theorem in classical mechanics and electrodynamicsGreen's theorem in classical mechanics and electrodynamics
Green's theorem in classical mechanics and electrodynamicsCorneliu Sochichiu
 
PART VII.2 - Quantum Electrodynamics
PART VII.2 - Quantum ElectrodynamicsPART VII.2 - Quantum Electrodynamics
PART VII.2 - Quantum ElectrodynamicsMaurice R. TREMBLAY
 
Satyabama niversity questions in vector
Satyabama niversity questions in vectorSatyabama niversity questions in vector
Satyabama niversity questions in vectorSelvaraj John
 
Consolidated.m2-satyabama university
Consolidated.m2-satyabama universityConsolidated.m2-satyabama university
Consolidated.m2-satyabama universitySelvaraj John
 

En vedette (12)

B.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma functionB.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma function
 
Alpha Beta Gamma Quiz Questions
Alpha Beta Gamma Quiz QuestionsAlpha Beta Gamma Quiz Questions
Alpha Beta Gamma Quiz Questions
 
Special functions
Special functionsSpecial functions
Special functions
 
Gamma and betta function harsh shah
Gamma and betta function  harsh shahGamma and betta function  harsh shah
Gamma and betta function harsh shah
 
Beta gamma functions
Beta gamma functionsBeta gamma functions
Beta gamma functions
 
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IIEngineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
 
Hydrogen spectrum
Hydrogen spectrumHydrogen spectrum
Hydrogen spectrum
 
Green's theorem in classical mechanics and electrodynamics
Green's theorem in classical mechanics and electrodynamicsGreen's theorem in classical mechanics and electrodynamics
Green's theorem in classical mechanics and electrodynamics
 
Operation research
Operation research Operation research
Operation research
 
PART VII.2 - Quantum Electrodynamics
PART VII.2 - Quantum ElectrodynamicsPART VII.2 - Quantum Electrodynamics
PART VII.2 - Quantum Electrodynamics
 
Satyabama niversity questions in vector
Satyabama niversity questions in vectorSatyabama niversity questions in vector
Satyabama niversity questions in vector
 
Consolidated.m2-satyabama university
Consolidated.m2-satyabama universityConsolidated.m2-satyabama university
Consolidated.m2-satyabama university
 

Similaire à RAI Univ Gamma Beta Functions

DISCRETE LOGARITHM PROBLEM
DISCRETE LOGARITHM PROBLEMDISCRETE LOGARITHM PROBLEM
DISCRETE LOGARITHM PROBLEMMANISH KUMAR
 
Chapter2 functionsandgraphs-151003144959-lva1-app6891
Chapter2 functionsandgraphs-151003144959-lva1-app6891Chapter2 functionsandgraphs-151003144959-lva1-app6891
Chapter2 functionsandgraphs-151003144959-lva1-app6891Cleophas Rwemera
 
Introductory maths analysis chapter 02 official
Introductory maths analysis   chapter 02 officialIntroductory maths analysis   chapter 02 official
Introductory maths analysis chapter 02 officialEvert Sandye Taasiringan
 
Impllicity Differentiation
Impllicity Differentiation Impllicity Differentiation
Impllicity Differentiation EmaduddinAksir
 
Lesson 19: Exponential and Logarithmic Functions
Lesson 19: Exponential and Logarithmic FunctionsLesson 19: Exponential and Logarithmic Functions
Lesson 19: Exponential and Logarithmic FunctionsKevin Johnson
 
Functions ppt Dr Frost Maths Mixed questions
Functions ppt Dr Frost Maths Mixed questionsFunctions ppt Dr Frost Maths Mixed questions
Functions ppt Dr Frost Maths Mixed questionsgcutbill
 
Cuaderno de trabajo en derivadas experiencia 2
Cuaderno de trabajo en derivadas experiencia 2Cuaderno de trabajo en derivadas experiencia 2
Cuaderno de trabajo en derivadas experiencia 2Mariamne3
 
Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variablesSanthanam Krishnan
 
Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5Rai University
 
Lesson 21: More Algebra
Lesson 21: More AlgebraLesson 21: More Algebra
Lesson 21: More AlgebraKevin Johnson
 
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاولملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاولanasKhalaf4
 
