SlideShare une entreprise Scribd logo
1  sur  39
Télécharger pour lire hors ligne
Institut
Mines-Telecom
Functional Poisson
convergence
L. Decreusefond
(joint work with M. Schulte, C. Th¨ale)
Stein, Malliavin, Poisson and co.
Motivation : Poisson polytopes
1
2
3
4
5
6
0
1 23456
η ξ(η)
2/25 Institut Mines-Telecom Functional Poisson convergence
Motivation : Poisson polytopes
1
2
3
4
5
6
0
1 23456
η ξ(η)
Question
What happens when the number of points goes to infinity ?
2/25 Institut Mines-Telecom Functional Poisson convergence
Poisson point process
Hypothesis
Points are distributed to a Poisson process of control measure tK
Definition
The number of points is a Poisson rv (t K(Sd−1))
Given the number of points, they are independently drawn
with distribution K
3/25 Institut Mines-Telecom Functional Poisson convergence
Rescaling : γ = 2/(d − 1)
Campbell-Mecke formula
E
x1,··· ,xk ∈ω
(k)
=
f (x) = tk
f (x1, · · · , xk)K(dx1, · · · , dxk)
4/25 Institut Mines-Telecom Functional Poisson convergence
Rescaling : γ = 2/(d − 1)
Campbell-Mecke formula
E
x1,··· ,xk ∈ω
(k)
=
f (x) = tk
f (x1, · · · , xk)K(dx1, · · · , dxk)
Mean number of points (after rescaling)
1
2
E
x=y∈ω
1 tγx−tγy ≤β =
t2
2 Sd−1⊗Sd−1
1 x−y ≤t−γβdxdy
4/25 Institut Mines-Telecom Functional Poisson convergence
Rescaling : γ = 2/(d − 1)
Campbell-Mecke formula
E
x1,··· ,xk ∈ω
(k)
=
f (x) = tk
f (x1, · · · , xk)K(dx1, · · · , dxk)
Mean number of points (after rescaling)
1
2
E
x=y∈ω
1 tγx−tγy ≤β =
t2
2 Sd−1⊗Sd−1
1 x−y ≤t−γβdxdy
Geometry
Vd−1(Sd−1
∩Bd
βt−γ (y)) = κd−1(βt−γ
)d−1
+
(d − 1)κd−1
2
(βt−γ
)d
+O(t−γ(
4/25 Institut Mines-Telecom Functional Poisson convergence
Rescaling : γ = 2/(d − 1)
Campbell-Mecke formula
E
x1,··· ,xk ∈ω
(k)
=
f (x) = tk
f (x1, · · · , xk)K(dx1, · · · , dxk)
Mean number of points (after rescaling)
1
2
E
x=y∈ω
1 tγx−tγy ≤β =
t2
2 Sd−1⊗Sd−1
1 x−y ≤t−γβdxdy
Geometry
Vd−1(Sd−1
∩Bd
βt−γ (y)) = κd−1(βt−γ
)d−1
+
(d − 1)κd−1
2
(βt−γ
)d
+O(t−γ(
4/25 Institut Mines-Telecom Functional Poisson convergence
Schulte-Th¨ale (2012) based on Peccati (2011)
P(t2/(d−1)
Tm(ξ) > x) − e−βx(d−1)
m−1
i=0
(βxd−1)i
i!
≤ Cx t− min(1/2,2/(d−1))
5/25 Institut Mines-Telecom Functional Poisson convergence
Schulte-Th¨ale (2012) based on Peccati (2011)
P(t2/(d−1)
Tm(ξ) > x) − e−βx(d−1)
m−1
i=0
(βxd−1)i
i!
≤ Cx t− min(1/2,2/(d−1))
What about speed of convergence as a process ?
5/25 Institut Mines-Telecom Functional Poisson convergence
Configuration space
Definition
A configuration is a locally finite set of particles on a Polish spaceY
f dω =
x∈ω
f (x)
6/25 Institut Mines-Telecom Functional Poisson convergence
Configuration space
Definition
A configuration is a locally finite set of particles on a Polish spaceY
f dω =
x∈ω
f (x)
Vague topology
ωn
vaguely
−−−−→ ω ⇐⇒ f dωn
n→∞
−−−→ f dω
for all f continuous with compact support from Y to R
6/25 Institut Mines-Telecom Functional Poisson convergence
