SlideShare une entreprise Scribd logo
1  sur  16
Chapter 24. The Electric Field                                                  Physics, 6th Edition


                            Chapter 24. The Electric Field

The Electric Field Intensity

24-1. A charge of +2 µC placed at a point P in an electric field experiences a downward force of

      8 x 10-4 N. What is the electric field intensity at that point?

                                 F 8 x 10-4 N ;        E = 400 N/C, downward
                           E=     =
                                 q 2 x 10-6 C



24-2. A –5 nC charge is placed at point P in Problem 24-1. What are the magnitude and

      direction of the force on the –5 nC charge? (Direction of force F is opposite field E)

                 F = qE = (-5 x10-9 C)(-400 N/C);        F = 2.00 x 10-6 N, upward



24-3. A charge of –3 µC placed at point A experiences a downward force of 6 x 10-5 N. What is

      the electric field intensity at point A?
                                                                                             E
      A negative charge will experience a force opposite to the field.
                                                                                 F
      Thus, if the –3 µC charge has a downward force, the E is upward.

                                    F −6 x 10-5 N ;       E = 20 N/C, upward
                               E=    =
                                    q -3 x 10-6 C



24-4. At a certain point, the electric field intensity is 40 N/C, due east. An unknown charge,

      receives a westward force of 5 x 10-5 N. What is the nature and magnitude of the charge?

         If the force on the charge is opposite the field E, it must be a negative charge.

                              F          F −5 x 10-5 N
                         E=     ;   q=     =           ;       q = -1.25 µC
                              q          E   40 N/C




                                                  73
Chapter 24. The Electric Field                                                      Physics, 6th Edition


24-5. What are the magnitude and direction of the force that would act on an electron (q = -1.6 x

      10-19 C) if it were placed at (a) point P in Problem 24-1? (b) point A in Problem 24-3?

      The electric force on an electron will always be opposite the electric field.

      (a) F = qE = (-1.6 x 10-19 C)(-400 N/C); F = 6.40 x 10-17 N, upward

      (b) F = qE = (-1.6 x 10-19 C)(+20 N/C); F = -3.20 x 10-18 N, downward


24-6. What must be the magnitude and direction of the electric field intensity between two

      horizontal plates if one wants to produce an upward force of 6 x 10-4 N on a +60-µC

      charge? (The upward force on +q means E is also upward.)
                                                                               F
                                          -4                                                E
                         F 6 x 10 N                                            +q
                       E= =            ;           E = 10.0 N/C, up
                         q 60 x 10-6 C


24-7. The uniform electric field between two horizontal plates is 8 x 104 C. The top plate is

      positively charged and the lower plate has an equal negative charge. What are the

      magnitude and direction of the electric force acting on an electron as it passes horizontally

      through the plates?     (The electric field is from + to -, i.e., downward; force on e is up.)

              F = qE = (-1.6 x 10-19 C)(8 x 104 N/C); F = 1.28 x 10-14 N, upward


24-8. Find the electric field intensity at a point P, located 6 mm to the left of an 8-µC charge.

      What are the magnitude and direction of the force on a –2-nC charge placed at point P?

                       kQ (9 x 109 N ⋅ m 2 /C2 )(8 x 10−6 C)               P
                  E=      =                                  ;                      6 mm
                       r2         (6 x 10-3 mm) 2
                                                                                        E       8 µC
                                      9
                       E = 2.00 x 10 N/C, toward Q
                                                                      F     P       E
                   F = qE = (-2 x 10-9 C)(2.00 x 109 N/C)
                                                                          -2 nC
                         F = -4.00 N, away from Q



                                                 74
Chapter 24. The Electric Field                                                         Physics, 6th Edition


24-9. Determine the electric field intensity at a point P, located 4 cm above a –12-µC charge.

      What are the magnitude and direction of the force on a +3-nC charge placed at point P?

      Electric field will be downward, since that is the direction a positive charge would move.

           kQ (9 x 109 N ⋅ m 2 /C2 )(−12 x 10−6 C)
         E= 2 =                                    ; E = -6.75 x 107 N/C, downward
           r               (0.04 m) 2

                F = qE = (3 x 10-9 C)(-6.75 x 107 N/C) ;       F = -0.202 N, downward



Calculating the Resultant Electric Field Intensity

24-10. Determine the electric filed intensity at the midpoint of a 70 mm line joining a –60-µC

       charge with a +40-µC charge.                                                             q2
                                                              q1        35 mm      35 mm
               kq1 (9 x 109 N ⋅ m 2 /C2 )(−60 x 10−6 C)        -60 µC             E2        +40 µC
        E1 =      =                                                         E1
               r2              (0.035 m) 2

           kq2 (9 x 109 N ⋅ m 2 /C2 )(40 x 10−6 C)
       E2 = 2 =                                    ;           ER = E1 + E2 (Both to left)
            r             (0.035 m) 2

       ER = -4.41 x 108 N/C – 2.94 x 108 N/C ;          ER = 7.35 x 108 N/C. toward –60 µC


24-11. An 8-nC charge is located 80 mm to the right of a +4-nC charge. Determine the field

       intensity at the midpoint of a line joining the two charges.

                                                                   q1                                q2
               kq1 (9 x 109 N ⋅ m 2 /C2 )(4 x 10−9 C)                     40 mm        40 mm
       E1 =       =
               r2            (0.040 m) 2                           4 nC                        +8 nC
                                                                            E2         E1
           kq2 (9 x 109 N ⋅ m 2 /C2 )(8 x 10−9 C)
       E2 = 2 =                                   ;          ER = E1 + E2 (E1 right, E2 left)
            r            (0.040 m) 2

       ER = -4.50 x 104 N/C + 2.25 x 104 N/C ;           ER = -2.25 x 104 N/C, left

       Note: The directions of the E field are based on how a test + charge would move.




                                                   75
Chapter 24. The Electric Field                                                              Physics, 6th Edition


24-12. Find the electric field intensity at a point 30 mm to the right of a 16-nC charge and 40 mm

        to the left of a 9-nC charge.
                                                                       q1     30 mm         40 mm          q2
            kq1 (9 x 109 N ⋅ m 2 /C2 )(16 x 10−9 C)                     +16 nC
        E1 = 2 =                                                                  E2                  +9 nC
             r            (0.030 m) 2                                                           E1

               kq2 (9 x 109 N ⋅ m 2 /C2 )(9 x 10−9 C)
        E2 =       =                                  ;             ER = E1 + E2 (E1 right, E2 left)
                r2           (0.040 m) 2

        ER = 16.0 x 104 N/C - 5.06 x 104 N/C ;                 ER = 1.09 x 105 N/C, right


24-13. Two equal charges of opposite signs are separated by a horizontal distance of 60 mm. If

        the resultant electric field at the midpoint of the line is 4 x 104 N/C. What is the

        magnitude of each charge?                                       q1     30 mm        30 mm              q2

                                                                         +q        E2                     -q
        Equal and opposite charges make field at center                                              E1

        equal to vector sum with both to left or both to right.. ER = E1 + E2 = E1 + E2

                              2kq                         2(9 x 109 N ⋅ m 2 /C 2 ) q
                       E=        2
                                   = 4 x 104 N/C;                          2
                                                                                     = 4 x 104 N/C
                               r                               (0.030 m)

                        q = 2.00 nC          (One positive and the other negative.)


*24-14. A 20-µC charge is 4 cm above an unknown charge q. The resultant electric intensity at a

        point 1 cm above the 20-µC charge is 2.20 x 109 N/C and is directed upward? What are

        the magnitude and sign of the unknown charge?                                                           ER

                 E1 + E2 = 2.20 x 109 N/C; First we find E1 and E2                            1 cm
                                                                                                 q1       20 µC
                                                     −6
               kq1 (9 x 10 N ⋅ m /C )(20 x 10 C)
                              9      2   2
        E1 =      =                              ;                E1 = 1.80 x 109 N
               r2            (0.010 m) 2                                                                  4 cm

                                                                                                           q2
           E2 = ER – E1 = 2.20 x 109 N/C – 1.80 x 109 N/C; E2 = 4 x 108 N/C, up

               kq2            E2 r 2 (4 x 108 N/C)(0.05 m) 2
        E2 =       ;   q2 =         =                          ;            q = q2 = 111 µC
                r2             k       (9 x 109 N ⋅ m 2 /C 2 )


                                                          76
Chapter 24. The Electric Field                                                                 Physics, 6th Edition


*24-15. A charge of –20 µC is placed 50 mm to the right of a 49µC charge. What is the resultant

        field intensity at a point located 24 mm directly above the –20-µC charge?                          E1
                                                                                                            θ
                 R = (50 mm) 2 + (24 mm) 2 = 55.5 mm                                       R
                                                                                                24 mm      E2
                                                                     49 µC
                                24 mm                                              θ                        -20 µC
                      tan θ =         ;     θ = 25.60                q1
                                50 mm                                              50 mm            q2

               kq1 (9 x 109 N ⋅ m 2 /C2 )(49 x 10−6 C)
        E1 =      =                                    ;      E1 = 1.432 x 108 N/C at 25.60 N of E
               r2            (0.0555 m) 2

                kq1 (9 x 109 N ⋅ m 2 /C2 )(20 x 10−6 C)
        E2 =       =                                    ;         E2 = 3.125 x 108 N/C, downward
                r2             (0.024 m) 2

                      Ex = (1.432 x 108 N/C) cos 25.60 + 0;        Ex = 1.291 x 108 N/C

          Ey = (1.432 x 108 N/C) sin 25.60 – 3.125 x 108 N/C;               Ey = -2.506 x 108 N/C