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022anasKhalaf4
 
Lesson 11: Functions and Function Notation
Lesson 11: Functions and Function NotationLesson 11: Functions and Function Notation
Lesson 11: Functions and Function NotationKevin Johnson
 

Similaire à RAI Univ Gamma Beta Functions (20)

DISCRETE LOGARITHM PROBLEM
DISCRETE LOGARITHM PROBLEMDISCRETE LOGARITHM PROBLEM
DISCRETE LOGARITHM PROBLEM
 
Chapter2 functionsandgraphs-151003144959-lva1-app6891
Chapter2 functionsandgraphs-151003144959-lva1-app6891Chapter2 functionsandgraphs-151003144959-lva1-app6891
Chapter2 functionsandgraphs-151003144959-lva1-app6891
 
Chapter 2 - Functions and Graphs
Chapter 2 - Functions and GraphsChapter 2 - Functions and Graphs
Chapter 2 - Functions and Graphs
 
Introductory maths analysis chapter 02 official
Introductory maths analysis   chapter 02 officialIntroductory maths analysis   chapter 02 official
Introductory maths analysis chapter 02 official
 
DE-PS.pdf
DE-PS.pdfDE-PS.pdf
DE-PS.pdf
 
Impllicity Differentiation
Impllicity Differentiation Impllicity Differentiation
Impllicity Differentiation
 
Lesson 19: Exponential and Logarithmic Functions
Lesson 19: Exponential and Logarithmic FunctionsLesson 19: Exponential and Logarithmic Functions
Lesson 19: Exponential and Logarithmic Functions
 
Functions ppt Dr Frost Maths Mixed questions
Functions ppt Dr Frost Maths Mixed questionsFunctions ppt Dr Frost Maths Mixed questions
Functions ppt Dr Frost Maths Mixed questions
 
Cuaderno de trabajo en derivadas experiencia 2
Cuaderno de trabajo en derivadas experiencia 2Cuaderno de trabajo en derivadas experiencia 2
Cuaderno de trabajo en derivadas experiencia 2
 
Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variables
 
Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5
 
Limits
LimitsLimits
Limits
 
Lesson 21: More Algebra
Lesson 21: More AlgebraLesson 21: More Algebra
Lesson 21: More Algebra
 
SMT1105-1.pdf
SMT1105-1.pdfSMT1105-1.pdf
SMT1105-1.pdf
 
P1-Chp2-Quadratics.pptx
P1-Chp2-Quadratics.pptxP1-Chp2-Quadratics.pptx
P1-Chp2-Quadratics.pptx
 
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاولملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
 
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
 
B.Tech-II_Unit-IV
B.Tech-II_Unit-IVB.Tech-II_Unit-IV
B.Tech-II_Unit-IV
 
Lesson 11: Functions and Function Notation
Lesson 11: Functions and Function NotationLesson 11: Functions and Function Notation
Lesson 11: Functions and Function Notation
 
Johelbys campos2
Johelbys campos2Johelbys campos2
Johelbys campos2
 

Plus de Kundan Kumar

engineeringmathematics-iv_unit-v
engineeringmathematics-iv_unit-vengineeringmathematics-iv_unit-v
engineeringmathematics-iv_unit-vKundan Kumar
 
engineeringmathematics-iv_unit-iv
engineeringmathematics-iv_unit-ivengineeringmathematics-iv_unit-iv
engineeringmathematics-iv_unit-ivKundan Kumar
 
engineeringmathematics-iv_unit-iii
engineeringmathematics-iv_unit-iiiengineeringmathematics-iv_unit-iii
engineeringmathematics-iv_unit-iiiKundan Kumar
 
engineeringmathematics-iv_unit-ii
engineeringmathematics-iv_unit-iiengineeringmathematics-iv_unit-ii
engineeringmathematics-iv_unit-iiKundan Kumar
 
engineeringmathematics-iv_unit-i
engineeringmathematics-iv_unit-iengineeringmathematics-iv_unit-i
engineeringmathematics-iv_unit-iKundan Kumar
 
B.Tech-II_Unit-III
B.Tech-II_Unit-IIIB.Tech-II_Unit-III
B.Tech-II_Unit-IIIKundan Kumar
 
I059785_certificate
I059785_certificateI059785_certificate
I059785_certificateKundan Kumar
 