Configuration space
Definition
A configuration is a locally finite set of particles on a Polish spaceY
f dω =
x∈ω
f (x)
Vague topology
ωn
vaguely
−−−−→ ω ⇐⇒ f dωn
n→∞
−−−→ f dω
for all f continuous with compact support from Y to R
Be careful !
δn
vaguely
−−−−→ ∅
6/25 Institut Mines-Telecom Functional Poisson convergence
Convergence in configuration space
Theorem (DST)
dR(Pn, Q)
n→∞
−−−→ 0 =⇒ Pn
distr.
−−−→ Q
Convergence in NY
7/25 Institut Mines-Telecom Functional Poisson convergence
Example
Our settings
Pt : PPP of intensity tK on C ⊂ X
f : dom f = Ck/Sk −→ Y
Definition
T(
x∈η
δx ) =
(x1,··· ,xk )∈ηk
=
δt2/d f (x1,··· ,xk ) := ξ(η)
f ∗K : image measure of (tK)k by f
M: intensity of the target Poisson PP
Example
8/25 Institut Mines-Telecom Functional Poisson convergence
Main result
Theorem (Two moments are sufficient)
sup
F∈TV–Lip1
E F PPP(M) − E F T∗
(PPP(tK)
≤ distTV(L, M) + 2(var ξ(Y) − Eξ(Y))
9/25 Institut Mines-Telecom Functional Poisson convergence
Stein method
The main tool
Construct a Markov process (X(s), s ≥ 0)
with values in configuration space
ergodic with PPM(M) as invariant distribution
X(s)
distr.
−−−→ PPM(M)
for all initial condition X(0)
for which PPM(M) is a stationary distribution
X(0)
distr.
= PPM(M) =⇒ X(s)
distr.
= PPM(M), ∀s > 0
10/25 Institut Mines-Telecom Functional Poisson convergence
In one picture
PPP(M) PPP(M)
T#(PPP(tK))
P#
s (PPP(M))
P#
s (T#(PPP(tK)))
11/25 Institut Mines-Telecom Functional Poisson convergence
Realization of a Glauber process
Y
Time0
X(s)
sS1 S2
S1, S2, · · · : Poisson process of intensity M(Y) ds
Lifetimes : Exponential rv of param. 1
Remark : Nb of particles ∼ M/M/∞
12/25 Institut Mines-Telecom Functional Poisson convergence
Properties
Theorem
Distr. X(s)=PPP((1 − e−s)M) + e−s-thinning of the I.C.
X(s)
s→∞
−−−→ PPP(M)
If X(0)
distr.
= PPP(M) then X(s)
distr.
= PPP(M)
Generator
LF(ω) :=
Y
F(ω + δy ) − F(ω) M(dy)
+
y∈ω
F(ω − δy ) − F(ω)
13/25 Institut Mines-Telecom Functional Poisson convergence
Stein representation formula
Definition
PtF(η) = E[F(X(t)) | X(0) = η]
14/25 Institut Mines-Telecom Functional Poisson convergence
Stein representation formula
Definition
PtF(η) = E[F(X(t)) | X(0) = η]
Fundamental Lemma
F(ω)πM(dω) − F(ξ) =
∞
0
LPsF(ξ)ds
14/25 Institut Mines-Telecom Functional Poisson convergence
Stein representation formula
Definition
PtF(η) = E[F(X(t)) | X(0) = η]
Fundamental Lemma
F(ω)πM(dω) − F(ξ(η)) =
∞
0
LPsF(ξ(η))ds
14/25 Institut Mines-Telecom Functional Poisson convergence
Stein representation formula
Definition
PtF(η) = E[F(X(t)) | X(0) = η]
Fundamental Lemma
F(ω)πM(dω) − EF(ξ(η)) = E
∞
0
LPsF(ξ(η))ds
14/25 Institut Mines-Telecom Functional Poisson convergence
What we have to compute
Distance representation
dR(PPP(M), T#
(PPP(tK)))
= sup
F∈TV–Lip1
E
∞
0 Y
[PsF(ξ(η) + δy ) − PsF(ξ(η))] M(dy) ds
+ E
∞
0 y∈ξ(η)
[PsF(ξ(η) − δy ) − PtsF(ξ(η))] ds