                       ER = (1.29 x 108 ) 2 + (-2.51 x 108 ) 2 ;     ER = 2.82 x 108 N/C

                      −2.51 x 108 N/C
          tan θ =                     ;      θ = 62.70 S of E;       ER = 2.82 x 108 N/C, 297.30.
                      1.29 x 108 N/C


*24-16. Two charges of +12 nC and +18 nC are separated horizontally by 28 mm. What is the

        resultant field intensity at a point 20 mm from each charge and above a line joining the

        two charges?                                                          E2                   E1
                            14 mm                                                      θ       θ
                  cosθ =          ;       θ = 45.60
                            20 mm
                                                                        20 mm
             kq (9 x 109 N ⋅ m 2 /C2 )(12 x 10−9 C)
         E1 = 21 =
              r           (0.020 m) 2                                  q1    θ                             q2
                                                                            θ
                E1 = 2.70 x 105 N/C, 45.60 N of E                    +12 nC 14 mm              14 mm
                                                                                                         +18 nC

                      kq1 (9 x 109 N ⋅ m 2 /C2 )(18 x 10−9 C)
               E2 =      =                                    ;     E2 = 4.05 x 105 N/C, 45.60 N of W
                      r2            (0.020 m) 2



                                                        77
Chapter 24. The Electric Field                                                              Physics, 6th Edition


*24-16. (Cont.) Ex = (2.70 x 105 N/C) cos 45.60 – (4.05 x 105 N/C) cos 45.60 = -9.45 x 104 N/C

                 Ey = (2.70 x 105 N/C) sin 45.60 – (4.05 x 105 N/C) sin 45.60 = +4.82 x 105 N/C

                  ER = (−9.45 x 104 ) 2 + (4.82 x 105 ) 2 ;             ER = 4.91 x 105 N/C

                       4.82 x 105 N/C
              tan θ =           4
                                      ; θ = 78.90 N of W;                 ER = 4.91 x 105 N/C, 101.10
                      -9.45 x 10 N/C


*24-17. A +4 nC charge is placed at x = 0 and a +6 nC charge is placed at x = 4 cm on an x-axis.

        Find the point where the resultant electric field intensity will be zero?

                             kq1       kq2
               E1 = E2 ;         =                                                                      +6 nC
                             x 2
                                   (4 cm - x) 2                          +4 nC
                                                                               x            4 cm - x
                                                                         q1                                 q2
                            q2 2                       q2                 x=0                          x = 4 cm
              (4 − x) 2 =      x or      4− x =           x                            E2 = E1
                            q1                         q1

                               6 nC
               4 cm - x =           x;     4 cm - x = 1.225 x;           x = 1.80 cm
                               4 nC


Applications of Gauss’s Law

24-18. Use Gauss’s law to show that the field outside a solid charged sphere at a distance r from

        its center is given by

                                                Q                                      R
                                         E=
                                              4πε 0 R 2
        where Q is the total charge on the sphere.
        Construct a spherical gaussian surface around the charged
        sphere at the distance r from its center. Then, we have                             Gaussian surface

                            Σε 0 AE = Σq ;        ε 0 E (4π R 2 ) = Q

                                             Q
                                      E=
                                           4πε 0 R 2



                                                          78
Chapter 24. The Electric Field                                                         Physics, 6th Edition


24-19. A charge of +5 nC is placed on the surface of a hollow metal sphere whose radius is 3

       cm. Use Gauss’s law to find the electric field intensity at a distance of 1 cm from the

       surface of the sphere? What is the electric field at a point 1 cm inside the surface?

       Draw gaussian surface of radius R = 3 cm + 1 cm = 4 cm.                                   3 cm
                                                                                  R
       This surface encloses a net positive charge of +5 nC and
                                                                                                   +5 nC
       has a surface area of 4πR2, so Gauss’ law gives us:

                                                             q
       (a)     Σε 0 AE = Σq; ε 0 (4π R 2 ) E = q;     E=                               Gaussian surface
                                                           4πε 0 R 2

                          5 x 10-9 C
        E=                                            ;    E = 2.81 x 104 N/C, radially outward.
             4π (8.85 x 10-12 C2 /N ⋅ m 2 )(0.04 m) 2


       (b) Draw a gaussian surface just inside the sphere. Now, all charge resides on the

             surface of the sphere, so that zero net charge is enclosed, and ΣεoAE = Σq = 0.

                                          E = 0, inside sphere



24-20. Two parallel plates, each 2 cm wide and 4 cm long, are stacked vertically so that the field

       intensity between the two plates is 10,000 N/C directed upward. What is the charge on

       each plate? First use Gauss’ law to find E between plates.
                                                                                                   E
       Draw gaussian cylinder of area A enclosing charge q.

                                                       q
                 Σε 0 AE = Σq; ε 0 AE = q;       E=
                                                      ε0 A

       The charge density q/A enclosed is same as Q/Ap for plate. First find q/A from E :

              q                                                         q
                = ε 0 E = (8.85 x 10-12 C 2 /N ⋅ m 2 )(10, 000 N/C) ;     = 8.85 x 10-8 C/m 2
              A                                                         A

                  q        Q
                    =                = 8.85 x 10-8 C/m 2 ;              Q = 7.09 x 10-11 C
                  A (0.02 m)(0.04 m)


                                                     79
Chapter 24. The Electric Field                                                     Physics, 6th Edition


24-21. A sphere 8 cm in diameter has a charge of 4 µC placed on its surface. What is the electric

       field intensity at the surface, 2 cm outside the surface, and 2 cm inside the surface?

       (a) Draw gaussian surface just outside so that R = 4 cm                             4 cm
                                                                             R
           and encloses the net charge of +4 uC. Then,

                qnet                 4 x 10-6 C                                              +4 µC
           E=          =
              4πε 0 R 2 4π (8.85 x 10-12 C 2 /N ⋅ m 2 )(0.04 m) 2
                                                                                 Gaussian surface
                E = 2.25 x 107 N/C, radially outward

       (b) Draw gaussian surface of radius R = 4 cm + 2 cm = 6 cm. This surface encloses a net

           positive charge of +4 nC and Gauss law gives:

                             4 x 10-6 C
           E=                                            ;   E = 9.99 x 106 N/C, radially outward.
                4π (8.85 x 10-12 C2 /N ⋅ m 2 )(0.06 m) 2


       (b) Since no net charge is inside the surface, ΣεoAE = Σq = 0.

                                         E = 0, inside sphere


Challenge Problems

24-22. How far from a point charge of 90 nC will the field intensity be 500 N/C?

         kQ            kQ   (9 x 109 N ⋅ m 2 /C 2 )(90 x 10-9 C)
       E= 2 ;       r=    =                                      ;       r = 1.27 m
         r              E               500 N/C


24-23. The electric field intensity at a point in space is found to be 5 x 105 N/C, directed due

       west. What are the magnitude and direction of the force on a –4-µC charge placed at that

       point?

        Consider East positive: F = qE = (-4 µC)(-5 x 105 N/C);           F = 2.00 N, East




                                                    80
Chapter 24. The Electric Field                                                         Physics, 6th Edition


24-24. What are the magnitude and direction of the force on an alpha particle (q = +3.2 x 10-19 C)

       as it passes into an upward electric field of intensity 8 x 104 N/C? (Choose up as + )

                      F = qE = (3.2 x 10-19 C)(+8 x 104);         F = 2.56 x 10-14 N


24-25. What is the acceleration of an electron (e = -1.6 x 10-19 C) placed in a constant downward

       electric field of 4 x 105 N/C? What is the gravitational force on this charge if

       me = 9.11 x 10-31 kg. (Choose up as +, then E = -4 x 105 N/C.)

               F = qE = (-1.6 x 10-19 C)(-4 x 105 N/C);        F = 6.40 x 10-14 N, upward

               W = mg = (9.11 x 10-31 kg)(9.8 m/s2);       W = 8.93 x 10-30 N, downward

       The weight of an electron is often negligible in comparison with electric forces!


24-26. What is the electric field intensity at the midpoint of a 40 mm line between a 6-nC charge

       and a –9-nC charge? What force will act on a –2-nC charge placed at the midpoint?

                     kq1 (9 x 109 N ⋅ m 2 /C 2 )(6 x 10−9 C)        q1      20 mm        20 mm       q2
                 E1 = 2 =
                      r            (0.020 m) 2                                               E2
                                                                     6 nC                          -9 nC
                                                                                        E1
               kq2 (9 x 109 N ⋅ m 2 /C2 )(9 x 10−9 C)
        E2 =       =                                  ;        ER = E1 + E2 (both to the right)
                r2           (0.020 m) 2

       ER = 1.35 x 105 N/C + 2.025 x 105 N/C ;            ER = 3.38 x 105 N/C, right


*24-27. The charge density on each of two parallel plates is 4 µC/m2. What is the electric field

       intensity between the plates? Recall that σ = q/A, and see Prob.24-20:



                                             q    σ
       Σε 0 AE = Σq; ε 0 AE = q;       E=       =                                              E
                                            ε0 A ε0

            σ       4 x 10-6 C/m 2
       E=      =                            ;    E = 4.52 x 105 N/C
            ε 0 (8.85 x 10-12 C2 /N ⋅ m 2 )



                                                   81
Chapter 24. The Electric Field                                                                       Physics, 6th Edition




*24-28. A -2 nC charge is placed at x = 0 on the x-axis. A +8 nC charge is placed at x = 4 cm.

       At what point will the electric field intensity be equal to zero?

          The point can only be to the left of the –2 nC
                                                                                             q1
                                    kq1        kq2                              -2 nC                       +8 nC
                  E1 = E2 ;             =                                                           4 cm
                                    x 2
                                          ( x + 4 cm) 2                                                         q2
                                                                                  x
                                                                      E2 = E1          x=0                 x = 4 cm
                        q                                 q2
             (4 + x) 2 = 2 x 2 or 4 + x =                    x                        x + 4 cm
                        q1                                q1

                              8 nC
            4 cm + x =             x;      4 cm + x = 2 x;        x = 8.00 cm, left, or             x = -4.00 cm
                              2 nC


*24-29. Charges of –2 and +4 µC are placed at base corners of an equilateral triangle with 10-cm

       sides. What are the magnitude and direction of the electric field at the top corner?

