SlideShare une entreprise Scribd logo
1  sur  31
Télécharger pour lire hors ligne
Structure	
  Determina-on:	
  
Nuclear	
  Magne-c	
  Resonance(NMR)	
  
	
  
Kwonil	
  Kobe	
  Ko,	
  Cushing	
  Academy,	
  Senior	
  
Project	
  Supervisor:	
  William	
  R.	
  Sponholtz,	
  III,	
  B.S.,	
  M.S.,	
  Ph.D.	
  
1	
   2	
  
1Dartmouth	
  College	
  Department	
  of	
  Chemistry.	
  h7ps://sites.dartmouth.edu/
mierkelab/nmr-­‐facility	
  (accessed	
  December	
  19,	
  2015).	
  
	
  
2Dominique	
  Marion;	
  An	
  IntroducJon	
  to	
  Biological	
  NMR	
  Spectroscopy.	
  Molecular	
  &	
  Cellular	
  
Proteomics.	
  [Online]	
  2013,	
  pp	
  3009.	
  h7p://www.mcponline.org/content/12/11/3006.full.pdf
+html?sid=d9388787-­‐b9ae-­‐4dae-­‐b0e8-­‐770d9d293f41	
  (accesed	
  December	
  28,	
  2015).	
  
	
  	
  	
  	
  
NMR	
  Spectroscopy	
  
	
  Nuclear	
  Magne-c	
  Resonance	
  (NMR)	
  Spectroscopy	
  is	
  an	
  analy-cal	
  
	
  chemistry	
  technique	
  to	
  elucidate	
  the	
  structures	
  of	
  simple	
  and	
  complex	
  
	
  organic	
  compounds	
  employing	
  1-­‐D	
  and	
  2-­‐D	
  NMR.	
  	
  
	
  	
  	
  	
  	
  	
  	
  
	
  
	
  	
  
Degrada've	
  vs.	
  non-­‐Degrada've	
  Techniques	
  
Large	
  Quan''es	
  vs.	
  A	
  Few	
  Milligrams	
  
Many	
  Years	
  vs.	
  Hours	
  
Ambiguous	
  vs.	
  Absolute	
  Assignment	
  
	
  	
  	
  	
  	
  	
  Modern	
  techniques	
  
	
  	
  	
  	
  	
  	
  à	
  NMR(1-­‐D	
  and	
  2-­‐D)	
  and	
  3-­‐D	
  Shapes	
  
	
  	
  	
  	
  	
  	
  à	
  GC-­‐MS	
  :	
  Molecular	
  weight	
  
	
  	
  	
  	
  	
  	
  à	
  X-­‐ray	
  Crystallography	
  :	
  3-­‐D	
  shapes	
  
	
  	
  	
  	
  	
  	
  àIR	
  :	
  func-onal	
  groups	
  (based	
  on	
  vibra-ons)	
  
	
  Oldest	
  techniques	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  à	
  Elemental	
  analysis	
  
	
  à	
  Combus-on	
  analysis	
  
Classical	
  Structure	
  Determina'on	
  vs	
  	
  Modern	
  techniques	
  
Top	
  Five	
  Greatest	
  Discoveries	
  in	
  Science?	
  	
  
NMR	
  &	
  X-­‐ray	
  crystallography	
  	
  
	
  
	
  
à	
  	
  X-­‐ray	
  crystallography	
  is	
  a	
  tool	
  used	
  for	
  idenJfying	
  the	
  atomic	
  and	
  molecular	
  structure	
  of	
  
a	
  crystal	
  by	
  causing	
  a	
  beam	
  of	
  X-­‐rays	
  to	
  diffract	
  into	
  many	
  specific	
  direcJons.	
  Measuring	
  the	
  
angles	
  and	
  intensiJes,	
  a	
  three-­‐dimensional	
  picture	
  of	
  the	
  density	
  of	
  electrons	
  within	
  the	
  
crystal	
  can	
  be	
  produced.	
  And	
  from	
  this	
  electron	
  density,	
  compound’s	
  3-­‐D	
  structure	
  can	
  be	
  
elucidated,	
  including	
  chemical	
  bonds,	
  chiral	
  centers,	
  gross	
  connecJvity,…etc.	
  5	
  
Protein crystallography involves summing the scattered X-ray waves
from a macromolecular crystal
The steps in solving a protein crystal structure at high resolution are diagrammed in Figure 5-3.
First, the protein must be crystallized. This is often the rate-limiting step in straightforward
structure determinations, especially for membrane proteins. Then, the X-ray diffraction pattern
from the crystal must be recorded. When X-rays strike a macromolecular crystal, the atoms in
the molecules produce scattered X-ray waves which combine to give a complex diffraction
pattern consisting of waves of different amplitudes. What is measured experimentally are the
amplitudes and positions of the scattered X-ray waves from the crystal. The structure can be
reconstructed by summing these waves, but each one must be in the correct registration with
respect to every other wave, that is, the origin of each wave must be determined so that they
sum to give some image instead of a sea of noise. This is called the phase problem. Phase
values must be assigned to all of the recorded data; this can sometimes be done computationally,
but is usually done experimentally by labeling the protein with one or more heavy atoms whose
position in the crystal can be determined independently. The phased waves are then summed
in three dimensions to generate an image of the electron density distribution of the molecule
in the crystal. This can be done semi-automatically or by hand on a computer graphics system.
A chemical model of part of the molecule is docked into the shape of each part of the electron
part of the electron density (as shown in Figure 5-3). This fitting provides the first picture of
the structure of the protein. The overall model is improved by an iterative process called refine-
ment whereby the positions of the atoms in the model are tweaked until the calculated
diffraction pattern from the model agrees as well as can be with the experimentally measured
diffraction pattern from the actual protein. There is no practical limit to the size of the protein
or protein complex whose structure can be determined by X-ray crystallography.
Definitions
phase problem: in the measurement of data from an
X-ray crystallographic experiment only the amplitude
of the wave is determined.To compute a structure,the
phase must also be known. Since it cannot be deter-
mined directly, it must be determined indirectly or by
some other experiment.
crystals (enlarged view) diffraction patterns
phases
electron density maps atomic models
fittingX-rays
refinement
Figure 5-3 Structure determination by X-ray crystallography The first step in structure determination by X-ray crystallography is the crystallization of the
protein. The source of the X-rays is often a synchrotron and in this case the typical size for a crystal for data collection may be 0.3 ¥ 0.3 ¥ 0.1 mm. The crystals
are bombarded with X-rays which are scattered from the planes of the crystal lattice and are captured as a diffraction pattern on a detector such as film or an
electronic device. From this pattern, and with the use of reference—or phase—information from labeled atoms in the crystal, electron density maps (shown here
with the corresponding peptide superimposed) are computed for different parts of the crystal. A model of the protein is constructed from the electron density
maps and the diffraction pattern for the modeled protein is calculated and compared with the actual diffraction pattern. The model is then adjusted—or refined—
to reduce the difference between its calculated diffraction pattern and the pattern obtained from the crystal, until the correspondence between model and reality
is as good as possible. The quality of the structure determination is measured as the percentage difference between the calculated and the actual pattern.
can be studied.
Unlike X-ray diffraction, which presents a static picture (an average in time and space) of the
structure of a protein, NMR has the capability of measuring certain dynamic properties of
proteins over a wide range of time scales.
Structure Determination Chapter 5 171©2004 New Science Press Ltd
References
Drenth, J.: Principles of Protein X-Ray Crystallography
2nd ed.(Springer-Verlag,New York,1999).
Evans, J.N.S.: Biomolecular NMR Spectroscopy (Oxford
University Press,Oxford,1995).
Markley, J.L. et al.: Macromolecular structure deter-
mination by NMR spectroscopy. Methods Biochem.
Anal. 2003,44:89–113.
Rhodes,G.:Crystallography Made Crystal Clear:A Guide
to Users of Macromolecular Models 2nd ed. (Academic
Press,New York and London,1999).
Schmidt, A. and Lamzin, V.S.: Veni, vidi, vici—atomic
resolution unravelling the mysteries of protein
function.Curr.Opin.Struct.Biol. 2002,12:698–703.
Gorenstein,N.:Nuclear Magnetic Resonance (NMR)
(Biophysics Textbooks Online):
http://www.biophysics.org/btol/NMR.html
1H chemical shift (ppm)
13C = 22.9 ppm
1Hchemicalshift(ppm)
purified, labeled protein NMR spectrometer resonance assignment and
internuclear distance measurement
protein structure
data
analysis
data
collection
Figure 5-4 Structure determination by NMR For protein structure determination by NMR, a labeled protein is dissolved at very high concentration and placed
in a magnetic field, which causes the spin of the hydrogen atoms to align along the field. Radio frequency pulses are then applied to the sample, perturbing the
nuclei of the atoms which when they relax back to their original state emit radio frequency radiation whose properties are determined by the environment of the
atom in the protein. This emitted radiation is recorded in the NMR spectrometer for pulses of differing types and durations (for simplicity, only one such record
is shown here), and compared with a reference signal to give a measure known as the chemical shift. The relative positions of the atoms in the molecule are
calculated from these data to give a series of models of the protein which can account for these data. The quality of the structure determination is measured as
the difference between the different models.
NMR:	
  	
  
X-­‐ray	
  
Crystallo
graphy:	
  
5	
  Chemwiki,	
  Unviersity	
  of	
  California,	
  Davis.	
  h7p://chemwiki.ucdavis.edu/AnalyJcal_Chemistry/Instrumental_Analysis/DiffracJon/X-­‐
ray_Crystallography	
  (accessed	
  December	
  27,	
  2015).	
  