15/25 Institut Mines-Telecom Functional Poisson convergence
Transformation of the stochastic integral
Bis repetita
dR(PPP(M), ξ(η))
= sup
F∈TV–Lip1
E
∞
0 Y
[PtF(ξ(η) + δy ) − PtF(ξ(η))] M(dy) dt
+ E
∞
0 y∈ξ(η)
[PtF(ξ(η) − δy ) − PtF(ξ(η))] dt


16/25 Institut Mines-Telecom Functional Poisson convergence
Mecke formula
Mecke formula ⇐⇒ IPP
E
y∈ζ
f (y, ζ) =
Y
Ef (y, ζ + δy ) M dy)
is equivalent to
E
Y
Dy U(ζ)f (y, ζ) M(dy) = E U(ζ)
Y
f (y, ζ)(dζ(y) − M(dy))
17/25 Institut Mines-Telecom Functional Poisson convergence
Consequence of the Mecke formula
Proof.
E
y∈ξ(η)
PtF(ξ(η) − δy ) − PtF(ξ(η))
=
1
k! domf
E PtF(ξ(η + δx1 + . . . + δxk
) − δf (x1,...,xk ))
− PtF(ξ(η + δx1 + . . . + δxk
)) Kk
(d(x1, . . . , xk))
= −
1
k! domf
E PtF(ξ(η) + δf (x1,··· ,xk )) − PtF(ξ(η))
Kk
(d(x1, . . . , xk)) + Remainder
18/25 Institut Mines-Telecom Functional Poisson convergence
A bit of geometry
η + δx + δy ξ(η + δx + δy )
f (x,y)
19/25 Institut Mines-Telecom Functional Poisson convergence
Last step
dR(PPP(M), ξ(η))
= sup
F∈TV–Lip1
∞
0 Y
Eζ [PtF(ζ + δy ) − PtF(ζ)] (M − f ∗
Kk
)(dy) dt
+Remainder
20/25 Institut Mines-Telecom Functional Poisson convergence
A key property (on the target space)
Definition
Dx F(ζ) = F(ζ + δx ) − F(ζ)
21/25 Institut Mines-Telecom Functional Poisson convergence
A key property (on the target space)
Definition
Dx F(ζ) = F(ζ + δx ) − F(ζ)
Intertwining property
For the Glauber point process
Dx PtF(ζ) = e−t
PtDx F(ζ)
21/25 Institut Mines-Telecom Functional Poisson convergence
Consequence
∞
0 Y
Eζ [PtF(ζ + δy ) − PtF(ζ)] (M − f ∗
Kk
)(dy) dt
=
∞
0 Y
Eζ[Dy PtF(ζ)] (M − f ∗
Kk
)(dy) dt
=
∞
0
e−t
Y
Eζ[PtDy F(ζ)] (M − f ∗
Kk
)(dy) dt
≤
Y
|M − f ∗
Kk
|(dy)
22/25 Institut Mines-Telecom Functional Poisson convergence
Generic Theorem
Theorem
dR(PPP(M)|[0,a] , ξ(η)|[0,a])
≤ dTV(f ∗
Kk
, M) + 3 · 2k+1
(f ∗
Kk
)(Y) r(domf )
where
r(domf ) := sup
1≤ ≤k−1,
(x1,...,x )∈X
Kk−
({(y1, . . . , yk− ) ∈ Xk−
:
(x1, . . . , x , y1, . . . , yk− ) ∈ domf })
23/25 Institut Mines-Telecom Functional Poisson convergence
Example (cont’d)
Theorem
dR(PPP(M)|[0,a] , ξ(η)|[0,a]) ≤ Cat−1
24/25 Institut Mines-Telecom Functional Poisson convergence
Compound Poisson approximation
The process
L
(b)
t (µ) =
1
2
(x,y)∈µ2
t,=
x − y b
1 x−y ≤δt
Theorem (Reitzner-Schlte-Thle (2013) w.o. conv. rate)
Assume
t2δb
t
t→∞
−−−→ λ
25/25 Institut Mines-Telecom Functional Poisson convergence
Compound Poisson approximation
The process
L
(b)
t (µ) =
1
2
(x,y)∈µ2
t,=
x − y b
1 x−y ≤δt
Theorem (Reitzner-Schlte-Thle (2013) w.o. conv. rate)
Assume
t2δb
t
t→∞
−−−→ λ
N ∼ Poisson(κd λ/2)
25/25 Institut Mines-Telecom Functional Poisson convergence
Compound Poisson approximation
The process
L
(b)
t (µ) =
1
2
(x,y)∈µ2
t,=
x − y b
1 x−y ≤δt
Theorem (Reitzner-Schlte-Thle (2013) w.o. conv. rate)
Assume
t2δb
t
t→∞
−−−→ λ
N ∼ Poisson(κd λ/2)
(Xi , i ≥ 1) iid, uniform in Bd (λ1/d )
25/25 Institut Mines-Telecom Functional Poisson convergence
Compound Poisson approximation
The process
L
(b)
t (µ) =
1
2
(x,y)∈µ2
t,=
x − y b
1 x−y ≤δt
Theorem (Reitzner-Schlte-Thle (2013) w.o. conv. rate)
Assume
t2δb
t
t→∞
−−−→ λ
N ∼ Poisson(κd λ/2)
(Xi , i ≥ 1) iid, uniform in Bd (λ1/d )
Then
dTV(t2b/d
L
(b)
t ,
N
j=1
Xj
b
) ≤ c(|t2
δb
t − λ| + t− min(2/d,1)
)
25/25 Institut Mines-Telecom Functional Poisson convergence