                              5 mm                                                      E2
                    cosθ =         ;            θ = 600
                             10 mm                                                              θ
                                                                                                θ
                    kq1 (9 x 109 N ⋅ m 2 /C2 )(2 x 10−6 C)                             E1
             E1 =      =                                                                                     10 cm
                    r2             (0.10 m) 2
                                                                                            θ                      q2
                                6           0                                q1
             E1 = 1.80 x 10 N/C, 60 N of E                                                  5 cm        5 cm
                                                                                -2 µC                           4 µC
                                                             −6
                  kq1 (9 x 10 N ⋅ m /C )(4 x 10 C)
                                     9      2     2
           E2 =      =                             ;                E2 = 3.60 x 106 N/C, 600 N of W
                  r2            (0.10 m) 2

            Ex = - (1.80 x 106 N/C) cos 600 – (3.60 x 106 N/C) cos 600 = -2.70 x 106 N/C

            Ey = - (1.80 x 106 N/C) sin 600 + (3.60 x 106 N/C) sin 600 = +1.56 x 106 N/C

                    ER = (−2.70 x 106 ) 2 + (1.56 x 106 ) 2 ;          ER = 3.12 x 106 N/C

                       1.56 x 106 N/C
             tan θ =                   ; θ = 30.0 0 N of W;               ER = 3.12x 106 N/C, 150.00
                       -2.70 x 106 N/C




                                                            82
Chapter 24. The Electric Field                                                       Physics, 6th Edition




24-30. What are the magnitude and direction of the force that would act on a –2-µC charge

       placed at the apex of the triangle described by Problem 24-29?

       First we find the magnitude: F = qE = (2 x 10-6 C)(3.12 x 106 N/C);           F = 6.24 N

       Force is opposite field: θ = 1800 + 1500 = 3300           F = 6.24 N, 3300


*24-31. A 20-mg particle is placed in a uniform downward field of 2000 N/C. How many excess

       electrons must be placed on the particle for the electric and gravitational forces to

       balance?    (The gravitational force must balance the electric force.)                  qE

                                              mg (2 x 10-5 kg)(9.8 m/s 2 )                     mg
                          qE = mg;       q=     =
                                              E        2000 N/C

                              q = 9.00 x 10-8 C;        1 e = 1.6 x 10-19 C

                                          1e     
                  qe = 9.8 x 10-8 C          -19 ;        qe = 6.12 x 1011 electrons
                                     1.6 x 10 C 


*24-32. Use Gauss’s law to show that the electric field intensity at a distance R from an infinite

       line of charge is given by
                                                                                          E   A
                                                   λ
                                              E=                                A1
                                                 2πε 0 R                                            R
       where λ is the charge per unit length.                                                       A2
                  Gaussian surface area A = [ (2πR)L + A1 + A2 ]
                                                                                         L
                  Σε 0 AE = Σq; ε 0 A1E 1 + ε 0 A2 E 2 + ε 0 (2π RL) E = qnet

                  The fields E1 and E2 are balanced through ends: ε 0 (2π RL) E = qnet ;

                          q
                  E=                  But the linear charge density is λ = q/L, therefore:
                       2πε 0 RL




                                                   83
Chapter 24. The Electric Field                                                           Physics, 6th Edition


                                                           λ
                                                   E=
                                                         2πε 0 R

*24-33. Use Gauss’s law to show that the field just outside any solid conductor is given by

                                        σ                                                   E
                                 E=
                                        ε0

         Draw a cylindrical pill box as gaussian surface.

         The field lines through the sides are balanced and the field inside the surface is zero.

         Thus, only one surface needs to be considered, the area A of the top of the pill box.

                                                                    q   σ            σ
                  ∑ε   0   AE = ∑ q ;        εoEA = q;     E=          = ;
                                                                   ε0 A ε0
                                                                                E=
                                                                                     ε0


*24-34. What is the electric field intensity 2 m from the surface of a sphere 20 cm in diameter

       having a surface charge density of +8 nC/m2?          [ A = 4πR2; r = 2 m + 0.2 m = 2.2 m ]

                    q = σA = (8 x 10-9 C)(4π)(0.20 m)2;             q = 2.01 x 10-12 C

                 kq (9 x 109 N ⋅ m 2 /C 2 )(2.01 x 10-12 C)
               E= 2 =                                       ;          E = 3.74 x 10-3 N/C
                 r               (2.20 m) 2


*24-35. A uniformly charged conducting sphere has a radius of 24 cm and a surface charge

       density of +16 µC/m2. What is the total number of electric field lines leaving the sphere?

                   q = σA = (16 x 10-6 C)(4π)(0.24 m)2;              q = 1.16 x 10-5 C

                               N = ΣεοAE = q;       N = 1.16 x 10-5 lines


*24-36. Two charges of +16 µC and +8 µC are 200 mm apart in air. At what point on a line

       joining the two charges will the electric field be zero? (200 mm = 20 cm)

                             kq1       kq2                  +16 µC                           +8 µC
              E1 = E2 ;        2
                                 =                                 x           20 cm - x
                             x     (20 cm - x) 2             q1                                  q2
                                                              x=0                         x = 20 cm
                                                                          E2 = E1
                                                    84
Chapter 24. The Electric Field                                                         Physics, 6th Edition


                              q2 2                      q2
              (20 − x) 2 =       x or 20 − x =             x
                              q1                        q1

                                         8 µC
*24-36 (Cont.)       20 cm - x =               x;   20 cm - x = 0.707 x;       x = 11.7 cm
                                        16 µ C


*24-37. Two charges of +8 nC and –5 nC are 40 mm apart in air. At what point on a line joining

        the two charges will the electric field intensity be zero?

          The point can only be to right of –5 nC charge

                                 kq2         kq1                                  4 cm + x
                  E2 = E1 ;         2
                                      =                             +8 nC             -5 nC x
                                  x     ( x + 4 cm) 2
                                                                     q1
                                                                                4 cm
                                                                      x=0              q2
                            q1 2                     q1                                             E2 = E1
              (4 + x) 2 =      x or 4 + x =             x
                            q2                       q2

                              8 nC
             4 cm + x =            x;     4 cm + x = 1.265 x;     x = 15.1 cm outside of –5 nC charge.
                              5 nC



Critical Thinking Questions

*24-38. Two equal but opposite charges +q and –q are placed at the base corners of an equilateral

        triangle whose sides are of length a. Show that the magnitude of the electric field

        intensity at the apex is the same whether one of the charges is removed or not? What is

        the angle between the two fields so produced?
                                                                                                   E1
        E = kq/r2;    E1 = E2 since q and r are the same for each.
                                                                                             600
            Ey = E1 sin 600 – E2 sin 60 = 0, (since E1 = E2 )                                600
                                                                                                   E2 a
             Let E be magnitude of either E1 or E2, then                         a

            Ex = E sin 600 + E sin 600 = 2E cos 600 = E                    q                              -q
                                                                                 600

            Thus, for both charges in place E = E1 = E2



                                                        85
Chapter 24. The Electric Field                                                              Physics, 6th Edition


        The field with both charges in place is at 00. The field produced by –q is at –600 and the

        field produced by +q is at +600. In either case the angle is 600 between the fields.

*24-39. What are the magnitude and direction of the electric field intensity at the center of the

        square of Fig. 24-16. Assume that q = 1 µC and that d = 4 cm. (d/2 = 2 cm).
                                                                                                   y
        Rotate x and y-axes 450 clockwise as shown to make                  -q         d
                                                                                                       -q
        calculating resultant easier. The distances r from                             E1
                                                                                  E2
                                                                             d                E1     4 cm
        each charge to center is:                                                 E2
                                                                                          2 cm
                   r = (2 cm) + (2 cm) ;
                                 2           2
                                                   r = 2.83 cm;                    2 cm
                                                                            -2q                +2q      x

              (9 x 109 N ⋅ m 2 /C2 )(1 x 10-6 C)
         E1 =                                    ;      E1 = 1.125 x 107 N/C (E1 refers to E for –q)
                    (2.828 x 10-2 m) 2

                (9 x 109 N ⋅ m 2 /C 2 )(2 x 10-6 C)
         E2 =                                       ;   E2 = 2.25 x 107 N/C, (E2 refers to E for ±2q)
                      (2.828 x 10-2 m) 2

             Ex = -E1 – E2 = -1.125 x 107 N/C – 2.25 x 107 N/C; Ex = -3.38 x 107 N/C

            Ey = E1 – E2 = 1.125 x 107 N/C – 2.25 x 107 N/C; Ey = -1.125 x 107 N/C

                E = (−3.38 x 107 N/C) 2 + (−1.125 x 107 N/C) 2 ;          E = 3.56 x 107 N/C

                               −1.125 x 107 N/C
                     tan θ =                    ;       θ = 18.40 or 198.40 from +x-axis
                                -3.38 x 107 N/C

         It is better to give direction with respect to horizontal, instead of with diagonal.