	
  
3	
  Gregory,	
  A.;	
  Dagmar,	
  R.;	
  Protein	
  Structure	
  and	
  FuncJon:	
  Chapter	
  5,	
  Structure	
  determinaJon;	
  New	
  Science	
  Press	
  Ltd,	
  2004;	
  pp	
  168-­‐173	
  For	
  X-­‐ray	
  descripJon	
  	
  
3	
  
4	
  
4	
  Gregory,	
  A.;	
  Dagmar,	
  R.;	
  Protein	
  Structure	
  and	
  FuncJon:	
  Chapter	
  5,	
  Structure	
  determinaJon;	
  New	
  Science	
  Press	
  Ltd,	
  2004;	
  pp	
  168-­‐173	
  For	
  X-­‐ray	
  descripJon	
  	
  
NMR	
  vs	
  X-­‐ray	
  Crystallography	
  
disregarded otherwise. The external magnetic field B0 induces
currents in the electronic clouds in the protein; in turn, these
circulating currents generate a local induced field Bind. As a
result, the different spins sense the vector sum of the two
fields:
B
¡
loc ϭ B
¡
0 ϩ B
¡
ind
and will thus not resonate at the same frequency. Chemical
shifts are extremely sensitive to steric and electronic effects
and thus in the case of proteins, to secondary and tertiary
structure. Unlike nOe and J-coupling, chemical shift does not
depend on a single pairwise interaction between well-identi-
fied partners: its prediction or quantitative interpretation is
thus more complex. Let us consider the chemical shifts of
backbone 15
N in proteins: the standard chemical shift range
FIG. 2. Number of structures deposited to the RCSB protein data bank (http://www.rcsb.org/pdb/) over the years. The number of
structures solved by X-ray crystallography is steadily increasing whereas the NMR-based ones have hit a plateau. In the inset, the data for the
early years of crystallography are displayed with an extended vertical scale for clarity. For the former method, the crystallization step remains
a major bottleneck but once suitable diffraction data are available, the structure can be obtained rather quickly. NMR is primarily hampered
by the limitation in protein size that can be studied: despite that resonance assignment and nOe interpretation have been automated, it still
requires more human input during these processes.
FIG. 3. Without chemical shifts, NMR structural parameters
could not be measured and interpreted at atomic level resolution.
In fact, the magnetic field at the nucleus is generally different from the
applied field B0: this additional contribution (or screening) arises from
the interaction of the surrounding electrons with the applied field. The
An Introduction to Biological NMR Spectroscopy
à	
  NMR	
  spectroscopy	
  and	
  X-­‐ray	
  crystallography	
  are	
  the	
  most	
  widely	
  used	
  modern	
  techniques	
  in	
  fields	
  of	
  
biology	
  and	
  chemistry	
  for	
  structure	
  elucidaJon.	
  7	
  
	
  
à	
  X-­‐ray	
  is	
  highly	
  used	
  when	
  solving	
  a	
  protein	
  structure	
  because	
  it	
  is	
  easy	
  and	
  quick	
  to	
  solve	
  a	
  protein	
  
structure	
  once	
  suitable	
  crystals	
  have	
  been	
  obtained.	
  8	
  
	
  
à	
  Unlike	
  X-­‐ray,	
  which	
  is	
  highly	
  restricted	
  to	
  protein	
  structure	
  determinaJon,	
  NMR	
  covers	
  a	
  wider	
  range	
  of	
  
biochemistry	
  including	
  structures	
  that	
  are	
  not	
  easily	
  crystalized.	
  This	
  is	
  especially	
  powerful	
  in	
  drug	
  
discovery,	
  because	
  it	
  provides	
  us	
  molecular	
  parameters	
  and	
  chemical	
  kineJcs	
  by	
  following	
  the	
  Jme-­‐
dependence	
  of	
  the	
  data.	
  9	
  
1	
  
6	
  
6	
  Dominique	
  Marion;	
  An	
  IntroducJon	
  to	
  Biological	
  NMR	
  Spectroscopy.	
  Molecular	
  &	
  Cellular	
  Proteomics.	
  [Online]	
  2013,	
  pp	
  3009.	
  h7p://www.mcponline.org/content/
12/11/3006.full.pdf+html?sid=d9388787-­‐b9ae-­‐4dae-­‐b0e8-­‐770d9d293f41	
  (accesed	
  December	
  28,	
  2015).	
  
7	
  Dominique	
  Marion;	
  An	
  IntroducJon	
  to	
  Biological	
  NMR	
  Spectroscopy.	
  Molecular	
  &	
  Cellular	
  Proteomics.	
  [Online]	
  2013,	
  pp	
  3006.	
  h7p://www.mcponline.org/content/12/11/3006.full.pdf
+html?sid=d9388787-­‐b9ae-­‐4dae-­‐b0e8-­‐770d9d293f41	
  (accesed	
  December	
  28,	
  2015).	
  
8	
  The	
  University	
  Medical	
  School	
  of	
  Dbrecen.	
  h7p://www.cryst.bbk.ac.uk/pps97/assignments/projects/ambrus/html.htm	
  (accessed	
  December	
  28,	
  2015).	
  
	
  
9	
  The	
  University	
  Medical	
  School	
  of	
  Dbrecen.	
  h7p://www.cryst.bbk.ac.uk/pps97/assignments/projects/ambrus/html.htm	
  (accessed	
  December	
  28,	
  2015).	
  
	
  
Example	
  of	
  Impact	
  of	
  2-­‐D	
  NMR:	
  Strychnine	
  
Classical	
  structure	
  determina-on	
  techniques	
  (degrada-ve)	
  took	
  approximately	
  50	
  
years	
  to	
  elucidate	
  the	
  structure	
  of	
  strychnine	
  employing	
  the	
  efforts	
  of	
  many,	
  many	
  
collabora-ng	
  research	
  groups.	
  However,	
  with	
  1H	
  and	
  13C	
  NMRs,	
  several	
  different	
  2-­‐
D	
  NMRs,	
  and	
  other	
  spectroscopic	
  data,	
  Dr.	
  Sponholtz	
  was	
  able	
  to	
  solve	
  this	
  structure	
  
in	
  only	
  ten	
  hours!	
  	
  The	
  key:	
  2-­‐D	
  NMR	
  
Isolated	
  1818	
  
Elucida-on	
  1946	
  
X-­‐Ray	
  confirma-on	
  1956	
  
six	
  chiral	
  centers:	
  64	
  possible	
  
six	
  methylene	
  groups;	
  
differen-ate	
  pro-­‐R	
  and	
  pro-­‐S	
  
N
N
O
O
Strychnine
Showing	
  gross	
  
connec-vity	
  only	
  
(no	
  stereochemistry)	
  
Collabora-on	
  of	
  NMR	
  &	
  X-­‐ray	
  
N
N
N
N
O
N
N
N
O
N
(a)	
  TIC10	
  or	
  ONC201	
  
(b)	
  Corrected	
  Structure	
  for	
  TIC10	
  	
  
à	
  The	
  patented	
  compound,	
  known	
  as	
  TIC10,	
  was	
  	
  
elucidated	
  by	
  The	
  Penn	
  State	
  group	
  and	
  owned	
  by	
  the	
  
biotech	
  firm	
  OncoceuJcs.	
  	
  
	
  
à	
  Several	
  insJtuJons	
  have	
  found	
  TIC10	
  to	
  be	
  effecJve	
  in	
  
brain	
  cancer,	
  prostate	
  cancer,	
  melanoma,	
  and	
  sarcomas.	
  	
  
	
  
à	
  Thus,	
  OncoeceuJcs	
  has	
  iniJated	
  Phase	
  I/II	
  clinical	
  trials	
  of	
  
TIC10	
  and	
  was	
  about	
  to	
  enter	
  the	
  human	
  clinical	
  trials.	
  
à	
  However,	
  When	
  Scripps’s	
  Kim	
  D.	
  Janda	
  and	
  coworkers	
  
synthesized	
  the	
  iniJal	
  patented	
  structure,	
  they	
  found	
  it	
  to	
  be	
  
biologically	
  inacJve.	
  
	
  
àBy	
  using	
  X-­‐ray	
  crystallography	
  and	
  NMR,	
  Scripps	
  
confirmed	
  that	
  bioacJve	
  TIC10	
  has	
  a	
  different	
  structure(b)	
  
than	
  the	
  patented	
  one.	
  
	
  
à	
  The	
  Scripps	
  research	
  group	
  concluded	
  that	
  OncoceuJcs	
  
and	
  several	
  insJtuJons	
  had	
  been	
  working	
  on	
  the	
  bioacJve	
  
compound	
  but	
  had	
  patented	
  the	
  inacJve	
  structure.	
  Thus	
  
Scripps	
  applied	
  for	
  a	
  patent	
  on	
  the	
  correct	
  structure(b)	
  and	
  
licensed	
  it	
  exclusively	
  to	
  Sorrento.	
  
10	
  	
  Stu,	
  Borman.;	
  Tug-­‐of-­‐War	
  Over	
  Promising	
  Cancer	
  Drug	
  Candidate.	
  Drug	
  Discovery:	
  Structure	
  error	
  threatens	
  exisJng	
  patent	
  and	
  clinical	
  trials.	
  Chemical	
  &	
  Engineering	
  News.	
  [Online]	
  2014,	
  Volume	
  92,	
  Issue	
  
21,	
  7.	
  h7p://cen.acs.org/arJcles/92/i21/TugWar-­‐Over-­‐Promising-­‐Cancer-­‐Drug.html	
  (accessed	
  December	
  28,	
  2015).	
  
	
  
10	
  
Necessary	
  Review	
  
I.	
  Basic	
  understanding	
  of	
  electronega<vy	
  difference;	
  i.e.,	
  must	
  be	
  able	
  to	
  predict	
  electron	
  
density	
  for	
  atoms;	
  e.g.,	
  deshielded	
  or	
  shielded.	
  
H F
H F H F δδ
+ -
DESHIELDED SHIELDED
Δδ ATOMS
Example:	
  
IIIII.	
  Basic	
  understanding	
  of	
  how	
  atoms	
  are	
  oriented	
  in	
  three-­‐dimensions;	
  i.e.,	
  hybridiza<on	
  
theory.	
  