I059785_award_certificate
I059785_award_certificateI059785_award_certificate
I059785_award_certificateKundan Kumar
 

Plus de Kundan Kumar (11)

merged_document
merged_documentmerged_document
merged_document
 
engineeringmathematics-iv_unit-v
engineeringmathematics-iv_unit-vengineeringmathematics-iv_unit-v
engineeringmathematics-iv_unit-v
 
engineeringmathematics-iv_unit-iv
engineeringmathematics-iv_unit-ivengineeringmathematics-iv_unit-iv
engineeringmathematics-iv_unit-iv
 
engineeringmathematics-iv_unit-iii
engineeringmathematics-iv_unit-iiiengineeringmathematics-iv_unit-iii
engineeringmathematics-iv_unit-iii
 
engineeringmathematics-iv_unit-ii
engineeringmathematics-iv_unit-iiengineeringmathematics-iv_unit-ii
engineeringmathematics-iv_unit-ii
 
engineeringmathematics-iv_unit-i
engineeringmathematics-iv_unit-iengineeringmathematics-iv_unit-i
engineeringmathematics-iv_unit-i
 
B.Tech-II_Unit-V
B.Tech-II_Unit-VB.Tech-II_Unit-V
B.Tech-II_Unit-V
 
B.Tech-II_Unit-III
B.Tech-II_Unit-IIIB.Tech-II_Unit-III
B.Tech-II_Unit-III
 
B.Tech-II_Unit-I
B.Tech-II_Unit-IB.Tech-II_Unit-I
B.Tech-II_Unit-I
 
I059785_certificate
I059785_certificateI059785_certificate
I059785_certificate
 
I059785_award_certificate
I059785_award_certificateI059785_award_certificate
I059785_award_certificate
 