Contenu connexe

Tendances

Tendances (19)

QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
Smart Multitask Bregman Clustering
Smart Multitask Bregman ClusteringSmart Multitask Bregman Clustering
Smart Multitask Bregman Clustering
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...
 
Ece4510 notes10
Ece4510 notes10Ece4510 notes10
Ece4510 notes10
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
How many vertices does a random walk miss in a network with moderately increa...
How many vertices does a random walk miss in a network with moderately increa...How many vertices does a random walk miss in a network with moderately increa...
How many vertices does a random walk miss in a network with moderately increa...
 
Intro to ABC
Intro to ABCIntro to ABC
Intro to ABC
 
Introducing Zap Q-Learning
Introducing Zap Q-Learning   Introducing Zap Q-Learning
Introducing Zap Q-Learning
 
Problem Understanding through Landscape Theory
Problem Understanding through Landscape TheoryProblem Understanding through Landscape Theory
Problem Understanding through Landscape Theory
 
Reinforcement Learning: Hidden Theory and New Super-Fast Algorithms
Reinforcement Learning: Hidden Theory and New Super-Fast AlgorithmsReinforcement Learning: Hidden Theory and New Super-Fast Algorithms
Reinforcement Learning: Hidden Theory and New Super-Fast Algorithms
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
Ece4510 notes09
Ece4510 notes09Ece4510 notes09
Ece4510 notes09
 
Optimal interval clustering: Application to Bregman clustering and statistica...
Optimal interval clustering: Application to Bregman clustering and statistica...Optimal interval clustering: Application to Bregman clustering and statistica...
Optimal interval clustering: Application to Bregman clustering and statistica...
 
QMC Opening Workshop, Support Points - a new way to compact distributions, wi...
QMC Opening Workshop, Support Points - a new way to compact distributions, wi...QMC Opening Workshop, Support Points - a new way to compact distributions, wi...
QMC Opening Workshop, Support Points - a new way to compact distributions, wi...
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
Coordinate sampler: A non-reversible Gibbs-like sampler
Coordinate sampler: A non-reversible Gibbs-like samplerCoordinate sampler: A non-reversible Gibbs-like sampler
Coordinate sampler: A non-reversible Gibbs-like sampler
 
sada_pres
sada_pressada_pres
sada_pres
 

Similaire à Stein's method for functional Poisson approximation

Diffusion Schrödinger bridges for score-based generative modeling
Diffusion Schrödinger bridges for score-based generative modelingDiffusion Schrödinger bridges for score-based generative modeling
Diffusion Schrödinger bridges for score-based generative modeling
JeremyHeng10
 
Diffusion Schrödinger bridges for score-based generative modeling
Diffusion Schrödinger bridges for score-based generative modelingDiffusion Schrödinger bridges for score-based generative modeling
Diffusion Schrödinger bridges for score-based generative modeling
JeremyHeng10
 
Tele4653 l4
Tele4653 l4Tele4653 l4
Tele4653 l4
Vin Voro
 

Similaire à Stein's method for functional Poisson approximation (20)