2py unhybridized
orbital (one e-
per orbital)
2pz unhybridized
orbital (one e-
per orbital)
C
sp Hybridized Carbon
(1800)
C
sp3 Hybridized
Carbon (109.50)
sp2 Hybridized
Carbon (1200)
C
The	
  coupling	
  of	
  these	
  two	
  topics	
  is	
  the	
  key	
  to	
  
understand	
  and	
  predict	
  the	
  chemical	
  shics	
  of	
  NMR.	
  1	
  
Obtaining	
  NMR	
  
1-D Pulse NMR
Sample
Magnet
Magnetization
Perturbation
Response
Detection
Data
Fourier
Transformation
Spectrum
3-­‐5	
  mg	
  of	
  compound	
  
dissolved	
  in	
  a	
  suitable	
  
solvent	
  and	
  transferred	
  
to	
  a	
  NMR	
  tube.	
  
NMR	
  tube	
  placed	
  into	
  
the	
  magne-c	
  field.	
  
0123456
PPM
11	
  Dartmouth	
  College	
  Department	
  of	
  Chemistry.	
  h7ps://sites.dartmouth.edu/mierkelab/nmr-­‐facility	
  (accessed	
  December	
  19,	
  2015).	
  
	
  
11	
  
11	
  
11	
  
Informa-on	
  Process	
  
FID	
  
Spectrum	
  
The	
  informa-on	
  that	
  comes	
  
out	
  of	
  the	
  spectrometer	
  is	
  
called	
  a	
  free	
  induc-on	
  decay	
  
(FID),	
  which	
  is	
  in	
  the	
  Time	
  
Domain.	
  When	
  the	
  nuclei	
  are	
  
pulsed,	
  the	
  spins	
  of	
  like	
  nuclei	
  	
  
group	
  together	
  and	
  acer	
  the	
  
pulse	
  the	
  spins	
  move	
  apart	
  or	
  
decay.	
  
The	
  FID	
  is	
  transformed	
  via	
  a	
  Fourier	
  
transforma-on	
  to	
  yield	
  a	
  spectrum,	
  
which	
  is	
  in	
  the	
  Frequency	
  Domain.	
  
You	
  can	
  determine	
  how	
  many	
  
hydrogens	
  are	
  afached	
  by	
  comparing	
  
areas	
  under	
  the	
  curve	
  (integra-on)	
  in	
  
the	
  simplest	
  ra-o.	
  Moreover,	
  you	
  can	
  
inves-gate	
  the	
  spligng	
  paferns	
  with	
  
high	
  resolu-on.	
  
FT	
  
Chemists’	
  perspec-ve	
  
Chemists	
  look	
  for	
  three	
  things:	
  Chemical	
  ShiJ,	
  Intensity,	
  and	
  SpliLng	
  
I):	
  Chemical	
  ShiJ:	
  By	
  looking	
  at	
  chemical	
  ships	
  of	
  1H	
  and	
  13C,	
  chemists	
  can	
  roughly	
  predict	
  
what	
  group	
  is	
  a7ached	
  to	
  carbon	
  or	
  hydrogen.	
  For	
  example,	
  if	
  a	
  sp2	
  carbon	
  is	
  highly	
  
deshielded(or	
  downfield)	
  and	
  thus	
  has	
  a	
  chemical	
  ship	
  of	
  200-­‐220	
  ppm,	
  chemists	
  can	
  imagine	
  
the	
  presence	
  of	
  electron	
  withdrawing	
  group,	
  such	
  as	
  oxygen,	
  a7ached	
  to	
  that	
  sp2	
  carbon.	
  	
  
	
  
2):	
  Intensity:	
  Since	
  the	
  signal	
  intensity	
  is	
  directly	
  proporJonal	
  to	
  the	
  number	
  of	
  hydrogens	
  
that	
  give	
  rise	
  to	
  the	
  signal,	
  chemists	
  can	
  see	
  how	
  many	
  chemically	
  equivalent	
  
hydrogens(same	
  chemical	
  ship)	
  are	
  a7ached	
  by	
  seeing	
  a	
  raJo	
  of	
  areas	
  under	
  the	
  
integrated	
  intensity	
  of	
  signals	
  in	
  1H	
  NMR	
  spectrum.	
  
	
  
3):	
  SpliLng	
  :	
  Spliqng	
  offers	
  informaJon	
  of	
  how	
  many	
  neighboring	
  hydrogens	
  exist	
  for	
  
a	
  parJcular	
  hydrogen	
  or	
  chemically	
  equivalent	
  hydrogens.	
  Looking	
  at	
  spliqng	
  pa7erns	
  and	
  
complex	
  coupling	
  constants,	
  chemists	
  can	
  draw	
  the	
  tree	
  diagram	
  of	
  complex	
  NMR	
  and	
  thus	
  
be7er	
  understand	
  spliqng	
  in	
  various	
  cases	
  because	
  different	
  couplings	
  are	
  applied	
  	
  
sequenJally.	
  
1-­‐D	
  NMR	
  Proton	
  Chemical	
  Shics	
  (rela-ve	
  to	
  TMS	
  in	
  CDCl3)	
  
01.02.03.04.05.06.07.08.09.010.011.012.0 ppm
R2NHPhOH
ROHAmide RCONHRCO2H
O2N-CH R2N-CH
NC-CH
Esters
RCO2-CH
RCOCHBr-CH
I-CHCl-CHF-CH
R2C CR-CHAr-CHPhO-CH
RC CHHO-CHRCH CHR
Sat alkanes
R-H
Sulfides
RS-CH
Ethers
RO-CHR2C CH2AromaticsRCOH
13.014.0
(δ)
Different	
  types	
  of	
  Hydrogens	
  in	
  NMR	
  
à	
  Homotopic	
  –	
  hydrogens	
  that	
  would	
  result	
  in	
  idenJcal	
  molecules	
  if	
  they	
  
were	
  replaced	
  with	
  another	
  atom	
  (X).	
  12	
  
IdenJcal	
  signals	
  in	
  H	
  NMR	
  
	
  
à	
  EnanJotopic	
  -­‐	
  hydrogens	
  that	
  would	
  result	
  in	
  enanJomers	
  if	
  they	
  were	
  
replaced	
  with	
  another	
  atom	
  (X).	
  12	
  
IdenJcal	
  signals	
  in	
  H	
  NMR	
  
	
  
	
  
à	
  Diastereotopic	
  -­‐	
  hydrogens	
  that	
  would	
  result	
  in	
  diastereomers	
  if	
  they	
  were	
  
replaced	
  with	
  another	
  atom	
  (X).	
  12	
  
Different	
  signals	
  in	
  H	
  NMR	
  
	
  
C
Cl Cl
H H
C
Cl Cl
X H
,
C
Cl Cl
H X
C
F Cl
H H
C
(R)(R)
F Cl
X H
,
C
(S)(S)
F Cl
H X
C
Cl
H
H
C
(R)(R)
Cl
F
H
C
(R)(R)
Cl
H
X
C
(R)(R)
Cl
F
H
,
C
Cl
H
H
C
(S)(S)
Cl
F
X1	
  
12	
  Mater	
  Organic	
  Chemistry.	
  Homotopic,	
  EnanJotopic,	
  
Diastereotopic.	
  h7p://www.masterorganicchemistry.com/
2012/04/17/homotopic-­‐enanJotopic-­‐diastereotopic/	
  
(accessed	
  January	
  4,	
  2016)	
  
1-­‐D	
  NMR	
  Carbon	
  Chemical	
  Shic	
  (rela-ve	
  to	
  TMS	
  in	
  	
  CDCl3)	
  
200 150 100 50 0
COCRC CRAmides R-CONR2
C CCSOnRCEsters R-CO2R'
Carboxylic Acids R-CO2H RC N C-OR C-Ar
Heteroaromatics C-OH C-SR
Aromatics C-NR2
R2C CH2 C-H Saturated Alkanes
Ketones, R2C=O RHC=CHR C-NO2 C-Br
C-IC-ClC-FR2C=CH2Aldehydes, RCH=O
ppm(δ)
Chemical	
  Shics	
  for	
  1-­‐D	
  proton	
  and	
  carbon	
  NMR	
  
Let’s	
  focus	
  on	
  coupling	
  (J)	
  constants	
  for	
  proton	
  NMR	
  
What	
  are	
  J	
  values?	
  	
  
à J(coupling	
  constant)	
  is	
  a	
  distance(Hz)	
  between	
  split	
  peaks.	
  When	
  a	
  proton	
  
absorbs	
  energy,	
  it	
  relaxes	
  by	
  giving	
  that	
  energy	
  back	
  to	
  surrounding	
  atoms	
  via	
  
the	
  sigma	
  bond	
  framework.	
  Thus,	
  some	
  energy	
  is	
  passed	
  along	
  to	
  adjacent	
  
protons.	
  The	
  adjacent	
  protons	
  provide	
  feedback	
  on	
  the	
  spectrum	
  to	
  the	
  proton	
  
that	
  absorbs	
  the	
  energy.	
  Moreover,	
  J	
  values	
  are	
  independent	
  of	
  the	
  field	
  
strength,	
  Bo	
  .	
  
C
H1
C
H2
C
H1
C
H2
C
H1
C
H2
H1 absorbs
energy
H1 gives
energy back
(relaxation)
via sigma
bonds
C
H1
C
H2
H2 absorbs
some of
the energy
Within the mathematics of the spectrum
software, we can see how many neighboring
protons absorb the energy, which gives rise to
coupling (J) constants.
What	
  influences	
  the	
  magnitude	
  of	
  J	
  value?	
  	