RAI Univ Gamma Beta Functions

  • 1. Unit-2 GAMMA, BETA FUNCTION RAI UNIVERSITY, AHMEDABAD 1 Course: B.Tech- II Subject: Engineering Mathematics II Unit-2 RAI UNIVERSITY, AHMEDABAD
  • 2. Unit-2 GAMMA, BETA FUNCTION RAI UNIVERSITY, AHMEDABAD 2 Unit-II: GAMMA, BETA FUNCTION Sr. No. Name of the Topic Page No. 1 Definition of Gamma function 2 2 Examples Based on Gamma Function 3 3 Beta function 5 4 Relation between Beta and Gamma Functions 5 5 Dirichlet’s Integral 9 6 Application to Area & Volume: Liouville’s extension of dirichlet theorem 11 7 Reference Book 13
  • 3. Unit-2 GAMMA, BETA FUNCTION RAI UNIVERSITY, AHMEDABAD 3 GAMMA, BETA FUNCTION  The Gamma function and Beta functions belong to the category of the special transcendental functions and are defined in terms of improper definite integrals. 1.1 Definition of Gamma function : The gamma function is denoted and defined by the integral Γ = ( > 0) ∞ 1.2 Properties of Gamma function : 1) Γ( + 1) = Γ 2) Γ( + 1) = ! When m is a positive integer. 3) Γ( + ) = ( + − 1)( + − 2) … … … Γ , when n is a positive integer. 4) Γ = 2 ∫ ( > 0) ∞ 5) Γ = ∫ ( > 0) ∞ 6) Γ = √ 7) ∫ = √∞ 8) ∫ ( ) = ( ) ( ) Γ( + 1) 2.1 Examples Based on Gamma Function:
  • 4. Unit-2 GAMMA, BETA FUNCTION RAI UNIVERSITY, AHMEDABAD 4 Example 1:Evaluate (− ). Solution: We know that Γ( + 1) = Γ  Γ − + 1 = − Γ −  Γ = − Γ −  √ = − Γ − ∴ − = − √ . __________Ans. Example 2: Evaluate ∫ √ √∞ Solution: Let = ∫ √∞ __________(i) Putting √ = ⟹ = so that = 2 in (i), we get = ∫ ⁄ 2 ∞ = 2 ⁄ ∞ = 2 ∞ = 2Γ = 2 × 3 2 Γ 3 2 = 2 × 3 2 × 1 2 Γ 1 2 = 3 2 √ ∴ ∫ √ √∞ = √ ________Ans.
  • 5. Unit-2 GAMMA, BETA FUNCTION RAI UNIVERSITY, AHMEDABAD 5 Example 3: Evaluate ∫ ∞ . Solution: Let = ∫ ∞ _______ (i) Putting = ⟹ log = ⟹ = 1 log ⟹ = in (i), we have = ∫ ∞ = ( ) ∫ ∞ = 1 (log ) ( ) ∞ = 1 (log ) Γ( + 1) ∴ ∫ ∞ = ( ) ( + ) ________ Ans. Example 4: Prove that ∫ ( ) = ! Solution: We know that ∫ ( ) = ( ) ( ) Γ( + 1) _______(i) Now, ∫ ( ) = ∫ ( ) Putting = = 4 in (i), we get
  • 6. Unit-2 GAMMA, BETA FUNCTION RAI UNIVERSITY, AHMEDABAD 6 ( ) = (−1) (4 + 1) Γ(4 + 1) = Γ5 5 = ! __________ proved. 2.2 EXERCISE: 1) Evaluate: (a) Γ − (b)Γ (c)Γ(0) 2) ∫ ∞ 3) ∫ 4) ∫ ( ) 3.1 BETA FUNCTION: Definition: The Beta function denoted by ( , ) or ( , ) is defined as ( , ) = (1 − ) , ( > 0, > 0) 3.2 Properties of Beta function: 1) B(m,n) = B(n,m) 2) ( , ) = 2 ∫ 3) ( , ) = ∫ ( ) ∞ 4) ( , ) = ∫ ( ) 4.1 Relation between Beta and Gamma Functions: Relation between Beta and gamma functions is ( , ) = Γ .Γ Γ( )
  • 7. Unit-2 GAMMA, BETA FUNCTION RAI UNIVERSITY, AHMEDABAD 7  Using above relation we can derive following results:  ∫ = , = Γ . Γ  Γ = √  Euler’s formula: Γ . Γ(1 − ) = sin  Duplication formula: Γ . Γ + 1 2 = √ Γ(2 ) 2 4.2 EXAMPLES: Example 1: Evaluate ∫ − √ Solution: Let √ = ⟹ = so that = 2 1 − √ = ( ) (1 − ) (2 ) = 2 ∫ (1 − ) = 2 (10,6) = 2 Γ Γ Γ = 2 × 9! 5! 15! = × × × × × × × × × × = × × × = ∴ ∫ 1 − √ = _________ Ans.
  • 8. Unit-2 GAMMA, BETA FUNCTION RAI UNIVERSITY, AHMEDABAD 8 Example 2: Find the value of . Solution: We know that, = Γ . 2Γ Putting = = 0, we get ∫ =  [ ] ⁄ = Γ  = Γ  Γ =  Γ = √ _______ Ans. Example 3: show that ∫ √ = Solution: We know that, ∫ = Γ . Γ ∫ √ = ∫ ⁄ ⁄ = ∫ ⁄ ⁄ On applying formula (1), we have ∫ √ = Γ Γ Γ = Γ Γ Γ( ) = Γ Γ ∴ ∫ √ = Γ Γ __________ Ans.