       Since we rotated axes 450 clockwise, the true angle is: θ = 198.40 – 450 = 153.40

                                       Ans. E = 3.56 x 107 N, 153.40




                                                         86
Chapter 24. The Electric Field                                                           Physics, 6th Edition



*24-40. The electric field intensity between the plates in Fig. 24-17 is 4000 N/C. What is the

        magnitude of the charge on the suspended pith ball whose mass is 3 mg? (θ = 300)

        W = mg; E = 4000 N/C; m = 3 mg = 3 x 10-6 kg

        Σ Fx = 0 and ΣFy = 0 ( right = left; up = down )                                   T
                                                                                     θ
                                                                               E                      Fe
       T sin 600 = (3 x 10-6 kg)(9.8 m/s2);     T = 3.395 x 10-5 N

        Fe = T cos 600 = (3.395 x 10-5 N)(0.500) = 1.70 x 10-5 N                          W

             Fe          Fe 1.70 x 10−5 N
        E=      ;   q=     =              ;       q = 4.24 x 10-9 C;        q = 4.24 nC
             q           E    4000 N/C


*24-41. Two concentric spheres have radii of 20 cm and 50 cm. The inner sphere has a negative

        charge of –4 µC and the outer sphere has a positive charge of +6 µC. Use Gauss’s law

        to find the electric field intensity at distances of 40 cm and 60 cm from the center of the

        spheres.    Draw concentric gaussian spheres.
                                                                       +6 µC                               -4 µC
                                                                                           r2
                Σε 0 AE = Σq; ε 0 (4π r ) E = −4 µ C + 6 µ C
                                         2
                                          2




               First find field at 60 cm from center:

              qnet                 +2 x 10-6 C
          E=          =                                         ;
             4πε 0 r 2 4π (8.85 x 10-12 C2 /N ⋅ m 2 )(0.60 m) 2
                                                                    60 cm
              E = 5.00 x 104 N/C, radially outward
                                                                                                            40 cm
        Now for field at 40 cm, only enclosed charge matters.
                                                                                                 r1
                               qnet                 -4 x 10-6 C
                         E=            =                                         ;
                              4πε 0 r 2 4π (8.85 x 10-12 C2 /N ⋅ m 2 )(0.40 m) 2

                                E = 2.25 x 105 N/C, radially inward




                                                   87
Chapter 24. The Electric Field                                                      Physics, 6th Edition


*24-42. The electric field intensity between the two plates in Fig. 24-4 is 2000 N/C. The length

         of the plates is 4 cm, and their separation is 1 cm. An electron is projected into the field

         from the left with horizontal velocity of 2 x 107 m/s. What is the upward deflection of

         the electron at the instant it leaves the plates?

         We may neglect the weight of the electron.

                                       qE
          F = qE = may;         ay =      ;    x = v0t
                                        g                                           E = 2000 N/C
                                                                                                           y
                                                       2
                                       x             x                                           x
            y = ½ a y t 2 and    t=       ;   t2 =     2
                                       v0            v0

                       1  qE   x 2  1  (1.6 x 10-19 C)(2000 N/C)(0.04 m) 2 
                     y=       2  =                                         
                       2  m   v0  2  (9.11 x 10-31kg)(2 x 107 m/s) 2 

                                  y = 0.0704 cm            or   y = 0.70 mm




                                                           88

Contenu connexe

Tendances

Solved problems to_chapter_09
Solved problems to_chapter_09Solved problems to_chapter_09
Solved problems to_chapter_09Shah Zaib
 
PROBLEMAS RESUELTOS (45) DEL CAPÍTULO II DE LABORATORIO DE FÍSICA II - TIPPENS
PROBLEMAS RESUELTOS (45) DEL CAPÍTULO II DE LABORATORIO DE FÍSICA II - TIPPENSPROBLEMAS RESUELTOS (45) DEL CAPÍTULO II DE LABORATORIO DE FÍSICA II - TIPPENS
PROBLEMAS RESUELTOS (45) DEL CAPÍTULO II DE LABORATORIO DE FÍSICA II - TIPPENSLUIS POWELL
 
Solucionario serway cap 33
Solucionario serway cap 33Solucionario serway cap 33
Solucionario serway cap 33Carlo Magno
 
Solucionario serway cap 27
Solucionario serway cap 27Solucionario serway cap 27
Solucionario serway cap 27Carlo Magno
 
Electrical Engineering - 2008 Unsolved Paper
Electrical Engineering - 2008 Unsolved PaperElectrical Engineering - 2008 Unsolved Paper
Electrical Engineering - 2008 Unsolved PaperVasista Vinuthan
 
Electrical Engineering - 2005 Unsolved Paper
Electrical Engineering - 2005 Unsolved PaperElectrical Engineering - 2005 Unsolved Paper
Electrical Engineering - 2005 Unsolved PaperVasista Vinuthan
 
Solucionario serway cap 32
Solucionario serway cap 32Solucionario serway cap 32
Solucionario serway cap 32Carlo Magno
 
Electrical Engineering - 2006 Unsolved Paper
Electrical Engineering - 2006 Unsolved PaperElectrical Engineering - 2006 Unsolved Paper
Electrical Engineering - 2006 Unsolved PaperVasista Vinuthan
 
Electrical Engineering - 2007 Unsolved Paper
Electrical Engineering - 2007 Unsolved PaperElectrical Engineering - 2007 Unsolved Paper
Electrical Engineering - 2007 Unsolved PaperVasista Vinuthan
 
Electrical Engineering - 2004 Unsolved Paper
Electrical Engineering - 2004 Unsolved PaperElectrical Engineering - 2004 Unsolved Paper
Electrical Engineering - 2004 Unsolved PaperVasista Vinuthan
 

Tendances (18)

Anschp26
Anschp26Anschp26
Anschp26
 
Solved problems to_chapter_09
Solved problems to_chapter_09Solved problems to_chapter_09
Solved problems to_chapter_09
 
Anschp29
Anschp29Anschp29
Anschp29
 
Anschp30
Anschp30Anschp30
Anschp30
 
Anschp39
Anschp39Anschp39
Anschp39
 
Anschp31
Anschp31Anschp31
Anschp31
 
PROBLEMAS RESUELTOS (45) DEL CAPÍTULO II DE LABORATORIO DE FÍSICA II - TIPPENS
PROBLEMAS RESUELTOS (45) DEL CAPÍTULO II DE LABORATORIO DE FÍSICA II - TIPPENSPROBLEMAS RESUELTOS (45) DEL CAPÍTULO II DE LABORATORIO DE FÍSICA II - TIPPENS
PROBLEMAS RESUELTOS (45) DEL CAPÍTULO II DE LABORATORIO DE FÍSICA II - TIPPENS
 
Solucionario serway cap 33
Solucionario serway cap 33Solucionario serway cap 33
Solucionario serway cap 33
 
Solucionario serway cap 27
Solucionario serway cap 27Solucionario serway cap 27
Solucionario serway cap 27
 
Electrical Engineering - 2008 Unsolved Paper
Electrical Engineering - 2008 Unsolved PaperElectrical Engineering - 2008 Unsolved Paper
Electrical Engineering - 2008 Unsolved Paper
 
Electrical Engineering - 2005 Unsolved Paper
Electrical Engineering - 2005 Unsolved PaperElectrical Engineering - 2005 Unsolved Paper
Electrical Engineering - 2005 Unsolved Paper
 
Solucionario serway cap 32
Solucionario serway cap 32Solucionario serway cap 32
Solucionario serway cap 32
 
Physics Working Formulas
Physics Working FormulasPhysics Working Formulas
Physics Working Formulas
 
Electrical Engineering - 2006 Unsolved Paper
Electrical Engineering - 2006 Unsolved PaperElectrical Engineering - 2006 Unsolved Paper
Electrical Engineering - 2006 Unsolved Paper
 
Electrical Engineering - 2007 Unsolved Paper
Electrical Engineering - 2007 Unsolved PaperElectrical Engineering - 2007 Unsolved Paper
Electrical Engineering - 2007 Unsolved Paper
 
Modern2426
Modern2426Modern2426
Modern2426
 
CAT -2010 Unsolved Paper
CAT -2010 Unsolved PaperCAT -2010 Unsolved Paper
CAT -2010 Unsolved Paper
 
Electrical Engineering - 2004 Unsolved Paper
Electrical Engineering - 2004 Unsolved PaperElectrical Engineering - 2004 Unsolved Paper
Electrical Engineering - 2004 Unsolved Paper
 

Similaire à Problemas (16 Págs. - 42 Probl.) del Capítulo II de Física II

Similaire à Problemas (16 Págs. - 42 Probl.) del Capítulo II de Física II (13)

Coulomb's law and its applications
Coulomb's law and its applicationsCoulomb's law and its applications
Coulomb's law and its applications
 
Electric potential
Electric potentialElectric potential
Electric potential
 
CBSE QA/ Electrostatics-4/ Electric Potential
CBSE QA/ Electrostatics-4/ Electric PotentialCBSE QA/ Electrostatics-4/ Electric Potential
CBSE QA/ Electrostatics-4/ Electric Potential
 
Electric Field (PHY N1203 - L01)
Electric Field (PHY N1203 - L01)Electric Field (PHY N1203 - L01)
Electric Field (PHY N1203 - L01)
 
jan25.pdf
jan25.pdfjan25.pdf
jan25.pdf
 
11 Electric Fields
11 Electric Fields11 Electric Fields
11 Electric Fields
 
Physics Formula list (4)
Physics Formula list (4)Physics Formula list (4)
Physics Formula list (4)
 
Physics formulas
Physics formulasPhysics formulas
Physics formulas
 
Problemas (67) del Capítulo III de física II Ley de Gauss
Problemas (67) del Capítulo III de física II   Ley de GaussProblemas (67) del Capítulo III de física II   Ley de Gauss
Problemas (67) del Capítulo III de física II Ley de Gauss
 
Ch21 ssm
Ch21 ssmCh21 ssm
Ch21 ssm
 
Fundamentals of Coulomb's Law
Fundamentals of Coulomb's LawFundamentals of Coulomb's Law
Fundamentals of Coulomb's Law
 