  
	
   -­‐Distance	
  to	
  relaxing	
  proton	
  	
  
-­‐Angle	
  to	
  relaxing	
  proton	
  
Type
H
H
H H
H
H
H H
H
H
J Value (Hz)
12-15
2-9
0.5-3
7-12
13-18
Type J Value (Hz)
H H
ax-ax: 6-14
ax-eq: 0-5
eq-eq: 0-5
H
H
ortho: 6-10
meta: 1-3
para: 0-1
CH
H
0.5-3
HC CH
0-3
Note:	
  circled	
  protons	
  are	
  NOT	
  equivalent	
  1	
  
Karplus	
  Curve	
  
C' C
H'
H
φ
C
H
H'
φ
0 20 40 60 80 100 120 140 160 180
4
2
6
8
10
12
JHH'(Hz)
φ
1	
  
Spligng	
  Pafern	
  
à Peak	
  Spliqng	
  occurs	
  due	
  to	
  coupling	
  of	
  spins	
  (interacJons	
  between	
  adjacent	
  carbons).	
  
à Peak	
  Spliqng	
  is	
  not	
  seen	
  for	
  H	
  connected	
  to	
  O,	
  N.	
  (because	
  of	
  hydrogen	
  bonding)	
  
à Spliqng	
  is	
  based	
  on	
  the	
  number	
  of	
  H’s	
  on	
  adjacent	
  C.	
  
a):	
  If	
  a	
  proton	
  has	
  n	
  protons	
  a7ached	
  to	
  adjacent	
  carbons,	
  it	
  will	
  split	
  into	
  n+1	
  peaks.	
  
b):	
  Only	
  nonequivalent	
  protons	
  couple.	
  	
  
c):	
  If	
  H’s	
  are	
  on	
  same	
  C	
  and	
  they	
  are	
  homotopic	
  or	
  enanJotopic,	
  no	
  spliqng	
  will	
  occur.	
  
d):	
  If	
  H’s	
  are	
  on	
  different	
  C’s,	
  but	
  they	
  are	
  “chemically	
  equivalent”,	
  no	
  spliqng	
  will	
  occur.	
  
	
  
General	
  rules	
  
Peaks	
  are	
  classified	
  by	
  how	
  they	
  are	
  split	
  
13	
  
13	
  
13	
  University	
  of	
  California,	
  Los	
  Angeles	
  Department	
  of	
  Chemistry.	
  Proton	
  NMR	
  Spectroscopy-­‐Split	
  the	
  signals,	
  not	
  your	
  brain!	
  h7p://www.chem.ucla.edu/harding/ec_tutorials/tutorial37.pdf	
  (accessed	
  January	
  9,	
  2016).	
  
13	
  
13	
  
Examples	
  for	
  Hydrogen	
  chemical	
  shics	
  
01234
PPM
H
H
H O H
H
H
1.11
1.11
1.11
2.0
3.57
3.57
Ethanol	
  	
  
Note:	
  Only	
  three	
  peaks	
  due	
  
to	
  equivalent	
  protons	
  (see	
  
3-­‐D	
  model	
  if	
  you	
  are	
  not	
  
convinced)	
  
Note:	
  	
  Deshielded	
  protons	
  are	
  downfield	
  
01234
PPM
O
H
H
H
H
H
H
3.24
3.24
3.24
3.24
3.24
3.24
Dimethyl	
  Ether	
  
Note:	
  All	
  protons	
  are	
  equivalent	
  
Note:	
  All	
  equivalent	
  protons	
  are	
  deshielded	
  (downfield)	
  
0123456
PPM
H
H
H
H
H
H
4.97
5.03
5.70
1.71
1.71
1.71
Note:	
  Only	
  three	
  equivalent	
  protons	
  
Note:	
  sp2	
  more	
  electronega-ve	
  than	
  sp3	
  
carbon;	
  thus,	
  those	
  afached	
  protons	
  are	
  
more	
  downfield	
  and	
  both	
  are	
  not	
  
equivalent.	
  
Propylene	
  (1-­‐Propene)	
  
1	
  
0123456
PPM
H
H
H
H
H
H
H
H
5.48
5.48
1.71
1.71
1.71
1.71
1.71
1.71
Note:	
  Only	
  two	
  signals	
  due	
  to	
  
equivalent	
  protons	
  (symmetry	
  of	
  
molecule)	
  
(E)-­‐2-­‐Butene	
  
1	
  
0123456
PPM
1-­‐Butene	
  
H
H
H
H H
H
HH
4.97
5.03
5.70
2.00 2.00
1.06
1.061.06
Note:	
  sp2	
  more	
  electronega-ve	
  than	
  sp3	
  
carbon;	
  thus,	
  those	
  afached	
  protons	
  are	
  
more	
  downfield	
  and	
  each	
  is	
  not	
  equivalent.	
  
Note:	
  Two	
  sets	
  of	
  equivalent	
  protons.	
  
1	
  
Examples	
  for	
  Carbon	
  chemical	
  shic	
  (x20	
  rules)	
  
Ethanol	
  	
  
Note:	
  Only	
  three	
  peaks	
  due	
  
to	
  equivalent	
  protons	
  (see	
  
3-­‐D	
  model	
  if	
  you	
  are	
  not	
  
convinced)	
  
Note:	
  	
  Deshielded	
  protons	
  are	
  downfield	
  
H
H
H O H
H
H
16.9 55.8
0102030405060
PPM
0102030405060
PPM
H
H
H O H
H
H
16.9 55.8
Ethanol	
  	
  
Note:	
  Deshielded	
  carbon	
  is	
  
downfield	
  
Note:	
  “x20	
  rule”	
  applies	
  very	
  well	
  
Dimethyl	
  Ether	
  
Note:	
  both	
  carbons	
  are	
  equivalent	
  
Note:	
  both	
  equivalent	
  carbons	
  are	
  deshielded	
  (downfield)	
  
O
H
H
H
H
H
H
56.1
56.1
0102030405060
PPM
Note:	
  “x20	
  Rule”	
  works	
  well	
  
Note:	
  sp2	
  more	
  electronega-ve	
  than	
  sp3	
  
carbon;	
  thus,	
  those	
  carbons	
  are	
  more	
  
downfield	
  and	
  both	
  are	
  not	
  equivalent.	
  
Propylene	
  (1-­‐Propene)	
  
020406080100120140
PPM
H
H
H
H
H
H
115.9
132.7
17.2
Note:	
  Only	
  two	
  signals	
  due	
  to	
  
symmetry.	
  
(E)	
  -­‐2-­‐Butene	
  
H
H
H
H
H
H
H
H
16.7
125.3
125.3
16.7
020406080100120
PPM
Note:	
  sp2	
  more	
  electronega-ve	
  than	
  sp3	
  
carbon;	
  thus,	
  those	
  equivalent	
  carbons	
  are	
  
more	
  downfield.	
  
1-­‐Butene	
  
Note:	
  sp2	
  more	
  electronega-ve	
  than	
  sp3	
  
carbon;	
  thus,	
  those	
  carbons	
  are	
  more	
  
downfield	
  and	
  each	
  is	
  not	
  equivalent.	
  
H
H
H
H H
H
HH
115.1
137.3
26.3
13.7
020406080100120140
PPM
Predic-ng	
  the	
  spligng	
  pafern	
  of	
  a	
  proton	
  signal	
  
Example:	
  If	
  a	
  proton	
  (or	
  group	
  of	
  equivalent	
  protons)	
  relaxes	
  by	
  giving	
  off	
  
energy	
  to	
  two	
  equivalent,	
  adjacent	
  protons	
  the	
  signal	
  will	
  be	
  split	
  into	
  a	
  
triplet	
  (t)	
  
Example:	
  If	
  a	
  proton	
  (or	
  group	
  of	
  equivalent	
  protons)	
  relaxes	
  by	
  
giving	
  off	
  energy	
  to	
  three	
  equivalent,	
  adjacent	
  protons	
  the	
  signal	
  
will	
  be	
  split	
  into	
  a	
  quartet	
  (q)	
  
01234
PPM
H
H
H O H
H
H
1.11
1.11
1.11
2.0
3.57
3.57
Will split into a tripletWill split into a quartet
0123456
PPM
H
H
H
H
H
H
H
H
5.48
5.48
1.71
1.71
1.71
1.71
1.71
1.71
Will split into a q
Will split into a d
Example	
  of	
  spligng	
  paferns	
  for	
  (E)-­‐2-­‐butene	
  	
  
1	
  
0123456
PPM
Will split into a d of d of d
H
H
H
H
H
H
4.97
5.03
5.70
1.71
1.71
1.71
Will split into a d of d of q
Will split into a d of d of q
Will split into a d of d of q
Examples of d of d of d
Example	
  of	
  spliLng	
  paTerns	
  for	
  1-­‐propene	
  (can	
  get	
  complicated	
  very	
  quickly)	
  
Mul-plet	
  (m)	
  

Contenu connexe

Tendances

Metal clusters smith2017
Metal clusters smith2017Metal clusters smith2017
Metal clusters smith2017
ahlam50
 
Principle & Applications of Transmission Electron Microscopy (TEM) & High Res...
Principle & Applications of Transmission Electron Microscopy (TEM) & High Res...Principle & Applications of Transmission Electron Microscopy (TEM) & High Res...
Principle & Applications of Transmission Electron Microscopy (TEM) & High Res...
Gulfam Raza
 
X Ray Diffraction Spectroscopy
X Ray Diffraction SpectroscopyX Ray Diffraction Spectroscopy
X Ray Diffraction Spectroscopy
hephz
 
Core shell nanoparticles and its biomedical applications
Core shell nanoparticles and its biomedical applicationsCore shell nanoparticles and its biomedical applications
Core shell nanoparticles and its biomedical applications
Kiran Qamar Kayani
 

Tendances (20)

Zinc metalloenzymes
Zinc metalloenzymesZinc metalloenzymes
Zinc metalloenzymes
 
Metal clusters smith2017
Metal clusters smith2017Metal clusters smith2017
Metal clusters smith2017
 
Structure of dna and rna and their difference
Structure of dna and rna and their differenceStructure of dna and rna and their difference
Structure of dna and rna and their difference
 
Cryo electron microscopy
Cryo electron microscopyCryo electron microscopy
Cryo electron microscopy
 
electron spin resonance spectroscopy ( EPR/ESR)
electron spin resonance spectroscopy ( EPR/ESR)electron spin resonance spectroscopy ( EPR/ESR)
electron spin resonance spectroscopy ( EPR/ESR)
 
3 dna libraries
3 dna libraries3 dna libraries
3 dna libraries
 
Raman spectroscopy (1)
Raman spectroscopy (1)Raman spectroscopy (1)
Raman spectroscopy (1)
 
Principle & Applications of Transmission Electron Microscopy (TEM) & High Res...
Principle & Applications of Transmission Electron Microscopy (TEM) & High Res...Principle & Applications of Transmission Electron Microscopy (TEM) & High Res...
Principle & Applications of Transmission Electron Microscopy (TEM) & High Res...
 