  • 9. Unit-2 GAMMA, BETA FUNCTION RAI UNIVERSITY, AHMEDABAD 9 Example 4: Evaluate∫ ( + ) ( − ) Solution: Put = 2 cos 2 , then = −2 sin 2 in (1 + ) (1 − ) = (1 + 2 ) (1 − 2 ) (−2 2 ) = (1 + 2 − 1) (1 − 1 + 2 ) (−4 ) = 4 2 . 2 . = 2 ∞ = 2 Γ Γ 2Γ = 2 Γ( )Γ( ) Γ( ) __________Ans. Example 5: Show that ( ) ( − ) = ( < < 1) Solution: We know that ( , ) = (1 + ) ∞ Γ Γ Γ( + ) = (1 + ) ∞ Putting + = 1 = 1 − , we get
  • 10. Unit-2 GAMMA, BETA FUNCTION RAI UNIVERSITY, AHMEDABAD 10 Γ(1 − ) Γ Γ1 = (1 + ) ∞ Γ(1 − )Γ = ∫ ∞ ∵ ∫ ∞ = ∴ Γ( )Γ(1 − ) = ______ proved. 4.3 EXERCISE: 1) Evaluate ∫ (1 − ) ⁄ 2) Evaluate ∫ ( ) 3) Evaluate ∫ 4) Prove that Γ Γ = √2 5) Show that ( , ) = ( + 1, ) + ( , + 1) 5.1 DIRICHLET’S INTEGRAL: If , , are all positive, then the triple integral = Γ(l)Γ(m)Γ(n) Γ( + + + 1) Where V is the region ≥ 0, ≥ 0, ≥ 0 and + + ≤ 1. Note: = Γ(l)Γ(m)Γ(n) Γ( + + + 1) ℎ Where V is the domain, ≥ 0, ≥ 0, ≥ 0 and + + ≤ ℎ 5.2 Corollary: Dirichlet’s theorem for n variables, the theorem status that
  • 11. Unit-2 GAMMA, BETA FUNCTION RAI UNIVERSITY, AHMEDABAD 11 … … … = Γ Γ Γ … Γ Γ(1 + + + ⋯ + ) ℎ ⋯ Example 1: Prove that ∫ ( ) ( ) = ∞ Solution: Let = ∫ ( ) ( ) ∞  = ∫ ( ) ∞ + ∫ ( ) ∞  = + __________ (i) Now, put = , when = 0, = 0; when = ∞, = 1 1 + = 1 + =  = ( ) ∴ = 1 − . (1 − ) . 1 (1 − ) = ∫ (1 − ) = (5,10) _______(2) And = ∫ . (1 − ) . ( ) = ∫ (1 − ) = (10,5) ________(3) ∴ = + = (5,10) + (10,5) [Using(2) and (3)] = (5,10) + (5,10) [ ( , ) = ( , )]
  • 12. Unit-2 GAMMA, BETA FUNCTION RAI UNIVERSITY, AHMEDABAD 12 = 2 (5,10) = Γ Γ Γ = × !× ! ! = × × × × × ! × × × × × ! = _______ Proved. 5.3 EXERCISE: 1) Find the value of ∫ ( ) 2) Show that ∫ ( ) ( ) = ( , ) ( ) 3) ( + 1, ) = ( , ) 6.1 Application to Area & Volume:  Liouville’s extension of dirichlet theorem: ( + + ) = Γ(l)Γ(m)Γ(n) Γ(l + m + n) ( ) Example1: Show that ∭ ( ) = − , the integral being taken throughout the volume bounded by = , = , = , + + = . Solution: By Liouville’s theorem when 0 < + + < 1
  • 13. Unit-2 GAMMA, BETA FUNCTION RAI UNIVERSITY, AHMEDABAD 13 ( + + + 1) = ( + + + 1) (0 ≤ + + ≤ 1) = Γ Γ Γ Γ( ) ∫ ( ) u du = 1 2 ( + 1) = ∫ − ( ) + ( ) (Partial fractions) = log( + 1) + − ( ) = 2 + 2 − 1 − − = 2 − ∴ ∭ ( ) = − _______ Proved. Example 2: Find the mass of an octant of the ellipsoid + + = , the density at any point being = . Solution: Mass = ∭ = ( ) = ∭( )( )( ) _______ (1) Putting = , = , = and + + = 1 So that = , = , = Mass= ∭
  • 14. Unit-2 GAMMA, BETA FUNCTION RAI UNIVERSITY, AHMEDABAD 14 = ∭ , Where + + ≤ 1 = ∭ = Γ Γ Γ Γ = 8 × 6 = ∴ = Ans. 6.2 EXERCISE: 1) Find the value of ∭ ( + + ) the integral extending over all positive and zero values of , , subject to the condition + + < 1.
  • 15. Unit-2 GAMMA, BETA FUNCTION RAI UNIVERSITY, AHMEDABAD 15 2) Evaluate ∭ , integral being taken over all positive values of , , such that + + ≤ 1. 3) Find the area and the mass contained m the first quadrant enclosed by the curve + = 1 ℎ > 0, > 0 given that density at any point ( ) is . 7.1 REFERENCE BOOK: 1) Introduction to Engineering Mathematics By H. K. DASS. & Dr. RAMA VERMA 2) Higher Engineering Mathematics By B.V.RAMANA 3) A text book of Engineering Mathematics By N.P.BALI 4) www1.gantep.edu.tr/~olgar/C6.SP.pdf