Aieee physics-2009
Aieee physics-2009Aieee physics-2009
Aieee physics-2009
 
05 reverse biased junction & breakdown
05 reverse biased junction & breakdown05 reverse biased junction & breakdown
05 reverse biased junction & breakdown
 

Plus de LUIS POWELL

CAPÍTULO I (22) DE LABORATORIO DE FÍSICA II
CAPÍTULO I (22) DE LABORATORIO DE FÍSICA IICAPÍTULO I (22) DE LABORATORIO DE FÍSICA II
CAPÍTULO I (22) DE LABORATORIO DE FÍSICA IILUIS POWELL
 
CATÁLOGO DE (23) VIDEOS SOBRE LOS CAPÍTULOS I, II Y II DE FÍSICA II
CATÁLOGO DE (23) VIDEOS SOBRE LOS CAPÍTULOS I, II Y II DE FÍSICA IICATÁLOGO DE (23) VIDEOS SOBRE LOS CAPÍTULOS I, II Y II DE FÍSICA II
CATÁLOGO DE (23) VIDEOS SOBRE LOS CAPÍTULOS I, II Y II DE FÍSICA IILUIS POWELL
 
CAPÍTULO II DE LABORATORIO (28) DE FÍSICA II
CAPÍTULO II DE LABORATORIO (28) DE FÍSICA IICAPÍTULO II DE LABORATORIO (28) DE FÍSICA II
CAPÍTULO II DE LABORATORIO (28) DE FÍSICA IILUIS POWELL
 
PROBLEMAS RESUELTOS (93) DE LABORATORIO N° 2 DE FÍSICA II - SEARS
PROBLEMAS RESUELTOS (93) DE LABORATORIO N° 2 DE FÍSICA II - SEARSPROBLEMAS RESUELTOS (93) DE LABORATORIO N° 2 DE FÍSICA II - SEARS
PROBLEMAS RESUELTOS (93) DE LABORATORIO N° 2 DE FÍSICA II - SEARSLUIS POWELL
 
PROBLEMAS RESUELTOS (87) DEL CAPÍTULO I DE LABORATORIO DE FÍSICA II - SEARS
PROBLEMAS RESUELTOS (87) DEL CAPÍTULO I DE LABORATORIO DE FÍSICA II - SEARSPROBLEMAS RESUELTOS (87) DEL CAPÍTULO I DE LABORATORIO DE FÍSICA II - SEARS
PROBLEMAS RESUELTOS (87) DEL CAPÍTULO I DE LABORATORIO DE FÍSICA II - SEARSLUIS POWELL
 
Capítulo III (68) de física II Ley de Gauss - definitivo
Capítulo III (68) de física II   Ley de Gauss - definitivoCapítulo III (68) de física II   Ley de Gauss - definitivo
Capítulo III (68) de física II Ley de Gauss - definitivoLUIS POWELL
 
Problemas (10 Págs. - 42 Probl.) del Laboratorio N° 1 de Física II
Problemas (10 Págs. - 42 Probl.) del Laboratorio N° 1 de Física IIProblemas (10 Págs. - 42 Probl.) del Laboratorio N° 1 de Física II
Problemas (10 Págs. - 42 Probl.) del Laboratorio N° 1 de Física IILUIS POWELL
 
Capítulo I (24) de Física II - La Carga Eléctrica y La Ley de Coulomb - Defin...
Capítulo I (24) de Física II - La Carga Eléctrica y La Ley de Coulomb - Defin...Capítulo I (24) de Física II - La Carga Eléctrica y La Ley de Coulomb - Defin...
Capítulo I (24) de Física II - La Carga Eléctrica y La Ley de Coulomb - Defin...LUIS POWELL
 
Problemas (17 Págs. - 45 Problemas) Resueltos del Laboratorio N° 2 De Física II
Problemas (17 Págs. - 45 Problemas) Resueltos del Laboratorio N° 2 De Física IIProblemas (17 Págs. - 45 Problemas) Resueltos del Laboratorio N° 2 De Física II
Problemas (17 Págs. - 45 Problemas) Resueltos del Laboratorio N° 2 De Física IILUIS POWELL
 
Capítulo II (31) de Física II - Campo Eléctrico - Definitivo
Capítulo II (31) de Física II - Campo Eléctrico - DefinitivoCapítulo II (31) de Física II - Campo Eléctrico - Definitivo
Capítulo II (31) de Física II - Campo Eléctrico - DefinitivoLUIS POWELL
 
PRESENTACIÓN (40) DE FÍSICA II - SEMANA 1
PRESENTACIÓN (40) DE FÍSICA II - SEMANA 1PRESENTACIÓN (40) DE FÍSICA II - SEMANA 1
PRESENTACIÓN (40) DE FÍSICA II - SEMANA 1LUIS POWELL
 
Problemas (43 Pág. - 107 Probl.) de Carga Eléctrica y Campo Eléctrico - Sears
Problemas (43 Pág. - 107 Probl.) de Carga Eléctrica y Campo Eléctrico -  SearsProblemas (43 Pág. - 107 Probl.) de Carga Eléctrica y Campo Eléctrico -  Sears
Problemas (43 Pág. - 107 Probl.) de Carga Eléctrica y Campo Eléctrico - SearsLUIS POWELL
 
Programa (6) Sintético de Física II
Programa (6) Sintético de Física IIPrograma (6) Sintético de Física II
Programa (6) Sintético de Física IILUIS POWELL
 
Tecnología Educativa (26) y Educación Virtual
Tecnología Educativa (26) y Educación VirtualTecnología Educativa (26) y Educación Virtual
Tecnología Educativa (26) y Educación VirtualLUIS POWELL
 
Pasos (17) de la Investigación Científica
Pasos (17) de la Investigación CientíficaPasos (17) de la Investigación Científica
Pasos (17) de la Investigación CientíficaLUIS POWELL
 
Presentación (12) sobre El Desapego - Versión Alternativa
Presentación (12) sobre El Desapego - Versión AlternativaPresentación (12) sobre El Desapego - Versión Alternativa
Presentación (12) sobre El Desapego - Versión AlternativaLUIS POWELL
 

Plus de LUIS POWELL (16)

CAPÍTULO I (22) DE LABORATORIO DE FÍSICA II
CAPÍTULO I (22) DE LABORATORIO DE FÍSICA IICAPÍTULO I (22) DE LABORATORIO DE FÍSICA II
CAPÍTULO I (22) DE LABORATORIO DE FÍSICA II
 
CATÁLOGO DE (23) VIDEOS SOBRE LOS CAPÍTULOS I, II Y II DE FÍSICA II
CATÁLOGO DE (23) VIDEOS SOBRE LOS CAPÍTULOS I, II Y II DE FÍSICA IICATÁLOGO DE (23) VIDEOS SOBRE LOS CAPÍTULOS I, II Y II DE FÍSICA II
CATÁLOGO DE (23) VIDEOS SOBRE LOS CAPÍTULOS I, II Y II DE FÍSICA II
 
CAPÍTULO II DE LABORATORIO (28) DE FÍSICA II
CAPÍTULO II DE LABORATORIO (28) DE FÍSICA IICAPÍTULO II DE LABORATORIO (28) DE FÍSICA II
CAPÍTULO II DE LABORATORIO (28) DE FÍSICA II
 
PROBLEMAS RESUELTOS (93) DE LABORATORIO N° 2 DE FÍSICA II - SEARS
PROBLEMAS RESUELTOS (93) DE LABORATORIO N° 2 DE FÍSICA II - SEARSPROBLEMAS RESUELTOS (93) DE LABORATORIO N° 2 DE FÍSICA II - SEARS
PROBLEMAS RESUELTOS (93) DE LABORATORIO N° 2 DE FÍSICA II - SEARS
 
PROBLEMAS RESUELTOS (87) DEL CAPÍTULO I DE LABORATORIO DE FÍSICA II - SEARS
PROBLEMAS RESUELTOS (87) DEL CAPÍTULO I DE LABORATORIO DE FÍSICA II - SEARSPROBLEMAS RESUELTOS (87) DEL CAPÍTULO I DE LABORATORIO DE FÍSICA II - SEARS
PROBLEMAS RESUELTOS (87) DEL CAPÍTULO I DE LABORATORIO DE FÍSICA II - SEARS
 
Capítulo III (68) de física II Ley de Gauss - definitivo
Capítulo III (68) de física II   Ley de Gauss - definitivoCapítulo III (68) de física II   Ley de Gauss - definitivo
Capítulo III (68) de física II Ley de Gauss - definitivo
 
Problemas (10 Págs. - 42 Probl.) del Laboratorio N° 1 de Física II
Problemas (10 Págs. - 42 Probl.) del Laboratorio N° 1 de Física IIProblemas (10 Págs. - 42 Probl.) del Laboratorio N° 1 de Física II
Problemas (10 Págs. - 42 Probl.) del Laboratorio N° 1 de Física II
 
Capítulo I (24) de Física II - La Carga Eléctrica y La Ley de Coulomb - Defin...
Capítulo I (24) de Física II - La Carga Eléctrica y La Ley de Coulomb - Defin...Capítulo I (24) de Física II - La Carga Eléctrica y La Ley de Coulomb - Defin...
Capítulo I (24) de Física II - La Carga Eléctrica y La Ley de Coulomb - Defin...
 