Restriction mapping of bacterial dna
Restriction mapping of bacterial dnaRestriction mapping of bacterial dna
Restriction mapping of bacterial dna
 
X Ray Diffraction Spectroscopy
X Ray Diffraction SpectroscopyX Ray Diffraction Spectroscopy
X Ray Diffraction Spectroscopy
 
X ray crystallography and X ray Diffraction
X ray crystallography and X ray DiffractionX ray crystallography and X ray Diffraction
X ray crystallography and X ray Diffraction
 
Circular Dichroism Spectroscopy
Circular Dichroism SpectroscopyCircular Dichroism Spectroscopy
Circular Dichroism Spectroscopy
 
Core shell nanoparticles and its biomedical applications
Core shell nanoparticles and its biomedical applicationsCore shell nanoparticles and its biomedical applications
Core shell nanoparticles and its biomedical applications
 
structural biology-Protein structure function relationship
structural biology-Protein structure function relationshipstructural biology-Protein structure function relationship
structural biology-Protein structure function relationship
 
ESR SPECTROSCOPY
ESR SPECTROSCOPYESR SPECTROSCOPY
ESR SPECTROSCOPY
 
Cryo-Electron Microscopy
Cryo-Electron MicroscopyCryo-Electron Microscopy
Cryo-Electron Microscopy
 
Dynamic light scattering (dls)
Dynamic light scattering (dls)Dynamic light scattering (dls)
Dynamic light scattering (dls)
 
Dna damage
Dna damageDna damage
Dna damage
 
Central Dogma of DNA ANDRES
Central Dogma of DNA ANDRESCentral Dogma of DNA ANDRES
Central Dogma of DNA ANDRES
 
Hemocyanin & Hemethrine
Hemocyanin & Hemethrine Hemocyanin & Hemethrine
Hemocyanin & Hemethrine
 

En vedette

Proton nmr spectroscopy present
Proton nmr spectroscopy presentProton nmr spectroscopy present
Proton nmr spectroscopy present
Leeya Najwa
 
Protein Structure Determination
Protein Structure DeterminationProtein Structure Determination
Protein Structure Determination
Amjad Ibrahim
 
Life Insurance in Venezuela, Key Trends and Opportunities to 2016
Life Insurance in Venezuela, Key Trends and Opportunities to 2016Life Insurance in Venezuela, Key Trends and Opportunities to 2016
Life Insurance in Venezuela, Key Trends and Opportunities to 2016
ReportsnReports
 
Life Insurance in China, Key Trends and Opportunities to 2016
Life Insurance in China, Key Trends and Opportunities to 2016Life Insurance in China, Key Trends and Opportunities to 2016
Life Insurance in China, Key Trends and Opportunities to 2016
ReportsnReports
 
Life Insurance in South Korea, Key Trends and Opportunities to 2016
Life Insurance in South Korea, Key Trends and Opportunities to 2016Life Insurance in South Korea, Key Trends and Opportunities to 2016
Life Insurance in South Korea, Key Trends and Opportunities to 2016
ReportsnReports
 
Life Insurance in Spain, Key Trends and Opportunities to 2016
Life Insurance in Spain, Key Trends and Opportunities to 2016Life Insurance in Spain, Key Trends and Opportunities to 2016
Life Insurance in Spain, Key Trends and Opportunities to 2016
ReportsnReports
 
Life Insurance in Portugal, Key Trends and Opportunities to 2016
Life Insurance in Portugal, Key Trends and Opportunities to 2016Life Insurance in Portugal, Key Trends and Opportunities to 2016
Life Insurance in Portugal, Key Trends and Opportunities to 2016
ReportsnReports
 
Life Insurance in Iran, Key Trends and Opportunities to 2016
Life Insurance in Iran, Key Trends and Opportunities to 2016Life Insurance in Iran, Key Trends and Opportunities to 2016
Life Insurance in Iran, Key Trends and Opportunities to 2016
ReportsnReports
 
Aprendendo sobre o seu mercado
Aprendendo sobre o seu mercadoAprendendo sobre o seu mercado
Aprendendo sobre o seu mercado
melidevelopers
 

En vedette (18)

Nmr spectroscopy
Nmr spectroscopyNmr spectroscopy
Nmr spectroscopy
 
Two Diemensional NMR (2D NMR)
Two Diemensional NMR (2D NMR)Two Diemensional NMR (2D NMR)
Two Diemensional NMR (2D NMR)
 
Proton nmr spectroscopy present
Proton nmr spectroscopy presentProton nmr spectroscopy present
Proton nmr spectroscopy present
 
Protein Structure Determination
Protein Structure DeterminationProtein Structure Determination
Protein Structure Determination
 
Life Insurance in Venezuela, Key Trends and Opportunities to 2016
Life Insurance in Venezuela, Key Trends and Opportunities to 2016Life Insurance in Venezuela, Key Trends and Opportunities to 2016
Life Insurance in Venezuela, Key Trends and Opportunities to 2016
 
Life Insurance in China, Key Trends and Opportunities to 2016
Life Insurance in China, Key Trends and Opportunities to 2016Life Insurance in China, Key Trends and Opportunities to 2016
Life Insurance in China, Key Trends and Opportunities to 2016
 
Life Insurance in South Korea, Key Trends and Opportunities to 2016
Life Insurance in South Korea, Key Trends and Opportunities to 2016Life Insurance in South Korea, Key Trends and Opportunities to 2016
Life Insurance in South Korea, Key Trends and Opportunities to 2016
 
Maximo 7.5 New Features
Maximo 7.5 New FeaturesMaximo 7.5 New Features
Maximo 7.5 New Features
 
Agilité et-le-mal-agile tourbdx-27-10-2016
Agilité et-le-mal-agile tourbdx-27-10-2016Agilité et-le-mal-agile tourbdx-27-10-2016
Agilité et-le-mal-agile tourbdx-27-10-2016
 
Life Insurance in Spain, Key Trends and Opportunities to 2016
Life Insurance in Spain, Key Trends and Opportunities to 2016Life Insurance in Spain, Key Trends and Opportunities to 2016
Life Insurance in Spain, Key Trends and Opportunities to 2016
 
Top 10 Targeted Books
Top 10 Targeted BooksTop 10 Targeted Books
Top 10 Targeted Books
 
Life Insurance in Portugal, Key Trends and Opportunities to 2016
Life Insurance in Portugal, Key Trends and Opportunities to 2016Life Insurance in Portugal, Key Trends and Opportunities to 2016
Life Insurance in Portugal, Key Trends and Opportunities to 2016
 
Английский сленг (M-О)
Английский сленг (M-О)Английский сленг (M-О)
Английский сленг (M-О)
 
Life Insurance in Iran, Key Trends and Opportunities to 2016
Life Insurance in Iran, Key Trends and Opportunities to 2016Life Insurance in Iran, Key Trends and Opportunities to 2016
Life Insurance in Iran, Key Trends and Opportunities to 2016
 
9 frame kidulthood
9 frame kidulthood9 frame kidulthood
9 frame kidulthood
 
25 mensagem de cruz 01 (20-03)
25 mensagem de cruz 01 (20-03)25 mensagem de cruz 01 (20-03)
25 mensagem de cruz 01 (20-03)
 
VisualSP: Supporting Office 365: An Administrator's Move from Systems to Serv...
VisualSP: Supporting Office 365: An Administrator's Move from Systems to Serv...VisualSP: Supporting Office 365: An Administrator's Move from Systems to Serv...
VisualSP: Supporting Office 365: An Administrator's Move from Systems to Serv...
 
Aprendendo sobre o seu mercado
Aprendendo sobre o seu mercadoAprendendo sobre o seu mercado
Aprendendo sobre o seu mercado
 

Similaire à Ko sponholtz NMR project

2005 when x rays modify-protein_structure_radiationd_amage at work
2005 when x rays modify-protein_structure_radiationd_amage at work2005 when x rays modify-protein_structure_radiationd_amage at work
2005 when x rays modify-protein_structure_radiationd_amage at work
Osama Abdulkareem
 
Crystal Structure analysis and detailed information pptx
Crystal Structure analysis and detailed information pptxCrystal Structure analysis and detailed information pptx
Crystal Structure analysis and detailed information pptx
achiever3003
 

Similaire à Ko sponholtz NMR project (20)

X ray crystallography analysis
X ray crystallography analysis X ray crystallography analysis
X ray crystallography analysis
 
Determination of protein tertiary structure
Determination of protein tertiary structureDetermination of protein tertiary structure
Determination of protein tertiary structure
 
X- ray Crystallograpy
X- ray CrystallograpyX- ray Crystallograpy
X- ray Crystallograpy
 
Proteomics Practical (NMR and Protein 3D software
Proteomics Practical (NMR and Protein 3D softwareProteomics Practical (NMR and Protein 3D software
Proteomics Practical (NMR and Protein 3D software
 
X-ray Crystallography & Its Applications in Proteomics
X-ray Crystallography & Its Applications in Proteomics X-ray Crystallography & Its Applications in Proteomics
X-ray Crystallography & Its Applications in Proteomics
 
X rays crystallography
X rays crystallographyX rays crystallography
X rays crystallography
 
2005 when x rays modify-protein_structure_radiationd_amage at work
2005 when x rays modify-protein_structure_radiationd_amage at work2005 when x rays modify-protein_structure_radiationd_amage at work
2005 when x rays modify-protein_structure_radiationd_amage at work
 