Ray : modeling dynamic systems
Ray : modeling dynamic systemsRay : modeling dynamic systems
Ray : modeling dynamic systems
 
002 ray modeling dynamic systems
002 ray modeling dynamic systems002 ray modeling dynamic systems
002 ray modeling dynamic systems
 
Diffusion Schrödinger bridges for score-based generative modeling
Diffusion Schrödinger bridges for score-based generative modelingDiffusion Schrödinger bridges for score-based generative modeling
Diffusion Schrödinger bridges for score-based generative modeling
 
Diffusion Schrödinger bridges for score-based generative modeling
Diffusion Schrödinger bridges for score-based generative modelingDiffusion Schrödinger bridges for score-based generative modeling
Diffusion Schrödinger bridges for score-based generative modeling
 
QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...
QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...
QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...
 
Lecture8 Signal and Systems
Lecture8 Signal and SystemsLecture8 Signal and Systems
Lecture8 Signal and Systems
 
Patch Matching with Polynomial Exponential Families and Projective Divergences
Patch Matching with Polynomial Exponential Families and Projective DivergencesPatch Matching with Polynomial Exponential Families and Projective Divergences
Patch Matching with Polynomial Exponential Families and Projective Divergences
 
03/17/2015 SLC talk
03/17/2015 SLC talk 03/17/2015 SLC talk
03/17/2015 SLC talk
 
A contribution towards the development of a Virtual Wind Tunnel (VWT)
A contribution towards the development of a Virtual Wind Tunnel (VWT)A contribution towards the development of a Virtual Wind Tunnel (VWT)
A contribution towards the development of a Virtual Wind Tunnel (VWT)
 
SDEE: Lectures 3 and 4
SDEE: Lectures 3 and 4SDEE: Lectures 3 and 4
SDEE: Lectures 3 and 4
 
SLC 2015 talk improved version
SLC 2015 talk improved versionSLC 2015 talk improved version
SLC 2015 talk improved version
 
k-MLE: A fast algorithm for learning statistical mixture models
k-MLE: A fast algorithm for learning statistical mixture modelsk-MLE: A fast algorithm for learning statistical mixture models
k-MLE: A fast algorithm for learning statistical mixture models
 
Hiroyuki Sato
Hiroyuki SatoHiroyuki Sato
Hiroyuki Sato
 
Tales on two commuting transformations or flows
Tales on two commuting transformations or flowsTales on two commuting transformations or flows
Tales on two commuting transformations or flows
 
Appendix of heterogeneous cellular network user distribution model
Appendix of heterogeneous cellular network user distribution modelAppendix of heterogeneous cellular network user distribution model
Appendix of heterogeneous cellular network user distribution model
 
Tables
TablesTables
Tables
 
Damiano Pasetto
Damiano PasettoDamiano Pasetto
Damiano Pasetto
 
Tele4653 l4
Tele4653 l4Tele4653 l4
Tele4653 l4
 
On Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsOn Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular Integrals
 
Signals and Systems Formula Sheet
Signals and Systems Formula SheetSignals and Systems Formula Sheet
Signals and Systems Formula Sheet
 

Dernier

Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
gindu3009
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Sérgio Sacani
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Sérgio Sacani
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
PirithiRaju
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
University of Hertfordshire
 

Dernier (20)

Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptx
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
 
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)
 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C P
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencyHire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
 
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdf
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdf
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questions
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 