Problemas (17 Págs. - 45 Problemas) Resueltos del Laboratorio N° 2 De Física II
Problemas (17 Págs. - 45 Problemas) Resueltos del Laboratorio N° 2 De Física IIProblemas (17 Págs. - 45 Problemas) Resueltos del Laboratorio N° 2 De Física II
Problemas (17 Págs. - 45 Problemas) Resueltos del Laboratorio N° 2 De Física II
 
Capítulo II (31) de Física II - Campo Eléctrico - Definitivo
Capítulo II (31) de Física II - Campo Eléctrico - DefinitivoCapítulo II (31) de Física II - Campo Eléctrico - Definitivo
Capítulo II (31) de Física II - Campo Eléctrico - Definitivo
 
PRESENTACIÓN (40) DE FÍSICA II - SEMANA 1
PRESENTACIÓN (40) DE FÍSICA II - SEMANA 1PRESENTACIÓN (40) DE FÍSICA II - SEMANA 1
PRESENTACIÓN (40) DE FÍSICA II - SEMANA 1
 
Problemas (43 Pág. - 107 Probl.) de Carga Eléctrica y Campo Eléctrico - Sears
Problemas (43 Pág. - 107 Probl.) de Carga Eléctrica y Campo Eléctrico -  SearsProblemas (43 Pág. - 107 Probl.) de Carga Eléctrica y Campo Eléctrico -  Sears
Problemas (43 Pág. - 107 Probl.) de Carga Eléctrica y Campo Eléctrico - Sears
 
Programa (6) Sintético de Física II
Programa (6) Sintético de Física IIPrograma (6) Sintético de Física II
Programa (6) Sintético de Física II
 
Tecnología Educativa (26) y Educación Virtual
Tecnología Educativa (26) y Educación VirtualTecnología Educativa (26) y Educación Virtual
Tecnología Educativa (26) y Educación Virtual
 
Pasos (17) de la Investigación Científica
Pasos (17) de la Investigación CientíficaPasos (17) de la Investigación Científica
Pasos (17) de la Investigación Científica
 
Presentación (12) sobre El Desapego - Versión Alternativa
Presentación (12) sobre El Desapego - Versión AlternativaPresentación (12) sobre El Desapego - Versión Alternativa
Presentación (12) sobre El Desapego - Versión Alternativa
 

Dernier

SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991RKavithamani
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 

Dernier (20)

SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 

Problemas (16 Págs. - 42 Probl.) del Capítulo II de Física II

  • 1. Chapter 24. The Electric Field Physics, 6th Edition Chapter 24. The Electric Field The Electric Field Intensity 24-1. A charge of +2 µC placed at a point P in an electric field experiences a downward force of 8 x 10-4 N. What is the electric field intensity at that point? F 8 x 10-4 N ; E = 400 N/C, downward E= = q 2 x 10-6 C 24-2. A –5 nC charge is placed at point P in Problem 24-1. What are the magnitude and direction of the force on the –5 nC charge? (Direction of force F is opposite field E) F = qE = (-5 x10-9 C)(-400 N/C); F = 2.00 x 10-6 N, upward 24-3. A charge of –3 µC placed at point A experiences a downward force of 6 x 10-5 N. What is the electric field intensity at point A? E A negative charge will experience a force opposite to the field. F Thus, if the –3 µC charge has a downward force, the E is upward. F −6 x 10-5 N ; E = 20 N/C, upward E= = q -3 x 10-6 C 24-4. At a certain point, the electric field intensity is 40 N/C, due east. An unknown charge, receives a westward force of 5 x 10-5 N. What is the nature and magnitude of the charge? If the force on the charge is opposite the field E, it must be a negative charge. F F −5 x 10-5 N E= ; q= = ; q = -1.25 µC q E 40 N/C 73
  • 2. Chapter 24. The Electric Field Physics, 6th Edition 24-5. What are the magnitude and direction of the force that would act on an electron (q = -1.6 x 10-19 C) if it were placed at (a) point P in Problem 24-1? (b) point A in Problem 24-3? The electric force on an electron will always be opposite the electric field. (a) F = qE = (-1.6 x 10-19 C)(-400 N/C); F = 6.40 x 10-17 N, upward (b) F = qE = (-1.6 x 10-19 C)(+20 N/C); F = -3.20 x 10-18 N, downward 24-6. What must be the magnitude and direction of the electric field intensity between two horizontal plates if one wants to produce an upward force of 6 x 10-4 N on a +60-µC charge? (The upward force on +q means E is also upward.) F -4 E F 6 x 10 N +q E= = ; E = 10.0 N/C, up q 60 x 10-6 C 24-7. The uniform electric field between two horizontal plates is 8 x 104 C. The top plate is positively charged and the lower plate has an equal negative charge. What are the magnitude and direction of the electric force acting on an electron as it passes horizontally through the plates? (The electric field is from + to -, i.e., downward; force on e is up.) F = qE = (-1.6 x 10-19 C)(8 x 104 N/C); F = 1.28 x 10-14 N, upward 24-8. Find the electric field intensity at a point P, located 6 mm to the left of an 8-µC charge. What are the magnitude and direction of the force on a –2-nC charge placed at point P? kQ (9 x 109 N ⋅ m 2 /C2 )(8 x 10−6 C) P E= = ; 6 mm r2 (6 x 10-3 mm) 2 E 8 µC 9 E = 2.00 x 10 N/C, toward Q F P E F = qE = (-2 x 10-9 C)(2.00 x 109 N/C) -2 nC F = -4.00 N, away from Q 74
  • 3. Chapter 24. The Electric Field Physics, 6th Edition 24-9. Determine the electric field intensity at a point P, located 4 cm above a –12-µC charge. What are the magnitude and direction of the force on a +3-nC charge placed at point P? Electric field will be downward, since that is the direction a positive charge would move. kQ (9 x 109 N ⋅ m 2 /C2 )(−12 x 10−6 C) E= 2 = ; E = -6.75 x 107 N/C, downward r (0.04 m) 2 F = qE = (3 x 10-9 C)(-6.75 x 107 N/C) ; F = -0.202 N, downward Calculating the Resultant Electric Field Intensity 24-10. Determine the electric filed intensity at the midpoint of a 70 mm line joining a –60-µC charge with a +40-µC charge. q2 q1 35 mm 35 mm kq1 (9 x 109 N ⋅ m 2 /C2 )(−60 x 10−6 C) -60 µC E2 +40 µC E1 = = E1 r2 (0.035 m) 2 kq2 (9 x 109 N ⋅ m 2 /C2 )(40 x 10−6 C) E2 = 2 = ; ER = E1 + E2 (Both to left) r (0.035 m) 2 ER = -4.41 x 108 N/C – 2.94 x 108 N/C ; ER = 7.35 x 108 N/C. toward –60 µC 24-11. An 8-nC charge is located 80 mm to the right of a +4-nC charge. Determine the field intensity at the midpoint of a line joining the two charges. q1 q2 kq1 (9 x 109 N ⋅ m 2 /C2 )(4 x 10−9 C) 40 mm 40 mm E1 = = r2 (0.040 m) 2 4 nC +8 nC E2 E1 kq2 (9 x 109 N ⋅ m 2 /C2 )(8 x 10−9 C) E2 = 2 = ; ER = E1 + E2 (E1 right, E2 left) r (0.040 m) 2 ER = -4.50 x 104 N/C + 2.25 x 104 N/C ; ER = -2.25 x 104 N/C, left Note: The directions of the E field are based on how a test + charge would move. 75
  • 4. Chapter 24. The Electric Field Physics, 6th Edition 24-12. Find the electric field intensity at a point 30 mm to the right of a 16-nC charge and 40 mm to the left of a 9-nC charge. q1 30 mm 40 mm q2 kq1 (9 x 109 N ⋅ m 2 /C2 )(16 x 10−9 C) +16 nC E1 = 2 = E2 +9 nC r (0.030 m) 2 E1 kq2 (9 x 109 N ⋅ m 2 /C2 )(9 x 10−9 C) E2 = = ; ER = E1 + E2 (E1 right, E2 left) r2 (0.040 m) 2 ER = 16.0 x 104 N/C - 5.06 x 104 N/C ; ER = 1.09 x 105 N/C, right 24-13. Two equal charges of opposite signs are separated by a horizontal distance of 60 mm. If the resultant electric field at the midpoint of the line is 4 x 104 N/C. What is the magnitude of each charge? q1 30 mm 30 mm q2 +q E2 -q Equal and opposite charges make field at center E1 equal to vector sum with both to left or both to right.. ER = E1 + E2 = E1 + E2 2kq 2(9 x 109 N ⋅ m 2 /C 2 ) q E= 2 = 4 x 104 N/C; 2 = 4 x 104 N/C r (0.030 m) q = 2.00 nC (One positive and the other negative.) *24-14. A 20-µC charge is 4 cm above an unknown charge q. The resultant electric intensity at a point 1 cm above the 20-µC charge is 2.20 x 109 N/C and is directed upward? What are the magnitude and sign of the unknown charge? ER E1 + E2 = 2.20 x 109 N/C; First we find E1 and E2 1 cm q1 20 µC −6 kq1 (9 x 10 N ⋅ m /C )(20 x 10 C) 9 2 2 E1 = = ; E1 = 1.80 x 109 N r2 (0.010 m) 2 4 cm q2 E2 = ER – E1 = 2.20 x 109 N/C – 1.80 x 109 N/C; E2 = 4 x 108 N/C, up kq2 E2 r 2 (4 x 108 N/C)(0.05 m) 2 E2 = ; q2 = = ; q = q2 = 111 µC r2 k (9 x 109 N ⋅ m 2 /C 2 ) 76
  • 5. Chapter 24. The Electric Field Physics, 6th Edition *24-15. A charge of –20 µC is placed 50 mm to the right of a 49µC charge. What is the resultant field intensity at a point located 24 mm directly above the –20-µC charge? E1 θ R = (50 mm) 2 + (24 mm) 2 = 55.5 mm R 24 mm E2 49 µC 24 mm θ -20 µC tan θ = ; θ = 25.60 q1 50 mm 50 mm q2 kq1 (9 x 109 N ⋅ m 2 /C2 )(49 x 10−6 C) E1 = = ; E1 = 1.432 x 108 N/C at 25.60 N of E r2 (0.0555 m) 2 kq1 (9 x 109 N ⋅ m 2 /C2 )(20 x 10−6 C) E2 = = ; E2 = 3.125 x 108 N/C, downward r2 (0.024 m) 2 Ex = (1.432 x 108 N/C) cos 25.60 + 0; Ex = 1.291 x 108 N/C Ey = (1.432 x 108 N/C) sin 25.60 – 3.125 x 108 N/C; Ey = -2.506 x 108 N/C ER = (1.29 x 108 ) 2 + (-2.51 x 108 ) 2 ; ER = 2.82 x 108 N/C −2.51 x 108 N/C tan θ = ; θ = 62.70 S of E; ER = 2.82 x 108 N/C, 297.30. 1.29 x 108 N/C *24-16. Two charges of +12 nC and +18 nC are separated horizontally by 28 mm. What is the resultant field intensity at a point 20 mm from each charge and above a line joining the two charges? E2 E1 14 mm θ θ cosθ = ; θ = 45.60 20 mm 20 mm kq (9 x 109 N ⋅ m 2 /C2 )(12 x 10−9 C) E1 = 21 = r (0.020 m) 2 q1 θ q2 θ E1 = 2.70 x 105 N/C, 45.60 N of E +12 nC 14 mm 14 mm +18 nC kq1 (9 x 109 N ⋅ m 2 /C2 )(18 x 10−9 C) E2 = = ; E2 = 4.05 x 105 N/C, 45.60 N of W r2 (0.020 m) 2 77
  • 6. Chapter 24. The Electric Field Physics, 6th Edition *24-16. (Cont.) Ex = (2.70 x 105 N/C) cos 45.60 – (4.05 x 105 N/C) cos 45.60 = -9.45 x 104 N/C Ey = (2.70 x 105 N/C) sin 45.60 – (4.05 x 105 N/C) sin 45.60 = +4.82 x 105 N/C ER = (−9.45 x 104 ) 2 + (4.82 x 105 ) 2 ; ER = 4.91 x 105 N/C 4.82 x 105 N/C tan θ = 4 ; θ = 78.90 N of W; ER = 4.91 x 105 N/C, 101.10 -9.45 x 10 N/C *24-17. A +4 nC charge is placed at x = 0 and a +6 nC charge is placed at x = 4 cm on an x-axis. Find the point where the resultant electric field intensity will be zero? kq1 kq2 E1 = E2 ; = +6 nC x 2 (4 cm - x) 2 +4 nC x 4 cm - x q1 q2 q2 2 q2 x=0 x = 4 cm (4 − x) 2 = x or 4− x = x E2 = E1 q1 q1 6 nC 4 cm - x = x; 4 cm - x = 1.225 x; x = 1.80 cm 4 nC Applications of Gauss’s Law 24-18. Use Gauss’s law to show that the field outside a solid charged sphere at a distance r from its center is given by Q R E= 4πε 0 R 2 where Q is the total charge on the sphere. Construct a spherical gaussian surface around the charged sphere at the distance r from its center. Then, we have Gaussian surface Σε 0 AE = Σq ; ε 0 E (4π R 2 ) = Q Q E= 4πε 0 R 2 78
  • 7. Chapter 24. The Electric Field Physics, 6th Edition 24-19. A charge of +5 nC is placed on the surface of a hollow metal sphere whose radius is 3 cm. Use Gauss’s law to find the electric field intensity at a distance of 1 cm from the surface of the sphere? What is the electric field at a point 1 cm inside the surface? Draw gaussian surface of radius R = 3 cm + 1 cm = 4 cm. 3 cm R This surface encloses a net positive charge of +5 nC and +5 nC has a surface area of 4πR2, so Gauss’ law gives us: q (a) Σε 0 AE = Σq; ε 0 (4π R 2 ) E = q; E= Gaussian surface 4πε 0 R 2 5 x 10-9 C E= ; E = 2.81 x 104 N/C, radially outward. 4π (8.85 x 10-12 C2 /N ⋅ m 2 )(0.04 m) 2 (b) Draw a gaussian surface just inside the sphere. Now, all charge resides on the surface of the sphere, so that zero net charge is enclosed, and ΣεoAE = Σq = 0. E = 0, inside sphere 24-20. Two parallel plates, each 2 cm wide and 4 cm long, are stacked vertically so that the field intensity between the two plates is 10,000 N/C directed upward. What is the charge on each plate? First use Gauss’ law to find E between plates. E Draw gaussian cylinder of area A enclosing charge q. q Σε 0 AE = Σq; ε 0 AE = q; E= ε0 A The charge density q/A enclosed is same as Q/Ap for plate. First find q/A from E : q q = ε 0 E = (8.85 x 10-12 C 2 /N ⋅ m 2 )(10, 000 N/C) ; = 8.85 x 10-8 C/m 2 A A q Q = = 8.85 x 10-8 C/m 2 ; Q = 7.09 x 10-11 C A (0.02 m)(0.04 m) 79
  • 8. Chapter 24. The Electric Field Physics, 6th Edition 24-21. A sphere 8 cm in diameter has a charge of 4 µC placed on its surface. What is the electric field intensity at the surface, 2 cm outside the surface, and 2 cm inside the surface? (a) Draw gaussian surface just outside so that R = 4 cm 4 cm R and encloses the net charge of +4 uC. Then, qnet 4 x 10-6 C +4 µC E= = 4πε 0 R 2 4π (8.85 x 10-12 C 2 /N ⋅ m 2 )(0.04 m) 2 Gaussian surface E = 2.25 x 107 N/C, radially outward (b) Draw gaussian surface of radius R = 4 cm + 2 cm = 6 cm. This surface encloses a net positive charge of +4 nC and Gauss law gives: 4 x 10-6 C E= ; E = 9.99 x 106 N/C, radially outward. 4π (8.85 x 10-12 C2 /N ⋅ m 2 )(0.06 m) 2 (b) Since no net charge is inside the surface, ΣεoAE = Σq = 0. E = 0, inside sphere Challenge Problems 24-22. How far from a point charge of 90 nC will the field intensity be 500 N/C? kQ kQ (9 x 109 N ⋅ m 2 /C 2 )(90 x 10-9 C) E= 2 ; r= = ; r = 1.27 m r E 500 N/C 24-23. The electric field intensity at a point in space is found to be 5 x 105 N/C, directed due west. What are the magnitude and direction of the force on a –4-µC charge placed at that point? Consider East positive: F = qE = (-4 µC)(-5 x 105 N/C); F = 2.00 N, East 80