X ray
X rayX ray
X ray
 
Dipti_X ray crystallography (1).pptx
Dipti_X ray crystallography (1).pptxDipti_X ray crystallography (1).pptx
Dipti_X ray crystallography (1).pptx
 
sp2016ren
sp2016rensp2016ren
sp2016ren
 
X ray
X ray X ray
X ray
 
Methods of Protein structure determination
Methods of  Protein structure determination Methods of  Protein structure determination
Methods of Protein structure determination
 
Nuclear magnetic resonance (enzymology)
Nuclear magnetic resonance (enzymology) Nuclear magnetic resonance (enzymology)
Nuclear magnetic resonance (enzymology)
 
x Ray crystallography.pptx
x Ray crystallography.pptxx Ray crystallography.pptx
x Ray crystallography.pptx
 
X ray diffraction
X ray diffractionX ray diffraction
X ray diffraction
 
X-RAY CRYSTALLOGRAPHY.pptx
X-RAY CRYSTALLOGRAPHY.pptxX-RAY CRYSTALLOGRAPHY.pptx
X-RAY CRYSTALLOGRAPHY.pptx
 
Structural proteomics
Structural proteomicsStructural proteomics
Structural proteomics
 
Electron Diffraction Using Transmission Electron Microscopy
Electron Diffraction Using Transmission Electron MicroscopyElectron Diffraction Using Transmission Electron Microscopy
Electron Diffraction Using Transmission Electron Microscopy
 
Crystal Structure analysis and detailed information pptx
Crystal Structure analysis and detailed information pptxCrystal Structure analysis and detailed information pptx
Crystal Structure analysis and detailed information pptx
 
Physical structure of fibers
Physical structure of fibersPhysical structure of fibers
Physical structure of fibers
 

Dernier

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ssuser89054b
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
ankushspencer015
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
dollysharma2066
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
MsecMca
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 

Dernier (20)

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
 
Unit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdfUnit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdf
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
Intro To Electric Vehicles PDF Notes.pdf
Intro To Electric Vehicles PDF Notes.pdfIntro To Electric Vehicles PDF Notes.pdf
Intro To Electric Vehicles PDF Notes.pdf
 