Stein's method for functional Poisson approximation

  • 1. Institut Mines-Telecom Functional Poisson convergence L. Decreusefond (joint work with M. Schulte, C. Th¨ale) Stein, Malliavin, Poisson and co.
  • 2. Motivation : Poisson polytopes 1 2 3 4 5 6 0 1 23456 η ξ(η) 2/25 Institut Mines-Telecom Functional Poisson convergence
  • 3. Motivation : Poisson polytopes 1 2 3 4 5 6 0 1 23456 η ξ(η) Question What happens when the number of points goes to infinity ? 2/25 Institut Mines-Telecom Functional Poisson convergence
  • 4. Poisson point process Hypothesis Points are distributed to a Poisson process of control measure tK Definition The number of points is a Poisson rv (t K(Sd−1)) Given the number of points, they are independently drawn with distribution K 3/25 Institut Mines-Telecom Functional Poisson convergence
  • 5. Rescaling : γ = 2/(d − 1) Campbell-Mecke formula E x1,··· ,xk ∈ω (k) = f (x) = tk f (x1, · · · , xk)K(dx1, · · · , dxk) 4/25 Institut Mines-Telecom Functional Poisson convergence
  • 6. Rescaling : γ = 2/(d − 1) Campbell-Mecke formula E x1,··· ,xk ∈ω (k) = f (x) = tk f (x1, · · · , xk)K(dx1, · · · , dxk) Mean number of points (after rescaling) 1 2 E x=y∈ω 1 tγx−tγy ≤β = t2 2 Sd−1⊗Sd−1 1 x−y ≤t−γβdxdy 4/25 Institut Mines-Telecom Functional Poisson convergence
  • 7. Rescaling : γ = 2/(d − 1) Campbell-Mecke formula E x1,··· ,xk ∈ω (k) = f (x) = tk f (x1, · · · , xk)K(dx1, · · · , dxk) Mean number of points (after rescaling) 1 2 E x=y∈ω 1 tγx−tγy ≤β = t2 2 Sd−1⊗Sd−1 1 x−y ≤t−γβdxdy Geometry Vd−1(Sd−1 ∩Bd βt−γ (y)) = κd−1(βt−γ )d−1 + (d − 1)κd−1 2 (βt−γ )d +O(t−γ( 4/25 Institut Mines-Telecom Functional Poisson convergence
  • 8. Rescaling : γ = 2/(d − 1) Campbell-Mecke formula E x1,··· ,xk ∈ω (k) = f (x) = tk f (x1, · · · , xk)K(dx1, · · · , dxk) Mean number of points (after rescaling) 1 2 E x=y∈ω 1 tγx−tγy ≤β = t2 2 Sd−1⊗Sd−1 1 x−y ≤t−γβdxdy Geometry Vd−1(Sd−1 ∩Bd βt−γ (y)) = κd−1(βt−γ )d−1 + (d − 1)κd−1 2 (βt−γ )d +O(t−γ( 4/25 Institut Mines-Telecom Functional Poisson convergence
  • 9. Schulte-Th¨ale (2012) based on Peccati (2011) P(t2/(d−1) Tm(ξ) > x) − e−βx(d−1) m−1 i=0 (βxd−1)i i! ≤ Cx t− min(1/2,2/(d−1)) 5/25 Institut Mines-Telecom Functional Poisson convergence
  • 10. Schulte-Th¨ale (2012) based on Peccati (2011) P(t2/(d−1) Tm(ξ) > x) − e−βx(d−1) m−1 i=0 (βxd−1)i i! ≤ Cx t− min(1/2,2/(d−1)) What about speed of convergence as a process ? 5/25 Institut Mines-Telecom Functional Poisson convergence
  • 11. Configuration space Definition A configuration is a locally finite set of particles on a Polish spaceY f dω = x∈ω f (x) 6/25 Institut Mines-Telecom Functional Poisson convergence
  • 12. Configuration space Definition A configuration is a locally finite set of particles on a Polish spaceY f dω = x∈ω f (x) Vague topology ωn vaguely −−−−→ ω ⇐⇒ f dωn n→∞ −−−→ f dω for all f continuous with compact support from Y to R 6/25 Institut Mines-Telecom Functional Poisson convergence