  • 9. Chapter 24. The Electric Field Physics, 6th Edition 24-24. What are the magnitude and direction of the force on an alpha particle (q = +3.2 x 10-19 C) as it passes into an upward electric field of intensity 8 x 104 N/C? (Choose up as + ) F = qE = (3.2 x 10-19 C)(+8 x 104); F = 2.56 x 10-14 N 24-25. What is the acceleration of an electron (e = -1.6 x 10-19 C) placed in a constant downward electric field of 4 x 105 N/C? What is the gravitational force on this charge if me = 9.11 x 10-31 kg. (Choose up as +, then E = -4 x 105 N/C.) F = qE = (-1.6 x 10-19 C)(-4 x 105 N/C); F = 6.40 x 10-14 N, upward W = mg = (9.11 x 10-31 kg)(9.8 m/s2); W = 8.93 x 10-30 N, downward The weight of an electron is often negligible in comparison with electric forces! 24-26. What is the electric field intensity at the midpoint of a 40 mm line between a 6-nC charge and a –9-nC charge? What force will act on a –2-nC charge placed at the midpoint? kq1 (9 x 109 N ⋅ m 2 /C 2 )(6 x 10−9 C) q1 20 mm 20 mm q2 E1 = 2 = r (0.020 m) 2 E2 6 nC -9 nC E1 kq2 (9 x 109 N ⋅ m 2 /C2 )(9 x 10−9 C) E2 = = ; ER = E1 + E2 (both to the right) r2 (0.020 m) 2 ER = 1.35 x 105 N/C + 2.025 x 105 N/C ; ER = 3.38 x 105 N/C, right *24-27. The charge density on each of two parallel plates is 4 µC/m2. What is the electric field intensity between the plates? Recall that σ = q/A, and see Prob.24-20: q σ Σε 0 AE = Σq; ε 0 AE = q; E= = E ε0 A ε0 σ 4 x 10-6 C/m 2 E= = ; E = 4.52 x 105 N/C ε 0 (8.85 x 10-12 C2 /N ⋅ m 2 ) 81
  • 10. Chapter 24. The Electric Field Physics, 6th Edition *24-28. A -2 nC charge is placed at x = 0 on the x-axis. A +8 nC charge is placed at x = 4 cm. At what point will the electric field intensity be equal to zero? The point can only be to the left of the –2 nC q1 kq1 kq2 -2 nC +8 nC E1 = E2 ; = 4 cm x 2 ( x + 4 cm) 2 q2 x E2 = E1 x=0 x = 4 cm q q2 (4 + x) 2 = 2 x 2 or 4 + x = x x + 4 cm q1 q1 8 nC 4 cm + x = x; 4 cm + x = 2 x; x = 8.00 cm, left, or x = -4.00 cm 2 nC *24-29. Charges of –2 and +4 µC are placed at base corners of an equilateral triangle with 10-cm sides. What are the magnitude and direction of the electric field at the top corner? 5 mm E2 cosθ = ; θ = 600 10 mm θ θ kq1 (9 x 109 N ⋅ m 2 /C2 )(2 x 10−6 C) E1 E1 = = 10 cm r2 (0.10 m) 2 θ q2 6 0 q1 E1 = 1.80 x 10 N/C, 60 N of E 5 cm 5 cm -2 µC 4 µC −6 kq1 (9 x 10 N ⋅ m /C )(4 x 10 C) 9 2 2 E2 = = ; E2 = 3.60 x 106 N/C, 600 N of W r2 (0.10 m) 2 Ex = - (1.80 x 106 N/C) cos 600 – (3.60 x 106 N/C) cos 600 = -2.70 x 106 N/C Ey = - (1.80 x 106 N/C) sin 600 + (3.60 x 106 N/C) sin 600 = +1.56 x 106 N/C ER = (−2.70 x 106 ) 2 + (1.56 x 106 ) 2 ; ER = 3.12 x 106 N/C 1.56 x 106 N/C tan θ = ; θ = 30.0 0 N of W; ER = 3.12x 106 N/C, 150.00 -2.70 x 106 N/C 82
  • 11. Chapter 24. The Electric Field Physics, 6th Edition 24-30. What are the magnitude and direction of the force that would act on a –2-µC charge placed at the apex of the triangle described by Problem 24-29? First we find the magnitude: F = qE = (2 x 10-6 C)(3.12 x 106 N/C); F = 6.24 N Force is opposite field: θ = 1800 + 1500 = 3300 F = 6.24 N, 3300 *24-31. A 20-mg particle is placed in a uniform downward field of 2000 N/C. How many excess electrons must be placed on the particle for the electric and gravitational forces to balance? (The gravitational force must balance the electric force.) qE mg (2 x 10-5 kg)(9.8 m/s 2 ) mg qE = mg; q= = E 2000 N/C q = 9.00 x 10-8 C; 1 e = 1.6 x 10-19 C  1e  qe = 9.8 x 10-8 C  -19 ; qe = 6.12 x 1011 electrons  1.6 x 10 C  *24-32. Use Gauss’s law to show that the electric field intensity at a distance R from an infinite line of charge is given by E A λ E= A1 2πε 0 R R where λ is the charge per unit length. A2 Gaussian surface area A = [ (2πR)L + A1 + A2 ] L Σε 0 AE = Σq; ε 0 A1E 1 + ε 0 A2 E 2 + ε 0 (2π RL) E = qnet The fields E1 and E2 are balanced through ends: ε 0 (2π RL) E = qnet ; q E= But the linear charge density is λ = q/L, therefore: 2πε 0 RL 83
  • 12. Chapter 24. The Electric Field Physics, 6th Edition λ E= 2πε 0 R *24-33. Use Gauss’s law to show that the field just outside any solid conductor is given by σ E E= ε0 Draw a cylindrical pill box as gaussian surface. The field lines through the sides are balanced and the field inside the surface is zero. Thus, only one surface needs to be considered, the area A of the top of the pill box. q σ σ ∑ε 0 AE = ∑ q ; εoEA = q; E= = ; ε0 A ε0 E= ε0 *24-34. What is the electric field intensity 2 m from the surface of a sphere 20 cm in diameter having a surface charge density of +8 nC/m2? [ A = 4πR2; r = 2 m + 0.2 m = 2.2 m ] q = σA = (8 x 10-9 C)(4π)(0.20 m)2; q = 2.01 x 10-12 C kq (9 x 109 N ⋅ m 2 /C 2 )(2.01 x 10-12 C) E= 2 = ; E = 3.74 x 10-3 N/C r (2.20 m) 2 *24-35. A uniformly charged conducting sphere has a radius of 24 cm and a surface charge density of +16 µC/m2. What is the total number of electric field lines leaving the sphere? q = σA = (16 x 10-6 C)(4π)(0.24 m)2; q = 1.16 x 10-5 C N = ΣεοAE = q; N = 1.16 x 10-5 lines *24-36. Two charges of +16 µC and +8 µC are 200 mm apart in air. At what point on a line joining the two charges will the electric field be zero? (200 mm = 20 cm) kq1 kq2 +16 µC +8 µC E1 = E2 ; 2 = x 20 cm - x x (20 cm - x) 2 q1 q2 x=0 x = 20 cm E2 = E1 84
  • 13. Chapter 24. The Electric Field Physics, 6th Edition q2 2 q2 (20 − x) 2 = x or 20 − x = x q1 q1 8 µC *24-36 (Cont.) 20 cm - x = x; 20 cm - x = 0.707 x; x = 11.7 cm 16 µ C *24-37. Two charges of +8 nC and –5 nC are 40 mm apart in air. At what point on a line joining the two charges will the electric field intensity be zero? The point can only be to right of –5 nC charge kq2 kq1 4 cm + x E2 = E1 ; 2 = +8 nC -5 nC x x ( x + 4 cm) 2 q1 4 cm x=0 q2 q1 2 q1 E2 = E1 (4 + x) 2 = x or 4 + x = x q2 q2 8 nC 4 cm + x = x; 4 cm + x = 1.265 x; x = 15.1 cm outside of –5 nC charge. 5 nC Critical Thinking Questions *24-38. Two equal but opposite charges +q and –q are placed at the base corners of an equilateral triangle whose sides are of length a. Show that the magnitude of the electric field intensity at the apex is the same whether one of the charges is removed or not? What is the angle between the two fields so produced? E1 E = kq/r2; E1 = E2 since q and r are the same for each. 600 Ey = E1 sin 600 – E2 sin 60 = 0, (since E1 = E2 ) 600 E2 a Let E be magnitude of either E1 or E2, then a Ex = E sin 600 + E sin 600 = 2E cos 600 = E q -q 600 Thus, for both charges in place E = E1 = E2 85
  • 14. Chapter 24. The Electric Field Physics, 6th Edition The field with both charges in place is at 00. The field produced by –q is at –600 and the field produced by +q is at +600. In either case the angle is 600 between the fields. *24-39. What are the magnitude and direction of the electric field intensity at the center of the square of Fig. 24-16. Assume that q = 1 µC and that d = 4 cm. (d/2 = 2 cm). y Rotate x and y-axes 450 clockwise as shown to make -q d -q calculating resultant easier. The distances r from E1 E2 d E1 4 cm each charge to center is: E2 2 cm r = (2 cm) + (2 cm) ; 2 2 r = 2.83 cm; 2 cm -2q +2q x (9 x 109 N ⋅ m 2 /C2 )(1 x 10-6 C) E1 = ; E1 = 1.125 x 107 N/C (E1 refers to E for –q) (2.828 x 10-2 m) 2 (9 x 109 N ⋅ m 2 /C 2 )(2 x 10-6 C) E2 = ; E2 = 2.25 x 107 N/C, (E2 refers to E for ±2q) (2.828 x 10-2 m) 2 Ex = -E1 – E2 = -1.125 x 107 N/C – 2.25 x 107 N/C; Ex = -3.38 x 107 N/C Ey = E1 – E2 = 1.125 x 107 N/C – 2.25 x 107 N/C; Ey = -1.125 x 107 N/C E = (−3.38 x 107 N/C) 2 + (−1.125 x 107 N/C) 2 ; E = 3.56 x 107 N/C −1.125 x 107 N/C tan θ = ; θ = 18.40 or 198.40 from +x-axis -3.38 x 107 N/C It is better to give direction with respect to horizontal, instead of with diagonal. Since we rotated axes 450 clockwise, the true angle is: θ = 198.40 – 450 = 153.40 Ans. E = 3.56 x 107 N, 153.40 86
  • 15. Chapter 24. The Electric Field Physics, 6th Edition *24-40. The electric field intensity between the plates in Fig. 24-17 is 4000 N/C. What is the magnitude of the charge on the suspended pith ball whose mass is 3 mg? (θ = 300) W = mg; E = 4000 N/C; m = 3 mg = 3 x 10-6 kg Σ Fx = 0 and ΣFy = 0 ( right = left; up = down ) T θ E Fe T sin 600 = (3 x 10-6 kg)(9.8 m/s2); T = 3.395 x 10-5 N Fe = T cos 600 = (3.395 x 10-5 N)(0.500) = 1.70 x 10-5 N W Fe Fe 1.70 x 10−5 N E= ; q= = ; q = 4.24 x 10-9 C; q = 4.24 nC q E 4000 N/C *24-41. Two concentric spheres have radii of 20 cm and 50 cm. The inner sphere has a negative charge of –4 µC and the outer sphere has a positive charge of +6 µC. Use Gauss’s law to find the electric field intensity at distances of 40 cm and 60 cm from the center of the spheres. Draw concentric gaussian spheres. +6 µC -4 µC r2 Σε 0 AE = Σq; ε 0 (4π r ) E = −4 µ C + 6 µ C 2 2 First find field at 60 cm from center: qnet +2 x 10-6 C E= = ; 4πε 0 r 2 4π (8.85 x 10-12 C2 /N ⋅ m 2 )(0.60 m) 2 60 cm E = 5.00 x 104 N/C, radially outward 40 cm Now for field at 40 cm, only enclosed charge matters. r1 qnet -4 x 10-6 C E= = ; 4πε 0 r 2 4π (8.85 x 10-12 C2 /N ⋅ m 2 )(0.40 m) 2 E = 2.25 x 105 N/C, radially inward 87
  • 16. Chapter 24. The Electric Field Physics, 6th Edition *24-42. The electric field intensity between the two plates in Fig. 24-4 is 2000 N/C. The length of the plates is 4 cm, and their separation is 1 cm. An electron is projected into the field from the left with horizontal velocity of 2 x 107 m/s. What is the upward deflection of the electron at the instant it leaves the plates? We may neglect the weight of the electron. qE F = qE = may; ay = ; x = v0t g E = 2000 N/C y 2 x x x y = ½ a y t 2 and t= ; t2 = 2 v0 v0 1  qE   x 2  1  (1.6 x 10-19 C)(2000 N/C)(0.04 m) 2  y=   2  =   2  m   v0  2  (9.11 x 10-31kg)(2 x 107 m/s) 2  y = 0.0704 cm or y = 0.70 mm 88