Ko sponholtz NMR project

  • 1. Structure  Determina-on:   Nuclear  Magne-c  Resonance(NMR)     Kwonil  Kobe  Ko,  Cushing  Academy,  Senior   Project  Supervisor:  William  R.  Sponholtz,  III,  B.S.,  M.S.,  Ph.D.   1   2   1Dartmouth  College  Department  of  Chemistry.  h7ps://sites.dartmouth.edu/ mierkelab/nmr-­‐facility  (accessed  December  19,  2015).     2Dominique  Marion;  An  IntroducJon  to  Biological  NMR  Spectroscopy.  Molecular  &  Cellular   Proteomics.  [Online]  2013,  pp  3009.  h7p://www.mcponline.org/content/12/11/3006.full.pdf +html?sid=d9388787-­‐b9ae-­‐4dae-­‐b0e8-­‐770d9d293f41  (accesed  December  28,  2015).          
  • 2. NMR  Spectroscopy    Nuclear  Magne-c  Resonance  (NMR)  Spectroscopy  is  an  analy-cal    chemistry  technique  to  elucidate  the  structures  of  simple  and  complex    organic  compounds  employing  1-­‐D  and  2-­‐D  NMR.                         Degrada've  vs.  non-­‐Degrada've  Techniques   Large  Quan''es  vs.  A  Few  Milligrams   Many  Years  vs.  Hours   Ambiguous  vs.  Absolute  Assignment              Modern  techniques              à  NMR(1-­‐D  and  2-­‐D)  and  3-­‐D  Shapes              à  GC-­‐MS  :  Molecular  weight              à  X-­‐ray  Crystallography  :  3-­‐D  shapes              àIR  :  func-onal  groups  (based  on  vibra-ons)    Oldest  techniques                                          à  Elemental  analysis    à  Combus-on  analysis   Classical  Structure  Determina'on  vs    Modern  techniques   Top  Five  Greatest  Discoveries  in  Science?    
  • 3. NMR  &  X-­‐ray  crystallography         à    X-­‐ray  crystallography  is  a  tool  used  for  idenJfying  the  atomic  and  molecular  structure  of   a  crystal  by  causing  a  beam  of  X-­‐rays  to  diffract  into  many  specific  direcJons.  Measuring  the   angles  and  intensiJes,  a  three-­‐dimensional  picture  of  the  density  of  electrons  within  the   crystal  can  be  produced.  And  from  this  electron  density,  compound’s  3-­‐D  structure  can  be   elucidated,  including  chemical  bonds,  chiral  centers,  gross  connecJvity,…etc.  5   Protein crystallography involves summing the scattered X-ray waves from a macromolecular crystal The steps in solving a protein crystal structure at high resolution are diagrammed in Figure 5-3. First, the protein must be crystallized. This is often the rate-limiting step in straightforward structure determinations, especially for membrane proteins. Then, the X-ray diffraction pattern from the crystal must be recorded. When X-rays strike a macromolecular crystal, the atoms in the molecules produce scattered X-ray waves which combine to give a complex diffraction pattern consisting of waves of different amplitudes. What is measured experimentally are the amplitudes and positions of the scattered X-ray waves from the crystal. The structure can be reconstructed by summing these waves, but each one must be in the correct registration with respect to every other wave, that is, the origin of each wave must be determined so that they sum to give some image instead of a sea of noise. This is called the phase problem. Phase values must be assigned to all of the recorded data; this can sometimes be done computationally, but is usually done experimentally by labeling the protein with one or more heavy atoms whose position in the crystal can be determined independently. The phased waves are then summed in three dimensions to generate an image of the electron density distribution of the molecule in the crystal. This can be done semi-automatically or by hand on a computer graphics system. A chemical model of part of the molecule is docked into the shape of each part of the electron part of the electron density (as shown in Figure 5-3). This fitting provides the first picture of the structure of the protein. The overall model is improved by an iterative process called refine- ment whereby the positions of the atoms in the model are tweaked until the calculated diffraction pattern from the model agrees as well as can be with the experimentally measured diffraction pattern from the actual protein. There is no practical limit to the size of the protein or protein complex whose structure can be determined by X-ray crystallography. Definitions phase problem: in the measurement of data from an X-ray crystallographic experiment only the amplitude of the wave is determined.To compute a structure,the phase must also be known. Since it cannot be deter- mined directly, it must be determined indirectly or by some other experiment. crystals (enlarged view) diffraction patterns phases electron density maps atomic models fittingX-rays refinement Figure 5-3 Structure determination by X-ray crystallography The first step in structure determination by X-ray crystallography is the crystallization of the protein. The source of the X-rays is often a synchrotron and in this case the typical size for a crystal for data collection may be 0.3 ¥ 0.3 ¥ 0.1 mm. The crystals are bombarded with X-rays which are scattered from the planes of the crystal lattice and are captured as a diffraction pattern on a detector such as film or an electronic device. From this pattern, and with the use of reference—or phase—information from labeled atoms in the crystal, electron density maps (shown here with the corresponding peptide superimposed) are computed for different parts of the crystal. A model of the protein is constructed from the electron density maps and the diffraction pattern for the modeled protein is calculated and compared with the actual diffraction pattern. The model is then adjusted—or refined— to reduce the difference between its calculated diffraction pattern and the pattern obtained from the crystal, until the correspondence between model and reality is as good as possible. The quality of the structure determination is measured as the percentage difference between the calculated and the actual pattern. can be studied. Unlike X-ray diffraction, which presents a static picture (an average in time and space) of the structure of a protein, NMR has the capability of measuring certain dynamic properties of proteins over a wide range of time scales. Structure Determination Chapter 5 171©2004 New Science Press Ltd References Drenth, J.: Principles of Protein X-Ray Crystallography 2nd ed.(Springer-Verlag,New York,1999). Evans, J.N.S.: Biomolecular NMR Spectroscopy (Oxford University Press,Oxford,1995). Markley, J.L. et al.: Macromolecular structure deter- mination by NMR spectroscopy. Methods Biochem. Anal. 2003,44:89–113. Rhodes,G.:Crystallography Made Crystal Clear:A Guide to Users of Macromolecular Models 2nd ed. (Academic Press,New York and London,1999). Schmidt, A. and Lamzin, V.S.: Veni, vidi, vici—atomic resolution unravelling the mysteries of protein function.Curr.Opin.Struct.Biol. 2002,12:698–703. Gorenstein,N.:Nuclear Magnetic Resonance (NMR) (Biophysics Textbooks Online): http://www.biophysics.org/btol/NMR.html 1H chemical shift (ppm) 13C = 22.9 ppm 1Hchemicalshift(ppm) purified, labeled protein NMR spectrometer resonance assignment and internuclear distance measurement protein structure data analysis data collection Figure 5-4 Structure determination by NMR For protein structure determination by NMR, a labeled protein is dissolved at very high concentration and placed in a magnetic field, which causes the spin of the hydrogen atoms to align along the field. Radio frequency pulses are then applied to the sample, perturbing the nuclei of the atoms which when they relax back to their original state emit radio frequency radiation whose properties are determined by the environment of the atom in the protein. This emitted radiation is recorded in the NMR spectrometer for pulses of differing types and durations (for simplicity, only one such record is shown here), and compared with a reference signal to give a measure known as the chemical shift. The relative positions of the atoms in the molecule are calculated from these data to give a series of models of the protein which can account for these data. The quality of the structure determination is measured as the difference between the different models. NMR:     X-­‐ray   Crystallo graphy:   5  Chemwiki,  Unviersity  of  California,  Davis.  h7p://chemwiki.ucdavis.edu/AnalyJcal_Chemistry/Instrumental_Analysis/DiffracJon/X-­‐ ray_Crystallography  (accessed  December  27,  2015).     3  Gregory,  A.;  Dagmar,  R.;  Protein  Structure  and  FuncJon:  Chapter  5,  Structure  determinaJon;  New  Science  Press  Ltd,  2004;  pp  168-­‐173  For  X-­‐ray  descripJon     3   4   4  Gregory,  A.;  Dagmar,  R.;  Protein  Structure  and  FuncJon:  Chapter  5,  Structure  determinaJon;  New  Science  Press  Ltd,  2004;  pp  168-­‐173  For  X-­‐ray  descripJon    
  • 4. NMR  vs  X-­‐ray  Crystallography   disregarded otherwise. The external magnetic field B0 induces currents in the electronic clouds in the protein; in turn, these circulating currents generate a local induced field Bind. As a result, the different spins sense the vector sum of the two fields: B ¡ loc ϭ B ¡ 0 ϩ B ¡ ind and will thus not resonate at the same frequency. Chemical shifts are extremely sensitive to steric and electronic effects and thus in the case of proteins, to secondary and tertiary structure. Unlike nOe and J-coupling, chemical shift does not depend on a single pairwise interaction between well-identi- fied partners: its prediction or quantitative interpretation is thus more complex. Let us consider the chemical shifts of backbone 15 N in proteins: the standard chemical shift range FIG. 2. Number of structures deposited to the RCSB protein data bank (http://www.rcsb.org/pdb/) over the years. The number of structures solved by X-ray crystallography is steadily increasing whereas the NMR-based ones have hit a plateau. In the inset, the data for the early years of crystallography are displayed with an extended vertical scale for clarity. For the former method, the crystallization step remains a major bottleneck but once suitable diffraction data are available, the structure can be obtained rather quickly. NMR is primarily hampered by the limitation in protein size that can be studied: despite that resonance assignment and nOe interpretation have been automated, it still requires more human input during these processes. FIG. 3. Without chemical shifts, NMR structural parameters could not be measured and interpreted at atomic level resolution. In fact, the magnetic field at the nucleus is generally different from the applied field B0: this additional contribution (or screening) arises from the interaction of the surrounding electrons with the applied field. The An Introduction to Biological NMR Spectroscopy à  NMR  spectroscopy  and  X-­‐ray  crystallography  are  the  most  widely  used  modern  techniques  in  fields  of   biology  and  chemistry  for  structure  elucidaJon.  7     à  X-­‐ray  is  highly  used  when  solving  a  protein  structure  because  it  is  easy  and  quick  to  solve  a  protein   structure  once  suitable  crystals  have  been  obtained.  8     à  Unlike  X-­‐ray,  which  is  highly  restricted  to  protein  structure  determinaJon,  NMR  covers  a  wider  range  of   biochemistry  including  structures  that  are  not  easily  crystalized.  This  is  especially  powerful  in  drug   discovery,  because  it  provides  us  molecular  parameters  and  chemical  kineJcs  by  following  the  Jme-­‐ dependence  of  the  data.  9   1   6   6  Dominique  Marion;  An  IntroducJon  to  Biological  NMR  Spectroscopy.  Molecular  &  Cellular  Proteomics.  [Online]  2013,  pp  3009.  h7p://www.mcponline.org/content/ 12/11/3006.full.pdf+html?sid=d9388787-­‐b9ae-­‐4dae-­‐b0e8-­‐770d9d293f41  (accesed  December  28,  2015).   7  Dominique  Marion;  An  IntroducJon  to  Biological  NMR  Spectroscopy.  Molecular  &  Cellular  Proteomics.  [Online]  2013,  pp  3006.  h7p://www.mcponline.org/content/12/11/3006.full.pdf +html?sid=d9388787-­‐b9ae-­‐4dae-­‐b0e8-­‐770d9d293f41  (accesed  December  28,  2015).   8  The  University  Medical  School  of  Dbrecen.  h7p://www.cryst.bbk.ac.uk/pps97/assignments/projects/ambrus/html.htm  (accessed  December  28,  2015).     9  The  University  Medical  School  of  Dbrecen.  h7p://www.cryst.bbk.ac.uk/pps97/assignments/projects/ambrus/html.htm  (accessed  December  28,  2015).    