  • 13. Configuration space Definition A configuration is a locally finite set of particles on a Polish spaceY f dω = x∈ω f (x) Vague topology ωn vaguely −−−−→ ω ⇐⇒ f dωn n→∞ −−−→ f dω for all f continuous with compact support from Y to R Be careful ! δn vaguely −−−−→ ∅ 6/25 Institut Mines-Telecom Functional Poisson convergence
  • 14. Convergence in configuration space Theorem (DST) dR(Pn, Q) n→∞ −−−→ 0 =⇒ Pn distr. −−−→ Q Convergence in NY 7/25 Institut Mines-Telecom Functional Poisson convergence
  • 15. Example Our settings Pt : PPP of intensity tK on C ⊂ X f : dom f = Ck/Sk −→ Y Definition T( x∈η δx ) = (x1,··· ,xk )∈ηk = δt2/d f (x1,··· ,xk ) := ξ(η) f ∗K : image measure of (tK)k by f M: intensity of the target Poisson PP Example 8/25 Institut Mines-Telecom Functional Poisson convergence
  • 16. Main result Theorem (Two moments are sufficient) sup F∈TV–Lip1 E F PPP(M) − E F T∗ (PPP(tK) ≤ distTV(L, M) + 2(var ξ(Y) − Eξ(Y)) 9/25 Institut Mines-Telecom Functional Poisson convergence
  • 17. Stein method The main tool Construct a Markov process (X(s), s ≥ 0) with values in configuration space ergodic with PPM(M) as invariant distribution X(s) distr. −−−→ PPM(M) for all initial condition X(0) for which PPM(M) is a stationary distribution X(0) distr. = PPM(M) =⇒ X(s) distr. = PPM(M), ∀s > 0 10/25 Institut Mines-Telecom Functional Poisson convergence
  • 18. In one picture PPP(M) PPP(M) T#(PPP(tK)) P# s (PPP(M)) P# s (T#(PPP(tK))) 11/25 Institut Mines-Telecom Functional Poisson convergence
  • 19. Realization of a Glauber process Y Time0 X(s) sS1 S2 S1, S2, · · · : Poisson process of intensity M(Y) ds Lifetimes : Exponential rv of param. 1 Remark : Nb of particles ∼ M/M/∞ 12/25 Institut Mines-Telecom Functional Poisson convergence
  • 20. Properties Theorem Distr. X(s)=PPP((1 − e−s)M) + e−s-thinning of the I.C. X(s) s→∞ −−−→ PPP(M) If X(0) distr. = PPP(M) then X(s) distr. = PPP(M) Generator LF(ω) := Y F(ω + δy ) − F(ω) M(dy) + y∈ω F(ω − δy ) − F(ω) 13/25 Institut Mines-Telecom Functional Poisson convergence
  • 21. Stein representation formula Definition PtF(η) = E[F(X(t)) | X(0) = η] 14/25 Institut Mines-Telecom Functional Poisson convergence
  • 22. Stein representation formula Definition PtF(η) = E[F(X(t)) | X(0) = η] Fundamental Lemma F(ω)πM(dω) − F(ξ) = ∞ 0 LPsF(ξ)ds 14/25 Institut Mines-Telecom Functional Poisson convergence
  • 23. Stein representation formula Definition PtF(η) = E[F(X(t)) | X(0) = η] Fundamental Lemma F(ω)πM(dω) − F(ξ(η)) = ∞ 0 LPsF(ξ(η))ds 14/25 Institut Mines-Telecom Functional Poisson convergence
  • 24. Stein representation formula Definition PtF(η) = E[F(X(t)) | X(0) = η] Fundamental Lemma F(ω)πM(dω) − EF(ξ(η)) = E ∞ 0 LPsF(ξ(η))ds 14/25 Institut Mines-Telecom Functional Poisson convergence
  • 25. What we have to compute Distance representation dR(PPP(M), T# (PPP(tK))) = sup F∈TV–Lip1 E ∞ 0 Y [PsF(ξ(η) + δy ) − PsF(ξ(η))] M(dy) ds + E ∞ 0 y∈ξ(η) [PsF(ξ(η) − δy ) − PtsF(ξ(η))] ds   15/25 Institut Mines-Telecom Functional Poisson convergence
  • 26. Transformation of the stochastic integral Bis repetita dR(PPP(M), ξ(η)) = sup F∈TV–Lip1 E ∞ 0 Y [PtF(ξ(η) + δy ) − PtF(ξ(η))] M(dy) dt + E ∞ 0 y∈ξ(η) [PtF(ξ(η) − δy ) − PtF(ξ(η))] dt   16/25 Institut Mines-Telecom Functional Poisson convergence