  • 5. Example  of  Impact  of  2-­‐D  NMR:  Strychnine   Classical  structure  determina-on  techniques  (degrada-ve)  took  approximately  50   years  to  elucidate  the  structure  of  strychnine  employing  the  efforts  of  many,  many   collabora-ng  research  groups.  However,  with  1H  and  13C  NMRs,  several  different  2-­‐ D  NMRs,  and  other  spectroscopic  data,  Dr.  Sponholtz  was  able  to  solve  this  structure   in  only  ten  hours!    The  key:  2-­‐D  NMR   Isolated  1818   Elucida-on  1946   X-­‐Ray  confirma-on  1956   six  chiral  centers:  64  possible   six  methylene  groups;   differen-ate  pro-­‐R  and  pro-­‐S   N N O O Strychnine Showing  gross   connec-vity  only   (no  stereochemistry)  
  • 6. Collabora-on  of  NMR  &  X-­‐ray   N N N N O N N N O N (a)  TIC10  or  ONC201   (b)  Corrected  Structure  for  TIC10     à  The  patented  compound,  known  as  TIC10,  was     elucidated  by  The  Penn  State  group  and  owned  by  the   biotech  firm  OncoceuJcs.       à  Several  insJtuJons  have  found  TIC10  to  be  effecJve  in   brain  cancer,  prostate  cancer,  melanoma,  and  sarcomas.       à  Thus,  OncoeceuJcs  has  iniJated  Phase  I/II  clinical  trials  of   TIC10  and  was  about  to  enter  the  human  clinical  trials.   à  However,  When  Scripps’s  Kim  D.  Janda  and  coworkers   synthesized  the  iniJal  patented  structure,  they  found  it  to  be   biologically  inacJve.     àBy  using  X-­‐ray  crystallography  and  NMR,  Scripps   confirmed  that  bioacJve  TIC10  has  a  different  structure(b)   than  the  patented  one.     à  The  Scripps  research  group  concluded  that  OncoceuJcs   and  several  insJtuJons  had  been  working  on  the  bioacJve   compound  but  had  patented  the  inacJve  structure.  Thus   Scripps  applied  for  a  patent  on  the  correct  structure(b)  and   licensed  it  exclusively  to  Sorrento.   10    Stu,  Borman.;  Tug-­‐of-­‐War  Over  Promising  Cancer  Drug  Candidate.  Drug  Discovery:  Structure  error  threatens  exisJng  patent  and  clinical  trials.  Chemical  &  Engineering  News.  [Online]  2014,  Volume  92,  Issue   21,  7.  h7p://cen.acs.org/arJcles/92/i21/TugWar-­‐Over-­‐Promising-­‐Cancer-­‐Drug.html  (accessed  December  28,  2015).     10  
  • 7. Necessary  Review   I.  Basic  understanding  of  electronega<vy  difference;  i.e.,  must  be  able  to  predict  electron   density  for  atoms;  e.g.,  deshielded  or  shielded.   H F H F H F δδ + - DESHIELDED SHIELDED Δδ ATOMS Example:   IIIII.  Basic  understanding  of  how  atoms  are  oriented  in  three-­‐dimensions;  i.e.,  hybridiza<on   theory.   2py unhybridized orbital (one e- per orbital) 2pz unhybridized orbital (one e- per orbital) C sp Hybridized Carbon (1800) C sp3 Hybridized Carbon (109.50) sp2 Hybridized Carbon (1200) C The  coupling  of  these  two  topics  is  the  key  to   understand  and  predict  the  chemical  shics  of  NMR.  1  
  • 8. Obtaining  NMR   1-D Pulse NMR Sample Magnet Magnetization Perturbation Response Detection Data Fourier Transformation Spectrum 3-­‐5  mg  of  compound   dissolved  in  a  suitable   solvent  and  transferred   to  a  NMR  tube.   NMR  tube  placed  into   the  magne-c  field.   0123456 PPM 11  Dartmouth  College  Department  of  Chemistry.  h7ps://sites.dartmouth.edu/mierkelab/nmr-­‐facility  (accessed  December  19,  2015).     11   11   11  
  • 9. Informa-on  Process   FID   Spectrum   The  informa-on  that  comes   out  of  the  spectrometer  is   called  a  free  induc-on  decay   (FID),  which  is  in  the  Time   Domain.  When  the  nuclei  are   pulsed,  the  spins  of  like  nuclei     group  together  and  acer  the   pulse  the  spins  move  apart  or   decay.   The  FID  is  transformed  via  a  Fourier   transforma-on  to  yield  a  spectrum,   which  is  in  the  Frequency  Domain.   You  can  determine  how  many   hydrogens  are  afached  by  comparing   areas  under  the  curve  (integra-on)  in   the  simplest  ra-o.  Moreover,  you  can   inves-gate  the  spligng  paferns  with   high  resolu-on.   FT  
  • 10. Chemists’  perspec-ve   Chemists  look  for  three  things:  Chemical  ShiJ,  Intensity,  and  SpliLng   I):  Chemical  ShiJ:  By  looking  at  chemical  ships  of  1H  and  13C,  chemists  can  roughly  predict   what  group  is  a7ached  to  carbon  or  hydrogen.  For  example,  if  a  sp2  carbon  is  highly   deshielded(or  downfield)  and  thus  has  a  chemical  ship  of  200-­‐220  ppm,  chemists  can  imagine   the  presence  of  electron  withdrawing  group,  such  as  oxygen,  a7ached  to  that  sp2  carbon.       2):  Intensity:  Since  the  signal  intensity  is  directly  proporJonal  to  the  number  of  hydrogens   that  give  rise  to  the  signal,  chemists  can  see  how  many  chemically  equivalent   hydrogens(same  chemical  ship)  are  a7ached  by  seeing  a  raJo  of  areas  under  the   integrated  intensity  of  signals  in  1H  NMR  spectrum.     3):  SpliLng  :  Spliqng  offers  informaJon  of  how  many  neighboring  hydrogens  exist  for   a  parJcular  hydrogen  or  chemically  equivalent  hydrogens.  Looking  at  spliqng  pa7erns  and   complex  coupling  constants,  chemists  can  draw  the  tree  diagram  of  complex  NMR  and  thus   be7er  understand  spliqng  in  various  cases  because  different  couplings  are  applied     sequenJally.  
  • 11. 1-­‐D  NMR  Proton  Chemical  Shics  (rela-ve  to  TMS  in  CDCl3)   01.02.03.04.05.06.07.08.09.010.011.012.0 ppm R2NHPhOH ROHAmide RCONHRCO2H O2N-CH R2N-CH NC-CH Esters RCO2-CH RCOCHBr-CH I-CHCl-CHF-CH R2C CR-CHAr-CHPhO-CH RC CHHO-CHRCH CHR Sat alkanes R-H Sulfides RS-CH Ethers RO-CHR2C CH2AromaticsRCOH 13.014.0 (δ)
  • 12. Different  types  of  Hydrogens  in  NMR   à  Homotopic  –  hydrogens  that  would  result  in  idenJcal  molecules  if  they   were  replaced  with  another  atom  (X).  12   IdenJcal  signals  in  H  NMR     à  EnanJotopic  -­‐  hydrogens  that  would  result  in  enanJomers  if  they  were   replaced  with  another  atom  (X).  12   IdenJcal  signals  in  H  NMR       à  Diastereotopic  -­‐  hydrogens  that  would  result  in  diastereomers  if  they  were   replaced  with  another  atom  (X).  12   Different  signals  in  H  NMR     C Cl Cl H H C Cl Cl X H , C Cl Cl H X C F Cl H H C (R)(R) F Cl X H , C (S)(S) F Cl H X C Cl H H C (R)(R) Cl F H C (R)(R) Cl H X C (R)(R) Cl F H , C Cl H H C (S)(S) Cl F X1   12  Mater  Organic  Chemistry.  Homotopic,  EnanJotopic,   Diastereotopic.  h7p://www.masterorganicchemistry.com/ 2012/04/17/homotopic-­‐enanJotopic-­‐diastereotopic/   (accessed  January  4,  2016)  
  • 13. 1-­‐D  NMR  Carbon  Chemical  Shic  (rela-ve  to  TMS  in    CDCl3)   200 150 100 50 0 COCRC CRAmides R-CONR2 C CCSOnRCEsters R-CO2R' Carboxylic Acids R-CO2H RC N C-OR C-Ar Heteroaromatics C-OH C-SR Aromatics C-NR2 R2C CH2 C-H Saturated Alkanes Ketones, R2C=O RHC=CHR C-NO2 C-Br C-IC-ClC-FR2C=CH2Aldehydes, RCH=O ppm(δ)
  • 14. Chemical  Shics  for  1-­‐D  proton  and  carbon  NMR   Let’s  focus  on  coupling  (J)  constants  for  proton  NMR   What  are  J  values?     à J(coupling  constant)  is  a  distance(Hz)  between  split  peaks.  When  a  proton   absorbs  energy,  it  relaxes  by  giving  that  energy  back  to  surrounding  atoms  via   the  sigma  bond  framework.  Thus,  some  energy  is  passed  along  to  adjacent   protons.  The  adjacent  protons  provide  feedback  on  the  spectrum  to  the  proton   that  absorbs  the  energy.  Moreover,  J  values  are  independent  of  the  field   strength,  Bo  .   C H1 C H2 C H1 C H2 C H1 C H2 H1 absorbs energy H1 gives energy back (relaxation) via sigma bonds C H1 C H2 H2 absorbs some of the energy Within the mathematics of the spectrum software, we can see how many neighboring protons absorb the energy, which gives rise to coupling (J) constants.
  • 15. What  influences  the  magnitude  of  J  value?       -­‐Distance  to  relaxing  proton     -­‐Angle  to  relaxing  proton   Type H H H H H H H H H H J Value (Hz) 12-15 2-9 0.5-3 7-12 13-18 Type J Value (Hz) H H ax-ax: 6-14 ax-eq: 0-5 eq-eq: 0-5 H H ortho: 6-10 meta: 1-3 para: 0-1 CH H 0.5-3 HC CH 0-3 Note:  circled  protons  are  NOT  equivalent  1  
  • 16. Karplus  Curve   C' C H' H φ C H H' φ 0 20 40 60 80 100 120 140 160 180 4 2 6 8 10 12 JHH'(Hz) φ 1  
  • 17. Spligng  Pafern   à Peak  Spliqng  occurs  due  to  coupling  of  spins  (interacJons  between  adjacent  carbons).   à Peak  Spliqng  is  not  seen  for  H  connected  to  O,  N.  (because  of  hydrogen  bonding)   à Spliqng  is  based  on  the  number  of  H’s  on  adjacent  C.   a):  If  a  proton  has  n  protons  a7ached  to  adjacent  carbons,  it  will  split  into  n+1  peaks.   b):  Only  nonequivalent  protons  couple.     c):  If  H’s  are  on  same  C  and  they  are  homotopic  or  enanJotopic,  no  spliqng  will  occur.   d):  If  H’s  are  on  different  C’s,  but  they  are  “chemically  equivalent”,  no  spliqng  will  occur.     General  rules   Peaks  are  classified  by  how  they  are  split   13   13   13  University  of  California,  Los  Angeles  Department  of  Chemistry.  Proton  NMR  Spectroscopy-­‐Split  the  signals,  not  your  brain!  h7p://www.chem.ucla.edu/harding/ec_tutorials/tutorial37.pdf  (accessed  January  9,  2016).   13   13  
  • 18. Examples  for  Hydrogen  chemical  shics   01234 PPM H H H O H H H 1.11 1.11 1.11 2.0 3.57 3.57 Ethanol     Note:  Only  three  peaks  due   to  equivalent  protons  (see   3-­‐D  model  if  you  are  not   convinced)   Note:    Deshielded  protons  are  downfield  
  • 19. 01234 PPM O H H H H H H 3.24 3.24 3.24 3.24 3.24 3.24 Dimethyl  Ether   Note:  All  protons  are  equivalent   Note:  All  equivalent  protons  are  deshielded  (downfield)  
  • 20. 0123456 PPM H H H H H H 4.97 5.03 5.70 1.71 1.71 1.71 Note:  Only  three  equivalent  protons   Note:  sp2  more  electronega-ve  than  sp3   carbon;  thus,  those  afached  protons  are   more  downfield  and  both  are  not   equivalent.   Propylene  (1-­‐Propene)   1  
  • 21. 0123456 PPM H H H H H H H H 5.48 5.48 1.71 1.71 1.71 1.71 1.71 1.71 Note:  Only  two  signals  due  to   equivalent  protons  (symmetry  of   molecule)   (E)-­‐2-­‐Butene   1  
  • 22. 0123456 PPM 1-­‐Butene   H H H H H H HH 4.97 5.03 5.70 2.00 2.00 1.06 1.061.06 Note:  sp2  more  electronega-ve  than  sp3   carbon;  thus,  those  afached  protons  are   more  downfield  and  each  is  not  equivalent.   Note:  Two  sets  of  equivalent  protons.   1  
  • 23. Examples  for  Carbon  chemical  shic  (x20  rules)   Ethanol     Note:  Only  three  peaks  due   to  equivalent  protons  (see   3-­‐D  model  if  you  are  not   convinced)   Note:    Deshielded  protons  are  downfield   H H H O H H H 16.9 55.8 0102030405060 PPM
  • 24. 0102030405060 PPM H H H O H H H 16.9 55.8 Ethanol     Note:  Deshielded  carbon  is   downfield   Note:  “x20  rule”  applies  very  well  
  • 25. Dimethyl  Ether   Note:  both  carbons  are  equivalent   Note:  both  equivalent  carbons  are  deshielded  (downfield)   O H H H H H H 56.1 56.1 0102030405060 PPM
  • 26. Note:  “x20  Rule”  works  well   Note:  sp2  more  electronega-ve  than  sp3   carbon;  thus,  those  carbons  are  more   downfield  and  both  are  not  equivalent.   Propylene  (1-­‐Propene)   020406080100120140 PPM H H H H H H 115.9 132.7 17.2
  • 27. Note:  Only  two  signals  due  to   symmetry.   (E)  -­‐2-­‐Butene   H H H H H H H H 16.7 125.3 125.3 16.7 020406080100120 PPM Note:  sp2  more  electronega-ve  than  sp3   carbon;  thus,  those  equivalent  carbons  are   more  downfield.  
  • 28. 1-­‐Butene   Note:  sp2  more  electronega-ve  than  sp3   carbon;  thus,  those  carbons  are  more   downfield  and  each  is  not  equivalent.   H H H H H H HH 115.1 137.3 26.3 13.7 020406080100120140 PPM
  • 29. Predic-ng  the  spligng  pafern  of  a  proton  signal   Example:  If  a  proton  (or  group  of  equivalent  protons)  relaxes  by  giving  off   energy  to  two  equivalent,  adjacent  protons  the  signal  will  be  split  into  a   triplet  (t)   Example:  If  a  proton  (or  group  of  equivalent  protons)  relaxes  by   giving  off  energy  to  three  equivalent,  adjacent  protons  the  signal   will  be  split  into  a  quartet  (q)   01234 PPM H H H O H H H 1.11 1.11 1.11 2.0 3.57 3.57 Will split into a tripletWill split into a quartet
  • 30. 0123456 PPM H H H H H H H H 5.48 5.48 1.71 1.71 1.71 1.71 1.71 1.71 Will split into a q Will split into a d Example  of  spligng  paferns  for  (E)-­‐2-­‐butene     1  
  • 31. 0123456 PPM Will split into a d of d of d H H H H H H 4.97 5.03 5.70 1.71 1.71 1.71 Will split into a d of d of q Will split into a d of d of q Will split into a d of d of q Examples of d of d of d Example  of  spliLng  paTerns  for  1-­‐propene  (can  get  complicated  very  quickly)   Mul-plet  (m)