  • 27. Mecke formula Mecke formula ⇐⇒ IPP E y∈ζ f (y, ζ) = Y Ef (y, ζ + δy ) M dy) is equivalent to E Y Dy U(ζ)f (y, ζ) M(dy) = E U(ζ) Y f (y, ζ)(dζ(y) − M(dy)) 17/25 Institut Mines-Telecom Functional Poisson convergence
  • 28. Consequence of the Mecke formula Proof. E y∈ξ(η) PtF(ξ(η) − δy ) − PtF(ξ(η)) = 1 k! domf E PtF(ξ(η + δx1 + . . . + δxk ) − δf (x1,...,xk )) − PtF(ξ(η + δx1 + . . . + δxk )) Kk (d(x1, . . . , xk)) = − 1 k! domf E PtF(ξ(η) + δf (x1,··· ,xk )) − PtF(ξ(η)) Kk (d(x1, . . . , xk)) + Remainder 18/25 Institut Mines-Telecom Functional Poisson convergence
  • 29. A bit of geometry η + δx + δy ξ(η + δx + δy ) f (x,y) 19/25 Institut Mines-Telecom Functional Poisson convergence
  • 30. Last step dR(PPP(M), ξ(η)) = sup F∈TV–Lip1 ∞ 0 Y Eζ [PtF(ζ + δy ) − PtF(ζ)] (M − f ∗ Kk )(dy) dt +Remainder 20/25 Institut Mines-Telecom Functional Poisson convergence
  • 31. A key property (on the target space) Definition Dx F(ζ) = F(ζ + δx ) − F(ζ) 21/25 Institut Mines-Telecom Functional Poisson convergence
  • 32. A key property (on the target space) Definition Dx F(ζ) = F(ζ + δx ) − F(ζ) Intertwining property For the Glauber point process Dx PtF(ζ) = e−t PtDx F(ζ) 21/25 Institut Mines-Telecom Functional Poisson convergence
  • 33. Consequence ∞ 0 Y Eζ [PtF(ζ + δy ) − PtF(ζ)] (M − f ∗ Kk )(dy) dt = ∞ 0 Y Eζ[Dy PtF(ζ)] (M − f ∗ Kk )(dy) dt = ∞ 0 e−t Y Eζ[PtDy F(ζ)] (M − f ∗ Kk )(dy) dt ≤ Y |M − f ∗ Kk |(dy) 22/25 Institut Mines-Telecom Functional Poisson convergence
  • 34. Generic Theorem Theorem dR(PPP(M)|[0,a] , ξ(η)|[0,a]) ≤ dTV(f ∗ Kk , M) + 3 · 2k+1 (f ∗ Kk )(Y) r(domf ) where r(domf ) := sup 1≤ ≤k−1, (x1,...,x )∈X Kk− ({(y1, . . . , yk− ) ∈ Xk− : (x1, . . . , x , y1, . . . , yk− ) ∈ domf }) 23/25 Institut Mines-Telecom Functional Poisson convergence
  • 35. Example (cont’d) Theorem dR(PPP(M)|[0,a] , ξ(η)|[0,a]) ≤ Cat−1 24/25 Institut Mines-Telecom Functional Poisson convergence
  • 36. Compound Poisson approximation The process L (b) t (µ) = 1 2 (x,y)∈µ2 t,= x − y b 1 x−y ≤δt Theorem (Reitzner-Schlte-Thle (2013) w.o. conv. rate) Assume t2δb t t→∞ −−−→ λ 25/25 Institut Mines-Telecom Functional Poisson convergence
  • 37. Compound Poisson approximation The process L (b) t (µ) = 1 2 (x,y)∈µ2 t,= x − y b 1 x−y ≤δt Theorem (Reitzner-Schlte-Thle (2013) w.o. conv. rate) Assume t2δb t t→∞ −−−→ λ N ∼ Poisson(κd λ/2) 25/25 Institut Mines-Telecom Functional Poisson convergence
  • 38. Compound Poisson approximation The process L (b) t (µ) = 1 2 (x,y)∈µ2 t,= x − y b 1 x−y ≤δt Theorem (Reitzner-Schlte-Thle (2013) w.o. conv. rate) Assume t2δb t t→∞ −−−→ λ N ∼ Poisson(κd λ/2) (Xi , i ≥ 1) iid, uniform in Bd (λ1/d ) 25/25 Institut Mines-Telecom Functional Poisson convergence
  • 39. Compound Poisson approximation The process L (b) t (µ) = 1 2 (x,y)∈µ2 t,= x − y b 1 x−y ≤δt Theorem (Reitzner-Schlte-Thle (2013) w.o. conv. rate) Assume t2δb t t→∞ −−−→ λ N ∼ Poisson(κd λ/2) (Xi , i ≥ 1) iid, uniform in Bd (λ1/d ) Then dTV(t2b/d L (b) t , N j=1 Xj b ) ≤ c(|t2 δb t − λ| + t− min(2/d,1) ) 25/25 Institut Mines-Telecom Functional Poisson convergence